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BATCHED BANDIT PROBLEMS
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Université Paris Diderot and INRIA∗, Massachusetts Institute of Technology†,
Princeton University‡ and California Institute of Technology and NBER§

Motivated by practical applications, chiefly clinical trials, we study the
regret achievable for stochastic bandits under the constraint that the employed
policy must split trials into a small number of batches. We propose a simple
policy, and show that a very small number of batches gives close to minimax
optimal regret bounds. As a byproduct, we derive optimal policies with low
switching cost for stochastic bandits.

1. Introduction. All clinical trials are run in batches: groups of patients are
treated simultaneously, with the data from each batch influencing the design of
the next. This structure arises as it is impractical to measure outcomes (rewards)
for each patient before deciding what to do next. Despite the fact that this system
is codified into law for drug approval, it has received scant attention from statis-
ticians. What can be achieved with a small number of batches? How big should
these batches be? How should results in one batch affect the structure of the next?

We address these questions using the multi-armed bandit framework. This en-
capsulates an “exploration vs. exploitation” dilemma fundamental to ethical clin-
ical research [30, 34]. In the basic problem, there are two populations of pa-
tients (or arms), corresponding to different treatments. At each point in time
t = 1, . . . , T , a decision maker chooses to sample one, and receives a random
reward dictated by the efficacy of the treatment. The objective is to devise a se-
ries of choices—a policy—maximizing the expected cumulative reward over T

rounds. There is thus a clear tradeoff between discovering which treatment is the
most effective—or exploration—and administering the best treatment to as many
patients as possible—or exploitation.

The importance of batching extends beyond clinical trials. In recent years, the
bandit framework has been used to study problems in economics, finance, chem-
ical engineering, scheduling, marketing and, more recently, internet advertising.
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This last application has been the driving force behind a recent surge of interest
in many variations of bandit problems over the past decade. Yet, even in internet
advertising, technical constraints often force data to be considered in batches; al-
though the size of these batches is usually based on technical convenience rather
than on statistical reasoning. Discovering the optimal structure, size and number
of batches has applications in marketing [8, 31] and simulations [14].

In clinical trials, batches may be formal—the different phases required for ap-
proval of a new drug by the US Food and Drug Administration—or informal—
with a pilot, a full trial, and then diffusion to the full population that may benefit.
In an informal setup, the second step may be skipped if the pilot is successful
enough. In this three-stage approach, the first, and usually second, phases focus
on exploration, while the third focuses on exploitation. This is in stark contrast to
the basic bandit problem described above, which effectively consists of T batches,
each containing a single patient.

We describe a policy that performs well with a small fixed number of batches.
A fixed number of batches reflects clinical practice, but presents mathematical
challenges. Nonetheless, we identify batch sizes that lead to a minimax regret
bounds as low as the best non-batched algorithms. We further show that these
batch sizes perform well empirically. Together, these features suggest that near-
optimal policies could be implemented with only small changes to current clinical
practice.

2. Description of the problem.

2.1. Notation. For any positive integer n, define [n] = {1, . . . , n}, and for any
n1 < n2, [n1 : n2] = {n1, . . . , n2} and (n1 : n2] = {n1 + 1, . . . , n2}. For any positive
number x, let ⌊x⌋ denote the largest integer n such that n ≤ x and ⌊x⌋2 denotes the
largest even integer m such that m ≤ x. Additionally, for any real numbers a and
b, a ∧ b = min(a, b) and a ∨ b = max(a, b). Further, define log(x) = 1 ∨ (logx).
1(·) denotes the indicator function.

If I , J are closed intervals of R, then I ≺ J if x < y for all x ∈ I, y ∈ J .
Finally, for two sequences (uT )T , (vT )T , we write uT = O(vT ) or uT ! vT if

there exists a constant C > 0 such that |uT | ≤ C|vT | for any T . Moreover, we
write uT = !(vT ) if uT = O(vT ) and vT = O(uT ).

2.2. Framework. We employ a two-armed bandit framework with horizon
T ≥ 2. Central ideas and intuitions are well captured by this concise framework.
Extensions to K-armed bandit problems are mostly technical (see, for instance,
[28]).

At each time t ∈ [T ], the decision maker chooses an arm i ∈ {1,2} and ob-
serves a reward that comes from a sequence of i.i.d. draws Y

(i)
1 , Y

(i)
2 , . . . from

some unknown distribution ν(i) with expected value µ(i). We assume that the dis-
tributions ν(i) are standardized sub-Gaussian, that is,

∫
eλ(x−µ(i))νi (dx) ≤ eλ2/2 for
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all λ ∈ R. Note that these include Gaussian distributions with variance at most 1,
and distributions supported on an interval of length at most 2. Rescaling extends
the framework to other variance parameters σ 2.

For any integer M ∈ [2 : T ], let T = {t1, . . . , tM} be an ordered sequence,
or grid, of integers such that 1 < t1 < · · · < tM = T . It defines a partition
S = {S1, . . . , SM} of [T ] where S1 = [1 : t1] and Sk = (tk−1 : tk] for k ∈ [2 : M].
The set Sk is called kth batch. An M-batch policy is a couple (T ,π) where
T = {t1, . . . , tM} is a grid and π = {πt , t = 1, . . . , T } is a sequence of random vari-
ables πt ∈ {1,2}, indicating which arm to pull at each time t = 1, . . . , T , which de-
pend only on observations from batches strictly prior to the current one. Formally,
for each t ∈ [T ], let J (t) ∈ [M] be the index of the current batch SJ(t). Then, for
t ∈ SJ(t), πt can only depend on observations {Y (πs )

s : s ∈ S1 ∪ · · · ∪ SJ(t)−1} =
{Y (πs )

s : s ≤ tJ (t)−1}.
Denote by ⋆ ∈ {1,2} the optimal arm defined by µ(⋆) = maxi∈{1,2} µ(i), by

† ∈ {1,2} the suboptimal arm, and by ' := µ(⋆) − µ(†) > 0 the gap between the
optimal expected reward and the suboptimal expected reward.

The performance of a policy π is measured by its (cumulative) regret at time T

RT = RT (π) = T µ(⋆) −
T∑

t=1

Eµ(πt ).

Denoting by Ti(t) = ∑t
s=1 1(πs = i), i ∈ {1,2} the number of times arm i was

pulled before time t ≥ 2, regret can be rewritten as RT = 'ET†(T ).

2.3. Previous results. Bandit problems are well understood in the case where
M = T , that is, when the decision maker can use all available data at each time
t ∈ [T ]. Bounds on the cumulative regret RT for stochastic multi-armed bandits
come in two flavors: minimax or adaptive. Minimax bounds hold uniformly in '
over a suitable subset of the positive real line such as the intervals (0,1) or even
(0,∞). The first results of this kind are attributed to Vogel [36, 37], who proved
that RT = !(

√
T ) in the two-armed case (see also [6, 20]).

Adaptive policies exhibit regret bounds that may be much smaller than the
order of

√
T when ' is large. Such bounds were proved in the seminal pa-

per of Lai and Robbins [25] in an asymptotic framework (see also [10]). While
leading to tight constants, this framework washes out the correct dependency on
' of the logarithmic terms. In fact, recent research [1–3, 28] has revealed that
RT = !('T ∧ log(T '2)/').

