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Abstract

We study repeated independent Blackwell experiments; standard examples
include drawing multiple samples from a population, or performing a measure-
ment in different locations. In the baseline setting of a binary state of nature,
we compare experiments in terms of their informativeness in large samples.
Addressing a question due to Blackwell (1951), we show that generically an
experiment is more informative than another in large samples if and only if it
has higher Rényi divergences.

We apply our analysis to the problem of measuring the degree of dissimilarity
between distributions by means of divergences. A useful property of Rényi
divergences is their additivity with respect to product distributions. Our
characterization of Blackwell dominance in large samples implies that every
additive divergence that satisfies the data processing inequality is an integral of
Rényi divergences.
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1 Introduction

Statistical experiments form a general framework for modeling information: Given a set
Θ of parameters, an experiment P produces an observation distributed according to Pθ,
given the true parameter value θ ∈ Θ. Blackwell’s celebrated theorem (Blackwell, 1951)
provides a partial order for comparing experiments in terms of their informativeness.

As is well known, requiring two experiments to be ranked in the Blackwell order is
a demanding condition. Consider the problem of testing a binary hypothesis θ ∈ {0, 1},
based on random samples drawn from one of two experiments P or Q. According
to Blackwell’s ordering, P is more informative than Q if, for every test performed
based on observations produced by Q, there exists another test based on P that has
lower probabilities of both Type-I and Type-II errors (Blackwell and Girshick, 1979).
This is a difficult condition to satisfy, especially in the case where only one sample is
produced by each experiment.

In many applications, an experiment does not consist of a single observation
but of multiple i.i.d. samples. For example, a new vaccine is typically tested on
multiple patients, and a randomized control trial assessing the effect of an intervention
usually involves many subjects. We study a weakening of the Blackwell order that is
appropriate for comparing experiments in terms of their large sample properties. Our
starting point is the question, first posed by Blackwell (1951), of whether it is possible
for n independent observations from an experiment P to be more informative than n
observations from another experiment Q, even though P and Q are not comparable
in the Blackwell order. The question was answered in the affirmative by Stein (1951),
Torgersen (1970) and Azrieli (2014).1 However, identifying the precise conditions
under which this phenomenon occurs has remained an open problem.

We say that P dominates Q in large samples if for every n large enough, n
independent observations from P are more informative, in the Blackwell order, than n
independent observations from Q. We focus on a binary set of parameters Θ, and show
that generically P dominates Q in large samples if and only if the experiment P has
higher Rényi divergences than Q (Theorem 1). Rényi divergences are a one-parameter
family of measures of informativeness for experiments; introduced and characterized
axiomatically in Rényi (1961), we show that they capture the informativeness of an

1Even though Stein (1951) is frequently cited in the literature for a first example of this type, we
could not gain access to that paper.
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experiment in large samples. For any two experiments comparable in terms of Rényi
divergences, we also provide a simple bound on the sample size that ensures that
larger samples of independent experiments are comparable in the Blackwell order
(Theorem 4).

The proof of this result crucially relies on two ingredients. First, we use techniques
from large deviations theory to compare sums of i.i.d. random variables in terms of
stochastic dominance. In addition, we provide and apply a new characterization of the
Blackwell order: We associate to each experiment a new statistic, the perfected log-
likelihood ratio, and show that the comparison of these statistics in terms of first-order
stochastic dominance is in fact equivalent to the Blackwell order.

We apply our characterization of Blackwell dominance in large samples to the
problem of quantifying the extent to which two probability distributions are dissimilar.
This is a common problem in econometrics and statistics, where formal measures
quantifying the difference between distributions are referred to as divergences.2 Well
known examples include total variation distance, the Hellinger distance, the Kullback-
Leibler divergence, Rényi divergences, and more general f -divergences.

Rényi divergences satisfy two key properties. The first is additivity: Rényi di-
vergences decompose into a sum when applied to pairs of product distributions.
Additivity captures a principle of non-interaction across independent domains, as the
total divergence of two unrelated pairs does not change when they are considered
together as a bundle. Additivity is a natural property, and in applications it is a
crucial simplification for studying i.i.d. processes. A second desirable property is
described by the data-processing inequality, which stipulates that the distributions of
two random variables X and Y are at least as dissimilar as those of f(X) and f(Y ),
for any transformation f . As we show, this property is closely related to monotonicity
with respect to the Blackwell order.

Using our main result, we show that every additive divergence that satisfies the
data-processing inequality and a mild finiteness condition is an integral (i.e., the limit
of positive linear combinations) of Rényi divergences (Theorem 2). This result is
an improvement over the original characterization of Rényi (1961), as well as more
modern ones (Csiszár, 2008), because it shows that additivity alone pins down a single

2See, e.g., Sawa (1978); White (1982); Critchley et al. (1996); Kitamura and Stutzer (1997); Hong
and White (2005); Ullah (2002). See Kitamura et al. (2013) for a recent application of α-divergences,
which are a reformulation of Rényi divergences.
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class of divergences without making any further assumptions on the functional form.

The study most closely related to ours is Moscarini and Smith (2002). In their
order, an experiment P dominates another experiment Q if for for every finite decision
problem, a large enough sample of observations from an experiment P will achieve
higher expected payoff than a sample of the same size of observations from Q. In
contrast to the order proposed by Blackwell and analyzed in this paper, their definition
allows for the critical sample size to depend on the decision problem, and considers
a restricted class of decision problems. We provide a detailed discussion of this and
other related work in §6.

The paper is organized as follows. In §2 we provide our main definitions. §3
contains the characterization of Blackwell dominance in large samples, with proof
deferred to §5. In §4 we characterize additive divergences. Finally, we further discuss
our results and their relation to the literature in §6.

2 Model

2.1 Statistical Experiments

A state of the world θ can take two possible values, 0 or 1. A Blackwell-Le Cam
experiment P = (Ω, P0, P1) consists of a sample space Ω, which we assume to be a
Polish space, and a pair of Borel probability measures (P0, P1) defined over Ω, with
the interpretation that Pθ(A) is the probability of observing A ⊆ Ω in state θ ∈ {0, 1}.
This framework is commonly encountered in simple hypothesis tests as well as in
information economics. In §6 we discuss the case of experiments for more than two
states: we obtain necessary conditions for dominance in large samples and explain the
obstacles to a full characterization.

Given two experiments P = (Ω, P0, P1) and Q = (Ξ, Q0, Q1), we can form the
product experiment P ⊗Q given by

P ⊗Q = (Ω× Ξ, P0 ×Q0, P1 ×Q1).

where Pθ ×Qθ, given θ ∈ {0, 1}, denotes the product of the two measures. Under the
experiment P ⊗Q the realizations produced by both P and Q are observed, and the
two observations are independent (conditional on the true state). For instance, if P
and Q consist of drawing samples from two different populations, then P ⊗Q consists
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of the joint experiment where a sample from each population is drawn. We denote by

P⊗n = P ⊗ · · · ⊗ P

the n-fold product experiment where n independent observations are generated ac-
cording to the experiment P .

Consider now a Bayesian decision maker whose prior belief assigns probability
1/2 to the state being 1. To each experiment P = (Ω, P0, P1) we associate a Borel
probability measure π over [0, 1] that represents the distribution over posterior beliefs
induced by the experiment. Formally, let p(ω) be the posterior belief that the state is
1 given the realization ω ∈ Ω:

p(ω) = dP1(ω)
dP1(ω) + dP0(ω) .

Furthermore, define for every Borel set B ⊆ [0, 1]

πθ(B) = Pθ ({ω : p(ω) ∈ B})

as the probability that the posterior belief will belong to B, given state θ. We then
define π = (π0 + π1)/2 as the unconditional measure over posterior beliefs.

Throughout the paper we restrict our attention to experiments where the measures
P0 and P1 are mutually absolutely continuous, so that no signal realization ω ∈ Ω
perfectly reveals either state. We say that P is trivial if P0 = P1, and bounded if the
derivative dP1/dP0 is bounded above and bounded away from 0.

