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1 Introduction

Discoveries are often made by teams. Wuchty, Jones, and Uzzi (2007) trace 19.9 million

academic papers and 2.1 million patents over 5 decades; they demonstrate that teams

increasingly dominate individuals in the production of knowledge. Advances in motor

vehicles, communication devices, and pharmaceuticals frequently take place as joint ven-

tures. Understanding collective progress is therefore vital for the analysis of innovation.

What determines the pace of innovation? How does the composition of joint ventures af-

fect outcomes? When does product innovation stop? These questions are at the heart of

this paper.

Much of the literature on teamwork has focused on experimentation models, start-

ing from the canonical work of Bolton and Harris (1999) and Keller, Rady, and Cripps

(2005). Those models center on teams’ efforts to ascertain whether one direction or project

is superior to another. Nonetheless, many discovery processes follow a path of search,

with numerous alternatives. Building on past discoveries, teams come up with new ones.

Furthermore, there is a richness of dynamics in collective efforts not captured in prior

models—alliances tend to dissolve over time, with exiting members exploiting knowledge

accrued during their collaborations.1

This paper offers a new framework for studying collective progress based on a process

of search. We identify how the search speed and decisions to terminate search vary with

members’ characteristics and the synergies in place. We also show that exit waves, where

multiple members halt search simultaneously, are an inherent feature of such processes;

while their timing is stochastic, their order is deterministic. From a design perspective,

our results provide a characterization of the optimal joint venture operations.

Technological developments rarely occur in a vacuum: innovations build on one an-

other, and alliances dissolve with new discoveries over time. For example, when develop-

ing new car chassis for improved fuel efficiency, the Partnership for a New Generation of

Vehicles, which was formed in 1993 and comprised US government agencies and car man-

ufacturers, followed a pre-prescribed path of experimentation: each step in development

relying on previous insights. When the partnership dissolved in 2001, automakers used

the accumulated know-how to each produce new car models. Similarly, NGO and univer-

sity alliances are common for program advancement in the developing world. Experimen-

tation pertaining to social programs frequently follows a path—e.g., altering reminders

or the modes by which they are provided—and prior conclusions serve as stepping stones

for new discoveries. Furthermore, at any point, NGOs or researchers can weaken their

1For instance, Eftekhari and Timmermans (2021) use the Danish Integrated Database for Labor Market
Research to document joint ventures’ dissolution. They report over 18.3 percent of original joint venture
members shifting to a new, smaller, joint venture, while other members cease efforts.
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involvement and issue “products” independently: implement a policy, write an academic

paper, etc. Such examples abound.

In our model, search results are correlated over time and follow a Brownian path as first

modeled by Callander (2011). This modeling approach captures the idea that future dis-

coveries build on current ones. Its axiomatic foundations in the innovation context appear

in Jovanovic and Rob (1990). The realized path represents the underlying “truth”—e.g.,

the link between car chassis composition and vehicle stability, the link between number

of text reminders and adherence to a particular policy, and so on. Traversing the realized

path provides information on the most promising discovery.

The search speed—the per unit of time volume of innovations attempted, or the dis-

tance traversed on the realized path of discoveries—is chosen at each moment by the

searching alliance. Each alliance member incurs a strictly positive cost that depends on

her chosen search speed, her current investment in the search. Individual search speeds

are aggregated to generate the alliance’s overall search speed. The aggregation format

captures the synergies in place, allowing for both substitutability and complementarity

between members’ search investments.

Any member can terminate her search at any point. A member ceasing her search re-

ceives a lump-sum payoff corresponding to the maximal value the search has produced till

her departure. For example, when automakers left their 1993 partnership, they each re-

tained the ability to use the most promising technologies and expertise developed jointly.2

As in this example, in many applications, departing members make investments to act

upon their discoveries. Adjustments due to others’ later innovations are costly in terms

of money, time, or legal constraints when patent protections are in place. For simplicity,

we assume benefits are reaped only from discoveries made during members’ active search.

Certainly, some alliance members may choose to continue their search even after other

members have exited. These remaining members experience prolonged search costs, but

benefit from any further breakthroughs, as reflected by search results that exceed the most

promising discoveries previously observed. As search progresses, members gradually ter-

minate their search until it halts altogether.3

We characterize equilibrium search in Markov strategies, where state variables corre-

spond to the current search results, the attained maximum, and the active alliance.

In any active alliance, we show that individual and aggregated alliance search speeds

are constant and independent of search results as long as no member leaves. When indi-

2General Motors developed the 80 MPG Precept, Ford designed the 72 MPG Prodigy, and Chrysler built
the 72 MPG ESX-3. They utilized the jointly-developed technology and featured similar construction and
performance; for details, see the US Department of Energy report from May 15, 2000.

3Most of our qualitative results carry over when introducing penalties for later exits; see our conclusions
and Online Appendix. Naturally, penalties for later exits can induce exit waves mechanically—once one agent
departs, others may follow suit to avoid arriving second to market.
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vidual search speeds are substitutable, they increase when members depart, reflecting the

more limited free-riding opportunities present.

Product development speed has been a major focus of study in operation management

(see the meta-studies by Chen, Damanpour, and Reilly, 2010 and Cankurtaran, Langerak,

and Griffin, 2013). That literature inspects the link between speed and outcomes. Our

analysis sheds new light on the parameters affecting equilibrium speeds: actively search-

ing members’ investment costs and the complementarities between them. For any fixed

searching alliance, there is a positive relation between speed and the value of obtained

discoveries. However, equilibrium speeds adjust as members depart and alliance speeds

may decline over time. Since further discoveries tend to improve product values, naively

considering correlations between speeds and outcomes may yield misleading results.

The equilibrium time at which members depart and alliances shrink is governed by

a simple stopping boundary, often referred to as a drawdown stopping boundary. Such

boundaries are defined by one number, the drawdown size. Whenever search results fall

by more than the drawdown size relative to the maximal observation achieved, a subset of

members ceases search.

Our equilibrium characterization allows us to identify members’ exit times. For a large

class of speed aggregation formats, members exhibiting high ratios of marginal to fixed

costs leave early. Even when individual costs are fully heterogeneous, clustered exits, or

exit waves, may occur in equilibrium. Importantly, while the precise timing of exit waves

may depend on the realized path of discoveries, we show that their sequencing does not.

That is, who leaves first, second, etc., and with whom is deterministic.

The synergies between alliance members, the complementarities in their speed invest-

ments, govern both resulting equilibrium search speeds and drawdown sizes. Greater

complementarities lead individual speed choices to converge and can cause overall al-

liance speeds to decline. They are also associated with more incremental exits, whereby

agents exhibiting higher search costs depart before their lower-cost partners.

Our equilibrium characterization has clear empirical implications. It suggests the pos-

sibility of estimating costs and synergies from observed exit times and project valuations—

say, revenues in startup companies. As we show, alliance size is an important statistic to

control for, but historical performance is not.

Beyond its substantive implications, our characterization offers a technical contribu-

tion. As we detail in our literature review below, existent analyses of single-agent search

processes with correlated observations often resort to modeling short-lived agents, absent

any controls. In contrast, we analyze the evolution of collective search by forward-looking

and sophisticated agents who can utilize a costly control—the search speed.

We view correlation as an important feature of discovery processes. Nonetheless, it is
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useful to contrast our results with those derived from settings with independent observa-

tions, in the spirit of McCall (1970) and Mortensen (1970). One can consider a discrete-

time model in which, at each period, the active alliance draws an independent value from,

say, a normal distribution with expectation or variance that depend on members’ invest-

ments. In such settings, agents depart whenever a sufficiently high value is realized, when

the immediate value surpasses the option value of waiting. With correlated discoveries,

agents depart when observing sufficiently low values: a disappointing discovery indicates

that far more research is required to obtain a breakthrough. Furthermore, contrasting our

setting, with independent samples, the order of exits is stochastic. Regardless of the cost

profile, whenever a sufficiently high observation is realized, all agents stop their search

at once. For moderate realizations, only a subset of agents may terminate search. As it

turns out, an analogous model to ours with independent discoveries is far less tractable.

We include details in the Online Appendix.4

In the last part of the paper, we characterize the socially optimal search speeds and

stopping policies. The socially optimal search speeds are also constant and independent

of search results within any active alliance. With substitutable individual speeds, the

positive externalities induced by each member’s investment in search speed imply that the

socially optimal level is higher than that chosen in equilibrium. Furthermore, in contrast

to equilibrium search speeds, as alliance members terminate their search, the optimal

speed of those remaining declines. Optimal exits are governed by drawdown stopping

boundaries, although the drawdown sizes corresponding to each active alliance differ from

those determined in equilibrium—optimal drawdown sizes are larger, corresponding to

longer search durations.5 In terms of exit waves, clustered exits may be optimal even when

individuals incur fully heterogeneous costs. As in equilibrium, the sequence of optimal

exit waves is deterministic and independent of the realized search path. However, optimal

exit waves may differ substantially from those induced in equilibrium.

Finding the optimal sequence of exit waves is a challenging combinatorial problem. A

social planner needs to consider all possible ordered partitions of the original searching

team and assess search outcomes from the corresponding exit wave sequences. The num-

ber of these ordered partitions grows exponentially fast, posing a computational challenge.

We show a simple method for identifying the optimal sequencing for one class of settings,

when individual search costs are proportional to one another. Similar to equilibrium, the

4Discrete time is inherent with independent discoveries. With a continuum of independent observations,
extremely high draws occur within any infinitesimal period, and stopping is immediate. If we discretize our
setting, exit waves might exhibit some stochasticity, but their pattern converges to the one we characterize as
time intervals between observations shrink.

5As we discuss in the paper’s last section, allowing for non-Markovian equilibria does not eliminate the
inefficiencies we highlight. Intuitively, excessively early search termination is impossible to punish.

4



social planner terminates the search of those with the highest search costs first. This limits

the exit wave sequences to consider. We illustrate a simple procedure, akin to a greedy

algorithm (see, e.g., Papadimitriou and Steiglitz, 1998) that yields the optimal exit wave

sequence. In rough terms, the social planner can use a recursive procedure, first iden-

tifying the optimal last alliance to search—the alliance that would generate the highest

welfare when all members are constrained to stop jointly. Once that alliance is identified,

the social planner can find the optimal penultimate alliance. And so on. The procedure

allows us to highlight settings in which equilibrium exit waves differ substantially from

those set optimally.

2 Literature Review

Since Weitzman (1979), much of the search with recall literature has focused on individ-

ual agents’ discovery process, where the set of options is independent of one another. Our

consideration of a Brownian path of discoveries, capturing intertemporal correlations, is

inspired by the setting of Callander (2011). He studies short-lived agents who decide

whether to choose an optimal, previously explored, result or experiment on their own.

Most of the ensuing work considers short-lived agents as well. Callander and Hummel

(2014) study long-run experimentation by a sequence of policymakers who operate over a

two-period horizon. They show that preemption motives induce policymakers to experi-

ment more than they would in isolation. Urgun and Yariv (2021) analyze an individual-

search setting similar to the one analyzed here, where agents are long-lived. See also

Décamps, Gensbittel, and Mariotti (2021) and Wong (2021). The current paper provides a

full characterization of collective search by forward-looking and sophisticated agents who

can utilize a costly control.

In recent years, substantial attention has been dedicated to the study of collective ex-

perimentation. Much of this literature focuses on learning spillovers between team mem-

bers. For instance, the classic papers of Bolton and Harris (1999), Keller et al. (2005)

extend the two-armed bandit problem to a team setting, where agents learn from others.

Information is a public good. Thus, there is a free-rider problem that discourages experi-

mentation. Nonetheless, there may also be an encouragement effect through the prospect

of others’ future experimentation. See Hörner and Skrzypacz (2016) for a survey.

Another strand of literature inspects settings in which stopping is determined collec-

tively. Albrecht, Anderson, and Vroman (2010) and Strulovici (2010) consider sequential

search and experimentation, respectively, where a committee votes on when to stop. They

illustrate when collective dynamics impede on search or experimentation. Bonatti and

Rantakari (2016) offer a model in which agents exert effort on different projects but stop
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experimentation jointly. Optimally, one agent advances her preferred project quickly. Her

opponent agrees to early advanced projects in order to limit effort. Deb, Kuvalekar, and

Lipnowski (2020) take a design perspective—for a given deadline at which a project has to

be chosen, the principal commits to a selection rule. Titova (2021) studies a public-good

setting in which a team decides whether to implement a public good. Payoffs are revealed

through a Pandora’s box problem à la Weitzman (1979). Optimal information and projects

are selected, but free-riding may generate inefficient delays.6

There are also several papers illustrating patterns reminiscent of the clustered exits

we characterize, mostly in settings in which agents have private information. Bulow and

Klemperer (1994) consider a seller who dynamically reduces the price of identical goods

until demand meets supply. Agents have independent valuations and decide if and when

to buy. In equilibrium, frenzies, where multiple agents buy at the same price, may oc-

cur. Caplin and Leahy (1994) study a three-period irreversible-investment game in which

each firm receives private information on the aggregate state of the economy and observes

others’ prior decisions. Firms’ actions reveal information and can generate a wave. Gul

and Lundholm (1995) analyze a model with two agents who predict the value of a project

using private information. Each decides when to issue a prediction, where delay entails

a flow cost. The timing of decisions is then informative, and clustered predictions occur

in equilibrium. Rosenberg, Solan, and Vieille (2007) study a multi-agent version of the

standard real-options problem (see Dixit and Pindyck, 1994). Agents observe private sig-

nals about common returns to a risky project, as well as the actions of others. If one agent

switches to a safe project—namely, exercises an option—this can lead others to immedi-

ately switch to the safe project as well. See also Murto and Välimäki (2011) and Anderson,

Smith, and Park (2017). In a static information-collection setting, Bardhi and Bobkova

(2021) characterize optimal subsets, or mini-publics, to be activated.7

The techniques we develop relate to the applied mathematics literature on optimal

stopping, see Azéma and Yor (1979) and Peskir and Shiryaev (2006) for particularly rele-

vant sources.