Nonetheless, a systematic analysis of the batched case does not exist, even
though UCB2 [2] and IMPROVED-UCB [3] are implicitly M-batch policies with
M = !(logT ). These algorithms achieve optimal adaptive bounds. Thus, employ-
ing a batched policy is only a constraint when the number of batches M is much
smaller than logT , as is often the case in clinical practice. Similarly, in the min-
imax framework, M-batch policies, with M = !(log logT ), lead to the optimal
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regret bound (up to logarithmic terms) of O(
√

T log log logT ) [11, 12]. The sub-
logarithmic range M ≪ logT is essential in applications where M is small and
constant, like clinical trials. In particular, we wish to bound the regret for small
values of M , such as 2, 3 or 4.

2.4. Literature. This paper connects to two lines of work: batched sequential
estimation [17, 18, 21, 33] and multistage clinical trials. Somerville [32] and Mau-
rice [26] studied the two-batch bandit problem in a minimax framework under a
Gaussian assumption. They prove that an “explore-then-commit” type policy has
regret of order T 2/3 for any value of the gap '; a result we recover and extend (see
Section 4.3).

Colton [15, 16] introduced a Bayesian perspective, initiating a long line of work
(see [22] for a recent overview). Most of this work focuses on the case of two-
three batches, with isolated exceptions [13, 22]. Typically, this work claims the
size of the first batch should be of order

√
T , which agrees with our results, up to

a logarithmic term (see Section 4.2).
Batched procedures have a long history in clinical trials (see, for instance, [23]

and [5]). Usually, batches are of the same size, or of random size, with the lat-
ter case providing robustness. This literature also focuses on inference questions
rather than cumulative regret. A notable exception provides an ad-hoc objective to
optimize batch size but recovers the suboptimal

√
T in the case of two batches [4].

2.5. Outline. Section 3 introduces a general class of M-batch policies we call
explore-then-commit (ETC) policies. These policies are close to clinical practice
within batches. The performance of generic ETC policies are detailed in Proposi-
tion 1, found in Section 3.3. In Section 4, we study several instantiations of this
generic policy and provide regret bounds with explicit, and often drastic, depen-
dency on the number of batches M . Indeed, in Section 4.3, we describe a policy in
which regret decreases doubly exponentially fast with the number of batches.

Two of the instantiations provide adaptive and minimax types of bounds, re-
spectively. Specifically, we describe two M-batch policies, π1 and π2 that enjoy
the following bounds on the regret:

RT
(
π1) !

(
T

log(T )

)1/M log(T '2)

'
,

RT
(
π2) ! T 1/(2−21−M) logαM

(
T 1/(2M−1)), αM ∈ [0,1/4).

Note that the bound for π1 corresponds to the optimal adaptive rate log(T '2)/'
when M = !(log(T / log(T ))) and the bound for π2 corresponds to the opti-
mal minimax rate

√
T when M = !(log logT ). The latter is entirely feasible

in clinical settings. As a byproduct of our results, we show that the adaptive
optimal bounds can be obtained with a policy that switches between arms less
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than !(log(T / log(T ))) times, while the optimal minimax bounds only require
!(log logT ) switches. Indeed, ETC policies can be adapted to switch at most once
in each batch.

Section 5 then examines the lower bounds on regret of any M-batch policy,
and shows that the policies identified are optimal, up to logarithmic terms, within
the class of M-batch policies. Finally, in Section 6 we compare policies through
simulations using both standard distributions and real data from a clinical trial, and
show that the policies we identify perform well even with a very small number of
batches.

3. Explore-then-commit policies. In this section, we describe a simple struc-
ture that can be used to build policies: explore-then-commit (ETC). This structure
consists of pulling each arm the same number of times in each non-terminal batch,
and checking after each batch whether, according to some statistical test, one arm
dominates the other. If one dominates, then only that arm is pulled until T . If,
at the beginning of the terminal batch, neither arm has been declared dominant,
then the policy commits to the arm with the largest average past reward. This “go
for broke” step is dictated by regret minimization: in the last batch exploration is
pointless as the information it produces can never be used.

Any policy built using this principle is completely characterized by two ele-
ments: the testing criterion and the sizes of the batches.

3.1. Statistical test. We begin by describing the statistical test employed be-
fore non-terminal batches. Denote by

µ̂(i)
s = 1

s

s∑

ℓ=1

Y
(i)
ℓ

the empirical mean after s ≥ 1 pulls of arm i. This estimator allows for the con-
struction of a collection of upper and lower confidence bounds for µ(i) of the form

µ̂(i)
s + B(i)

s and µ̂(i)
s − B(i)

s ,

where B(i)
s = 2

√
2 log(T /s)/s (with the convention that B(i)

0 = ∞). It follows from
Lemma B.1 that for any τ ∈ [T ],

P
{∃s ≤ τ : µ(i) > µ̂(i)

s + B(i)
s

} ∨ P
{∃s ≤ τ : µ(i) < µ̂(i)

s − B(i)
s

} ≤ 4τ

T
.(1)

These bounds enable us to design the following family of tests {ϕt }t∈[T ] with
values in {1,2,⊥} where ⊥ indicates that the test was inconclusive. This test is
only implemented at times t ∈ [T ] at which each arm has been pulled exactly
s = t/2 times. However, for completeness, we define the test at all times t . For
t ≥ 1, define

ϕt =
{

i ∈ {1,2}, if T1(t) = T2(t) = t/2 and µ̂
(i)
t/2 − B(i)

t/2 > µ̂
(j)
t/2 + B(j)

t/2, j ≠ i,

⊥, otherwise.
The errors of such tests are controlled as follows.
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LEMMA 1. Let S ⊂ [T ] be a deterministic subset of even times such that
T1(t) = T2(t) = t/2, for t ∈ S . Partition S into S− ∪ S+, S− ≺ S+, where

S− =
{
t ∈ S : ' < 16

√
log(2T/t)

t

}
, S+ =

{
t ∈ S : ' ≥ 16

√
log(2T/t)

t

}
.

Let t̄ denote the smallest element of S+. Then

(i) P(ϕt̄ ≠ ⋆) ≤ 4t̄

T
and (ii) P(∃t ∈ S− : ϕt = †) ≤ 4t̄

T
.

PROOF. Assume without loss of generality that ⋆ = 1.

(i) By definition,

{ϕt̄ ≠ 1} = {
µ̂

(1)
t̄/2 − B(1)

t̄/2 ≤ µ̂
(2)
t̄/2 + B(2)

t̄/2

} ⊂ {
E1

t̄ ∪ E2
t̄ ∪ E3

t̄

}
,

where E1
t = {µ(1) ≥ µ̂

(1)
t/2 + B(1)

t/2}, E2
t = {µ(2) ≤ µ̂

(2)
t/2 − B(2)

t/2}, and E3
t = {µ(1) −

µ(2) < 2B(1)
t/2 + 2B(2)

t/2}. It follows from (1) that with τ = t̄/2, P(E1
t̄
) ∨ P(E2

t̄
) ≤

2t̄/T .
Finally, for any t ∈ S+, in particular for t = t̄ , we have

E3
t ⊂

{
µ(1) − µ(2) < 16

√
log(2T/t)

t

}
=∅.