2.2 The Blackwell Order

We first review the main concepts behind Blackwell’s order over experiments (Bohnen-
blust, Shapley, and Sherman, 1949; Blackwell, 1953). Consider two experiments P and
Q and their induced distribution over posterior beliefs denoted by π and τ , respectively.
The experiment P Blackwell dominates Q, denoted P � Q, if

∫ 1

0
v(p) dπ(p) ≥

∫ 1

0
v(p) dτ(p) (1)

for every convex function v : (0, 1)→ R. Equivalently, P � Q if π is a mean-preserving
spread of τ . We write P � Q if P � Q and Q 6� P . So, P � Q if and only if (1)
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holds with a strict inequality whenever v is strictly convex, i.e. π is a mean-preserving
spread of τ and π 6= τ .

As is well known, each convex function v can be seen as the indirect utility induced
by some decision problem. That is, for each convex v there exists a set of actions A
and a utility function u defined on A× {0, 1} such that v(p) is the maximal expected
payoff that a decision maker can obtain in such a decision problem given a belief p.
Hence, P � Q if and only if in every decision problem, an agent can obtain a higher
payoff by basing her action on the experiment P rather than on Q.

Blackwell’s theorem shows that the order� can be equivalently defined by “garbling”
operations: Intuitively, P � Q if and only if the outcome of the experiment Q can be
generated from the experiment P by compounding the latter with additional noise,
without adding further information about the state.3

As discussed in the introduction, we are interested in understanding the large
sample properties of the Blackwell order. This motivates the next definition.

Definition 1 (Large Sample Order). An experiment P dominates an experiment Q
in large samples if there exists an n0 ∈ N such that

P⊗n � Q⊗n for every n ≥ n0. (2)

This order was first defined by Azrieli (2014) under the terminology of eventual
sufficiency. The definition captures the informal notion that a large sample drawn
from P is more informative than an equally large sample drawn from Q. Consider,
for instance, the case of hypothesis testing. The experiment P dominates Q in the
Blackwell order if and only if for every test based on Q there exists a test based on P
that has weakly lower probabilities of both Type-I and Type-II errors. Definition 1
extends this notion to large samples, in line with the standard paradigm of asymptotic
statistics: P dominates Q if every test based on n i.i.d. realizations of Q is dominated
by another test based on n i.i.d. realizations of P , for sufficiently large n. When the
two experiments are statistics of a common experiment, dominance in the large sample

3Formally, given two experiments P = (Ω, P0, P1) and Q = (Ξ, Q0, Q1), P � Q if and only if there
is a measurable kernel (also known as “garbling”) σ : Ω→ ∆(Ξ), where ∆(Ξ) is the set of probability
measures over Ξ, such that for every θ and every measurable A ⊆ Ξ, Qθ(A) =

∫
σ(ω)(A) dPθ(ω). In

other terms, there is a (perhaps randomly chosen) measurable map f with the property that for both
θ = 0 and θ = 1, if X is a random quantity distributed according to Pθ then Y = f(X) is distributed
according to Qθ.
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order implies that one statistic will eventually contain all the information captured by
the other.

As shown by Blackwell (1951, Theorem 12), dominance of P over Q implies
dominance of P⊗n over Q⊗n, for every n. So dominance in large samples is an
extension of the Blackwell order. This extension is strict, as shown by examples in
Torgersen (1970) and Azrieli (2014).

2.3 Rényi Divergence and the Rényi Order

Our main result relates Blackwell dominance in large samples to a well-established
notion of informativeness due to Rényi (1961). Given two probability measures µ, ν
on a measurable space Ω and a parameter t > 0, the Rényi t-divergence is given by

Rt(µ‖ν) = 1
t− 1 log

∫
Ω

(
dµ
dν (ω)

)t−1

dµ(ω) (3)

when t 6= 1, and, ensuring continuity,

R1(µ‖ν) =
∫

Ω
log

(
dµ
dν (ω)

)
dµ(ω). (4)

Equivalently, R1(µ‖ν) is the Kullback-Leibler divergence between the measures µ and
ν. As t increases, the value of Rt increases and is continuous whenever it is finite.
The limit value as t→∞, which we denote by R∞(µ‖ν), is the essential maximum of
log

(
dµ
dν

)
, the logarithm of the ratio between the two densities.

As a binary experiment precisely consists of a pair of probability measures, we
can apply this definition straightforwardly to experiments. Given an experiment
P = (Ω, P0, P1), a state θ, and parameter t > 0, the Rényi t-divergence of P under θ is

Rθ
P (t) = Rt(Pθ‖P1−θ). (5)

Intuitively, observing a sample realization for which the likelihood ratio dPθ/dP1−θ

is high constitutes evidence that favors state θ over 1−θ. For instance, in the case of t =
2, a higher value of Rθ

P (2) describes an experiment that, in expectation, more strongly
produces evidence in favor of the state θ when this is the correct state. Varying the
parameter t allows to consider different moments for the distribution of likelihood ratios.
Rényi divergences have found applications to statistics and information theory (Liese
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and Vajda, 2006; Csiszár, 2008), machine learning (Póczos et al., 2012; Krishnamurthy
et al., 2014), computer science (Fritz, 2017), and quantum information (Horodecki
et al., 2009; Jensen, 2019). The Hellinger transform (Torgersen, 1991, p. 39), another
well known measure of informativeness, is a monotone transformation of the Rényi
divergences of an experiment.

The two Rényi divergences R1
P and R0

P of an experiment are related by the identity

R1
P (t) = t

1− tR
0
P (1− t). (6)

Hence the values of Rθ
P (t) for t ∈ [0, 1/2] are determined by the values of R1−θ

P (t) on
the interval [1/2, 1]. Thus, it suffices to consider values of t in [1/2,∞].

Definition 2 (Rényi Order). An experiment P dominates an experiment Q in the
Rényi order if it holds that for all θ ∈ {0, 1} and all t > 0

Rθ
P (t) > Rθ

Q(t) .

The Rényi order is a extension of the (strict) Blackwell order. In the proof of
Theorem 1 below, we explicitly construct a one-parameter family of decision problems
with the property that dominance in the Rényi order is equivalent to higher expected
payoff with respect to each decision problem in this family. See §5.1 for details.

A simple calculation shows that if P = S ⊗ T is the product of two experiments,
then for every state θ,

Rθ
P = Rθ

S +Rθ
T .

A key implication is that P dominates Q in the Rényi order if and only if the same
relation holds for their n-th fold repetitions P⊗n and Q⊗n, for any n. Hence, the
Rényi order compares experiments in terms of properties that are unaffected by the
number of samples. Because, in turn, the Rényi order extends the Blackwell order, it
follows that dominance in the Rényi order is a necessary condition for dominance in
large samples.

As a final remark on the definition of the Rényi order, it is important to require
the comparison for both states θ = 0 and θ = 1, as there exist pairs of experiments P
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and Q such that R1
P (t) > R1

Q(t) for every t, but R0
P (t) < R0

Q(t) for some t.4

3 Characterization of the Large Sample Order

We say two bounded experiments P and Q form a generic pair if the essential maxima
of the log-likelihood ratios log dP1

dP0
and log dQ1

dQ0
are different, and if their essential

minima are also different. This holds, for example, if for each of the two experiments
the set of signal realizations is finite, and there is no posterior beliefs that can be
induced by both experiments.

Theorem 1. For a generic pair of bounded experiments P and Q, the following are
equivalent:

(i). P dominates Q in large samples.

(ii). P dominates Q in the Rényi order.

That (ii) implies (i) means that for every two experiments P and Q that are ranked
in the Rényi order, there exists a sample size n such that n or more independent
samples of P and Q are ranked in the Blackwell order. The proof of the theorem
also establishes an upper bound on n; however, as stating this bound requires several
additional concepts we defer this result to Theorem 4 in §5.7. The complete proof of
Theorem 1 appears in §5 below.

We mention that Theorem 1 remains true so long as the dominated experiment Q
is bounded (whereas P need not be bounded); see §J in the appendix for discussion
of this and another generalization. On the other hand, the theorem does not remain
true if we remove the genericity assumption. In §I in the appendix we discuss the
knife-edge case where the maxima or the minima of the log-likelihood ratios are equal.
We demonstrate a non-generic pair of experiments P and Q such that P dominates Q
in the Rényi order, but P does not dominate Q in large samples. Given this example,

4A simple example involves the following pair of binary experiments:

ω ω′

P0 1/3 2/3
P1 2/3 1/3

ω ω′

Q0 6/9 3/9
Q1 8/9 1/9

where the entries represent conditional probabilities. Direct computation shows that R1
P (t) > R1

Q(t)
for every t > 0, while R0

P (t) < R0
Q(t) for t > 2.
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it seems difficult to obtain an applicable characterization of large sample dominance
without imposing some genericity condition.