3 A Model of Collective Search

Consider a team of N agents—product developers, policymakers, academic researchers,

etc.—searching through a terrain of ideas in continuous time. Time is indexed by t and

6Dynamic contribution games without experimentation or uncertainty have been studied by, e.g., Admati
and Perry (1991), Marx and Matthews (2000), Yildirim (2006), and Cetemen, Hwang, and Kaya (2020).

7There is also a literature that tries to explain industry “shakeouts,” corresponding to times at which firm
numbers plummet, absent a decline in output. For example, Jovanovic and MacDonald (1994) suggest shake-
outs result from exogenous technological shocks. Initially, firms enter new profitable markets. When there is
a technological shock, some firms become more productive than others, potentially leading to clustered exits.
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runs through [0,∞). Each seeks good outcomes and ultimately benefits from the maximal

value they have found when they stop their search. We assume all agents are risk neutral.

We model the progress of discoveries using a Wiener process, where the realized sam-

ple path describes the link between new technologies and their expected value to each of

the participating agents. We assume there is a natural progression of exploration. For ex-

ample, in technological development, incremental increases in the number of transistors

on microchips or number of pixels in digital cameras affect the plausibility of new de-

vices. In motor vehicle technology development, there is a natural order of investigation:

first, the composition and coating of the chassis might be considered, then different bat-

tery formats, followed by their combination. Similarly, in policy development, the order of

experimentation is often pre-specified; particular nudges may be considered in sequence,

followed by their various bundles. Such examples are ubiquitous across realms, from the

development of new food recipes to the academic accumulation of techniques using text-

books in which each chapter builds on the former. Modeling the link between technologies

via a Wiener process allows us to capture the correlation between expected values of simi-

lar technologies, and the impact of search speed of those who engage in search. Axiomatic

foundations in the innovation context go back to Jovanovic and Rob (1990).8

Formally, time proxies for the sequence of ordered technologies in our model. For any

time t, denote by Bt the standard Brownian motion with B0 = 0. The realized sample path

captures the expected value of each (ordered) discovery.

Agents can affect the speed at which the path of discoveries is traversed. In the exam-

ples above, the investment of resources—money, lab space, human capital, etc.—affects

how rapidly search is conducted. At each time t, when alliance A ⊆ {1, ...,N } is actively

searching, each agent i ∈ A decides on the speed or intensity of her search σA
i,t ∈ [σ,σ ],

where σ ≥ σ > 0 and A ⊆ {1, ...,N }. For i ∈ A, any search speed σ comes at a cost of ci(σ ),

where ci is twice continuously differentiable, strictly increasing and convex on [σ,σ ], and

c(σ ) > 0. The special case of σ = σ corresponds to settings in which search speed is not

controlled and agents only choose when to stop search.

The individual search speeds determine the alliance’s overall search speed. Denote by

σA
t the vector of individual search speeds {σA

i,t}i∈A, where entries are ordered via agents’

indices. Whenever the alliance A of agents is searching, we let σ̂A
t = f A(σA

t ), where for all

alliances A, the aggregator f A is compact-valued, bounded away from zero, and strictly

increasing and differentiable in each of its arguments. The search speed of the alliance,

the distance traversed on the realized path per unit of time, is given by
(
σ̂A
t

)2
. While this

8Our assumption that search occurs in continuous time helps with tractability. It also approximates the
observation that in many search settings, particularly research endeavors, investigations are inherently in-
cremental. Agents are not aware of the full set of alternatives at the outset. As search progresses, more
alternatives enter the menu of possibilities.
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notation simplifies our presentation, we will often slightly abuse terminology and refer to

σ̂A
t , rather than

(
σ̂A
t

)2
, as the alliance’s search speed.

Speeding up search is tantamount to the “scaling” of time. We utilize the fact that such

scaling is equivalent to a change in the standard deviation of the original Wiener process

(see, e.g., Section 8.5 in Øksendal (2003)). That is, when an alliance’s speed is given by(
σ̂A
t

)2
, we can describe the generated values observed at time t—the expected value of the

discovery—that we denote by Xt, using the following law of motion:

dXt = σ̂A
t dBt,

with X0 = 0.

In general, holding their contributions fixed, smaller alliances can be associated with

lower or higher aggregate speeds than larger alliances—more agents investing can be ben-

eficial, or cause various coordination challenges that hamper the alliance’s speed. For com-

parative statics and examples, we often focus on the special case of a (modified) Constant

Elasticity of Substitution (CES) aggregator, where larger alliances generate higher speeds:

f A(σA) =

∑
i∈A

wi(σ
A
i )ρ


1
ρ

,

where ρ ∈ (−∞,0) ∪ (0,1] and the weights satisfy wi > 0 for all i and
∑n

i=1wi = 1.9 This

aggregator is useful for inspecting the effects of complementarities among alliance mem-

bers. As ρ→−∞, individual choices become perfect complements; when ρ = 1, individual

choices are perfect substitutes.10

Discovery speeds are certainly of first-order importance when it comes to research and

development (see Chen et al., 2010 and Cankurtaran et al., 2013). There is, however, an

additional interpretation of the choices individuals make in our model. As we described,

from an ex-ante perspective, the choice of speed is equivalent to the choice of instanta-

neous standard deviation of the Wiener process. One could imagine individual choices

corresponding to the breadth, or scope, of search. These feed into the operating alliance’s

search scope. Indeed, investment in development, through acquisition of instruments or

expert time, often entails an increase in risk; it either leads to substantial leaps, or to more

pronounced losses, naturally translating into a greater variance of outcomes.

9We could also define speed aggregators to take the Cobb-Douglas form when ρ = 0. These aggregators
allow weights to not sum up to 1 in alliances that comprise a subset of agents. We could alternatively assume
alliance-specific weights that sum up to 1 in each alliance. In order to ensure that larger alliances have the
capacity to generate greater speeds, we could then include a productivity factor that depends on the alliance
size and increases at least linearly in it. We use this version for presentation simplicity.

10In line with many applications, we assume search termination is irreversible. We note, however, that with
CES speed aggregators, departing agents would never benefit from continuing the search in a smaller alliance:
the externalities offered by a larger alliance are always beneficial.
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We assume the discovery process exhibits no drift: in applications, the mere passage of

time rarely improves or worsens search outcomes over standard horizons of research and

development. Naturally, one could consider a team that controls drift rather than search

speeds, which would also translate to the returns of search with recall. The analysis would

follow similar lines to those we describe, although with an important loss in tractability.11

We view endogenous search speeds as natural for most applications, where investments in

innovation directly affect how quickly progress is made.

3.1 Payoffs

Each agent is rewarded according to the maximal project value observed up to her stop-

ping time. This assumption reflects the idea that alliance members making use of their

search discoveries make production investments that are difficult to alter as new innova-

tions emerge in the market—e.g., car manufacturers may invest in factories tailored to the

technologies they aim at utilizing, policymakers set policies in motion, and their academic

counterparts write papers based on discoveries they took part in. In addition, patent pro-

tections can increase the costs of borrowing innovations occurring after active search has

terminated. Formally, let Mt denote the maximum value observed by time t. That is,

Mt = max0≤r≤tXr , with M0 = X0 = 0.

For any aggregate fixed search speed σ̂ , at time t, E(Mt) = σ̂
√

2t/π. Thus, the choice of

search speed translates directly to the expected returns from search.

When any agent i stops at time τ , her resulting payoff is given by

Mτ −
∫ τ

0
ci(σi,t)dt,

where σi,t is the timed search speed of individual i, which may depend on the alliances

she is active in.12

Agents observe one another’s search. In particular, whenever agents stop searching,

other agents realize their search will continue within a smaller alliance.

3.2 Strategies and Equilibrium

At any time t, the state of the environment is summarized by Xt ,Mt, and At, where At is

the active alliance of agents still searching.

A strategy for agent i dictates her chosen search speed over time and her stopping

policy. Formally, it is a set of function pairs (σi , τi). In principle, (σi , τi) may depend on

11Taylor et al. (1975) characterize the maximal value of search with constant drift. The resulting value is far
less amenable to further analysis than ours.

12In Section 7.1, we discuss an extension in which agents who stop later are penalized. We assume flow costs
for the sake of tractability. Discounting introduces novel technical challenges, see Urgun and Yariv (2021).
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time, as well as the entire path of observed search values, corresponding maxima, and

active alliances. Let {Ft} denote the natural filtration induced by the governing Brownian

motion. Agents’ strategies are adapted to this filtration.

We restrict attention to Markov strategies. That is, we assume each agent i uses a

strategy of the form (σA
i , τ

A
i ) that depends only on the state variables Xt, Mt, and At.13

Formally, σA
i : R2 → [σ, σ̄ ], and τAi is a stopping time adapted to Xt and Mt such that

Pr(τAi = t|Ft) = Pr(τAi = t|Xt ,Mt) for all i. Agent i’s resulting stopping time is τi = inf{t ≥ 0 :

t = τAi and At = A}.
For any agent, a stopping time without a finite expectation is dominated: it gener-

ates unbounded negative expected payoffs. We therefore focus on strategies with finite

expected stopping times. We further assume that a continuous stopping boundary deter-

mines when each agent stops within any active alliance. Formally, for all i and all alliances

A such that i ∈ A, the stopping policy takes the following form:

τAi = inf{t ≥ 0 : Xt ≤ gAi (Mt)},

where gAi (·) is a continuous function. This formulation implicitly implies that, upon indif-

ference, agents exit the search.14 Our assumption that stopping boundaries are continuous

is without loss of generality as long as any agent is willing to search on her own, which we

show in the Online Appendix.

A strategy for an agent i is a collection of stopping times τAi and mappings that indicate

the individual speed σA
i for each alliance A such that i ∈ A.

For a given profile
{
(σA

j , τ
A
j )

}
j,i

, agent i’s best-response strategy maximizes her expected

payoff. It is determined by solving the following problem:

sup
τi ,{σA

i,t}
τi
t=0

E
{
(σA

j ,τ
A
j )

}
j∈A\{i}

[
Mτi −

∫ τi

0
ci

(
σA
i,t

)
dt

]
, where τi = inf{t ≥ 0 : t = τAi and At = A}.

An equilibrium is a profile of Markov strategies satisfying the assumptions above and con-

stituting best responses for all agents.

4 Equilibrium Team Search

In this section, we characterize the outcomes of team search. We describe the equilibrium

search speeds and stopping boundaries. We also identify the sequencing of agents’ search

termination, and the patterns of equilibrium exit waves.

13The inefficiencies we highlight do not vanish when considering equilibria in non-Markovian strategies,
see our discussion in Section 7.2.

14This kind of stopping time τAi is commonly known as an Azéma-Yor stopping time (Azéma and Yor, 1979),

with the function gAi defining the corresponding stopping boundary.
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4.1 Equilibrium Characterization

Given our restriction on agents’ strategies, it follows that any alliance A gets smaller at the

minimal stopping time of its members. That is, the time τA at which the first members of

A stop search is given by τA = mini∈A τ
A
i . Equivalently,

τA = inf{t ≥ 0 : Xt ≤max
i∈A

gAi (Mt)}.

Since agents use continuous stopping boundaries, we can write

τA = inf{t ≥ 0 : Xt ≤ gA(Mt)},

where gA(Mt) ≡maxi∈A g
A
i (Mt) is continuous.

We start by identifying equilibrium search speeds. Individual search speeds depend

only on the active alliance and are constant as long as no member departs.

Proposition 1 (Team Search Speed). For any agent i in an active alliance A, at any point in
time, equilibrium search speeds satisfy the following system whenever interior:

2ci(σ
A
i )

c′i(σ
A
i )

∂f A(σA)

∂σA
i

= f A(σA).

In general, there might be multiple solutions to the system in Proposition 1, some pos-

sibly corresponding to less efficient equilibria. With multiple solutions, our team search

problem is compounded with a coordination problem. In principle, agents could use pub-

licly observable Markov states—the achieved maximum or the current observation—to

coordinate on different solutions. When the system has a unique solution, the proposition

implies that equilibrium search speeds are constant. One restriction guaranteeing unique-

ness is what we term regularity. An environment is regular if the Jacobian of the system

in Proposition 1 is non-singular. In this system, marginal returns to individual speeds are

adjusted by agents’ cost to marginal cost ratios. In particular, regularity depends on both

speed aggregators and individual costs and holds as long as complementarities in speed

aggregation are not “too” strong. Indeed, regularity holds for a large class of settings, as

our examples below illustrate.15

Corollary 1 (Constant Equilibrium Speed). In a regular environment, individual search speeds
are constant within an alliance. That is, for any i ∈ A, we have σA

i (Mt ,Xt) = σA
i .

The intuition for Proposition 1 is the following. At almost all times throughout any

agent’s search, Xt < Mt. Thus, almost always, agents cannot affect the magnitude of the

15Our analysis is valid even absent the regularity assumption. If there is only a discrete set of solutions and
strategies are restricted to be continuous, the constant speed conclusion continues to hold. We note that absent
constraints on the environment’s fundamentals, speed maximization or Pareto optimality do not always select
a unique equilibrium. The Online Appendix provides a class of examples illustrating this point.
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maximal value in any infinitesimal interval of time. Since we assume flow search costs,

agents then choose their speed to balance the time it takes to reach a transition—either

a new maximum, or search termination—and the speed cost, given the speed chosen by

other alliance members. The achieved maximum or the current observed value have no

bearing on this calculus.