(ii) Focus on the case t ∈ S−, where ' < 16
√

log(2T/t)/t . Here,
⋃

t∈S−

{ϕt = 2} =
⋃

t∈S−

{
µ̂

(2)
t/2 − B(2)

t/2 > µ̂
(1)
t/2 + B(1)

t/2
} ⊂

⋃

t∈S−

{
E1

t ∪ E2
t ∪ F 3

t

}
,

where, E1
t ,E

2
t are defined above and F 3

t = {µ(1) − µ(2) < 0} = ∅ as ⋆ = 1. It
follows from (1), that with τ = t̄

P
( ⋃

t∈S−

E1
t

)
∨ P

( ⋃

t∈S−

E2
t

)
≤ 2t̄

T
.

"

3.2. Go for broke. In the last batch, the ETC structure will “go for broke” by
selecting the arm i with the largest average. Formally, at time t , let ψt = i iff
µ̂

(i)
Ti(t)

≥ µ̂
(j)
Tj (t), with ties broken arbitrarily. While this criterion may select the

suboptimal arm with higher probability than the statistical test described in the
previous subsection, it also increases the probability of selecting the correct arm
by eliminating inconclusive results. This statement is formalized in the following
lemma. The proof follows immediately from Lemma B.1.

LEMMA 2. Fix an even time t ∈ [T ], and assume that both arms have been
pulled t/2 times each (i.e., Ti(t) = t/2, for i = 1,2). Going for broke leads to a
probability of error

P(ψt ≠ ⋆) ≤ exp
(−t'2/16

)
.
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3.3. Explore-then-commit policy. In a batched process, an extra constraint
is that past observations can only be inspected at a specific set of times T =
{t1, . . . , tM−1} ⊂ [T ], called a grid.

The generic ETC policy uses a deterministic grid T that is fixed beforehand,
and is described more formally in Figure 1. Informally, at each decision time
t1, . . . , tM−2, the policy implements the statistical test. If one arm is determined
to be better than the other, it is pulled until T . If no arm is declared best, then both
arms are pulled the same number of times in the next batch.

We denote by εt ∈ {1,2} the arm pulled at time t ∈ [T ], and employ an ex-
ternal source of randomness to generate the variables εt . With N an even num-

Input:

• Horizon: T .
• Number of batches: M ∈ [2 : T ].
• Grid: T = {t1, . . . , tM−1} ⊂ [T ], t0 = 0, tM = T , |Sm| = tm − tm−1 is even

for m ∈ [M − 1].
Initialization:

• Let ε[m] = (ε
[m]
1 , . . . , ε

[m]
|Sm|) be uniformly distributed overa V|Sm|, for m ∈

[M].
• The index ℓ of the batch in which a best arm was identified is initialized to

ℓ = ◦ .

Policy:

1. For t ∈ [1 : t1], choose πt = ε
[1]
t .

2. For m ∈ [2 : M − 1]:
(a) If ℓ ≠ ◦, then πt = ϕtℓ for t ∈ (tm−1 : tm].
(b) Else, compute ϕtm−1

i. If ϕtm−1 = ⊥, select an arm at random, that is, πt = ε
[m]
t for t ∈

(tm−1 : tm].
ii. Else, ℓ = m − 1 and πt = ϕtm−1 for t ∈ (tm−1 : tm].

3. For t ∈ (tM−1, T ]:
(a) If ℓ ≠ ◦, πt = ϕtℓ .
(b) Otherwise, go for broke, that is, πt = ψtM−1 .

aIn the case where |Sm| is not an even number, we use the general definition of footnote 4 for
V|Sm|.

FIG. 1. Generic explore-then-commit policy with grid T .
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ber, let (ε1, . . . , εN) be uniformly distributed over the subset VN = {v ∈ {1,2}N :∑
i 1(vi = 1) = N/2}.4 This randomization has no effect on the policy, and could

easily be replaced by any other mechanism that pulls each arm an equal number of
times. For example, a mechanism that pulls one arm for the first half of the batch,
and the other for the second half, may be used if switching costs are a concern.

In the terminal batch SM , if no arm was determined to be optimal in any prior
batch, the ETC policy will go for broke by selecting the arm i such that µ̂

(i)
Ti(tM−1)

≥
µ̂

(j)
Tj (tM−1)

, with ties broken arbitrarily.
To describe the regret incurred by a generic ETC policy, we introduce extra

notation. For any ' ∈ (0,1), let τ (') = T ∧ ϑ(') where ϑ(') is the smallest
integer such that

' ≥ 16

√
log[2T/ϑ(')]

ϑ(')
.

Notice that the above definition implies that τ (') ≥ 2 and

τ (') ≤ 256
'2 log

(
T '2

128

)
.(2)

The time τ (') is, up to a multiplicative constant, the theoretical time at which
the optimal arm will be declared better by the statistical test with large enough
probability. As ' is unknown, the grid will not usually contain this value. Thus,
the relevant time is the first posterior to τ (') in a grid:

m(',T ) =
{

min
{
m ∈ {1, . . . ,M − 1} : tm ≥ τ (')

}
, if τ (') ≤ tM−1,

M − 1, otherwise.
(3)

The first proposition gives an upper bound for the regret incurred by a generic
ETC policy run with a given set of times T = {t1, . . . , tM−1}.

PROPOSITION 1. Given the time horizon T ∈ N, the number of batches M ∈
[2, T ], and the grid T = {t1, . . . , tM−1} ⊂ [T ] with t0 = 0. For any ' ∈ [0,1], the
generic ETC policy described in Figure 1 incurs regret bounded

RT (',T ) ≤ 9'tm(',T ) + T 'e−(tM−1'
2)/161

(
m(',T ) = M − 1

)
.(4)

PROOF. Denote m̄ = m(',T ). Note that tm̄ denotes the theoretical time on
the grid at which the statistical test will declare ⋆ to be (with high probability) the
better arm.

4Odd numbers for the deadlines ti could be considered, at the cost of rounding problems and
complexity, by defining VN = {v ∈ {1,2}N : |∑i 1(vi = 1) − ∑

i 1(vi = 2)| ≤ 1}.
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We first examine the case where tm̄ < M − 1. Define the following events:

Am =
m⋂

n=1

{ϕtn = ⊥}, Bm = {ϕtm = †} and Cm = {ϕtm ≠ ⋆}.

Regret can be incurred in one of the following three manners:

(i) by exploring before time tm̄,
(ii) by choosing arm † before time tm̄: this happens on event Bm,

(iii) by not committing to the optimal arm ⋆ at the optimal time tm̄: this happens
on event Cm̄.

Error (i) is unavoidable and may occur with probability close to one. It corresponds
to the exploration part of the policy and leads to an additional term tm̄'/2 in the
regret. An error of the type (ii) or (iii) can lead to a regret of at most T ', so we
need to ensure that they occur with low probability. Therefore, the regret incurred
by the policy is bounded as

RT (',T ) ≤ tm̄'

2
+ T 'E

[

1

(
m̄−1⋃

m=1

Am−1 ∩ Bm

)

+ 1(Bm̄−1 ∩ Cm̄)

]

,(5)

with the convention that A0 is the whole probability space.
Next, observe that m̄ is chosen such that

16

√
log(2T/tm̄)

tm̄
≤ ' < 16

√
log(2T/tm̄−1)

tm̄−1
.