A natural alternative definition of “Blackwell dominance in large samples” would
require P⊗n � Q⊗n to hold for some n, but the resulting order is in fact equivalent
under our genericity assumption. This is a consequence of Theorem 1, because
P⊗n0 � Q⊗n0 for any n0 implies P dominates Q in the Rényi order, which in turn
implies P⊗n � Q⊗n for all large n.5

3.1 Examples

In this section we illustrate Theorem 1 by means of two examples of pairs of experiments
that are not Blackwell ranked, but are ranked in large samples.

Example 1. We first introduce a new example of two such experiments P and Q.
The first experiment P appears in Smith and Sørensen (2000). The signal space is the
interval [0, 1], and the measures P0 and P1 are absolutely continuous with densities
f0(s) = 1 and f1(s) = 1/2 + s. Our second experiment Q is binary, with signal
space {0, 1}. The measure Q0 assigns probability 1/2 to both signals, while the other
measure is Q1(1) = p and Q1(0) = 1− p.

For p = 0.625, P Blackwell dominates Q, as witnessed by the garbling from [0, 1]
to {0, 1} that maps all signal realizations above 1/2 to 1 and all realizations below
1/2 to 0. For larger p, P is no longer Blackwell dominant. To see this, consider the
decision problem in which the prior belief is uniform, the set of actions is the set of
states, and the payoff is one if the action matches the state and zero otherwise. It is
easy to check that for p > 0.625, the experiment Q yields a larger expected payoff.

Nevertheless, if we choose p = 0.63, then as Figure 1 below suggests, P dominates
Q in the Rényi order even though the two experiments are not Blackwell ranked.6

Thus, by Theorem 1, there is some n so that n independent samples from P Blackwell
dominate n independent samples from Q.

5However, it is not true that P⊗n0 � Q⊗n0 for some n0 implies P⊗n � Q⊗n for all n ≥ n0. The
case of α = 0.305, β = 0.1 in Example 2 below provides an example where P⊗2 Blackwell dominates
Q⊗2, but P⊗3 does not dominate Q⊗3.

6The Rényi divergences as defined in (5) are computed to be

R0
P (t) = 1

t− 1 log
(

(3/2)2−t − (1/2)2−t

2− t

)
; R1

P (t) = 1
t− 1 log

(
(3/2)t+1 − (1/2)t+1

t+ 1

)
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Figure 1: The Rényi divergences R0
P (blue), and R0

Q (orange) for p = 0.63 in Example
1. The comparison between R1

P and R1
Q yields a similar graph.

The next proposition generalizes the example, showing that a binary experiment
Q with the same properties can be constructed for (almost) any experiment P .

Proposition 1. Let P be a bounded experiment with induced distribution over pos-
teriors π. Assume that the support of π has cardinality at least 3. Then there is a
binary experiment Q such that P and Q are not Blackwell ranked, and P dominates
Q in large samples.

The proof of this proposition crucially relies on Theorem 1.

Example 2 and a conjecture by Azrieli (2014). We next apply Theorem 1 to
revisit an example due to Azrieli (2014) and to complete his analysis. The example
provides a simple instance of two experiments that are not ranked in Blackwell order
but become so in large samples. Despite its simplicity, the analysis of this example is
not straightforward, as shown by Azrieli (2014). We will show that applying the Rényi
order greatly simplifies the analysis and elucidates the logic behind the example.

Consider the following two experiments P and Q, parametrized by β and α,
respectively. In each matrix, entries are the probabilities of observing each signal
realization given the state θ:

and

R0
Q(t) = 1

t− 1 log
(
2−t · (p1−t + (1− p)1−t)

)
; R1

Q(t) = 1
t− 1 log

(
2t−1 · (pt + (1− p)t)

)
.
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P :
θ x1 x2 x3

0 β 1
2

1
2 − β

1 1
2 − β

1
2 β

Q :
θ y1 y2

0 α 1− α
1 1− α α

The parameters satisfy 0 ≤ β ≤ 1/4 and 0 ≤ α ≤ 1/2. The experiment Q is
a symmetric, binary experiment. The experiment P with probability 1/2 yields a
completely uninformative signal realization x2, and with probability 1/2 yields an
observation from another symmetric binary experiment. As shown by Azrieli (2014,
Claim 1), the experiments P and Q are not ranked in the Blackwell order for parameter
values 2β < α < 1/4 + β.

Azrieli (2014) points out that a necessary condition for P to dominate Q in large
samples is that the Rényi divergences are ranked at 1/2, that is R1

P (1/2) > R1
Q(1/2).7

In addition, he conjectures it is also a sufficient condition, and proves it in the special
case of β = 0. We show that for the experiments in the example, the fact that the
Rényi divergences are ranked at 1/2 is enough to imply dominance in the Rényi order,
and therefore, by Theorem 1, dominance in large samples. This settles the above
conjecture in the affirmative.

Proposition 2. In this example, suppose R1
P (1/2) > R1

Q(1/2). Then R1
P (t) > R1

Q(t)
for all t > 0 and by symmetry R0

P (t) > R0
Q(t), hence P dominates Q in large samples.

3.2 A Quantification of Blackwell Dominance in Large Samples

The characterization in Theorem 1 makes it possible to quantify the extent to which
one experiment Blackwell dominates another in large samples. We start with the
observation that any two experiments, even if not ranked according to dominance
in large samples, can be compared by applying different samples sizes. For example,
suppose P and Q are not comparable, but P⊗50 Blackwell dominates Q⊗100. Then
50 samples from P are more informative than 100 from Q, and thus, in an intuitive
sense, P is at least twice as informative as Q, for large enough samples.

7As in his paper, this condition can be written in terms of the parameter values as

√
α(1− α) >

√
β(1

2 − β) + 1
4 .

Thus, when α = 0.1 and β = 0 for example, the experiment P does not Blackwell dominate Q but
does dominate it in large samples, as shown by Azrieli (2014).
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Our formal definition is based on the fact that for any two bounded non-trivial
experiments P and Q, there exist positive integers n,m such that P⊗n Blackwell
dominates Q⊗m. Reasoning as above, P will be at least m/n times as informative
as Q in large samples. We can then consider the largest ratio m/n for which this
comparison holds. This leads to a well defined measure of dominance, which we refer
to as the dominance ratio P/Q of P with respect to Q:

P/Q = sup
{
m

n
: P⊗n � Q⊗m

}
.

Thus, in large samples, each observation from P contributes at least as much as P/Q
observations from Q.

An immediate consequence of Theorem 1 is the following characterization of P/Q
in terms of the Rényi divergences of the two experiments.

Proposition 3. Let P and Q be non-trivial, bounded experiments. Then

P/Q = inf
θ∈{0,1}
t>0

Rθ
P (t)

Rθ
Q(t) .

Furthermore, the dominance ratio P/Q is always positive.8

As discussed, P/Q can be interpreted as an asymptotic lower bound on the
information produced by one observation from P relative to Q. On the other hand,
we also have the asymptotic upper bound (Q/P )−1, where Q/P is the dominance
ratio of Q with respect to P . We remark that the two bounds are in general (in fact,
generically) not equal. However, Proposition 3 shows that P/Q ≤ (Q/P )−1 always
holds.

3.3 The Blackwell Order in the Presence of Additional Information

The large sample order compares the informativeness of repeated experiments. A
related problem is to compare the informativeness of one-shot experiments when

8This characterization, together with Theorem 1, implies that the following natural alternative
definition of P/Q is equivalent:

P/Q = sup
{
a > 0 : P⊗n � Q⊗dane for all n large enough

}
where dane denotes the smallest integer greater than or equal to an.
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additional independent sources of information may be present.
Consider a decision maker choosing which of two experiments P and Q to conduct,

on top of an independent source of information R. The resulting choice is between
the compound experiments P ⊗ R and Q ⊗ R. It is intuitive, and immediate from
Blackwell’s garbling characterization, that if P dominates Q in the Blackwell order,
then the same relation must hold between the two compound experiments.

One might expect that if P and Q are incomparable, then no additional independent
experiment R can make the compound experiments comparable. Instead, we show
that P ⊗R can dominate Q⊗R even though the two original experiments P and Q
were not comparable. Moreover, for generic experiments, this occurs precisely when P
has higher Rényi divergences than Q.