More formally, consider an agent i in an active alliance A. Suppose i believes that all

other agents j in the alliance search with speed σA
j . When away from agent i’s stopping

boundary, agent i can contemplate a small interval of time in which she is unlikely to hit

her stopping boundary. For that small interval, agent i considers the induced speed of the

process:
(
f A(σA)

)2
and the cost she incurs, ci(σ

A
i ). Ultimately, the agent aims at minimiz-

ing the cost per speed, or the overall cost to traverse any distance on the path, ci (σ
A
i )

(f A(σA))2 .

The identity in the proposition reflects the corresponding first-order condition (naturally,

one needs to ensure the solution is indeed a minimizer; otherwise, under regularity, the

equilibrium individual speed is not interior).

Importantly, it is the ratio of costs to marginal costs that govern equilibrium search

speeds. In particular, in our setting, teaming up with agents who have both higher costs

and marginal costs can be beneficial in terms of externalities, a point we return to when

discussing comparative statics in our setting.

The proposition suggests that speed is constant within any active alliance. However,

the search speed adjusts as alliance members depart. This observation may play a role

when assessing the relation between search speed and search outcomes. As already noted,

there is a mechanical link between search speed and expected maximal values—for any

aggregate fixed search speed σ̂ , at time t, E(Mt) = σ̂
√

2t/π. However, over the full path

of search, alliances may change and search speeds adjust. Thus, the link between aver-
age speed and the observed maximum at any time need not be linear and depends on

the searching team’s features. This may help explain why empirical studies correlating

average speeds and search outcomes yield inconclusive results (see Chen et al., 2010 and

Cankurtaran et al., 2013 for relevant meta-studies in the context of product development).

When costs are log-convex, the ratio of costs to marginal costs is monotonic. When

speed aggregators take the CES form, the environment is regular, and comparisons of

search speeds within various alliances follow directly from the proposition.

Corollary 2 (Search Speed and Alliance Size). Suppose speed aggregators take the CES form
with ρ > 0, costs are log-convex, and an interior solution exists for the system specified in Propo-
sition 1. As an alliance shrinks, individual members’ search speeds increase, while total search
speed decreases. That is, for any i, j ∈ A, we have σA\{j}

i ≥ σA
i while σ̂A > σ̂A\{j}.

The corollary highlights a form of free-riding. When speed aggregators take the CES
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form with ρ > 0, search speed is substitutable across individuals. The more agents search-

ing, the less each one searches. Since individual search speeds decrease within an alliance,

the total search speed in any active alliance is smaller than that which would be generated

by the alliance’s members searching independently.16

The implication of the corollary is that, with substitutability, breakthroughs—new

maximum values that exceed the previous maximum by a certain fixed amount—take

longer and longer to achieve. This observation is in line with some evidence from in-

dustries, products, and firms showing that, over time, research effort rises while research

productivity sharply declines, see Bloom, Jones, Van Reenen, and Webb (2020).

While free-riding in teams is a common phenomenon, in our setting, it occurs only in

particular settings. In general, with complementarities, agents’ individual search speeds

can go up or down as alliance members depart. We return to the effects of complementar-

ities in Section 5.1.

We now turn to the characterization of equilibrium stopping boundaries. We show that

agents cease their search whenever search results fall by more than a set amount relative

to the observed maximum. Consequently, the order in which agents terminate their search

is fixed and does not depend on the realized path of search values.

Proposition 2 (Alliance Stopping Boundary). In a regular environment, there exists an equi-
librium such that, for any agent i in any active alliance A,

gAi (M) = M −
(f A(σA))2

2ci(σ
A
i )

.

In particular, agent i ∈ argminj
(f A(σA))2

2cj (σ
A
j )

is the first to stop in any alliance A. Furthermore,

given equilibrium search speeds, there is a unique equilibrium in which stopping boundaries are
weakly undominated.

Stopping boundaries of the form g(M) = M − d are often termed drawdown stopping
boundaries with drawdown size of d. In equilibrium, agents stop whenever the gap be-

tween the observed maximum and the current observation exceeds their drawdown size,

as identified in the proposition.

To glean some intuition for the structure of the equilibrium stopping boundary, con-

sider some alliance A and suppose all agents believe that other members of the alliance

will continue searching indefinitely with search speeds given by Proposition 1. Since the

environment is regular, agents use a constant search speed. Each individual agent i’s op-

timization problem then boils down to a solo searcher’s optimization, with others’ search

16Welfare is always lower when individuals search independently. Any agent receives a higher payoff within
an alliance than she would on her own. Indeed, any agent can emulate her solo-search policy in an alliance
and guarantee at least as high a payoff.
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simply affecting the experienced search costs. Namely, the induced cost of implement-

ing search speed σ is ci(σ −
∑

j∈A,j,i σ
A
j ). Since agent i’s optimization problem is identical

when observing X and M, or X + k and M + k for any arbitrary constant k, her stopping

boundary must coincide as well and hence takes the form of a drawdown stopping bound-

ary, see Urgun and Yariv (2021) for further details. Denote the corresponding drawdown

size by dAi . Suppose dAi = minj∈Ad
A
j . Consider then another iteration of best responses,

where all agents use the drawdown stopping boundary calculated as above. Agent i would

still be best responding since, from her perspective, others in the alliance would continue

searching for as long as she does. Furthermore, while other agents may want to alter their

stopping boundary, intuitively, none would want to cease search before agent i since that

would contradict their desire to continue searching for at least as long as agent i in the

first place.

This line of argument suggests that, given equilibrium search speeds, the stopping

boundary of the first agent i to terminate search in any alliance A is determined uniquely

when focusing on equilibria in which stopping boundaries are weakly undominated.17

Multiplicity of equilibria arises from the stopping boundaries of other agents j ∈ A. In-

deed, any agent j who stops strictly after agent i is indifferent across all stopping bound-

aries gAj (·) that satisfy gAj (M) < gAi (M) for all M. Naturally, all such choices of stopping

boundaries by agents other than i do not impact when the alliance first loses some of its

members, nor the search speed while it is fully active. Consequently, equilibrium out-

comes are unique.18

When search is over independent samples, as in the classical models of McCall (1970)

and Mortensen (1970), agents stop when sufficiently high values are realized (see our

Online Appendix for details of a model analogous to ours exhibiting independence). In

contrast, when discoveries are correlated, as in our setting, low realizations indicate that

far more research is needed to accomplish a breakthrough. Agents therefore stop when

observing sufficiently low realized values. Nonetheless, the optimal policy has a similar

threshold flavor captured by the drawdown size.

When search speeds are substitutable, Corollary 2 provides sufficient conditions for in-

dividual speeds to increase and overall speeds to decrease as alliances shrink. Proposition

2 implies that the drawdown size corresponding to any individual is increasing in the al-

liance’s search speed and decreasing in her search speed. Therefore, under the conditions

of Corollary 2, individual drawdown sizes decrease as alliances shrink. Intuitively, when

17The focus on weakly undominated stopping boundaries—given the equilibrium search speeds—allows us
to rule out inefficient equilibria that are an artifact of coordination failures, with multiple agents stopping at
an earlier time than desired since other alliance members do so.

18Our analysis indicates a link to other cooperative solution concepts in the spirit of the core. At any point in
time, were active agents free to form any coalition to pursue search, or cease search, the externalities present
in our environment would imply a unique outcome corresponding to the equilibrium outcome we identify.
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search speed is substitutable across individuals, members departing from an alliance re-

duce free-riding opportunities and, consequently, the option value of continuing search.

This leads agents to be more demanding for their search to continue.

Propositions 1 and 2 suggest an approach for estimating a joint search process’ funda-

mentals, the relevant costs and complementarities. If one assumes a parametric family of

costs and speed aggregators, the discoveries at points of exit—say, the revenues generated

by members leaving an alliance and moving into production—and the times at which they

occur, can allow a researcher to restrict the set of plausible parameters. While it is crucial

to observe the composition of active alliances, historical features of the search would not

affect such an exercise. See our discussion in Section 5.1 as well.

4.2 Equilibrium Exit Waves

When all agents have the same costs and solutions are interior, equilibrium takes a simple

form. Team members choose identical search speeds, as determined by Proposition 1.

They also leave in unison—there is only one exit wave. Proposition 2 suggests that joint

departures may occur even when individual costs differ.

To see how those happen, consider any active alliance A. Suppose agent i is first to exit:

dAi = minj∈Ad
A
j . Let Z1 = {i}. Now consider the alliance A∖Z1 resulting from i’s departure.

For all remaining agents, there is then a new drawdown size that governs the decision to

stop search. These new drawdown sizes are {dA∖Z1

j }j∈A∖Z1 . The discrete drop in overall

search speed induced by i’s departure may imply that dA∖Z
1

j ≤ dAi for some j ∈ A ∖ Z1.

Let Z2 correspond to all these agents together with agent i. It follows that, as soon as

agent i terminates her search, so will all other agents in Z2. We can continue this process

recursively to identify the clustered exits that occur in equilibrium. Their characterization

depends only on the magnitudes of the drawdown sizes identified in Proposition 2. In

particular, they are identified deterministically. Thus,

Corollary 3 (Equilibrium Exit Waves). In a regular environment, the order of exits is deter-
ministic, while exit times are stochastic.

Our description above suggests that one agent leaving may trigger the departure of

multiple agents—a form of snow-balling effect. This implies that targeted interventions,

subsidizing the search of only particular agents, may impact the entire path of exit waves.

The deterministic order of exits stands in stark contrast to what would occur with in-

dependent search observations à la McCall (1970) or Mortensen (1970). Consider a simple

setting in which, at every discrete period, agents in an alliance observe an independent

sample from a normal distribution whose expectation and variance depend on members’

costly investments. Moderately high realizations could lead to different sets of agents
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departing than extremely high realizations. Indeed, regardless of the cost profile, for suf-

ficiently high realizations, all members would depart at once. That is, with independent

samples, the order of exits is stochastic. See the Online Appendix for details. Discrete

time is inherent with independent discoveries. Indeed, with a continuum of independent

observations, extremely high draws occur within any infinitesimal period, and stopping is

immediate. However, the contrast with our setting is not a pure artifact of the continuous-

time setting we study. If we discretize time in our setting, exit waves might exhibit some

stochasticity, but their pattern converges to the one we characterize as time intervals be-

tween observations shrink; see Whitt (1980) for related approximation results.19

5 Equilibrium Features

We now discuss several features of equilibria in our setting. To highlight the effects of

complementarities and the structure of exit waves, we assume speed aggregators take the

CES form with equal weights. That is, we assume wi = 1
N for all i.

5.1 Impacts of Complementarities and Costs

We start by analyzing how complementarities and cost differences across the agents affect

equilibrium features. For simplicity, we assume N = 2 and consider a special case of ex-

ponential costs: c1(σ ) = eσ and c2(σ ) = eασ with α > 1. Thus, agent 2 has higher costs and

marginal costs relative to agent 1.

For any level of complementarities, agent 1 selects a higher speed than agent 2, for

whom investments are more costly. Panel (a) of Figure 1 displays agents’ speed choices

for different cost functions of agent 2: α = 2,5,10. As complementarities increase (ρ de-

creases), individual choices converge, with agent 1’s speed declining and agent 2’s speed

increasing. Intuitively, when ρ is high, agents’ speed investments are substitutes. The

high-cost agent 2 can then free-ride on the low-cost agent 1 and the wedge in investments

is pronounced. In contrast, when ρ is low, agent 2 cannot effectively free-ride on agent 1;

if agent 2 chooses a low speed, agent 1 would experience lower incentives to invest. As ρ

becomes unboundedly low, the speed aggregator takes a Leontief form, where the mini-

mum of the agents’ individual speeds determines the team speed. Agents then converge

to choosing the same individual speed.

19If the sample-generating process entails independent, memory-less, and fixed positive jumps, where the
observed value might increase discontinuously at random times, we expect—using techniques introduced by
Gapeev (2007)—the deterministic order of exits to hold. In innovation processes, such positive jumps can
capture discrete breakthroughs. Nonetheless, with random negative jumps, where observed values might
randomly decline discontinuously, the order of exits need not be deterministic: sufficiently bad jumps can
induce multiple agents to cease search at the same time.
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Figure 1: Equilibrium comparative statics with exponential costs (c1(σ ) = eσ , c2(σ ) = eασ )

Panel (a) of Figure 1 also illustrates the impact of increasing the costs of agent 2. As

agent 2’s costs increase, her chosen speeds decrease. The change in agent 1’s choices de-

pends on the complementarities in place. When speeds are substitutes (ρ > 0), the re-

duction in agent 2’s speed induces agent 1 to compensate by increasing her search speed.

When speeds are complements (ρ < 0), the reduction in agent 2’s speed disincentivizes

agent 1 from investing and leads to a decline in her search speed as well.

Panel (b) of Figure 1 depicts the aggregated team speed. For any level of comple-

mentarities, an increase in agent 2’s costs is not helpful to the team, and overall speeds

decline. Complementarities affect negatively the investment incentives of the high-cost

agent 2. Consequently, the team’s speed is higher as agents’ investments become more

substitutable (ρ increases). This observation highlights the role of complementarities in

our setting: they imply a form of dependence. When alliance members’ search activities

feed into one another, one agent speeding up can only take the alliance so far if others are

spending very little. Thus, complementarities are a limited “remedy” to free-riding effects
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in the presence of substitutabilities. This is reminiscent of observations in static contests,

see Kolmar and Rommeswinkel (2013).