In particular, tm̄ plays the role of t̄ in Lemma 1. Thus, using part (i) of Lemma 1,

P(Bm̄−1 ∩ Cm̄) ≤ 4tm̄

T
.

Moreover, using part (ii) of the same lemma,

P
(

m̄−1⋃

m=1

Am−1 ∩ Bm

)

≤ 4tm̄

T
.

Together with (5) this implies regret is bounded by RT (',T ) ≤ 9'tm̄.
In the case where tm(',T ) = M − 1, Lemma 2 shows that the go for broke test

errs with probability at most exp(−tM−1'
2/16), which gives that

RT (',T ) ≤ 9'tm(',T ) + T 'e−(tM−1'
2)/16,

using the same arguments as before. "

Proposition 1 helps choose a grid by showing how that choice reduces to an
optimal discretization problem.
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4. Functionals, grids and bounds. The regret bound of Proposition 1 crit-
ically depends on the choice of the grid T = {t1, . . . , tM−1} ⊂ [T ]. Ideally, we
would like to optimize the right-hand side of (4) with respect to the tms. For a
fixed ', this problem is easy, and it is enough to choose M = 2, t1 ≃ τ (') to ob-
tain optimal regret bounds of the order R∗(') = log(T '2)/'. For unknown ',
the problem is not well defined: as observed by [15, 16], it consists in optimiz-
ing a function R(',T ) for all ', and there is no choice that is uniformly better
than others. To overcome this limitation, we minimize pre-specified real-valued
functionals of R(·,T ). The functionals we focus on are:

Fxs
[
RT (·,T )

] = sup
'∈[0,1]

{
RT (',T ) − CR∗(')

}
, C > 0 Excess regret,

Fcr
[
RT (·,T )

] = sup
'∈[0,1]

RT (',T )

R∗(')
Competitive ratio,

Fmx
[
RT (·,T )

] = sup
'∈[0,1]

RT (',T ) Maximum.

Optimizing different functionals leads to different optimal grids. We investigate
the properties of these functionals and grids in the rest of this section.5

4.1. Excess regret and the arithmetic grid. We begin with the simple grid con-
sisting in a uniform discretization of [T ]. This is particularly prominent in the
group sequential testing literature [23]. As we will see, even in a favorable setup,
it yields poor regret bounds.

Assume, for simplicity, that T = 2KM for some positive integer K , so that the
grid is defined by tm = mT/M . In this case, the right-hand side of (4) is bounded
below by 't1 = 'T/M . For small M , this lower bound is linear in T ', which is
a trivial bound on regret. To obtain a valid upper bound, note that

tm(',T ) ≤ τ (') + T

M
≤ 256

'2 log
(

T '2

128

)
+ T

M
.

Moreover, if m(',T ) = M − 1 then ' is of the order of
√

1/T , thus, T '! 1/'.
Together with (4), this yields the following theorem.

THEOREM 1. The ETC policy implemented with the arithmetic grid defined
above ensures that, for any ' ∈ [0,1],

RT (',T )!
( 1

'
log

(
T '2) + T '

M

)
∧ T '.

5One could also consider the Bayesian criterion Fby[RT (·,T )] = ∫
RT (',T ) dπ(') where π is

a given prior distribution on ', rather than on the expected rewards as in the traditional Bayesian
bandit literature [7].
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The optimal rate is recovered if M = T . However, the arithmetic grid leads to a
bound on the excess regret of the order of 'T when T is large and M constant.

In Section 5, the bound of Theorem 1 is shown to be optimal for excess regret,
up to logarithmic factors. Clearly, this criterion provides little useful guidance on
how to attack the batched bandit problem when M is small.

4.2. Competitive ratio and the geometric grid. The geometric grid is defined
as T = {t1, . . . , tM−1}, where tm = ⌊am⌋2, and a ≥ 2 is a parameter to be chosen
later. To bound regret using (4), note that if m(',T ) ≤ M − 2, then

RT (',T ) ≤ 9'am(',T ) ≤ 9a'τ (') ≤ 2304a

'
log

(
T '2

128

)
,

and if m(',T ) = M − 1, then τ (') > tM−2. Then, (4), together with Lemma B.2
yields

RT (',T ) ≤ 9'aM−1 + T 'e−(aM−1'2)/32 ≤ 2336a

'
log

(
T '2

32

)

for a ≥ 2( T
logT )1/M ≥ 2. We have proved the following theorem.

THEOREM 2. The ETC policy implemented with the geometric grid defined
above for the value a := 2( T

logT )1/M , when M ≤ log(T /(logT )) ensures that, for
any ' ∈ [0,1],

RT (',T )!
(

T

logT

)1/M log(T '2)

'
∧ T '.

For a logarithmic number of batches, M = !(logT ), the geometric grid leads
to the optimal regret bound

RT (',T )! log(T '2)

'
∧ T '.

This bound shows that the geometric grid leads to a deterioration of the regret
bound by a factor (T / log(T ))1/M , which can be interpreted as a uniform bound
on the competitive ratio. For example, for M = 2 and ' = 1, this leads to the√

T regret bound observed in the Bayesian literature, which is also optimal in the
minimax sense. However, this minimax optimal bound is not valid for all values
of '. Indeed, maximizing over ' > 0 yields

sup
'

RT (T ,')! T (M+1)/(2M) log(M−1)/(2M)((T/ log(T )
)1/M)

,

which yields the minimax rate
√

T when M ≥ log(T / log(T )), as expected from
prior results. The decay in M can be made even faster if one focuses on the maxi-
mum risk, by employing our “minimax grid.”
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4.3. Maximum risk and the minimax grid. The objective of this grid is to
minimize the maximum risk, and to recover the classical distribution indepen-
dent minimax bound in

√
T . The intuition behind this grid comes from Propo-

sition 1, in which 'tm(',T ) is the most important term to control. Consider a
grid T = {t1, . . . , tM−1}, where the tm’s are defined recursively as tm+1 = f (tm)
so that, by definition, tm(',T ) ≤ f (τ (') − 1). As we minimize the maximum
risk, 'f (τ (')) should be the smallest possible term, and constant with respect
to '. This is ensured by choosing f (τ (') − 1) = a/' or, equivalently, by
choosing f (x) = a/τ−1(x + 1) for a suitable notion of the inverse. This yields
'tm(',T ) ≤ a, so that the parameter a is actually a bound on the regret. This
parameter also has to be large enough so that the regret T sup' 'e−tM−1'

2/8 =
2T/

√
etM−1 incurred in the go for broke step is also of the order of a. The for-

mal definition below uses not only this delicate recurrence, but also takes care of
rounding problems.

Let u1 = a, for some a > 0 to be chosen later, and uj = f (uj−1) where

f (u) = a

√
u

log((2T )/u)
(6)

for all j ∈ {2, . . . ,M − 1}. The minimax grid T = {t1, . . . , tM−1} has points given
by tm = ⌊um⌋2,m ∈ {1, . . . ,M − 1}.

If m(',T ) ≤ M − 2, then it follows from (4) that RT (',T ) ≤ 9'tm(',T ), and
as τ (') is the smallest integer such that ' ≥ 16a/f (τ (')), we have

'tm(',T ) ≤ 'f
(
τ (') − 1

) ≤ 16a.