Proposition 4. Let P and Q be a generic pair of bounded experiments. Then the
following are equivalent:

(i). There exists a bounded experiment R such that P ⊗R � Q⊗R.

(ii). P dominates Q in the Rényi order.

Proposition 4 suggests that in general, whether two experiments are Blackwell
ordered depends on what additional sources of information are available. We note that
whenever an experiment R makes P dominant over Q (when each is combined with
R), then the same holds for any experiment R′ that is more informative than R. It is
an interesting question for future work to fully characterize the set of experiments R
that make P dominant.

Proposition 4 follows by combining the characterization in Theorem 1 together
with the observation that if P dominates Q in the large sample order, then there exists
an R such that P ⊗R Blackwell dominates Q⊗R. The latter fact is a consequence of
an order-theoretic result from the quantum information literature (Duan et al., 2005;
Fritz, 2017, see Lemma 4 in the appendix).

4 A Characterization of Additive Divergences

In this section we apply the characterization of Blackwell dominance in large samples
to study measures for quantifying the degree of dissimilarity between distributions,
also known as divergences. Examples of divergences include total variation distance,

14



the Hellinger distance, the Kullback-Leibler divergence, Rényi divergences, and more
general f -divergences.

A key property of Rényi divergences is additivity. Consider two domains Ω1

and Ω2, a pair of measures µ1, ν1 defined on Ω1, and a pair of measures µ2, ν2 on
Ω2. Additivity states that when the two domains are considered in conjunction, the
divergence between the product measures µ1 × µ2 and ν1 × ν2, which are both defined
on Ω1 × Ω2, is the sum of the divergences of the two pairs. In words, this condition
says that the total divergence of two unrelated pairs should not change when they are
considered together as a bundle.

Another property of Rényi divergences, which it in fact shares with all the above
examples of divergences, is the data processing inequality, which captures the idea
that discarding some information decreases dissimilarity.

We show that every additive divergence that satisfies the data-processing inequality
is an integral of Rényi divergences. The proof relies on the characterization of the
large sample order together with functional analytic techniques. Since this result
does not assume any functional form of the divergence, it improves over the existing
characterizations such as in Rényi (1961) and Csiszár (2008).

The result has potential applications for modeling experiments as economic com-
modities. In recent years, there has been growing interest in modeling the cost and
pricing of information. By interpreting a divergence as a cost function over experi-
ments, additivity reflects an assumption of constant marginal costs in information
production (an assumption discussed in detail in Pomatto et al., 2018). By interpreting
a divergence as a pricing function over experiments, additivity captures a notion of
linearity, appropriate for pricing information in competitive markets.

4.1 Additive Divergences

Given a Polish space Ω, we denote by B(Ω) its Borel σ-algebra and by ∆(Ω) the
collection of Borel probability measures on B(Ω). Given another Polish space Ξ, a
measurable function f : Ω → Ξ and a probability measure µ ∈ ∆(Ω), we denote by
f∗(µ) the push-forward probability measure in ∆(Ξ) defined as [f∗(µ)](E) = µ(f−1(E))
for all E ∈ B(Ξ).

Consider, for each Ω, a map

DΩ : ∆(Ω)×∆(Ω)→ R+ ∪ {+∞},
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and let D = (DΩ) be the collection obtained by varying Ω. We say D is a divergence
if DΩ(µ, µ) = 0 for all Ω and all µ ∈ ∆(Ω).

A divergence satisfies the data processing inequality if for any measurable f : Ω→ Ξ
it holds that

DΞ(f∗(µ), f∗(ν)) ≤ DΩ(µ, ν).

The data processing inequality captures the idea that the distributions of two random
variables X and Y are at least as dissimilar as those of f(X) and f(Y ); applying a
common deterministic mapping f can only make the distributions more similar.9 It
is a natural concept in signal processing and information theory, and closely related
to the Blackwell order over experiments. Indeed, we can see a pair of probability
measures as an experiment (P0, P1), and hence a divergence D as a functional over
experiments. The data-processing inequality states that the value of D decreases when
applying a deterministic garbling.

We say that the divergence D is additive if

DΩ×Ξ(µ1 × µ2, ν1 × ν2) = DΩ(µ1, ν1) +DΞ(µ2, ν2).

We will henceforth drop the subscript from DΩ(µ, ν), and write D(µ, ν) whenever
there is no risk of confusion.

We call a pair µ, ν of measures as bounded if there exists an M > 0 such that for
any measurable A ⊆ Ω, ν(A) ≥ µ(A)/M and µ(A) ≥ ν(A)/M . Equivalently, dµ/dν
is supported on [1/M,M ], and hence bounded from above and bounded away from 0.
We will restrict our attention to divergences that take finite values on bounded pairs
of experiments.

4.2 Representation Theorem

Our representation theorem shows that all additive divergences that are finite on
bounded experiments arise from linear combinations of Rényi divergences.

Theorem 2. Let D be an additive divergence that satisfies the data processing inequal-
ity and is finite on bounded experiments. Then there exist two finite Borel measures

9Note that the data processing inequality implies that D is invariant to measurable isomorphisms:
If f is a bijection then DΞ(f∗(µ), f∗(ν)) = DΩ(µ, ν). Thus the dissimilarity between measures does
not depend on the particular labelling of the domain.
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m0,m1 on [1/2,∞] such that for every bounded pair µ, ν it holds that

D(µ, ν) =
∫

[1/2,∞]
Rt(µ‖ν) dm0(t) +

∫
[1/2,∞]

Rt(ν‖µ) dm1(t), (7)

with Rt given by (3) and (4).

Varying the two measures m0 and m1 leads to some important special cases.
When both are finitely supported, D is a linear combination of Rényi divergences.
Any additive divergence D (finite on bounded experiments) is hence a limit of such
combinations. When m0 and m1 are Dirac probability measures concentrated on 1, D
reduces to twice the Jensen-Shannon divergence, which is the symmetric counterpart
of the Kullback-Leibler divergence. When instead m0 is a Dirac probability measure
concentrated on 1 and m1 is set to have total mass zero, D reduces to the Kullback-
Leibler divergence.

Note that the lower integration bound in (7) is 1/2. This is because, as discussed,
the values of Rt(µ‖ν) are related to the values of R1−t(ν‖µ). Hence it suffices to
consider values of t above 1/2.

Proof Sketch of Theorem 2. The first key idea is to see a bounded pair of
probability measures as a bounded experiment (P0, P1), and hence see a divergence D
as a functional over experiments. When D is additive, the data processing inequality
implies monotonicity with respect to the Blackwell order.

The next crucial step is to leverage Theorem 1 to show that additivity renders D
monotone in the Rényi order. Indeed, if (P0, P1) dominates (Q0, Q1) in the Rényi order,
then, by Theorem 1, there exists a number n of repetitions such that (P n

0 , P
n
1 ) domi-

nates (Qn
0 , Q

n
1 ) in the Blackwell order. Hence, by combining Blackwell monotonicity

and additivity, we obtain that D must satisfy

nD(P0, P1) = D(P n
0 , P

n
1 ) ≥ D(Qn

0 , Q
n
1 ) = nD(Q0, Q1).

Hence, D is monotone in the Rényi order.
We deduce from this that D is a monotone functional F (R0

P , R
1
P ) of the Rényi

divergences of the experiment. Additivity of D implies F is also additive. We then use
tools from functional analysis to show that F extends to a positive linear functional,
leading to the integral representation of Theorem 2.
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5 Proof of Theorem 1

The proof of Theorem 1 is organized as follows. In §5.1 we first show that the Rényi
order is necessary for the large sample order. The remaining subsections demonstrate
sufficiency. In §5.3 we provide a novel characterization of Blackwell dominance, showing
that it is equivalent to first-order stochastic dominance of appropriate statistics of the
two experiments. §5.5 applies this observation, together with techniques from large
deviations theory. Omitted proofs are deferred to the appendix.

5.1 Dominance in Large Samples Implies Dominance in the Rényi Order

As discussed above, the comparison of Rényi divergences between two experiments is
independent of the number of samples. Thus it suffices to show that the Rényi order
extends the strict Blackwell order.10 We do this by constructing decision problems
with the property that higher expected payoff in these problems translates into higher
Rényi divergences.