Panel (c) of Figure 1 illustrates agents’ individual drawdown sizes. As agent 2’s cost

increases, since the overall speed decreases as seen in panel (b), the net value of continuing

search for both agents decreases and drawdown sizes decline in size—the alliance stops its

joint search sooner. The comparison of the drawdown sizes of the two agents depends

on complementarities. When agents’ speeds are complements, agents’ speed choices are

similar, and the high-cost agent 2 exhibits a lower drawdown size than agent 1. In contrast,

when agents’ speeds are substitutes, as described in panel (a), agent 2 can free-ride on

agent 1’s efforts. As a consequence, agent 1 is more keen to stop search and exhibits a

lower drawdown size.

Both agents benefit from the presence of another agent in our setting. The solo indi-

vidual drawdown sizes are therefore higher than those identified in panel (c) of Figure 1.

When speeds are substitutes, once agent 1 terminates her search, agent 2 cannot exploit

another’s efforts and terminates search as well: her solo-individual drawdown size is lower

than that of agent 1 in the team. Thus, with ρ > 0, there is an exit wave with both agents

leaving at once. In contrast, when speeds are complements, once agent 2 terminates her

search, the loss to agent 1 is less pronounced and she is willing to continue searching: her

solo-individual drawdown size is higher than that of agent 2 in the team. That is, when

ρ < 0, agents stop their search sequentially.

The mirror image of these comparative statics emerges when considering changes in

agent 1’s cost relative to agent 2. Overall, increasing the costs of one agent is never helpful

to the other when costs are exponential. The effects of changes in the cost parameter α

are driven by the fact that increases in α increase costs and marginal costs, but decrease

their ratio. In general, a point-wise increase in c2(·) and c′2(·) can be accompanied by a

decrease or increase in their ratio. From Proposition 1, since that ratio governs agents’

speeds in the alliance, and consequently their search duration, a partner with higher costs

and marginal costs can, at times, be beneficial. The Online Appendix provides details on

this observation.

From an empirical perspective, even with only two agents, observing the exit patterns

and the values generated by each agent upon search termination restricts the set of possi-

ble parameters. An exit wave occurs only when substitutability is in place; Sequential de-

partures occur only when there are speed complementarities. With sequential departures,

the relative values at departure times—say, revenues from products produced—further re-

strict the set of plausible parameters. These inferences are independent of what transpired

prior to the alliance searching on its own.
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5.2 Exit Waves with Well-Ordered Costs

In the setting considered in Section 5.1, the low-cost agent never terminates search strictly

before the other. However, the precise search speeds and drawdown sizes depend on the

profile of costs. We now consider another class of costs, where the identification of exit

waves and their comparative statics is particularly simple. Suppose agents’ cost functions

are proportional to one another: c = c1β1 = c2β2 · · · = cNβN , where β1 = 1 < β2 < ... < βN .

That is, agent 1 has the highest search costs, while agent N has the lowest search costs.

Suppose further that the environment is regular, and speed aggregators are symmetric.20

Proposition 1 implies that all agents in an active alliance choose the same search speed,

assuming an interior solution exists.

Agents’ search speed changes only when their alliance shrinks. In this special case,

we can pin down the weak order by which agents stop their search without calculating

their corresponding drawdown sizes, which greatly simplifies the analysis. Specifically,

Proposition 2 implies that agent N exits no sooner than agent N − 1, who exits no sooner

than agent N − 2, and so on. In equilibrium, agents with higher costs terminate search

earlier. Can non-trivial exit waves occur when agents’ costs are strictly ordered?

Consider any active alliance {j, . . . ,N }. If

d
{j,...,N }
j ≥ d

{j+1,...,N }
j+1 ,d

{j+2,...,N }
j+2 ,d

{j+k,...,N }
j+k ,

then agents j, j + 1, j + 2, ..., j + k will all terminate their search at the same time. Figure 2

depicts an example for N = 10 individuals. In the figure, once agent 1 leaves, agents 2 and

3 leave as well. Similarly, once agent 4 leaves, agent 5 leaves. And so on. Ultimately, the

drawdown sizes that govern agents’ departures correspond to the “upper envelope” of the

graph depicting d
{j,...,N }
j as a function of j.

When costs are sufficiently close to one another, all agents exit at once. When costs are

sufficiently far from one another, agents exit at different points. A decrease in β1, keeping

c1β1 and all other parameters fixed, increases the agent 1’s search costs and leads to her

earlier search termination, potentially too soon for other agents to exit. Consequently, the

number of exit waves weakly increases. In contrast, a decrease in βN , keeping cNβN and

all other parameters fixed, increase agent N ’s search costs, making her more inclined to

exit when agent N − 1 does. Consequently, the number of exit waves weakly decreases.

20A function f of m variables is symmetric if, for any permutation π : {1, ...,m} → {1, ...,m} and any (σ1, ...σm)
in the function’s domain, (σπ(1), ...,σπ(m)) is also in the function’s domain and f (σπ(1), ...,σπ(m)) = f (σ1, ...σm).
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Figure 2: Equilibrium exit waves with well-ordered costs

6 The Social Planner’s Problem

We now consider a social planner who dictates agents’ search speeds and exit policies to

maximize overall utilitarian efficiency of the team. This analysis highlights the type of

inefficiencies that strategic forces in our joint search process imply.

6.1 The Social Objective

The social planner aims to maximize the agents’ expected utilitarian welfare. The instru-

ments at her disposal are the times at which various agents exit—the sequence of active

alliances—and the search speeds within each active alliance.

Standard arguments allow us to restrict attention to Markovian policies for the social

planner, see Puterman (2014). Formally, we consider a Markov decision problem in which

the state at each date t is three-dimensional and comprising (i) the set of active agents At,

(ii) the current maximum Mt, and (iii) the current observed project value Xt. The social

planner chooses a continuation alliance of agents—a subset of the current alliance At—and

the search speed of each member in that alliance.

As before, σA
t denotes the vector of individual search speeds at time t, {σA

i,t}i∈A, where

entries are ordered via agents’ indices. Whenever the alliance A of agents is searching, the
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alliance’s search speed is given by σ̂A
t = f A(σA

t ).

The social planner has two Markovian controls. The first pertains to the selection of a

continuation alliance, and denoted by G(M,X,A) : R2 × 2N 7→ 2A. The mapping G deter-

mines the subset of agents continuing the search as a function of the current state. In par-

ticular, if G(M,X,A) = A, the current alliance continues the search. If ∅ , G(M,X,A) ⊊ A,

the alliance shrinks in size. Whenever G(M,X,A) = ∅, no agent is left searching and the

search terminates.21

The social planner’s second control is the profile of search speeds within any alliance A,

which can be written as σA
i (M,X) : R2 7→ [σ, σ̄ ] for each i ∈ A. We maintain the constraint

that agents that already exited cannot be induced to choose positive search speed and do

not participate in any future search: exit is irreversible. As a shorthand, we drop the

arguments when there is no risk of confusion.

Given these controls, we can now associate a stopping time for each active alliance A.

This is the first time at which the alliance shrinks in size. That is:

τA = inf{t ≥ 0 : G(Mt ,Xt ,A) , A}. (1)

If an alliance A is never reached, we set τA = 0.

Let Ãt denote the induced process of active alliances. For any active agent i, the time

at which her search stops is given by

τi = inf{t ≥ 0 : i < G(Mt ,Xt , Ãt)}.

This is the first time at which agent i is not included in an active alliance.

At any time t, the welfare of individual i ∈ Ãt, given the controls {G,σi}, is

Wi(Mt ,Xt , Ãt |σi ,G) = E
[
Mτi −

∫ τi

t
ci(σ

Ãs
i (Ms,Xs)ds

]
.

For any i < Ãt, we set Wi(Mt ,Xt , Ãt |σi ,G) = 0. The social planner’s problem is then:

W (Mt ,Xt , Ãt) = sup
{G,σi }

∑
i

Wi(Mt ,Xt , Ãt |σi ,G).

Given a pair of controls (G,σ ), with slight abuse of notation, let A1 = {1, ...,N } denote

the first active alliance, containing all agents.22 Using (1), let A2 = ÃτA1 be the alliance that

succeeds A1, the alliance resulting from the first agents halting their search. In principle,

A2 could entail some randomness—depending on the path observed, different agents may

21For simplicity, we restrict attention to deterministic continuation alliances. As our analysis shows, this
restriction has no bearing on the social planner’s welfare.

22We abuse notation by using subscripts to denote the alliance’s order in the sequence, rather than time, in
order to maintain clarity and simplified notation throughout our analysis.
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be induced to exit. We then use (1) to define τA2 , the (random) time at which the second set

of agents stops search and define A3 = ÃτA2 as the (potentially random) resulting alliance.

We continue recursively to establish the (random) time τAk at which the k’th set of agents

stops search and define Ak+1 = ÃτAk as the (potentially random) resulting alliance. Let

K denote the (potentially random) number of different active alliances the social planner

utilizes till search terminates for all. For any controls {G,σi}, we have a sequence of active

alliances A1,A2, ...,AK with associated stopping times τA1 , τA2 , ..., τAK .

Suppose our team-search problem starts at the state (M,X,A). We set τA0 = 0 and

AK+1 = ∅ so that the social planner’s problem can be written as:

W (M,X,A1) = sup
{G,σi }

E

 K∑
k=1

|Ak \Ak+1|MτAk −
∫ τAk

τAk−1

∑
i∈Ak

ci(σ
Ak
i,t )dt


 .

Equivalently, we can write the problem recursively starting from any state (M,X,Ak):

W (M,X,Ak) = sup
{G,σi }

E

|Ak \Ak+1|MτAk −
∫ τAk

0

∑
i∈Ak

ci(σ
Ak
i,t )dt +W (MτAk ,XτAk ,Ak+1)

 .
Suppose the social planner finds it optimal to halt the search of agent i in an active

alliance A when observing X and M. It would then also be optimal to halt the search for

this agent when observing X ′ and M with any X ′ < X. Intuitively, the social planner’s solu-

tion would be the same were the process shifted by a constant. Therefore, her choice when

observing value X ′ and a maximum M is the same as when observing X and maximum

value M ′ ≡ M + X − X ′ > M. As we soon show, search speeds do not explicitly depend

on the achieved maximum. Hence, when observing X and M ′, were the social planner to

continue agent i’s search for a small time interval, the optimal search speeds in the active

alliance would coincide with those she would pick for the same alliance were search con-

tinued when observing X and M. However, the likelihood of surpassing M ′ in this small

time interval is lower than the likelihood of surpassing M. Furthermore, the social plan-

ner could gain M ′ from releasing agent i with the current observed maximum relative to

the lower M she would get from releasing that agent when observing X and M. Thus, if it

is optimal to halt agent i’s search when observing X and M, it is also optimal to halt that

agent’s search when observing X and M ′. We can therefore write

τA = inf{t ≥ 0 : Xt ≤ gA(Mt)},

where gA(M) = sup{X : G(M,X,A) , A}.23

For any active alliance A, we note that gA(M) <M for all M. In other words, it is never

23We implicitly assume, without loss of generality, that whenever the social planner is indifferent between
halting the search of a subset of agents or continuing their search, she chooses the former.
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optimal to stop that alliance at any t such that Mt = Xt. If an alliance searches for a non-

trivial amount of time at its inception, say at time t0, it must be that Mt0 > Xt0 . The alliance

would then continue searching jointly even were the planner to observe, at some time t,

the value Xt and recorded maximum of Mt with Xt = Mt = Mt0 . But then the same should

hold when Mt = Xt = y, with arbitrary y; this corresponds to a shifted problem and does

not alter welfare considerations.24

6.2 Optimal Team Search

Our first result illustrates that, as in equilibrium, the social planner chooses constant

search speeds for each active alliance. However, these search speeds differ from those

dictated by equilibrium.

Proposition 3 (Optimal Search Speed). Search speeds within an alliance are constant and
depend only on the alliance’s composition. Furthermore, whenever interior, search speeds satisfy
the system:

2
∑

i∈A ci(σ
A
i )

c′i(σ
A
i )

∂f A(σA)

∂σA
i

= f A(σA).

The intuition for this result resembles that provided for equilibrium choices. For any

active alliance A, the social planner considers the induced speed of the process, given by(
f A(σA)

)2
and the cost she incurs,

∑
k∈A ck(σA

k ). The social planner then aims at minimiz-

ing the cost per speed, or the overall cost to traverse any distance on the path,
∑

k∈A ck(σA
k )

(f A(σA))2 .

The identity in the proposition reflects the corresponding first-order condition (as in equi-

librium, one needs to ensure this condition corresponds to a minimizer; otherwise, the

optimal speeds are not interior). As we soon show, the social planner’s problem has a

unique solution, up to relabeling of agents. In particular, the socially optimal speed is

constant even absent our regularity assumption.

When costs are log-convex and speed aggregators take the CES form with substitutes

(ρ > 0), the proposition implies that socially optimal search speeds are higher than those

prescribed in equilibrium. Furthermore, when alliance A is active, each alliance as a

whole searches weakly more under the social planner’s solution. Intuitively, agents’ ef-

forts exhibit two positive externalities. First, a greater search speed contributes positively

to other members of the current alliance. Second, increased search efforts improve future

alliances’ welfare. The social planner internalizes these positive externalities and thus

24This would not hold were the social planner’s objective concave in the maximum observed. Concavity in-
troduces new challenges, see Urgun and Yariv (2021) for its impact on single-agent decisions. Its investigation
would be an interesting direction for the future.
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specifies greater overall search investments. Corollary 2 indicates that, as alliances shrink,

remaining agents increase their search speed. The impacts of agents departing are quite

different in the social planner’s solution. As members depart, the externalities of each re-

maining agent decline: there are fewer others their search speed helps. Consequently, the

socially optimal search speed of each individual agent declines. That is:

Corollary 4 (Optimal Speed and Alliance Size). Suppose speed aggregators take the CES
form with ρ > 0, costs are log-convex, and the social planner’s search speeds are interior. Then,
in any alliance, an agent’s equilibrium search speed is lower than that agent’s search speed in
the social planner’s solution. Furthermore, in the social planner’s solution, each agent’s search
speed decreases as her alliance shrinks in size.