As discussed above, if a is greater than 2
√

2T/(16
√

etM−1), then the regret is also
bounded by 16a when m(',T ) = M − 1. Therefore, in both cases, the regret is
bounded by 16a. Before finding an a satisfying the above conditions, note that it
follows from Lemma B.3 that, as long as 15aSM−2 ≤ 2T ,

tM−1 ≥ uM−1

2
≥ aSM−2

30 logSM−3/2(2T/aSM−5)
,

with the notation Sk := 2 − 2−k . Therefore, we need to choose a such that

aSM−1 ≥
√

15
16e

T logSM−3/4
( 2T

aSM−5

)
and 15aSM−2 ≤ 2T .

It follows from Lemma B.4 that the choice

a := (2T )1/SM−1 log1/4−(3/4)1/(2M−1)((2T )15/(2M−1))

ensures both conditions when 2M ≤ log(2T )/6. We emphasize that

log1/4−(3/4)1/(2M−1)((2T )15/(2M−1)) ≤ 2 with M = ⌊
log2

(
log(2T )/6

)⌋
.
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TABLE 1
Regret and decision times of the ETC policy with the minimax grid for M = 2,3,4,5. In the table,

lT = log(T )

M t1 = sup! RT (!,T ) t2 t3 t4

2 T 2/3

3 T 4/7l
1/7
T T 6/7l

−1/7
T

4 T 8/15l
1/5
T T 12/15l

−1/5
T T 14/15l

−2/5
T

5 T 16/31l
7/31
T T 24/31l

−5/31
T T 28/31l

−11/31
T T 30/31l

−14/31
T

As a consequence, in order to get the optimal minimax rate of
√

T , one only needs
⌊log2 log(T )⌋ batches. If more batches are available, then our policy implicitly
combines some of them. We have proved the following theorem.

THEOREM 3. The ETC policy over the minimax grid with

a = (2T )1/(2−21−M) log1/4−(3/4)1/(2M−1)((2T )15/(2M−1))

ensures that, for any M such that 2M ≤ log(2T )/6,

sup
0≤'≤1

RT (',T )! T 1/(2−21−M) log1/4−(3/4)1/(2M−1)(T 1/(2M−1)),

which is minimax optimal, that is, sup' RT (',T )!
√

T , for M ≥ log2 log(T ).

Table 1 gives the regret bounds (without constant factors) and the decision times
of the ETC policy with the minimax grid for M = 2,3,4,5.

The ETC policy with the minimax grid can easily be adapted to have only
O(log logT ) switches, and yet still achieve regret of optimal order

√
T . To do so,

in each batch one arm should be pulled for the first half of the batch, and the other
for the second half, leading to only one switch within the batch, until the policy
commits to a single arm. To ensure that a switch does not occur between batches,
the first arm pulled in a batch should be set to the last arm pulled in the previous
batch, assuming that the policy has not yet committed. This strategy is relevant in
applications such as labor economics and industrial policy, where switching from
an arm to the other may be expensive [24]. In this context, our policy compares
favorably with the best current policies constrained to have log2 log(T ) switches,
which lead to a regret bound of order

√
T log log logT [11].

5. Lower bounds. In this section, we address the optimality of the regret
bounds derived above for the specific functionals Fxs, Fcr and Fmx. The results
below do not merely characterize optimality (up to logarithmic terms) of the cho-
sen grid within the class of ETC policies, but also optimality of the final policy
among the class of all M-batch policies.
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THEOREM 4. Fix T ≥ 2 and M ∈ [2 : T ]. Any M-batch policy (T ,π), must
satisfy the following lower bounds:

sup
'∈(0,1]

{
RT (',T ) − 1

'xs

}
# T

M
,

sup
'∈(0,1]

{
'RT (',T )

} # T 1/M,

sup
'∈(0,1]

{
RT (',T )

} # T 1/(2−21−M).

PROOF. Fix 'k = 1√
tk

, k = 1, . . . ,M . Focusing first on excess risk, it follows
from Proposition A.1 that

sup
'∈(0,1]

{
RT (',T ) − 1

'

}
≥ max

1≤k≤M

M∑

j=1

{
'ktj

4
exp

(−tj−1'
2
k/2

) − 1
'k

}

≥ max
1≤k≤M

{
tk+1

4
√

etk
− √

tk

}
.

As tk+1 ≥ tk , the last quantity above is minimized if all the terms are of order 1.
This yields tk+1 = tk + a, for some positive constant a. As tM = T , we get that
tj ∼ jT /M , and taking ' = 1 yields

sup
'∈(0,1]

{
RT (',T ) − 1

'

}
≥ t1

4
# T

M
.

Proposition A.1 also yields

sup
'∈(0,1]

{
'RT (',T )

} ≥ max
k

M∑

j=1

{
'2

ktj

4
exp

(
− tj−1'

2
k

2

)}
≥ max

k

{
tk+1

4
√

etk

}
.

Arguments similar to the ones for the excess regret above, give the lower bound
for the competitive ratio. Finally,

sup
'∈(0,1]

RT (',T ) ≥ max
k

M∑

j=1

{
'ktj

4
exp

(
− tj−1'

2
k

2

)}
≥ max

k

{
tk+1

4
√

etk

}

gives the lower bound for maximum risk. "

6. Simulations. In this final section, we briefly compare, in simulations, the
various policies (grids) introduced above. These are also compared with UCB2
[2], which, as noted above, can be seen as an M = O(logT ) batch trial. A more
complete exploration can be found in [29].

The minimax and geometric grids perform well using an order of magnitude
fewer batches than UCB2. The number of batches required for UCB2 make its use
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FIG. 2. Performance of policies with different distributions and M = 5. (For all distributions
µ(†) = 0.5, and µ(⋆) = 0.5 + ' = 0.6.)

for medical trials functionally impossible. For example, a study that examined STI
status six months after an intervention in [27] would require 1.5 years to run using
minimax batch sizes, but UCB2 would use as many as 56 batches, meaning the
study would take 28 years.

Specific examples of performance can be found in Figure 2. This figure com-
pares average regret produced by different policies and many values of the total
sample, T . For each value of T in the figure, a sample is drawn, grids are com-
puted based on M and T , the policy is implemented, and average regret is calcu-
lated based on the choices in the policy. This is repeated 100 times for each value
of T .

The number of batches is set at M = 5 for all policies except UCB2. Each panel
considers one of four distributions: two continuous—Gaussian and Student’s t-
distribution—and two discrete—Bernoulli and Poisson. In all cases, we set the
difference between the arms at ' = 0.1.

A few patterns are immediately apparent. First, the arithmetic grid produces
relatively constant average regret above a certain number of participants. The intu-
ition is straightforward: when T is large enough, the ETC policy will tend to com-
mit after the first batch, as the first evaluation point will be greater than τ ('). In
the arithmetic grid, the size of this first batch is a constant proportion of the overall
participant pool, so average regret will be constant when T is large enough.

Second, the minimax grid also produces relatively constant average regret, al-
though this holds for smaller values of T , and produces lower regret than the ge-
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ometric or arithmetic case when M is small. This indicates, using the intuition
above, that the minimax grid excels at choosing the optimal batch size to allow
a decision to commit very close to τ ('). This advantage over the arithmetic and
geometric grids is clear. The minimax grid can even produce lower regret than
UCB2, using an order of magnitude fewer batches.