For each t > 1, the function v1(p) = 2pt(1− p)1−t defined for p ∈ (0, 1) is strictly
convex, because its second derivative in p is 2t(t− 1)pt−2(1− p)−1−t. Thus v1(p) is the
indirect utility function induced by some decision problem. Moreover, we have that

∫ 1

0
v1(p) dπ(p) =

∫
Ω

(
dP1(ω)
dP0(ω)

)t−1

dP1(ω) = e(t−1)R1
P (t). (8)

To see this, recall that πθ is the distribution over posteriors induced by P , conditional
on state θ ∈ {0, 1}, and that

dπ(p) = 1
2(dπ1(p) + dπ0(p)) and dπ1(p) = p

1− p dπ0(p). (9)

Thus dπ(p) = 1
2p dπ1(p), which allows us to write

∫ 1

0
v1(p) dπ(p) =

∫ 1

0
2pt(1− p)1−t · 1

2p dπ1(p) =
∫ 1

0

(
p

1− p

)t−1

dπ1(p).

The first equality in (8) then follows from a change of variable from signal realizations
ω to posterior beliefs p = dP1(ω)

dP1(ω)+dP0(ω) (with the probability measure changing from
10Since by assumption the two experiments P and Q form a generic pair, Blackwell dominance of

P⊗n over Q⊗n necessarily implies strict Blackwell dominance.
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P1 to π1, holding fixed the true state θ = 1).
The second equality in (8) follows from the definition of Rényi divergences. Thus

(8) holds, which shows that in the decision problem with indirect utility function v1(p),
the ex-ante expected payoff is a monotone transformation of the Rényi divergence
R1
P (t). Hence, experiment P yields higher expected payoff in this decision problem

than Q if and only if R1
P (t) > R1

Q(t).
Similarly, for t ∈ (0, 1) we consider the indirect utility function v2(p) = −2pt(1−

p)1−t, which is now strictly convex due to the negative sign (its second derivative is
2t(1− t)pt−2(1− p)−1−t). Then

∫ 1

0
v2(p) dπ(p) = −e(t−1)R1

P (t)

is again a monotone transformation of the Rényi divergence. So P yields higher
expected payoff in this decision problem only if R1

P (t) > R1
Q(t).

For t = 1, we consider the indirect utility function v3(p) = 2p log( p
1−p), which is

strictly convex with a second derivative of 2p−1(1− p)−2. We have

∫ 1

0
v3(p) dπ(p) =

∫ 1

0
log

(
p

1− p

)
dπ1(p) =

∫
Ω

log
(

dP1(ω)
dP0(ω)

)
dP1(ω) = R1

P (1).

Thus P yields higher expected payoff in this problem if and only if R1
P (1) > R1

Q(1).
Summarizing, the above family of decision problems shows that P strictly Blackwell

dominates Q only if R1
P (t) > R1

Q(t) for all t > 0. Since the two states are symmetric,
another set of necessary conditions is that R0

P (t) > R0
Q(t) for all t > 0. Hence

dominance in the Rényi order is necessary for Blackwell dominance and (due to
additivity of Rényi divergences) also for dominance in large samples.

5.2 Repeated Experiments and Log-Likelihood Ratios

We turn to the proof that dominance in the Rényi order is (generically) sufficient for
dominance in large samples. Recall that P⊗n Blackwell dominates Q⊗n if and only
if the former induces a distribution over posterior beliefs that is a mean-preserving
spread of the latter. However, the distribution over posteriors induced by a product
experiment can be difficult to analyze directly. A more suitable approach consists in
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studying the distribution of the induced log-likelihood ratio

log dPθ
dP1−θ

.

As is well known, given a repeated experiment P⊗n = (Ωn, P n
0 , P

n
1 ), its log-likelihood

ratio satisfies, for every realization ω = (ω1, . . . , ωn) in Ωn,

log dP n
1

dP n
0

(ω) =
n∑
i=1

log dP1

dP0
(ωi).

Moreover, the random variables

Xi(ω) = log dP1

dP0
(ωi) i = 1, . . . , n

are i.i.d. under P n
θ , for θ ∈ {0, 1}. Focusing on the distributions of log-likelihood ratios

will allow us to transform the study of repeated experiments to the study of sums of
i.i.d. random variables.

5.3 From Blackwell Dominance to First-Order Stochastic Dominance

Expressing posterior beliefs in terms of log-likelihood ratios simplifies the analysis of
repeated experiments. However, it is not obvious that the Blackwell order admits a
simple interpretation in this domain.

We provide a novel characterization of the Blackwell order, expressed in terms of
the distributions of the log-likelihood ratios. Given two experiments P = (Ω, P0, P1)
and Q = (Ξ, Q0, Q1) we denote by Fθ and Gθ, respectively, the cumulative distribution
function of the log-likelihood ratios conditional on state θ. That is,

Fθ(a) = Pθ

({
log dPθ

dP1−θ
≤ a

})
for all a ∈ R, θ ∈ {0, 1}. (10)

The c.d.f. Gθ is defined analogously using Qθ.
We associate to P a new quantity, which we call the perfected log-likelihood ratio

of the experiment. Define
L̃1 = log dP1

dP0
− E

where E is a random variable that, under P1, is independent from log dP1
dP0

and dis-
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tributed according to an exponential distribution with support R+ and cumulative
distribution function 1−e−x for all x ≥ 0. We denote by F̃1 the cumulative distribution
function of L̃1 under P1. That is, F̃1(a) = P1({L̃1 ≤ a}) for all a ∈ R.

More explicitly, F̃1 is the convolution of the distribution F1 with the distribution
of −E, and thus can be defined as

F̃1(a) =
∫
R
P1({−E ≤ a− u}) dF1(u) = F1(a) + ea

∫
(a,∞)

e−u dF1(u). (11)

The next result shows that the Blackwell order over experiments can be reduced to
first-order stochastic dominance of the corresponding perfected log-likelihood ratios.

Theorem 3. Let P and Q be two experiments, and let F̃1 and G̃1, respectively, be the
associated distributions of perfected log-likelihood ratios. Then

P � Q if and only if F̃1(a) ≤ G̃1(a) for all a ∈ R.

Proof. Let π and τ be the distributions over posterior beliefs induced by P and Q,
respectively. As is well known, Blackwell dominance is equivalent to the requirement
that π is a mean-preserving spread of τ . Equivalently the functions defined as

Λπ(p) =
∫

[0,p]
(p− q) dπ(q) and Λτ (p) =

∫
[0,p]

(p− q) dτ(q) (12)

must satisfy Λπ(p) ≥ Λτ (p) for every p ∈ (0, 1).
We now express (12) in terms of the distributions of log-likelihood ratios F1 and

G1. We have
Λπ(p) = p

(
1−

∫
(p,1]

1 dπ(q)
)
−
∫

[0,p]
q dπ(q). (13)

To transform the relevant integrals into those that condition on state 1, we recall that
(9) implies dπ(q) = 1

2q dπ1(q). We then obtain from (13) that

2Λπ(p) = p

(
2−

∫
(p,1]

1
q

dπ1(q)
)
−
∫

[0,p]
dπ1(q).

Next, we change variable from posterior beliefs to log-likelihood ratios. Letting

21



a = log p
1−p and accordingly u = log q

1−q , we have

2Λπ(p) = ea
1 + ea

(
2−

∫
(a,∞)

1 + eu
eu dF1(u)

)
− F1(a). (14)

Since ∫
(a,∞)

1 + eu
eu dF1(u) =

∫
(a,∞)

e−u dF1(u) + 1− F1(a),

(14) leads to

2Λπ(p) = ea
1 + ea −

F1(a)
1 + ea −

ea
1 + ea

∫
(a,∞)

e−u dF1(u) = ea
1 + ea −

F̃1(a)
1 + ea ,

where the final equality follows from (11). It then follows that Λπ(p) ≥ Λπ(p) if and
only if F̃1(a) ≤ G̃1(a) for a = log p

1−p . Requiring this for all p ∈ (0, 1) yields the
theorem.

Intuitively, transferring probability mass from lower to higher values of log(dPθ/dP1−θ)
leads to an experiment that, conditional on the state being θ, is more likely to shift the
decision maker’s beliefs towards the correct state. Hence, one might conjecture that
Blackwell dominance of the experiments P and Q is related to stochastic dominance of
the distributions Fθ and Gθ. However, since the likelihood ratio dP1/dP0 must satisfy
the change of measure identity

∫ dP0
dP1

dP1 = 1, the distribution F1 must satisfy

∫
R

e−u dF1(u) = 1.