The sequencing of alliances and their search duration also differ between the social

planner’s solution and the corresponding equilibrium:

Proposition 4 (Optimal Alliance Sequencing). The socially optimal sequence of alliances is
deterministic, and unique up to agents’ relabeling. For any deterministic sequence of alliances
A1, ...,Ak exerting optimal search speeds, the socially optimal stopping boundaries are draw-
down stopping boundaries. That is, for each alliance Ak , gAk (M) = M − dAk

with dAk
∈ R+.

Furthermore, the drawdown sizes {dAk
} exhibit a recursive structure: for any k,

dAk
=

|Ak \Ak+1|

2
(∑

i∈Ak
ci (σ

Ak
i )

(f Ak (σAk ))2 −
∑

i∈Ak+1
ci (σ

Ak+1
i )

(f Ak+1 (σAk+1 ))2

) .
Why does the social planner use drawdown stopping boundaries for various alliances?

Intuitively, for any active alliance Ak , the social planner considers the marginal group of

agents Ak \Ak+1 whose search will be terminated next. The relevant marginal added cost

per speed for that group is then:∑
i∈Ak

ci(σ
Ak
i )(

f Ak (σAk )
)2 −

∑
i∈Ak+1

ci(σ
Ak+1
i )(

f Ak+1(σAk+1)
)2 .

Each of these agents would receive the established maximum once they depart, thereby

generating a multiplier of |Ak \Ak+1| of the maximum in the social planner’s objective. The

resulting stopping boundary then emulates that of a single decision maker, a special case

of Proposition 2, with scaled up returns to each maximum established when the alliance

shrinks, and adjusted costs as above.

To glean some intuition into the deterministic nature of the sequence of alliances, sup-

pose that the social planner, starting with some active alliance A, proceeds to either al-

liance A′ or alliance A′′, depending on the realized path, with A′ ,A′′ ⊂ A. Following our

24



discussion above, both transitions—from A to A′ and from A to A′′—are associated with a

drawdown stopping boundary, with drawdown sizes of d′ and d′′, respectively. If d′ < d′′,

starting from alliance A, the social planner would always shrink the alliance to A′ as the

relevant stopping boundary would always be reached first. Similarly, if d′′ < d′, the so-

cial planner would always reduce the alliance to A′′. In other words, different drawdown

stopping boundaries never cross one another, and so the path of alliances is deterministic.

To see how multiplicity might emerge, consider the following simple example. Sup-

pose N = 3 and that agents 2 and 3 are identical, with equal cost functions and inter-

changeable effects on speed aggregators. Suppose further that agent 1’s cost is substan-

tially lower than that of agents 2 and 3 and that speed aggregators take much larger values

for alliances of two agents than for any other alliance. The social planner would then

terminate the search of either agent 2 or agent 3 at the outset of the search—since these

agents are identical, which of the two does not matter. In this case, there are clearly multi-

ple solutions, but their resulting speed choices, alliance paths, and payoffs are equivalent

up to the relabeling of agents 2 and 3. The proposition shows that this is the only type of

multiplicity possible.

Propositions 3 and 4 suggest that the general structure of efficient search is similar

to that conducted in equilibrium. Agents depart the search process in a pre-specified

order and do so using drawdown stopping boundaries. Furthermore, within each active

alliance, search speeds are constant over time. Nonetheless, the optimal sequence of active

alliances, their corresponding drawdown sizes, and the search speeds do not generally

coincide with those prescribed by equilibrium. In equilibrium, Corollary 3 implies that

targeted subsidization of certain agents can dramatically alter the structure of exit waves.

Proposition 4 provides guidance on which agents should ideally be subsidized.25

Certainly, agents who search exert positive externalities on others searching. Natu-

rally, then, the social planner exploits these externalities by extending the time individuals

spend searching. In fact, the expressions derived for the optimal and equilibrium alliance

drawdown sizes imply directly the following.

Corollary 5 (Longer Optimal Search). Suppose speed aggregators take the CES form with
ρ > 0, costs are log-convex, and the equilibrium and social planner’s search speeds are interior.
Consider any alliance that is active on path in both the social planner’s solution and in equilib-
rium. Then, the drawdown chosen by the social planner for that alliance is weakly larger than
the equilibrium drawdown of the same alliance.

The results of this section provide some features of the optimal solution.26 However,

25Outside the scope of the current paper, it would be interesting to analyze how a limited budget should be
utilized to subsidize searching agents efficiently.

26In addition, in the Online Appendix, we show a recursive formulation of the social planner’s objective—
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they do not offer a general characterization of the optimal sequence of alliances, which is

the result of a challenging combinatorial optimization problem—in principle, the plan-

ner needs to consider all possible exit patterns, corresponding to ordered partitions of the

team. A sharper characterization requires more structure on the environment’s funda-

mentals. In the next subsection, we impose such a structure and solve the social planner’s

problem completely, illustrating the optimal sequence of alliances and contrasting it with

that emerging in equilibrium.

6.3 Optimal Team Search with Well-Ordered Costs

Suppose, as in Section 5.2, that agents’ cost functions are proportional to one another and

point-wise ordered: c1β1 = c2β2 = · · · = cNβN , where β1 = 1 < β2 < ... < βN . Suppose further

that all speed aggregators are symmetric and that, for any alliance A, the speed aggregator

f A depends only on the alliance’s cardinality |A|.27

We start by showing that the social planner uses a similar sequencing of active alliances

to that used in equilibrium.

Lemma 1 (Optimal and Equilibrium Alliance Sequence). In the social planner’s solution,
agent i never terminates search before agent j if i > j. In particular, whenever agent i terminates
search before agent j in equilibrium, the social planner terminates agent i’s search either with,
or before, agent j’s.

Intuitively, the social planner optimally terminates the search of agents with the high-

est search costs first, so agent 1’s search is terminated no later than agent 2’s search, which

is terminated no later than agent 3’s, etc. This mimics, “weakly,” the order governed by

equilibrium. Nonetheless, the social planner’s sequencing need not echo that prescribed

by equilibrium since clustered exits can differ dramatically, as we soon show.

It will be useful to introduce the following notation for our characterization of the so-

cially optimal sequence of alliances. Let Bk = {k,k + 1, ...,N } for all k = 1, ...,N . Lemma 1

and our equilibrium characterization imply that the optimal sequence of active alliances

has to correspond to a subset of {Bk}Nk=1. This already suggests the computational simplic-

ity well-ordered costs allow. For instance, instead of considering 2N −1 alliances that could

conceivably be the last ones active, we need to consider only N .

For B′ ⊊ B, we denote by dB→B′ the socially optimal drawdown size associated with

alliance B, when it is followed by alliance B′, as described in Proposition 4. In particular,

the resulting welfare—in terms of the optimal drawdown sizes and search speeds.
27The assumption that speed aggregators depends only on the alliance’s cardinality ensures that the social

planner does not terminate the search of certain agents only to increase the productivity of those remaining,
an externality that would trivially not be internalized in equilibrium.
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dB→∅ denotes the optimal drawdown of an alliance B when it is the last active alliance. We

now characterize the optimal sequence of alliances.

Proposition 5 (Optimal Alliance Sequence with Well-Ordered Costs). The optimal sequence
of alliances is identified as follows:

• There is a unique maximizer of {dBk→∅}
N
k=1. Let L1 = argmax

k=1,...,N
dBk→∅. The last active

alliance is BL1
, with L1 ≤ N . If L1 = 1, all agents optimally terminate their search at the

same time. Otherwise,

• There is a unique maximizer of {dBk→BL1
}L1−1
k=1 . Let L2 = argmax

k=1,...,L1−1
dBk→BL1

. The penulti-

mate active alliance is BL2
, with L2 < L1. If L2 = 1, there are optimally only two active

alliances: B1 followed by BL1
. Otherwise,

• Proceed iteratively until reach Ln, where Ln = 1. The socially optimal order of alliances is
given by B1,BLn−1

, . . . ,BL1
.

The optimal sequence of alliances is constructed recursively. Consider first the case in

which an alliance’s search is terminated jointly. That is, once search terminates for one of

the alliance’s members, it is terminated for all others. Our analysis in the previous sec-

tion suggests that, restricted in this way, the social planner would optimally determine

the stopping time using a drawdown stopping boundary. Naturally, any possible alliance

would be associated with a different optimal drawdown size. Higher drawdown sizes cor-

respond to alliances the planner would prefer to have searching for longer periods. It is

therefore natural to suspect that the alliance corresponding to the highest such drawdown

size is the last active alliance. Since we already determined that optimal search exits occur

in “weak” order, with agent i never exiting after agent i + 1, it suffices to consider draw-

down sizes corresponding to each alliance Bk .28 This allows us to determine the last active

alliance chosen by the social planner, BL1
, as in panel (a) of Figure 3.

Once BL1
is identified, we proceed to the penultimate active alliance. Namely, we con-

sider all plausible super-sets of BL1
and assess drawdown sizes when the social planner is

constrained to transition directly to BL1
, see panel (b) of Figure 3. The alliance generating

the maximal such drawdown size is the one the planner would want to keep searching the

longest, foreseeing her optimal utilization of the next alliance BL1
. That is the penultimate

alliance. We continue recursively until reaching the maximal active alliance B1, see panel

(c) of Figure 3.

28As mentioned, this simplifies the computation problem substantially. Instead of considering 2N − 1 al-
liances, we need to consider only N .
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Figure 3: Socially optimal exit waves

6.4 Comparing Exit Waves in an Exponential World

In order to contrast the structure of equilibrium and socially optimal exit waves, we now

consider a particular example. Suppose the team comprises three agents, N = 3, and

assume cost functions are exponential and well-ordered: c(σ ) = c1(σ ) = ebσ = β2c2(σ ) =

β3c3(σ ), where 1 < β2 < β3. Suppose further that speed aggregators take the CES form,

with perfect substitutes (ρ = 1) and equal weights (wi = 1
3 for all i). There are four possible

exit wave structures: all agents can leave at once; agent 1 might leave first, followed by

the clustered exit of the lower-cost agents 2 and 3; agents 1 and 2 might leave together,

followed by agent 3; or agents may exit at different points.

Figure 4 focuses on parameters under which the social planner clusters all agents’ exits

and, in equilibrium, agents implement a symmetric speed profile. The figure depicts the

different regions of β2 and β3 combinations that generate the four possible structures of
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Figure 4: Equilibrium exit wave patterns when the optimal policy entails one exit wave
including all three agents

equilibrium exit waves. Since β3 > β2, all regions are above the gray 45-degree line. We

use {1,2,3} to denote one clustered exit wave including all agents; {1,2}, {3} to denote an

exit wave consisting of agents 1 and 2, followed by the exit of agent 3; and so on.

When the cost multipliers are sufficiently close to one another, agents exit in unison,

even in equilibrium. When β2 is sufficiently close to 1, but β3 is sufficiently higher, agent

3 has substantially lower search costs. Since agents 1 and 2 do not internalize their ex-

ternalities on agent 3, they prefer to leave early on, generating two exit waves. Similarly,

when β2 and β3 are sufficiently high but close to one another, two exit waves occur in

equilibrium. Last, when agents’ costs are sufficiently different, equilibrium dictates agents

exiting at different points, resulting in three exit waves, even when externalities are suf-

ficiently strong so that the social planner would prefer to have the agents search together

till they all exit. Naturally, for sufficiently high β2 and β3, the wedge in costs is big, and

even the social planner would prefer to split agents’ exits. The Online Appendix contains

detailed characterization of the equilibrium and social planner’s solutions, and displays

similar figures for other exit-wave structures chosen by the social planner.

7 Conclusions and Discussion

This paper analyzes team search patterns in a setting with long-lived and sophisticated

agents. We show that the equilibrium and socially optimal search speeds are constant

within an alliance. However, as alliance members depart, individual search speeds in-

crease in equilibrium and decrease under the optimal policy. We also characterize the
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deterministic path of exit waves generated in equilibrium. The optimal path of exit waves

shares features with the equilibrium path in terms of the structure of stopping boundaries

that govern departures. However, search externalities naturally prolong optimal search in

teams and alter resulting exit waves.

In what follows, we consider two extensions of our model, allowing for competitive

forces that generate explicit rewards for early innovation, and the utilization of non-

Markovian equilibrium strategies. In the Online Appendix, we also analyze the limita-

tions introduced by a fixed, non-alterable search speed, and our model’s implications for

settings with independent search observations.

7.1 Market Competition through Penalties for Later Innovations

Market competition could yield an advantage for those who stop their search early. For

example, a firm that produces the first product of its type might capture a market segment

that is later more challenging to capture. Similarly, researchers arguably get additional

credit for being the first to suggest a modeling framework or a measurement technique.

For simplicity, consider a team of two agents with speed aggregators that take the

perfect-substitutes CES form (ρ = 1) with equal weights (wi = 1
2 for i = 1,2). Assume

that the first agent to stop, say at time t, receives Mt. The second agent to stop, say at time

s > t, receives αMs, with α ≤ 1. If both agents stop at the same time t, they both receive

Mt.29 As we show in the Online Appendix, the order of exits remains deterministic. Fur-

thermore, as long as both agents are searching, the search speed and the initial stopping

boundary are identical to those in our benchmark setting, where α = 1. Thus, if there is a

unique exit wave when α = 1, that is still the case when α < 1.

Suppose there are two distinct exit waves with α = 1. Then, there is a leader—the agent

who exits early—and a follower—the agent who exits later. The leader’s stopping boundary

gL(·) is governed by the equilibrium drawdown identified in Proposition 2 regardless of α.