Third, and finally, the UCB2 algorithm generally produces lower regret than
any of the policies considered in this manuscript for all distributions except the
heavy-tailed Student’s t-distribution, for which batched policies perform signif-
icantly better. Indeed, the UCB2 is calibrated for sub-Gaussian rewards, as are
batched policies. However, even with heavy-tailed distributions, the central limit
theorem implies that batching a large number of observations returns averages
that are sub-Gaussian; see the supplementary material [29]. Even when UCB2 per-
formes better, this increase in performance comes at a steep practical cost: many
more batches. For example, with draws from a Gaussian distribution, and T be-
tween 10,000 and 40,000, the minimax grid with only 5 batches performs better
than UCB2. Throughout this range, UCB2 uses roughy 50 batches.

It is worth noting that in medical trials, there is nothing special about waiting
six months for data from an intervention. Trials of cancer drugs often measure
variables like the 1- or 3-year survival rate, or the increase in average survival
compared to a baseline that may be greater than a year. In these cases, the ability
to get relatively low regret with a small number of batches is extremely important.

APPENDIX A: TOOLS FOR LOWER BOUNDS

Our results hinge on tools for lower bounds, recently adapted to the bandit set-
ting in [9]. Specifically, we reduce the problem of deciding which arm to pull to
that of hypothesis testing. Consider the following two candidate setups for the re-
wards distributions: P1 = N (',1) ⊗ N (0,1) and P2 = N (0,1) ⊗ N (',1), that
is, under P1 successive pulls of arm 1 yield N (',1) rewards and successive pulls
of arm 2 yield N (0,1) rewards. The opposite is true for P2, so arm i is optimal
under Pi .

At a given time t ∈ [T ], the choice of πt ∈ {1,2} is a test between P t
1 and P t

2
where P t

i denotes the distribution of observations available at time t under Pi .
Let R(t,π) denote the regret incurred by policy π at time t . We have R(t,π) =
'1(πt ≠ i). Denote by Et

i the expectation under P t
i , so that

Et
1
[
R(t,π)

] ∨ Et
2
[
R(t,π)

] ≥ 1
2

(
Et

1
[
R(t,π)

] + Et
2
[
R(t,π)

])

= '

2
(
P t

1(πt = 2) + P t
2(πt = 1)

)
.

Next, we use the following lemma (see [35], Chapter 2).
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LEMMA A.1. Let P1 and P2 be two probability distributions such that
P1 ≪ P2. Then for any measurable set A,

P1(A) + P2
(
Ac) ≥ 1

2 exp
(−KL(P1,P2)

)
,

where KL(·, ·) is the Kullback–Leibler divergence defined by

KL(P1,P2) =
∫

log
(

dP1

dP2

)
dP1.

Here, observations are generated by an M-batch policy π . Recall that J (t) ∈
[M] denotes the index of the current batch. As π depends on observations
{Y (πs )

s : s ∈ [tJ (t)−1]}, P t
i is a product distribution of at most tJ (t)−1 marginals.

It is straightforward to show that whatever arms are observed over the history,
KL(P t

1,P t
2) = tJ (t)−1'

2/2. Therefore,

Et
1
[
R(t,π)

] ∨ Et
2
[
R(t,π)

] ≥ 1
4 exp

(−tJ (t)−1'
2/2

)
.

Summing over t yields the following result.

PROPOSITION A.1. Fix T = {t1, . . . , tM} and let (T ,π) be an M-batch pol-
icy. There exist reward distributions with gap ', such that (T ,π) has regret
bounded below as, defining t0 := 0,

RT (',T ) ≥ '
M∑

j=1

tj

4
exp

(−tj−1'
2/2

)
.

A variety of lower bounds in Section 5 are shown using this proposition.

APPENDIX B: TECHNICAL LEMMAS

A process {Zt }t≥0 is a sub-Gaussian martingale difference sequence if E[Zt+1|
Z1, . . . ,Zt ] = 0 and E[eλZt+1] ≤ eλ2/2 for every λ > 0, t ≥ 0.

LEMMA B.1. Let Zt be a sub-Gaussian martingale difference sequence.
Then, for every δ > 0 and every integer t ≥ 1,

P
{
Z̄t ≥

√
2
t

log
(1

δ

)}
≤ δ.

Moreover, for every integer τ ≥ 1,

P
{
∃t ≤ τ, Z̄t ≥ 2

√
2
t

log
(4

δ

τ

t

)}
≤ δ.
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PROOF. The first inequality follows from a classical Chernoff bound. To prove
the maximal inequality, define εt = 2

√
2
t log(4

δ
τ
t ). Note that, by Jensen’s inequal-

ity, for any α > 0, the process {exp(αsZ̄s)}s is a sub-martingale. Therefore, it fol-
lows from Doob’s maximal inequality [19], Theorem 3.2, page 314, that for every
η > 0 and every integer t ≥ 1,

P{∃s ≤ t, sZ̄s ≥ η} = P
{∃s ≤ t, eαsZ̄s ≥ eαη} ≤ E

[
eαtZ̄t

]
e−αη.

Next, as Zt is sub-Gaussian, we have E[exp(αtZ̄t )] ≤ exp(α2t/2). The above,
and optimizing with respect to α > 0 yields

P{∃s ≤ t, sZ̄s ≥ η} ≤ exp
(
−η2

2t

)
.

Next, using a peeling argument, one obtains

P{∃t ≤ τ, Z̄t ≥ εt } ≤
⌊log2(τ )⌋∑

m=0

P
{2m+1−1⋃

t=2m

{Z̄t ≥ εt }
}

≤
⌊log2(τ )⌋∑

m=0

P
{2m+1⋃

t=2m

{Z̄t ≥ ε2m+1}
}

≤
⌊log2(τ )⌋∑

m=0

P
{2m+1⋃

t=2m

{
tZ̄t ≥ 2mε2m+1

}
}

≤
⌊log2(τ )⌋∑

m=0

exp
(
−(2mε2m+1)2

2m+2

)

=
⌊log2(τ )⌋∑

m=0

2m+1

τ

δ

4
≤ 2log2(τ )+2

τ

δ

4
≤ δ.

Hence, the result. "

LEMMA B.2. Fix two positive integers T and M ≤ log(T ). It holds that

T 'e−(aM−1'2)/32 ≤ 32a
log((T '2)/32)

'
if a ≥

(
MT

logT

)1/M

.

PROOF. Fix the value of a and observe that M ≤ logT implies that a ≥ e.
Define x := T '2/32 > 0 and θ := aM−1/T > 0. The first inequality is rewritten
as

xe−θx ≤ a log(x).(7)
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We will prove that this inequality is true for all x > 0, given that θ and a satisfy
some relation. This, in turn, gives a condition that depends solely on a, ensuring
that the statement of the lemma is true for all ' > 0.