Because the function e−u is strictly decreasing and convex, and the same identity must
hold for G1, it is impossible for F1 to stochastically dominate G1. Theorem 3 shows
that a more useful comparison is between the perfected log-likelihood ratios.11

The next lemma simplifies the study of perfected log-likelihood ratios, by showing
that their first-order stochastic dominance can be deduced from comparisons of the
original distributions Fθ and Gθ over subintervals.

Lemma 1. Consider two experiments P and Q. Let Fθ and Gθ, respectively, be
11It might appear puzzling that two distributions F1 and G1 that are not ranked by stochastic

dominance become ranked after the addition of the same independent random variable. In a different
context and under different assumptions, the same phenomenon is studied by Pomatto, Strack, and
Tamuz (2019).
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the distributions of the corresponding log-likelihood ratios, and F̃1 and G̃1 be the
distributions of the perfected log-likelihood ratios. The following holds:

(i). If F1(a) ≤ G1(a) for all a ≥ 0, then F̃1(a) ≤ G̃1(a) for all a ≥ 0.

(ii). If F0(a) ≤ G0(a) for all a ≥ 0, then F̃1(a) ≤ G̃1(a) for all a ≤ 0.

5.4 Large Deviations

The main step in the proof of Theorem 1 relies on the theory of large deviations. Large
deviations theory studies low probability events, and in particular the odds with which
an i.i.d. sum deviates from its expectation. The Law of Large Numbers implies that
for a random variable X, the probability of the event {X1 + · · ·+Xn > na} is low for
a > E[X] and large n, where X1, . . . , Xn are i.i.d. copies of X. A crucial insight due
to Cramér (1938) is that the order of magnitude of the probability of this event is
determined by the cumulant generating function of X, defined as

KX(t) = logE[etX ]

for every t ∈ R.
As is well known, KX is strictly convex whenever X is not a constant. We denote

by
K∗X(a) = sup

t∈R
t · a−KX(t) a ∈ R, (15)

its Fenchel conjugate. Two facts we will repeatedly apply are that for every a ∈
(min[X],max[X]) the problem (15) has a unique solution t ∈ R, and such t is non-
negative if and only if a ≥ E[X]. Moreover, K∗X ≥ 0 · a−KX(0) = 0 is non-negative.

Cramér’s Theorem establishes that for each threshold a > E[X], the exponential
rate at which the probability of the event {X1 + · · ·+Xn > na} vanishes with n is
equal to the value K∗X(a) taken by the Fenchel conjugate at a. In this paper we are
interested in comparing the probabilities of large deviations across different random
variables. Consider, to this end, two random variables X and Y and a threshold a
strictly greater than E[X] and E[Y ]. If

K∗Y (a) > K∗X(a),

then the probability of the event {X1 + · · ·+Xn > na} vanishes more slowly than the
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probability of the event {Y1 + · · ·+ Yn > na} . Thus there exists n sufficiently large
such that

P [X1 + · · ·+Xn > na] ≥ P [Y1 + · · ·+ Yn > na].

The next proposition establishes a general version of this fact, while also providing a
specific number of repetitions sufficient to rank the probability of the two events.

Proposition 5. Let X and Y be random variables taking values in [−b, b] and let
X1, . . . , Xn, Y1, . . . , Yn be i.i.d. copies of X and Y respectively. Suppose a ≥ E[Y ],
and η > 0 satisfies K∗Y (a)− η > K∗X(a+ η). Then for all n ≥ 4b2(1 + η)η−3, it holds
that

P [X1 + · · ·+Xn > na] ≥ P [Y1 + · · ·+ Yn > na]. (16)

The condition K∗Y (a)−η > K∗X(a+η) ensures that the rate at which the probability
of the events {Y1 + . . . + Yn > na} vanish with n is larger by a factor of at least η
than the rate of the events {X1 + . . . + Xn > n(a + η)}. Larger values of η make
this condition more demanding, and imply that a smaller number of repetitions is
sufficient to guarantee (16) to hold.

5.5 Application to the Rényi Order

Now consider two experiments P = (Ω, P0, P1) and Q = (Ξ, Q0, Q1). Denote the
corresponding log-likelihood ratios

Xθ = log dPθ
dP1−θ

and Y θ = log dQθ

dQ1−θ

defined over the probability spaces (Ω, Pθ) and (Ξ, Qθ), respectively. Thus, for instance,
X1 is the log-likelihood ratio of state 1 to state 0, distributed conditional on state 1,
and X0 is the log-likelihood ratio of state 0 to 1, distributed conditional on state 0.

The cumulant generating function of the log-likelihood ratio is a simple transfor-
mation of the Rényi divergences, as defined in (3), (4) and (5):

KXθ(t) = t ·Rθ
P (t+ 1). (17)

Likewise KY θ(t) = t ·Rθ
Q(t+ 1). Hence, if P dominates Q in the Rényi order then the
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following relation must hold between the cumulant generating functions:

KXθ(t) > KY θ(t) for t > 0 (18)

KXθ(t) < KY θ(t) for − 1 < t < 0. (19)

At t = 0 we have KXθ(0) = KY θ(0) = 0, but K ′Xθ(0) > K ′Y θ(0) must hold by (17) and
the assumption that Rθ

P (1) > Rθ
Q(1). It is well known that K ′Xθ(0) = E[Xθ], which

by definition is the Kullback-Leibler divergence between P θ and P 1−θ. Hence we also
have

E[Xθ] > E[Y θ] > 0.12

The Fenchel conjugate is an order-reversing operation: From (15) we see that if
KX ≥ KY pointwise, then the corresponding conjugates satisfy K∗Y ≥ K∗X pointwise.
The relation between KXθ and KY θ established in (18) and (19) is more complicated,
and implies the following ranking of their conjugates:

K∗Y θ(a) > K∗Xθ(a) for E[Xθ] ≤ a ≤ max[Y θ]

K∗Y θ(a) < K∗Xθ(a) for 0 ≤ a ≤ E[Y θ].

This is the content of the next lemma, which in addition shows that the differences
between the Fenchel conjugates admit a uniform bound.

Lemma 2. Suppose P and Q are a generic pair of bounded experiments such that P
dominates Q in the Rényi order. Let (Xθ) and (Y θ) be the corresponding log-likelihood
ratios. Then there exists η ∈ (0, 1) such that in both states θ ∈ {0, 1}

K∗Y θ(a)− η > K∗Xθ(a+ η) for E[Xθ]− η ≤ a ≤ max[Y θ]

K∗Y θ(a− η) < K∗Xθ(a)− η for 0 ≤ a ≤ E[Y θ] + η.

These estimates will allow us to apply the previous Proposition 5 and make uniform
comparisons of large deviation probabilities. In the range a ∈ (E[Y θ] + η,E[Xθ]− η)
that is not covered by Lemma 2, large deviation techniques are not necessary and it
will be sufficient to apply more elementary estimates.

12Throughout the proof we assume Q is a non-trivial experiment, so that E[Y θ] being the Kullback-
Leibler divergence between Qθ and Q1−θ is strictly positive. This is without loss, as P clearly
dominates Q (in large samples) in case Q is trivial.
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5.6 Rényi Order Implies Large Sample Order

We now complete the proof of Theorem 1 and show that if two experiments are ranked
in the Rényi order then they are also ranked in the large sample order. By Theorem 3
we need to show that there exists a sample size n0 such that for all n ≥ n0, the
perfected log-likelihood ratios of n independent draws from P and Q are ordered in
terms of first-order stochastic dominance.