The follower’s stopping boundary, however, may change with α.

To characterize the follower’s stopping boundary, denote the costs of the leader by cL(·)
and those of the follower by cF(·). Let σL denote the leader’s search speed when searching

within the full team, σT denote the total search speed in the full team, and σF denote the

follower’s optimal solo search speed. Similar calculations to those underlying Proposition

29The analysis naturally extends to N agents via a decreasing sequence of discounts: α0 = 1 ≥ α1 ≥ α2 ≥
... ≥ αN . In addition, one could consider a continuous version of this setup, where the second agent who
stops at time s > t receives Mt + α(Ms −Mt). That model generates qualitatively similar results, but is more
cumbersome to analyze.
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2 yield the follower’s stopping boundary gF(·):

gF(M) =

M −
ασ2

F
2cF(σF ) if M <M and ασ2

F
2cF(σF ) >

σ2
T

2cL(σL) ,

gL(M) otherwise,

where

M =
1

1−α
cF(σF)

σ2
F

(
ασ2

F

2cF(σF)
−

σ2
T

2cL(σL)

)2

.

To glean some intuition, consider the follower’s problem after the leader’s departure.

The follower faces a similar problem to the individual agent’s problem, with identical

search costs and rewards scaled down by α. This case falls within the analysis of Ur-

gun and Yariv (2021). The search speed is unaffected by the attenuated rewards, but the

drawdown size is scaled linearly by α—as α declines, the rewards from search become

less meaningful, and the follower ceases search more willingly. Naturally, for sufficiently

low α, search continuation would not be worthwhile altogether, regardless of the maxi-

mal observation achieved when the leader exits. That corresponds to the drawdown used

by the follower alone, ασ2
F

2cF(σF ) , being smaller than the full alliance’s drawdown, σ2
T

2cL(σL) . In

that case, the stopping boundary of the leader governs the exit of both. In addition, when

the maximal observation M achieved when the leader exits is high enough, the loss from

leaving at a later point, (1 − α)M is substantial for any α < 1.30 For sufficiently high M,

search continuation would again not be profitable. As α increases, the threshold level M

increases. To summarize, for the follower to continue search after the leader, α needs to

be sufficiently high and the current maximum sufficiently small.

Importantly, when later innovations are penalized, there are no preemption motives.

The main impact is on later innovators, who face weakened incentives to search. Me-

chanically, larger exit waves occur for a larger set of parameters. Nonetheless, the main

messages of the paper extend directly to such settings.

Certainly, market competition could affect search interactions in a variety of other

ways, through entry considerations, dynamic pricing schemes of products, and so on. In-

corporating these would be an interesting avenue for future research.

7.2 Non-Markovian Strategies

Our equilibrium analysis restricts attention to Markovian strategies. In our setting, the

use of non-Markovian strategies cannot yield the socially optimal solution in general.31

30Specifically, the gain from continuation for the follower is given by (1−α)M + (dL −dF )2 cF
σ2
F

, where dL and

dF are the drawdown sizes for the leader and the follower, respectively.
31This contrasts insights on collective experimentation, see Hörner, Klein, and Rady (2021).
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To see why, consider a team of two agents and suppose the optimal search speed can be

implemented in equilibrium—say, when there is only one viable speed, σ = σ . Our results

show that, in some settings, the social planner would like agents to search for a longer time

than the (Markovian) equilibrium we identify would prescribe. Suppose agent 1 is the first

to exit in such an equilibrium, where stopping strategies are not weakly dominated given

the search speeds. As long as agent 2 is searching, agent 1 has a unique best response.

She would like to use a drawdown size d1, while the social planner would like her to use

a drawdown size d′1 > d1. However, regardless of the space of strategies, there is no way to

punish agent 1 for leaving early, and no way to foretell that she will do so. When σ < σ ,

agents have room to punish one another for not using the efficient speed by reducing their

own. Nonetheless, there is still no way to punish agents for departing too soon. A full

analysis of equilibria in non-Markovian strategies is left for the future.

A Appendix

Corollary proofs are immediate and, for completeness, available in the Online Appendix.

In what follows, we provide proofs for the paper’s main results.

A.1 Proofs for Equilibrium Team Search

First, we note a useful lemma, commonly known as “reflection on the diagonal”. This

lemma allows us to omit the partial derivatives pertaining to M in the control problem

in the various Hamilton-Jacobi-Bellman (HJB) equations that we soon derive. Proofs of

this result can be found in various sources, including Dubins, Shepp, and Shiryaev (1994),

Urgun and Yariv (2021), and Peskir (1998), and hence omitted.

Lemma A.1. The infinitesimal generator of the two-dimensional process Z = (M,X) satisfies
the following for any C2 function W:

1. If Mt > Xt, then Aσt
Z =Aσt

X = 1
2 (σt)2 ∂2

∂X2 .

2. If Mt = Xt, then ∂W
∂M = 0.

Proof of Proposition 1. Let V A
i (M,X) denote the continuation value of agent i in an active

alliance A when the observed maximum is M and the current observation is X. Given the

Markov structure of the problem and Lemma A.1, the Hamilton-Jacobi-Bellman (HJB)

equation for such an agent i in an active alliance A, before that alliance shrinks in size,

takes the following form:

sup
σi
{1
2

(f A(σA(M,X))2∂
2V A

i (M,X)

∂X2 − ci(σi)} = 0.
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The corresponding first-order condition then yields:

f A(σA(M,X)
∂f A(σA(M,X)

∂σA
i (M,X)

∂2V A
i (M,X)

∂X2 = c′i(σi).

The next step is to characterize the second derivative of the value function. For any

agent i in an alliance A, the value function takes the following form:

V A
i (M,X) = E

−∫ τA

0
ci(σ

A
i,t |M,X)dt +V A

i (MτA , g
A(MτA))

 .
The Green function on the interval [a,b] is defined as follows:

Ga,b(x,y) =

 (b−x)(y−a)
b−a if a < y < x < b

(b−y)(x−a)
b−a if a < x < y < b

.

Following standard techniques, we can write the equilibrium value function of agent i in

an alliance A as follows:

V A
i (M,X) = V A

i (M,gA(M))
M −X

M − gA(M)
+V A

i (M,M)
X − gA(M)
M − gA(M)

−
∫ M

gA(M)
GgA(M),M(X,y)ci(σ

A
i (M,y))

2
(f A(σA(M,y)))2

dy.

Intuitively, there are two possible transitions agent i needs to contemplate that are re-

flected in the above formulation. The first term corresponds to the stopping boundary

being reached with the current maximum. The second term corresponds to a new max-

imum being achieved. Reaching either of these two states entails a flow of costs, which

corresponds to the third term.32

For a given observed maximum M, there are two cases to consider for an active agent

i in A: either her stopping boundary is the highest within the active alliance, or not. We

discuss these in sequence.

Suppose first that gAi (M) = maxj∈A g
A
j (M). Consider any observed value X such that

gAi (M) ≤ X ≤M. By value matching, agent i’s value from reaching the stopping boundary

is the observed maximum, since she is the first to stop search. As above, we can write

the equilibrium value function of agent i as follows (regardless of whether other agents

32This way of writing the accrued costs is the consequence of a change of variables: instead of integrating
over time, we integrate over the states, adjusted by the measure of time spent in each state, which is captured
by the Green function.
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terminate search at the same time):

V A
i (M,X) = M

M −X
M − gAi (M)

+V A
i (M,M)

X − gAi (M)

M − gAi (M)

−
∫ M

gAi (M)
GgAi (M),M(X,y)ci(σ

A
i (M,y))

2
(f A(σA(M,y)))2

dy.

Rearranging terms, we get:

V A
i (M,M)−M =

M − gAi (M)

X − gAi (M)

[
V A
i (M,X)−M

+
∫ M

gAi (M)
GgAi (M),M(X,y)ci(σ

A
i (M,y))

2
(f A(σA(M,y)))2

dy

 .
Since agent i optimally terminates her search at gAi (M), smooth pasting must hold at

gAi (M). The derivative of the continuation value as X approaches gAi (M) can be written as

limX→gAi (M)
V A
i (M,X)−M
X−gAi (M)

. By smooth pasting, it must equal the derivative of the value from

stopping, ∂
∂XM = 0.

Consider the above equality for V A
i (M,M). Taking the limit as X→ gAi (M),

V A
i (M,M) = M +

∫ M

gAi (M)
(M − y)ci(σ

A
i (M,y))

2
(f A(σA(M,y)))2

dy.

This, in turn, implies that

V A
i (M,X) = M +

∫ X

gAi (M)
(X − y)ci(σ

A
i (M,y))

2
(f A(σA(M,y)))2

dy.

Taking the second derivative with respect to X and simplifying yields:

∂2V A
i (M,X)

∂X2 =
2ci(σ

A
i (M,X))

(f A(σA
i (M,X)))2

.

Plugging the second derivative into the HJB for agent i and simplifying further generates:

2ci(σ
A
i (M,X))

c′i(σ
A
i (M,X))

∂f A(σA(M,X))

∂σA
i (M,X)

= f A(σA(M,X)).

Suppose, instead, that agent i does not have the highest stopping boundary, maxk∈A g
A
k (M) >

gAi (M). Let F(M) = {j ∈ N : maxk∈A g
A
k (M) = gAj (M)}. Choose an arbitrary agent j ∈ F(M).
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As above, we can write the continuation payoff of i as follows:

V A
i (M,X) = V A

i (M,gAj (M))
M −X

M − gAj (M)
+V A

i (M,M)
X − gAj (M)

M − gAj (M)

−
∫ M

gAj (M)
GgAj (M),M(X,y)ci(σ

A
i (M,y))

2
(f A(σA(M,y)))2

dy.

This expression echoes the one above. In particular, the first term corresponds to the case

in which agent j’s stopping boundary is reached before a new maximum. Certainly, in this

case, there might be a set B ⊇ {j} of agents, possibly random, that terminate search once gAj
is reached. In this case, V A

i (M,gAj (M)) = V A\B
i (M,gAj (M)). Rearranging terms, we get:

V A
i (M,M)−V A

i (M,gAj (M)) =
M − gAj (M)

X − gAj (M)

[
V A
i (M,X)−V A

i (M,gAj (M))

+
∫ M

gAj (M)
GgAj (M),M(X,y)ci(σ

A
i (M,y))

2
(f A(σA(M,y)))2

dy

 .
Again, taking the limit as X → gj(M) from above, and letting

∂DV
A
i (M,gj (M))
∂X denote the

upper Dini derivative of V A
i (M,gj(M)) at gj(M), we have:33

V A
i (M,M) =

∂DV
A
i (M,gj(M))

∂X
(M − g(M)) +V A

i (M,gAj (M))

+
∫ M

gAj (M)
(M − y)ci(σ

A
i (M,y))

2
(f A(σA(M,y)))2

dy.

Plugging this identity in V A
i (M,X)’s expression and taking the second derivative:

∂2V A
i (M,X)

∂X2 =
2ci(σ

A
i (M,X))

(f A(σA
i (M,X)))2

.

Plugging this back into the HJB for agent i and simplifying further generates:

2ci(σ
A
i (M,X))

c′i(σ
A
i (M,X))

∂f A(σA(M,X))

∂σA
i (M,X)

= f A(σA(M,X)).

Proof of Proposition 2. The statement of Proposition 2 follows from the following claims.

Claim A.1. For any given alliance A with i ∈ A, if gAi (M∗) = maxj∈A g
A
j (M∗) for some M∗, then

33Since speeds and f are bounded, V is Lipschitz continuous, hence the Dini derivative is finite.
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gAi (M) = maxj∈A g
A
j (M) for all M.

Proof of Claim. The proof of the claim relies on the following lemma.

Lemma A.2. Suppose agent i ∈ A has the highest stopping boundary at a given observed M,X.
Then gAi (M) is a drawdown stopping boundary.

Proof of Lemma A.2. Suppose maxj∈A g
A
j (M) = gAi (M). As shown in the proof of Proposition

1, we have

V A
i (M,X) = M +

∫ X

gAi (M)
(X − y)ci(σ

A
i (M,y))

2
(f A(σA(M,y)))2

dy.

Furthermore, using Proposition 1, we know that σA(M,X) = σA for all M,X and σA
i (M,X) =

σA
i for all M,X.

Now, differentiating V A
i (M,X) with respect to M and evaluating the derivative at X =

M yields the following ordinary differential equation (ODE) for gAi (M):

dgAi (M)
dM

=
(f A(σA))2

2ci(σ
A
i )

(
M − gAi (M)

)
which leads to the following solution:

gAi (M) = M −
(f A(σA))2

2ci(σ
A
i )

.

This is a drawdown stopping boundary with drawdown size dAi := (f A(σA))2

2ci (σ
A
i )

.

We can now proceed with the claim’s proof. Suppose that gAi (M∗) = maxj∈A g
A
j (M∗) for

some M∗ and let M ′ = infM̂>M∗{M̂ |i < argmaxj∈A g
A
j (M̂)}. Toward a contradiction, assume

that for some ε > 0 and k , i, for any M̂ ∈ (M ′ ,M ′ + ε), we have maxj∈A g
A
j (M̂) = gAk (M̂) >

gAi (M̂). From continuity of the stopping boundary and Lemma A.2,

gAi (M) = M −
(f A(σA))2

2ci(σ
A
i )

and gAk (M̂) = M̂ −
(f A(σA))2

2ck(σA
k )

.

Our choice of i and k yields (f A(σA))2

2ci (σ
A
i )
≤ (f A(σA))2

2ck(σA
k )

and (f A(σA))2

2ci (σ
A
i )

> (f A(σA))2

2ck(σA
k )

, in contradiction.