Equation (7) immediately holds if x ≤ e as a log(x) = a ≥ e. Similarly, xe−θx ≤
1/(θe). Thus (7) holds for all x ≥ 1/

√
θ when a ≥ a∗ := 1/(θ log(1/θ)). We as-

sume this inequality holds. Thus, we must show that (7) holds for x ∈ [e,1/
√

θ ].
For x ≤ a, the derivative of the right-hand side is a

x ≥ 1, while the derivative of the
left-hand side is smaller than 1. As a consequence, (7) holds for every x ≤ a, in
particular for every x ≤ a∗. To summarize, whenever

a ≥ a∗ = T

aM−1

1

log(T /aM−1)
,

equation (7) holds on (0, e], on [e, a∗] and on [1/
√

θ ,+∞), thus on (0,+∞) as
a∗ ≥ 1/

√
θ . Next, if aM ≥ MT/ logT , we obtain

a

a∗ = aM

T
log

(
T

aM−1

)
≥ M

log(T )
log

(
T

( logT

MT

)(M−1)/M)

= 1
log(T )

log
(
T

( log(T )

M

)M−1)
.

The result follows from log(T )/M ≥ 1, hence a/a∗ ≥ 1. "

LEMMA B.3. Fix a ≥ 1, b ≥ e and let u1, u2, . . . be defined by u1 = a and
uk+1 = a

√
uk

log(b/uk)
. Define Sk = 0 for k < 0 and

Sk =
k∑

j=0

2−j = 2 − 2−k for k ≥ 0.

Then, for any M such that 15aSM−2 ≤ b, and all k ∈ [M − 3],

uk ≥ aSk−1

15 logSk−2/2(b/aSk−2)
.

Moreover, for k ∈ [M − 2 : M], we also have

uk ≥ aSk−1

15 logSk−2/2(b/aSM−5)
.

PROOF. Define zk = log(b/aSk ). It is straightforward to show that zk ≤ 3zk+1
iff aSk+2 ≤ b. In particular, aSM−2 ≤ b implies that zk ≤ 3zk+1 for all k ∈ [0 :
M − 4]. Next, we have

uk+1 = a

√
uk

log(b/uk)
≥ a

√√√√ aSk−1

15z
Sk−2/2
k−2 log(b/uk)

.(8)



BATCHED BANDITS 679

Observe that b/aSk−1 ≥ 15, so for all k ∈ [0,M − 1] we have

log(b/uk) ≤ log
(
b/aSk−1

) + log 15 + Sk−2

2
log zk−2 ≤ 5zk−1.

This yields

z
Sk−2/2
k−2 log(b/uk) ≤ 15z

Sk−2/2
k−1 zk−1 = 15z

Sk−1
k−1 .

Plugging this bound into (8) completes the proof for k ∈ [M − 3].
Finally, if k ≥ M − 2, we have by induction on k from M − 3,

uk+1 = a

√
uk

log(b/uk)
≥ a

√√√√ aSk−1

15z
Sk−2/2
M−5 log(b/uk)

.

Moreover, as b/aSk−1 ≥ 15, for k ∈ [M − 3,M − 1] we have

log(b/uk) ≤ log
(
b/aSk−1

) + log 15 + Sk−2

2
log zM−5 ≤ 3zM−5. "

LEMMA B.4. If 2M ≤ log(4T )/6, the following specific choice

a := (2T )1/SM−1 log1/4−(3/4)1/(2M−1)((2T )15/(2M−1))

ensures that

aSM−1 ≥
√

15
16e

T logSM−3/4
( 2T

aSM−5

)
(9)

and

15aSM−2 ≤ 2T .(10)

PROOF. Immediate for M = 2. For M > 2, 2M ≤ log(4T ) implies

aSM−1 = 2T logSM−3/4(
(2T )15/(2M−1)) ≥ 2T

[
16

15
2M − 1

log(2T )

]1/4
≥ 2T .

Therefore, a ≥ (2T )1/SM−1 , which in turn implies that

aSM−1 = 2T logSM−3/4(
(2T )1−SM−5/SM−1

) ≥
√

15
16e

T logSM−3/4
( 2T

aSM−5

)
.

This completes the proof of (9). Equation (10) follows if

15SM−1(2T )SM−2 log(SM−3SM−2)/4(
(2T )15/(2M−1)) ≤ (2T )SM−1 .(11)

Using that SM−k ≤ 2, we get that the left-hand side of (10) is smaller than

152 log
(
(2T )15/(2M−1)) ≤ 2250 log

(
(2T )21−M )

.

The result follows using 2M ≤ log(2T )/6, which implies that the right-hand side
in the above inequality is bounded by (2T )21−M

. "
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SUPPLEMENTARY MATERIAL

Supplement to “Batched bandit problems” (DOI: 10.1214/15-
AOS1381SUPP; .pdf). The supplementary material [29] contains additional simu-
lations, including some using real data.
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Université Paris Diderot and INRIA, Massachusetts Institute of
Technology, Princeton University, and California Institute of Technology

and NBER

Abstract Motivated by practical applications, chiefly clinical tri-

als, we study the regret achievable for stochastic bandits under the
constraint that the employed policy must split trials into a small num-
ber of batches. We propose a simple policy, and show that a very small

number of batches gives close to minimax optimal regret bounds. As
a byproduct, we derive optimal policies with low switching cost for
stochastic bandits.

In this supplementary material we compare, in simulations, the various
policies (grids) introduced in [PRCS15].

These are also compared withUcb2 [ACBF02], which, as noted in [PRCS15],
can be seen as an M batch trial with M = Θ(log T ). The simulations are
based both on data drawn from standard distributions, and from a real
medical trial: specifically, data from Project AWARE, an intervention that
sought to reduce the rate of sexually transmitted infections (STI) among
high-risk individuals [MFGea13].

Of the three policies introduced here, the minimax grid often does the best
at minimizing regret. While all three policies are often bested by Ucb2, it
is important to note that the latter algorithm uses an order of magnitude
more batches. This makes using Ucb2 for medical trials functionally impos-
sible. For example, in the real data we examine, the data on STI status was
not reliably available until at least six months after the intervention. Thus,
a three-batch trial would take 1.5 years to run—as intervention and data
collection would need to take place three times, six months apart. However,
in contrast, Ucb2 would use as many as 56 batches—meaning the overall
experiment would take at least 28 years. Despite this extreme difference
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in time scales, the geometric and minimax grids produce similar levels of
average regret.

1. Effects of different parameters in simulations.
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Figure 1. Performance of Policies with Different Distributions and M = 5. (For all
distributions µ(†) = 0.5, and µ(⋆) = 0.5 +∆ = 0.6.)

1.1. Effect of reward distributions. We begin, in Figure 1, by examining
how different distributions affect the average regret produced by different
policies for many values of the total sample, T . For each value of T in
the figure, a sample is drawn, grids are computed based on M and T , the
policy is implemented, and average regret is calculated based on the choices
in the policy. This is repeated 100 times for each value of T . Thus, each
panel compares average regret for different policies as a function of the total
sample T .

In all panels, the number of batches is set at M = 5 for all policies except
Ucb2. The panels each consider one of four distributions: two continuous—
Gaussian and Student’s t-distribution, and two discrete—Bernoulli and Pois-
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son. In all cases, and no matter the number of participants T , we set the
difference between the arms at ∆ = 0.1.

A few patterns are immediately apparent. First, the arithmetic grid pro-
duces relatively constant average regret above a certain number of partic-
ipants. The intuition is straightforward: when T is large enough, the etc
policy will tend to commit after the first batch, as the first evaluation point
will be greater than τ(∆). As in the case of the arithmetic grid, the size of
this first batch is a constant proportion of the overall participant pool, so
average regret will be constant once T is large enough.