More concretely, consider the log-likelihood ratios Xθ and Y θ (for a single sample)
as defined above, with distributions Fθ and Gθ conditional on state θ. Let F ∗nθ be the
n-th convolution power of Fθ, which represents the distribution of log-likelihood ratios
under the product experiment P⊗n; similarly define G∗nθ . By Lemma 1, it suffices to
show that for n ≥ n0 it holds that

F ∗n1 (na) ≤ G∗n1 (na) for all a ≥ 0 (20)

and
F ∗n0 (na) ≤ G∗n0 (na) for all a ≥ 0. (21)

Below we show (20); the argument for (21) is identical after relabelling the states.
Assume that X1 and Y 1 take values in [−b, b]. We will set n0 = 8b2η−3, where η ∈ (0, 1)
is as given in Lemma 2. For future use, we note that E[X1]− η > E[Y 1].13

Let X1
1 , . . . , X

1
n be i.i.d. copies of X1 and Y 1

1 , . . . , Y
1
n be i.i.d. copies of Y 1. We can

restate (20) as

P
[
X1

1 + · · ·+X1
n ≤ na

]
≤ P

[
Y 1

1 + · · ·+ Y 1
n ≤ na

]
, for all a ≥ 0. (22)

To prove this, we divide into four ranges of values of a:

Case 1: a ≥ max[Y 1]. In this case the right-hand side of (22) is 1, and hence the
result follows trivially.

Case 2: E[X1]− η ≤ a < max[Y 1]. From Lemma 2 we have that

K∗Y 1(a)− η > K∗X1(a+ η).
13Otherwise, the first part of Lemma 2 would apply to a = E[Y 1], leading to 0− η > K∗X1(a+ θ).

This is impossible as K∗ is non-negative.
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As a ≥ E[X1] − η > E[Y 1], we can directly apply Proposition 5 and conclude that
(22) holds for all n ≥ 4b2(1 + η)η−3. Since η < 1, it holds for all n ≥ n0 = 8b2η−3.

Case 3: E[Y 1] + η ≤ a < E[X1]− η. By the Chebyshev inequality,

P
[
X1

1 + · · ·+X1
n ≤ na

]
≤ P

[
X1

1 + · · ·+X1
n ≤ n(E[X1]− η)

]
≤ Var(X1

1 + · · ·+X1
n)

n2η2 .

Since Var(X1
1 + · · ·+X1

n) = nVar(X1) ≤ nb2, we have that

P
[
X1

1 + · · ·+X1
n ≤ na

]
≤ b2

nη2 .

By a similar argument,

P
[
Y 1

1 + · · ·+ Y 1
n ≤ na

]
≥ 1− b2

nη2 .

Hence for all n ≥ 2b2η−2 we have

P
[
X1

1 + · · ·+X1
n ≤ na

]
≤ P

[
Y 1

1 + · · ·+ Y 1
n ≤ na

]
.

As n0 = 8b2η−3 is bigger, (22) holds for n ≥ n0.

Case 4: 0 ≤ a < E[Y 1] + η. By Lemma 2 we have that

K∗X1(a)− η > K∗Y 1(a− η).

For any random variable Z, we haveK−Z(t) = logE
[
et(−Z)

]
= logE

[
e(−t)Z

]
= KZ(−t),

andK∗−Z(a) = supt∈R t·a−K−Z(t) = supt∈R(−t)·(−a)−KZ(−t) = K∗Z(−a). Therefore

K∗−X1(−a)− η > K∗−Y 1(−a+ η).

We can now apply Proposition 5 to the random variables −Y 1 and −X1, and the
threshold −a > −E[Y 1]− η > E[−X1]. This yields

P
[
−Y 1

1 − · · · − Y 1
n > −na

]
≥ P

[
−X1

1 − · · · −X1
n > −na

]
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for all n ≥ 4b2(1 + η)η−3. Hence (22) holds for n ≥ n0.14

This proves (22) for all a ≥ 0 and completes the proof of Theorem 1.

5.7 Number of Samples Required

The proof of Theorem 1 establishes a stronger statement, and in fact provides an explicit
bound on the number of repetitions sufficient to achieve large sample dominance.

Theorem 4. Let P and Q be a generic pair of bounded experiments, with log-likelihood
ratios taking values in [−b, b]. Assume P dominates Q in the Rényi order, and let
η ∈ (0, 1) be provided by Lemma 2. Then P⊗n Blackwell dominates Q⊗n for all
n ≥ n0 = 8b2η−3.

The constant n0 is decreasing in the parameter η. This fact follows from a logic
analogous to the one behind Proposition 5: Larger values of η imply that the probability
of unlikely, but very informative, signal realizations decreases at a much slower rate
under the experiment P⊗n than under Q⊗n, as the sample size n becomes large.

While simple, the constant n0 is far from being tight. For example, our proof of
Proposition 5 uses the Chebyshev inequality, which may be improved by a suitable
application of the Berry-Esseen Theorem, at the cost of a more complex bound. It
remains an open problem to develop more precise estimates.

6 Discussion and Related Literature

Comparison of Experiments. Blackwell (1951, p. 101) posed the question of
whether dominance of two experiments is equivalent to dominance of their n-fold repe-
titions. Stein (1951) and Torgersen (1970) provide early examples of two experiments
that are not comparable in the Blackwell order, but are comparable in large samples.

Moscarini and Smith (2002) propose an alternative criterion for comparing repeated
experiments. According to their notion, an experiment P dominates an experiment
Q if for every decision problem with finitely many actions, there exists some n0 such
that the expected payoff achievable from observing P⊗n is higher than that from
observing Q⊗n whenever n ≥ n0. This order is characterized by the efficiency index

14The comparison P
[
X1

1 + · · ·+X1
n < na

]
≤ P

[
Y 1

1 + · · ·+ Y 1
n < na

]
for all a in this range implies

the desired result P
[
X1

1 + · · ·+X1
n ≤ na

]
≤ P

[
Y 1

1 + · · ·+ Y 1
n ≤ na

]
, by a standard limit argument.
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of an experiment, defined, in our notation, as the minimum over t ∈ (0, 1) of the
function e(t−1)R0

P (t) (where a smaller index means a better experiment). There are two
conceptual differences between the order studied in Moscarini and Smith and the large
sample order that we characterize:
(i). While in Moscarini and Smith the number n0 of repetitions is allowed to depend

on the decision problem, dominance in large samples is a criterion for comparing
experiments uniformly over decision problems, for fixed sample sizes. Thus the
large sample order is conceptually closer to Blackwell dominance.15

(ii). The order proposed in Moscarini and Smith restricts attention to decision
problems with finitely many actions, while dominance in the large sample order
implies that observing P⊗n is better that observing Q⊗n for every decision
problem.

Related to (ii), Azrieli (2014) shows that the Moscarini-Smith order is a strict
extension of dominance in large samples. Perhaps surprisingly, this conclusion is
reversed under a modification of their definition: It follows from our results that when
extended to consider all decision problems, including problems with infinitely many
actions, the Moscarini-Smith order over experiments (generically) coincides with the
large sample order.16

Our notion of dominance in large samples is prior-free. In contrast, several authors
(Kelly, 1956; Lindley, 1956; Cabrales, Gossner, and Serrano, 2013) have studied a
complete ordering of experiments, indexed by the expected reduction of entropy from
prior to posterior beliefs (i.e., mutual information between states and signals). We
note that unlike Blackwell dominance, dominance in large samples does not guarantee
a higher reduction of uncertainty given any prior belief.17

15Recent work by Hellman and Lehrer (2019) generalizes the Moscarini-Smith order to Markov
(rather than i.i.d.) sequences of experiments.

16Consider the following variant of the Moscarini-Smith order: Say that P dominates Q if for
every decision problem (with possibly infinitely many actions) there exists an n0 such that the
expected payoff achievable from P⊗n is higher than that from Q⊗n whenever n ≥ n0. Each Rényi
divergence RθP (t) corresponds to the expected payoff in some decision problem (see §5.1), and for
such decision problems the ranking over repeated experiments is independent of the sample size n.
Thus P dominates Q in this order only if P dominates Q in the Rényi order. By Theorem 1, P must
then dominate Q in large samples.

17To see this, consider Example 2 above with parameters α = 0.1 and β = 0. Then Proposition 2
ensures that the experiment P dominates Q in large samples. However, given a uniform prior, the
residual uncertainty under P is calculated as the expected entropy of posterior beliefs, which is
1
2 log(2) ≈ 0.346. The residual uncertainty under Q is −α logα− (1−α) log(1−α) ≈ 0.325, which is
lower.
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Majorization and Quantum Information. Our work is related to the study of
majorization in the quantum information literature. Majorization is a stochastic order
commonly defined for distributions on countable sets. For distributions with a given
support size, this order is closely related to the Blackwell order. Let P = (Ω, P0, P1)
and Q = (Ξ, Q0, Q1) be two experiments such that Ω and Ξ are finite and of the same
size, and P0 and Q0 are the uniform distributions on Ω and Ξ. Then P Blackwell
dominates Q if and only if P1 majorizes Q1 (see Torgersen, 1985, p. 264). This no
longer holds when Ω and Ξ are of different sizes.