Claim A.2. Suppose that for some i in an active alliance of A, (f A(σA))2

2ci (σ
A
i )
≤ (f A(σA))2

2cj (σ
A
j )

for all j ∈ A.

Then i is the first to exit alliance A.34

34If there are multiple agents who satisfy the condition, all exhibiting the same drawdown size, they all exit
jointly, weakly before others.
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Proof of Claim. Suppose (f A(σA))2

2ci (σ
A
i )
≤ (f A(σA))2

2cj (σ
A
j )

for all j ∈ A but that agent i is not one of the

first agents to exit from alliance A for some path of observed values. For that path, agent i

ceases her search when active at a smaller alliance A\B. Without loss of generality, suppose

agent j exits alliance A first (if there are multiple such agents, pick any) when observing

M and X. From Lemma A.2, agent j’s stopping boundary is characterized by a drawdown.

However, from the Claim’s restriction,

M −
(f A(σA))2

2cj(σ
A
j )
≤M −

(f A(σA))2

2ci(σ
A
i )

.

For each k ∈ A, the stopping boundary gAk (M) = M − f A((σA))2

2ck(σA
k )

is identified by value

matching and smooth pasting. In particular, we have V A
k (M,gAk (M)) = M. If gAi (M) >

gAj (M), this implies that V A
i (M,gAj (M) + ϵ) < M for 0 < ϵ < (f A(σA))2

2cj (σ
A
j )
− (f A(σA))2

2ci (σ
A
i )

. Therefore,

agent i would prefer to stop strictly before agent j.

The two claims and Lemma A.2’ s characterization yield the proposition’s proof.

A.2 Proofs for the Social Planner’s Solution

As in the main text, we denote the social planner’s (possibly random) sequence of active

alliances by A1,A2, ..., with A1 = {1, ...,N }.

Proof of Proposition 3. Let
{
σA
i (M,X,A)

}
and G(M,X,A) correspond to a solution to the so-

cial planner’s problem. Consider any alliance Ak at some observed values and let Ak+1

denote the potentially empty random alliance that optimally follows it. Optimality im-

plies that the induced search speeds with Ak should solve:

sup
{σi,t}i∈Ak

E

|Ak \Ak+1|MτAk −
∫ τAk

0

∑
i∈Ak

ci(σi,s)ds

 .
Using Lemma A.1, the continuation HJB for the social planner can be written as:

sup
{σi }i∈Ak

1
2

(
f Ak (σAk )

)2 ∂2W (M,X,Ak)
∂X2 −

∑
i∈Ak

ci(σi)

 = 0.

Replacing the sup with the appropriate first-order condition yields:

f Ak (σAk )
∂f Ak (σAk )

∂σ
Ak
i

∂2W (M,X,Ak)
∂X2 = c′i(σ

Ak
i ) ∀i ∈ Ak .
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Analogous to Proposition 1’s proof, the social planner’s problem can be written as:

W (M,X,Ak) = sup
τAk ,{σi,s}ı∈Ak

E

[
|Ak \Ak+1|MτAk +W (MτAk , g

Ak (MτAk ),Ak+1) | M,X
]

−E


∫ τAk

0

∑
i∈Ak

ci(σ
Ak
i,s )ds | M,X

 .
Since the solution is Markovian, by smooth pasting, we reach the following equation:

W (M,X,Ak) =|Ak \Ak+1|M +W (M,gAk (M),Ak+1)

+
(
X − gAk (M)

)K−1∑
j=k


∫ gj (M)

gj+1(M)

2
∑

i∈Aj+1
ci(σ

Aj+1

i (M,u))

(f Aj+1(σAj+1(M,u)))2
du


−
∫ X

gAk (M)
(X − y)

2
∑

i∈Ak
ci(σ

Ak
i (M,y))

(f Ak (σAk (M,y)))2
dy.

Taking the second derivative of the value function with respect to X, we have the following:

∂2W (M,X,Ak)
∂X2 =

∂2
E

[∫ τAk

0

∑
i∈Ak

ci(σ
Ak
i (M,X))ds|M,X

]
∂X2 .

Therefore,

2
∑

i∈Ak
ci(σ

Ak
i (M,X))

c′j(σ
Ak
i (M,X))

∂f Ak (σAk (M,X))

∂σ
Ak
j (M,X)

= f Ak (σAk (M,X)) ∀j ∈ Ak .

Since there is no direct dependence on X on either side, optimal search speeds are inde-

pendent of observed values and constant over time for each active alliance.

As discussed in the text, there are two types of externalities agents exert on one an-

other. The first is an externality within the active alliance in which they operate. This

externality is reflected in the optimal search speed. The second externality is on ensu-

ing alliances. This externality is captured by the third term (on the second line) in the

expression for W (M,X,Ak) above. This externality is not reflected in the optimal search

speed—technically, it appears as a linear term in X and thus vanishes when we take the

second derivative. As we show below, this externality does impact the stopping boundary.

In what follows, we suppress the dependence of search speeds on the current maximum

and observed value, since we have shown they are constant within any active alliance.

Proof of Proposition 4. The proof follows from two lemmas:
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Lemma A.3. If the set of agents exiting an alliance is independent of the observed path, each
alliance has a drawdown stopping boundary identified by a drawdown size dAk

.

Proof of Lemma A.3. Let AK be the final alliance in the social planner’s problem, with car-

dinality |AK |. The social planner’s problem when left with alliance AK , and observing

maximum M and current value X, takes the following form:

W (M,X,AK ) = sup
τAK

i∈AK
E

|AK |MτAK −
∫ τAK

0

∑
i∈AK

ci(σ
AK
i )ds | M,X

 .
This is tantamount to a single-searcher problem, where search rewards are scaled by |AK |.
From Urgun and Yariv (2021), the stopping boundary is given by:

gAK (M) = M − dAk
, where dAk

=
|AK |(f AK (σAK ))2

2
∑

i∈AK
ci(σ

AK
i )

.

Consider the social planner’s problem when the penultimate alliance AK−1 is active

and the observed maximum and value are M and X, respectively:

W (M,X,AK−1) = sup
τAK−1

E

[
|AK−1 \AK |MτAK−1 +W (MτAK−1 , g

AK−1(MτAK−1 ),AK ) | M,X
]

−E


∫ τAK−1

0

∑
i∈AK−1

ci(σ
AK−1
i )ds | M,X

 .
By optimality of the stopping time τAK−1 , we have value matching and smooth pasting of

W (M,X,AK−1) and W (M,X,AK ). Therefore,

W (M,gAK−1(M),AK−1) = |AK−1 \AK |M +W (M,gAK−1(M),AK ),

∂W (M,gAK−1(M),AK−1)
∂X

|X=gAk−1 (M)=
∂(|AK−1 \AK |M +W (M,gAK−1(M),AK ))

∂X
|X=gAK−1 (M).

Similar to our equilibrium analysis, and using the notation for the Green function intro-

duced there, we can write the welfare maximization problem as:

W (M,X,AK−1) = |AK−1 \AK |M +W (M,gAK−1(M),AK )
M −X

M − gAK−1(M)

+W (M,M,AK−1)
X − gAK−1(M)
M − gAK−1(M)

−
∫ M

gAK−1

GgAK−1 (M),M(X,y)
2
∑

i∈AK−1
ci(σ

AK−1
i )

(f AK−1(σAK−1))2
dy.

Letting X approach gAK−1(M), following the analogous steps in our equilibrium analysis,

smooth pasting and rearrangement yield:

W (M,X,AK−1) = |AK−1 \AK |M +W (M,gAK−1(M),AK )
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+
(
X − gAK−1(M)

)∫ gAK−1 (M)
gAK (M)

2
∑

i∈AK ci (σ
AK
i )

(f AK (σAK ))2 dx+
∫ X

gAK−1 (M)(X − y)
2
∑

i∈AK−1
ci (σ

AK−1
i )

(f AK−1 (σAK−1 ))2 dy.

Using the closed-form representation of the value function leads to:

W (M,X,AK−1) = |AK−1|M +
1
2

(gAK−1(M)− gAK (M))2 2
∑

i∈AK
ci(σ

AK
i )

(f AK (σAK ))2

+
(
X − gAK−1(M)

)
(gAK−1(M)− gAK (M))

2
∑

i∈AK
ci(σ

AK
i )

(f AK (σAK ))2

+
1
2

(X − gAK−1(M))2 2
∑

i∈AK−1
ci(σ

AK−1
i )

(f AK−1(σAK−1))2
.

To generate an ODE that identifies gAK−1(M), we take the derivative with respect to M that,

evaluated at X = M, equals 0. After algebraic manipulations, this ODE takes the form:

dgAK−1(M)
dM

=
|AK−1 \AK |

2
(
M − gAK−1(M)

)(∑
i∈AK−1

ci (σ
AK−1
i )

(f AK−1 (σAK−1 ))2 −
∑

i∈AK ci (σ
AK
i )

(f AK (σAK ))2

) .
It is straightforward to verify that the unique solution for this ODE satisfying the value-

matching condition takes the form gAK−1(M) = M − dAK−1
, where

dAK−1
=

|AK−1 \AK |

2
(∑

i∈AK−1
ci (σ

AK−1
i )

(f AK−1 (σAK−1 ))2 −
∑

i∈AK ci (σ
AK
i )

(f AK (σAK ))2

) .
In particular, the optimal stopping boundary is a drawdown stopping boundary.

Proceeding inductively, for any alliance indexed by m ≤ K , the continuation value when

M and X are observed can be written as:

W (M,X,Am) =|Am \Am+1|M +W (M,gAm(M),Am+1)

+
(
X − gAm(M)

)K−1∑
k=m

∫ gk(M)

gk+1(M)

2
∑

i∈Ak+1
ci(σ

Ak+1
i )

(f Ak+1(σAk+1))2
dx


−
∫ X

gAm (M)
(X − y)

2
∑

i∈Am
ci(σ

Am
i )

(f Am(σAm))2
dy.

We repeat the steps above to generate an analogous ODE for gAm(M) and verify that it is

uniquely identified as a drawdown stopping boundary. Namely, gAm(M) = M −dAm
, where

dAm
=

|Am \Am+1|

2
(∑

i∈Am ci (σ
Am
i )

(f Am (σAm ))2 −
∑

i∈Am+1
ci (σ

Am+1
i )

(f Am+1 (σAm+1 ))2

) .

40



Lemma A.4. The optimal alliance sequence is deterministic. Furthermore, the realized path of
alliances is unique up to agents’ relabeling.

Proof of Lemma A.4. The claim follows immediately for N = 1. In that case, the solo active

agent uses a drawdown stopping boundary, uniquely determining when the agent termi-

nates her search. This is the only possible alliance sequence.

Consider a team of size N > 1. Suppose alliances A1,A2, . . . are implemented. By

Lemma A.3, each of these alliances is associated with a drawdown stopping boundary.

With the entire team searching, the continuation value when M and X are observed is:

W (M,X,A1) = E

 max
A2⊊A1

{|A1 \A2|MτA1 +W (MτA1 , g
A1(MτA1 ),A2)} −

∫ τA1

0

∑
i∈Ak

ci(σ
A1
i )dt

 .
Suppose that, for some path, the social planner optimally transitions from alliance A1 to a

strictly smaller alliance A2 , ∅. In particular, alliance A2 contains fewer than N agents. By

the inductive hypothesis, the sequence that ensues is path independent and unique up to

agents’ relabeling. We can therefore write the continuation value as:

W (M,X,A1) =|A1 \A2|M +W (M,gA1(M),A2)

+
(
X − gA1(M)

)K−1∑
m=1

∫ gAm (M)

gAm+1 (M)

2
∑

i∈Am+1
ci(σ

Am+1
i )

(f Am+1(σAm+1))2
dx


+
∫ X

gA1 (M)
(X − y)

2
∑

i∈A1
ci(σ

A1
i )

(f A1(σA1))2
dy.

As before, this yields an ODE characterizing gA1(M) and a unique solution of the form

gA1(M) = M − dA1
, where dA1

= |A1\A2|

2

∑
i∈A1 ci (σ

A1
i )

(f A1 (σA1 ))2
−

∑
i∈A2 ci (σ

A2
i )

(f A2 (σA2 ))2

 .

Towards a contradiction, suppose that, on some other path, a different alliance is opti-

mally chosen to follow the initial alliance A1. Call that alliance Â2 , A2. Similar arguments

would then imply that the stopping boundary for A1 is given by gA1(M) = M − d̂A1
, where

d̂A1
= |A1\Â2|

2

∑
i∈A1 ci (σ

A1
i )

(f A1 (σA1 ))2
−

∑
i∈Â2

ci (σ
Â2
i )

(f Â2 (σÂ2 ))2


.

We consider three cases in turn. First, suppose dA1
, dÂ1

. In this case, the two stopping

boundaries identified above, M − dA1
and M − dÂ1

never intersect, in contradiction.

Second, suppose that dA1
= d̂A1

and |Â2| , |A2|. In this case, since both Â2 and A2

are optimal continuation alliances, W (M,gA1(M),A2) = W (M,gA1(M), Â2). Furthermore,

since dA1
= d̂A1

, the stopping boundary gA1 is identical for either continuation alliances.

Therefore, the last term in the expression for the continuation value above,
∫ X

gA1 (M)(X −
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y)
2
∑

i∈A1
ci (σ

A1
i )

(f A1 (σA1 ))2 dy, is independent of whether the initial alliance is followed by Â2 or A2.