Second, the minimax grid also produces relatively constant average regret,
although this holds for smaller values of T , and produces lower regret than
the geometric or arithmetic case when M is small. This indicates, using
the intuition above, that the minimax grid excels at choosing the optimal
batch size to allow a decision to commit very close to τ(∆). This advantage
over the arithmetic and geometric grids is clear, and it can even produce
lower regret than Ucb2, but with an order of magnitude fewer batches.
However, according to the theory above, with the minimax grid average
regret is bounded by a more steeply decreasing function than is apparent
in the figures. The discrepancy is due to the bounding of regret being loose
for relatively small T . As T grows, average regret does decrease, but more
slowly than the bound, so eventually the bound is tight at values greater
than shown in the figure.

Third, and finally, the Ucb2 algorithm generally produces lower regret
for all distributions, except the heavy-tailed Student’s t-distribution, than
any of the policies considered in the manuscript. This phenomenon can be
explained by the central limit theorem, or its generalization to handle ran-
dom variables with infinite variance (such a the Student’s t-distribution
with 2 degrees of freedom): batching heavy-tailed random variables creates,
asymptotically, random variables with Gaussian tails.

This increase in performance comes at a steep practical cost: many more
batches. For example, with draws from a Gaussian distribution, and T be-
tween 10,000 and 40,000, the minimax grid performs better than Ucb2.
Throughout this range, the number of batches is fixed at M = 5 for the
minimax grid, but Ucb2 uses an average of 40–46 batches. The average
number of batches used by Ucb2 increases with T , and with T = 250, 000
it reaches 56.

The fact that Ucb2 uses so many more batches than the geometric grid
may seem a bit surprising as both use geometric batches, leading Ucb2 to
have M = Θ(log T ). The difference occurs because the geometric grid uses
exactly M batches, while the total number of batches in Ucb2 is dominated
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by the constant terms in the range of T we consider. It should further be
noted that although the level of regret is higher for the geometric grid, it is
higher by a relatively constant factor.

1.2. Effect of the gap ∆. The patterns in Figure 1 are relatively indepen-
dent of the distribution used to generate the simulated data. Thus, in this
subsection, we focus on a single distribution: the exponential (to add vari-
ety), in Figure 2. What varies here is the difference in mean value between
the two arms, ∆ ∈ {.01, .5}.

In both panels of Figure 2, the mean of the second arm is set to µ(†) = 0.5,
so ∆ in these panels is 2% and 100%, respectively, of µ(†). This affects both
the maximum average regret T∆/T = ∆ and the number of participants it
will take to determine, using the statistical test in Section 3.1, which arm
to commit to.

When the value of ∆ is small (0.01), then in small to moderate samples
T , the performance of the geometric grid and Ucb2 are equivalent. When
samples get large, then the minimax grid, the geometric grid, and Ucb2
have similar performance. However, as before, Ucb2 uses an order of mag-
nitude larger number of batches—between 38–56, depending on the number
of participants, T . As in Figure 1, the arithmetic grid performs poorly, but
as expected, based on the intuition built in the previous subsection: more
participants are needed before the performance of this grid stabilizes at a
constant value. Although not shown, middling values of ∆ (for example,
∆ = 0.1) produce the same patterns as those shown in the panels of Figure
1 (except for the panel using Student’s t).

When the value of ∆ is relatively large (0.5), then there is a reversal of
the pattern found when ∆ is relatively small. In particular, the geometric
grid performs poorly—worse, in fact, than the arithmetic grid—for small
samples, but when the number of participants is large, the performance of
the minimax grid, geometric grid, and Ucb2 are comparable. Nevertheless,
the latter uses an order of magnitude more batches.

1.3. Effect of the number of batches (M). There is likely to be some
variation in how well different numbers of batches perform. This is explored
in Figure 3. The minimax grid’s performance is consistent between M =
2 to M = 10. However, as M gets large relative to both the number of
participants T and gap between the arms∆, all grids perform approximately
equally. This occurs because as the sizes of the batches decrease, all grids
end up with decision points near τ(∆).

These simulations also reveal an important point about implementation:
the values of a, the termination point of the first batch—suggested in The-
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Figure 2. Performance of Policies with different ∆ and M = 5. (For all panels µ(†) = 0.5,
and µ(⋆) = 0.5 +∆.)
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orems 2 and 3 are not feasible when M is “too big”, that is, if it is com-
parable to log(T/(log T )) in the case of the geometric grid, or comparable
to log2 log T in the case of the minimax grid. When this occurs, using this
initial value of a may lead to the last batch being entirely outside the range
of T . We used the suggested a whenever feasible, but, when it was not, we
selected a such that the last batch finished exactly at T = tM . In the simu-
lations displayed in Figure 3, this occurs with the geometric grid for M ≥ 7
in the first panel, and M ≥ 6 in the second panel. For the minimax grid, this
occurs for M ≥ 8 in the second panel. For the geometric grid, this improves
performance, and for the minimax grid it slightly decrease performance. In
both cases, this is due to the relatively small sample, and to how the grid
locates decision points relative to τ(∆).

1.4. Real Data. Our final simulations use data from Project AWARE,
a medical intervention to reduce the rate of sexually transmitted infections
(STI) among high-risk individuals [MFGea13]. In particular, when partic-
ipants went to a clinic to get an instant blood test for HIV, they were
randomly assigned to receive an information sheet—control, or arm 2, or
extensive “AWARE” counseling—treatment, or arm 1. The main outcome
of interest was whether a participant had an STI upon six-month follow up.

The data from this trial is useful for simulations for several reasons. First,
the time to observed outcome makes it clear that only a small number of
batches is feasible. Second, the difference in outcomes between the arms ∆
was slight, making the problem difficult. Indeed, the difference between the
arms was not statistically significant at conventional levels within the studied
sample. Third, the trial itself was fairly large by medical trial standards,
enrolling over 5,000 participants.

To simulate trials based on this data, we randomly draw observations,
with replacement, from the Project AWARE participant pool. We then as-
sign these participants to different batches, based on the outcomes of previ-
ous batches. The results of these simulations, for different numbers of par-
ticipants and different numbers of batches, can be found in Figure 4. The
arithmetic grid once again provides the intuition. Note that the performance
of this grid degrades as the number of batches M is increased. This occurs
because ∆ is so small that the etc policy does not commit until the last
round, where it “goes for broke”. However, when doing so, the policy rarely
makes a mistake. Thus, more batches cause the grid to “go for broke” later
and later, resulting in worse performance.

The geometric grid and minimax grid perform similarly to Ucb2, with
minimax performing best with a very small number of batches (M = 3), and
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Figure 4. Performance of Policies using data from Project AWARE.

geometric performing best with a moderate number of batches (M = 9). In
both cases, this small difference comes from one grid or the other “going
for broke” at a slightly earlier time. As before, Ucb2 uses between 40–56
batches. Given the six-month time between intervention and outcome mea-
sures, this suggests that a complete trial could be accomplished in 1.5 years
using the minimax grid, but would take up to 28 years—a truly infeasible
amount of time—using Ucb2.

It is worth noting that there is nothing special in medical trials about
waiting six months for data from an intervention. Trials of cancer drugs
often measure variables like the 1- or 3-year survival rate, or the increase
in average survival off a baseline that may be greater than a year. In these
cases, the ability to get relatively low regret with a small number of batches
is extremely important.
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