Optimality of both sequences then implies that

|A1 \A2|M +
(
M − gA1(M)

)K−1∑
m=1

∫ gAm (M)

gAm+1 (M)

2
∑

i∈Am+1
ci(σ

Am+1
i )

(f Am+1(σAm+1))2
dx

 =

|A1 \ Â2|M +
(
M − gA1(M)

)K−1∑
m=1


∫ gÂm (M)

gÂm+1 (M)

2
∑

i∈Âm+1
ci(σ

Âm+1
i )

(f Âm+1(σ Âm+1))2
dx

 .
Therefore, for X ∈ (gA1(M),M), the continuation payoffs when either A2 or Â2 ensue do not

coincide. In particular, one is higher than the other, contradicting the optimality of both.

Last, suppose that dA1
= d̂A1

and |Â2| = |A2|. Then, from optimality,

K−1∑
m=1


∫ gÂm (M)

gÂm+1 (M)

2
∑

i∈Âm+1
ci(σ

Âm+1
i )

(f Âm+1(σ Âm+1))2
dx

 =
K−1∑
m=1

∫ gAm (M)

gAm+1 (M)

2
∑

i∈Am+1
ci(σ

Am+1
i )

(f Am+1(σAm+1))2
dx

 .
Therefore, the two candidate alliance sequences remain payoff equivalent for all X until

gA1(M) is reached and differ only in the identity, but not the volume, of agents depart-

ing from A1. We can then recursively follow the above line of arguments starting from

alliances A2 or Â2 to establish the claim.

Combining the two lemmas leads to the conclusion of the proposition.

A.3 Proofs for Optimal Sequencing with Well-ordered Costs

Proof of Lemma 1. We use the superscripts eq and sp to denote the equilibrium and social

planner’s solution, respectively. When costs are well-ordered and speed aggregators are

symmetric, in equilibrium, in any alliance, all agents utilize the same search speed. In

particular, for any active alliance A and any i, j ∈ A, we have σ
A,eq
i = σ

A,eq
j . This implies

that, in equilibrium, each agent k exits no later than agent k −1, for all k = 2, ...,N . Indeed,

in any active alliance A, the equilibrium stopping boundary is governed by drawdown size

d
eq
A = max

i∈A

(f A(σA,eq))2

2ci(σ
A,eq
i )

.

This maximum is achieved for the lowest agent index in A.

Suppose, towards a contradiction, that there exists a pair i, j such that i > j, so that

βi > βj , and the social planner has agent i terminate her search strictly before agent j.

There are then indices k and m, k < m, such that in the social planner’s solution, i, j ∈ Ak

but i < Ak+1 and j ∈ Am but j < Am+1.
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As we showed, the social planner’s solution associates a drawdown stopping boundary

with each alliance. Denote the corresponding drawdown sizes d
sp
k and d

sp
m for Ak and

Am, respectively. Suppose that, instead, the social planner swaps the exits of agents i and

j, exiting agent j from Ak whenever agent i was to cease her search and exit from Ak

and exiting agent i from Am whenever agent j was to cease her search and exit from Am.

Furthermore, the social planner can have agent i use the same search speed as agent j had

originally in the alliances that follow Ak . Since the speed aggregators depend only on the

cardinality of active alliances, the overall search speed in any alliance does not change

after this modification. Consequently, expected search outcomes are unaltered. However,

the overall cost decreases weakly in every alliance and strictly in all alliances Ak+1, ...,Am,

contradicting the optimality of the proposed solution.

Proof of Proposition 5. Recall that our results so far imply that the social planner can re-

strict attention to the choice between deterministic alliance sequences. Furthermore, given

a deterministic sequence of alliances, Proposition 4 identifies the optimal drawdown stop-

ping boundaries associated with that alliance sequence. For any feasible sequence of al-

liances (not necessarily optimal), our characterization implies that, whenever the draw-

down size associated with two consecutive alliances is negative or zero, the larger alliance

is utilized for no length of time. In contrast, when the drawdown size is strictly positive,

the social planner gains positive welfare from maintaining the larger alliance active for a

non-trivial amount of time. This observation helps us to identify the optimal sequence.

The proof of Proposition 5 follows from several lemmas. For any alliance Bk , regardless

of whether it is on the social planner’s optimal alliance sequence, we denote the optimal

overall search speed within the alliance by sk . That is, when σ k is the vector of individual

speeds in alliance Bk , then sk =
(
f Bk (σ k)

)2
. The consequent overall search cost within that

alliance is denoted c̃k .

Lemma A.5. For any m,j,k with m < j < k, if the welfare-maximizing sequence is such that Bk

is preceded by Bm, then for any sequence where Bk is preceded by Bj , we have dBm→Bk
> dBj→Bk

.

Proof of Lemma A.5. From the characterization of drawdown sizes in the well-ordered set-

ting, dBm→Bk
, dBj→Bk

. Suppose that dBm→Bk
≤ dBj→Bk

. Since Bk is preceded by Bm in the

optimal sequence, dBm→Bk
> 0. It then follows that dBj→Bk

> 0. Furthermore, since m < j,

|Bm| − |Bk |
2(c̃m/sm − c̃k/sk)

<
|Bj | − |Bk |

2(c̃j /sj − c̃k/sk)
<
|Bm| − |Bk |

2(c̃j /sj − c̃k/sk)
⇒ dBm→Bj

> 0.

This implies that it would be beneficial for the planner to have alliance Bm first transition

to alliance Bj , and only then transition to alliance Bk .
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Lemma A.6. If m < k, dBm→∅ > dBk→∅ implies dBm→Bk
> dBk→∅.

Proof of Lemma A.6. Since |Bi | = N − i + 1 for any i, dBm→∅ > dBk→∅ implies:

1
N −m+ 1

c̃m

sm
<

1
N − k + 1

c̃k

sk
=⇒ 1

k −m
(
c̃m

sm
− c̃k

sk
) <

1
N − k + 1

c̃k

sk
,

illustrating the claim.

Lemma A.7. For any k such that dBk→∅ > dBN→∅ > dBk+1→∅, we have dBk→Bk+1
> dBN→∅.

Proof of Lemma A.7. Observe that dBk→∅ > dBN→∅ > dBk+1→∅ implies:

(N − k)
c̃N

sN
>
c̃k+1

sk+1
and

c̃k

sk
> (N − k + 1)

c̃N

sN
.

Summing the inequalities and reorganizing yields the implied statement.

Lemma A.8. If dBk→∅ > dBk−1→Bk
, then dBk→∅ > dBk−1→∅ > dBk−1→Bk

.

Proof of Lemma A.8. From the first inequality, dBk→∅ > dBk−1→Bk
, we have,

1
N − k + 1

c̃k

sk
<
c̃k−1

sk−1
− c̃k

sk
=⇒ N − k + 2

N − k + 1
c̃k

sk
<
c̃k−1

sk−1
=⇒ dBk→∅ > dBk−1→∅.

But this inequality implies that

1
N − k + 1

c̃k

sk
<

1
N − k + 2

c̃k−1

sk−1
=⇒ c̃k−1

sk−1
− c̃k

sk
>

1
N − k + 2

c̃k−1

sk−1
=⇒ dBk−1→∅ > dBk−1→Bk

.

Lemma A.9. If dBk→∅ = maxj dBj→∅, then any alliance Bl with l < k cannot be the welfare
maximizing last alliance.

Proof of Lemma A.9. Suppose not, so that, form some l < k, alliance Bl is the last. Since

Bk is strictly contained in Bl , from the characterization of drawdowns in the well-ordered

setting, dBk→∅ , dBl→∅. Thus, dBk→∅ > dBl→∅ > 0. Following similar arguments to those in

the proof of Lemma A.5, the social planner would benefit from transitioning from Bl to Bk

instead of exiting all members of Bl , in contradiction.

Lemma A.10. If dBk→∅ = maxj dBj→∅, then any alliance Bl with l > k cannot be the last.

Proof of Lemma A.10. We use induction on the cardinality of the set Bk . The claim certainly

holds when |Bk | = 1, so that Bk = BN = {N }.
Assume the statement is true for sets up to cardinality n. We show the statement holds

for |Bk | = n+ 1 (so that k = N −n). By Lemma A.9, the last alliance cannot be Bj with j < k.

Towards a contradiction, suppose that a smaller set Bm, with m > k, is the last alliance.
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From the inductive hypothesis, we must have dBm→∅ > dBl→∅ for all l > m, as otherwise the

social planner would benefit by inducing Bl to continue search instead of terminating it

for all agents in Bm.

Suppose that m < N . Consider an equivalent problem, where alliance Bm is replaced

with a single individual M that has cost function βMc(·), where βM > βm−1 arbitrarily cho-

sen. For each j ≤ m, define Cj = {j, . . . ,m− 1,M}, f̂ Cj , and an interior σ
Cj

M so that the social

planner’s optimal speed vector for any set Cj is given by (σ
Bj

j , . . . ,σ
Bj

m−1,σ
Cj

M ) and f̂ Cj satisfies

all our original assumptions on speed aggregators.35

We now face an equivalent problem with m agents 1,2, ...,m−1,M. From our construc-

tion, in the optimal solution, for any j = 1, ...,m − 1, the corresponding drawdown sizes

d{j,...,M}→∅ and d{M}→∅ coincide with the optimally-set drawdown sizes dBj→∅ and dBm→∅ in

our original problem. Therefore, maxj∈{1,...,m−1,M}d{j,...,M}→∅ = d{k,...,M}→∅. By our induction

hypothesis, {j, ...,M} with j > k cannot optimally be the last alliance, in contradiction.

Suppose now that m = N and, towards a contradiction, assume BN is the welfare max-

imizing last alliance. Now consider the sequence of welfare maximizing alliances Bp such

that Bp ⊂ Bk . There are three cases to consider.

Case 1: For all p ∈ {k, ...,N − 1}, the alliance Bp is part of the welfare-maximizing se-

quence. That is, agents terminate their search one by one starting from Bk onwards. Since

BN is the last alliance, we must have that dBN→∅ > dBN−1→BN
> dBN−2→BN−1

> . . . > dBk→Bk+1
.

Applying Lemma A.8 repeatedly implies that dBN→∅ > dBN−1→∅ > dBN−2→∅ . . . > dBk+1→∅.

The assumed maximality of dBk→∅ implies, in particular, that dBk→∅ > dBN→∅ that, com-

bined with the above, yields dBk→∅ > dBN→∅ > dBk+1→∅. By Lemma A.7, we then have that

dBk→Bk+1
> dBN→∅. It follows that whenever agents in the active alliance Bk optimally stop

searching, the social planner would benefit from halting all agents’ search instead of pro-

ceeding with Bk+1,Bk+2, ...,BN , in contradiction.

Case 2: There does not exist any p ∈ {k, ...,N − 1} such that Bp is part of the optimal

sequence. Thus, the penultimate alliance in the optimal sequence is Bl with l < k. Max-

imality of dBk→∅ implies that dBk→∅ > dBN→∅. By Lemma A.6, dBk→BN
> dBN→∅ and by

Lemma A.5, dBl→BN
> dBk→BN

> dBN→∅. Thus, whenever agents in active alliance Bl op-

timally stop searching, the social planner would benefit from halting all agents’ search

instead of proceeding with BN , in contradiction.

Case 3: There exist p,q ∈ {k, ...,N − 1} such that Bp is part of the optimal sequence but

Bq is not. Here we have two subcases:

35We only restrict f̂ Cj to lead to the original optimal speed choice by agents j, . . . ,m − 1. This restriction
leaves us with a lot of freedom to select f̂ Cj in this way.
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Subcase 1: BN−1 is the penultimate alliance. We must have dBN−1→∅ < dBN→∅; otherwise,

by Lemma A.6, we would have dBN−1→BN
> dBN→∅ and it would be suboptimal to utilize

alliance BN as the last alliance. From the maximality of dBk→∅ and Lemma A.5, for any l < k

such that Bl precedes BN−1 on the optimal path, dBl→BN−1
> dBk→BN−1

> dBN−1→∅. Finally,

dBN→∅ > dBN−1→∅ implies that

1
2
c̃N−1

sN−1 >
c̃N

sN
=⇒ 1

2
c̃N−1

sN−1 <
c̃N−1

sN−1 −
c̃N

sN
=⇒ dBN−1→∅ > dBN−1→BN

.

Thus, dBl→BN−1
> dBk→BN−1

> dBN−1→∅ > dBN−1→BN
. Therefore, whenever agents in the active

alliance Bl optimally stop searching, the social planner would benefit from transitioning to

BN directly, thereby terminating the search of agent N −1 as well, instead of transitioning

to BN−1 first, in contradiction.

Subcase 2: The penultimate alliance is Bp with p ∈ {k, ...,N−2}. We can now emulate the

argument above pertaining to the construction of an equivalent problem in which agents

{p, ...,N −1} are viewed as one agent with appropriately induced search costs. We can then

consider an equivalent problem with fewer agents to achieve a contradiction through our

induction hypothesis.

It follows that the last alliance is given by Bk with maxj dBj→∅ = dBk→∅.

The proofs of the following Lemmas are a consequence of identical arguments to those

in of Lemmas A.9 and A.10 and are therefore ommitted.

Lemma A.11. Consider Bk , where k is such that dBk→BL1
> dBj→BL1

for all j < L1 and BL1
is the

last alliance as identified above. Then any alliance with l < k cannot be the welfare maximizing
second to last alliance.

Lemma A.12. Consider Bk , where k is such that dBk→BL1
> dBj→BL1

for all j < L1 and BL1
is

the last alliance as identified above. Then any alliance Bl with L1 > l > k cannot be the welfare
maximizing second to last alliance.

The proof of Proposition 5 then follows. Using the proposition’s notation, BL1
is the last

alliance on the social planner’s optimal path. Similarly, the penultimate alliance is given

by Bk where k is such that dBk→BL1
> dBj→BL1

for all j < L1. We can continue recursively to

establish the proposition’s claim.
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