Motivated by questions in quantum information, Jensen (2019) asks the following
question: Given two finitely supported distributions µ and ν, when does the n-fold
product µ×n = µ×· · ·×µ majorize ν×n for all large n? He shows that for the case that
µ and ν have different support sizes, the answer is given by the ranking of their Rényi
entropies.18 For the case of equal support size, Theorem 1 implies a similar result,
which Jensen (2019, Remark 3.9) conjectures to be true. We prove his conjecture in
§L in the appendix.

Fritz (2018) uses an abstract algebraic approach to prove a result that is com-
plementary to Proposition 5. While Fritz’s theorem does not require our genericity
condition, the comparison of distributions is stated in terms of a notion of approximate
stochastic dominance. A result similar to Proposition 5 (but without the η and the
quantitative bound on n) appears as Lemma 2 in Aubrun and Nechita (2008), also in
the context of majorization and quantum information theory.

Both Fritz (2018) and Jensen (2019), in their respective settings, ask a question in
the spirit of our dominance ratio, and prove results that are similar to Proposition 3.

Experiments for Many States and Unbounded Experiments. Our analysis
leaves open a number of questions. The most salient is the extension of Theorem 1,
our characterization of dominance in large samples, to experiments with more than
two states. In §K in the appendix, we identify a set of necessary conditions for
large sample dominance. These conditions are expressed in terms of the moment
generating function of the log-likelihood ratios—which generalizes the ranking of Rényi
divergences in the two state case. While we conjecture this set of conditions to be
also sufficient, our proof technique for sufficiency does not straightforwardly extend to

18As discussed above, majorization with different support sizes does not imply Blackwell dominance.
Indeed, the ranking based on Rényi entropies is distinct from our ranking based on Rényi divergences
unless the support sizes are equal. See §L in the appendix for details.
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more than two states. In particular, we do not know how to extend the reduction of
Blackwell dominance to first-order stochastic dominance (Theorem 3).19 With binary
states we have been able to derive this simplification because one-dimensional convex
(indirect utility) functions admit an one-parameter family of extremal rays. Going to
higher dimensions, the difficulty is that “the extremal rays are too complex to be of
service” (Jewitt, 2007).

Another extension for future work is to experiments with unbounded likelihood
ratios. As we demonstrate in §J in the appendix, our characterization of the large
sample order remains valid if the dominant experiment P is unbounded whereas the
dominated experiment Q is bounded. The result also extends, under an additional
assumption, to pairs of unbounded experiments whose Rényi divergences are finite.
However, we do not know whether and how our result would generalize to the case of
infinite Rényi divergences. The technical challenge is that large deviation estimates
that are uniform across different thresholds typically require the moment generating
function to be finite (so-called “Cramér’s condition”).20

19If such a reduction could be obtained, the remaining obstacle would be the characterization of
first-order stochastic dominance between large i.i.d. sums of random vectors. This would require
the development of large deviation estimates in higher dimensions (generalizing Lemma 3 in the
appendix).

20Although Cramér’s result that logP [X1 + · · ·+Xn > na] ∼ −n ·K∗X(a) remains true even when
KX(t) can be infinite, as far as we know the proofs of this generalization do not deliver a quantitative
lower bound similar to our Lemma 3. As a consequence, Cramér’s approximation is not uniform
across a.
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Appendix

The structure of the appendix follows that of the paper. After reviewing large
deviations theory, we complete the proof of Theorem 1 by supplying the proofs of
Proposition 5, Lemma 1 and Lemma 2. We then provide proofs for our other results
in the order in which they appeared.

A Large Deviations

For every bounded random variable X that is not a constant, we denote by MX(t) =
logE[etX ] and KX(t) = logMX(t) the moment and cumulant generating functions of
X.

As is well known, MX and KX are strictly convex. We denote by

K∗X(a) = sup
t∈R

t · a−KX(t)

the Fenchel conjugate of KX . For a ∈ (min[X],max[X]) the maximization problem
has a unique solution, achieved at some t ∈ R. This solution t is non-negative if
and only if a ≥ E[X]. In addition, as KX(0) = 0, K∗X(a) ≥ 0 · a − KX(0) = 0 is
non-negative. The function K∗X(a) is continuous (in fact, analytic) wherever it is
finite.

The well known Chernoff bound states that if X,X1, . . . , Xn are an i.i.d. sequence,
then

P [X1 + · · ·+Xn > na] ≤ e−n·K∗X(a) for all a ≥ E[X].

The next proposition gives a lower bound for this probability.

Lemma 3. Let X,X1, . . . , Xn be an i.i.d. sequence taking values in [−b, b]. For all
η > 0, a ∈ [min[X],max[X]− η) and n ≥ 1, it holds that

P [X1 + · · ·+Xn > na] ≥ e−n·K∗X(a+η)
(

1− 4b2

nη2

)

Proof. We first consider the case where a ≥ E[X]− η/2. Define t by

K ′X(t) = a+ η/2,
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so that K∗X(a+ η/2) = (a+ η/2) · t−KX(t). Such a t is a non-negative finite number,
since E[X] ≤ a+ η/2 < max[X].

Denote by ν the distribution of X, and let X̂ be a real random variable whose
distribution ν̂ is given by

dν̂
dν (x) = etx

E[etX ] = etx−KX(t).

This construction ensures that ν̂ is also a probability measure, so that X̂ is a well-
defined random variable.

Note that

E[X̂] = E[XetX ]
E[etX ] = K ′X(t) = a+ η/2,

and that the cumulant generating function of X̂ is

KX̂(s) = logE[esX̂ ] = logE[etX−KX(t)esX ] = KX(s+ t)−KX(t).

Now let X̂1, . . . , X̂n be i.i.d. copies of X̂. Denote Sn = X1 + · · · + Xn and
Ŝn = X̂1 + · · ·+ X̂n. The cumulant generating function of Ŝn is

KŜn
(s) = nKX̂(s) = n(KX(s+ t)−KX(t)) = KSn(s+ t)−KSn(t),

and so the Radon-Nikodym derivative between the distributions of Ŝn and Sn is
etx−KSn (t) = etx−nKX(t). Hence

P [Sn > na] = E[1{Sn>na}]

= E
[
e−tŜn+nKX(t)

1{Ŝn>na}
]

= enKX(t) · E
[
e−tŜn1{Ŝn>na}

]
.
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The event {Ŝn > na} contains the event {n(a+ η) > Ŝn > na}, and so

P [Sn > na] ≥ enKX(t) · E
[
e−tŜn1{n(a+η)>Ŝn>na}

]
≥ enKX(t)−tn(a+η) · E

[
1{n(a+η)>Ŝn>na}

]
= enKX(t)−tn(a+η) · P

[
n(a+ η) > Ŝn > na

]
where the second inequality uses t ≥ 0 and Ŝn < n(a+ η) whenever 1{n(a+η)>Ŝn>na} >
0.

Now, Ŝn has expectation nE[X̂] = n(a+η/2). Its variance is nVar[X̂] ≤ nE[X̂2] ≤
nb2, since X̂ has the same support of X by construction. Therefore, by the Chebyshev
inequality,

P
[
n(a+ η) > Ŝn > na

]
= 1− P

[
|Ŝn − E[Ŝn]| ≥ nη/2

]
≥ 1− nb2

(nη/2)2 = 1− 4b2

nη2 .

We have thus shown that

P [Sn > na] ≥ e−n(t(a+η)−KX(t))
(

1− 4b2

nη2

)
.

Now, by definition K∗X(a+ η) ≥ t(a+ η)−KX(t). Hence we arrive at

P [Sn > na] ≥ e−n·K∗X(a+η)
(

1− 4b2

nη2

)
.

We turn to the case where a < E[X]− η/2. In this case, we can directly apply the
Chebyshev inequality and obtain

P [Sn ≤ na] ≤ P [Sn − E[Sn] ≤ −nη/2] ≤ Var[Sn]
(nη/2)2 = nVar[X]

(nη/2)2 ≤
4b2

nη2 .

Hence

P [Sn > na] ≥ 1− 4b2

nη2 .
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Since K∗X is non-negative, we again have

P [Sn > na] ≥ e−n·K∗X(a+η)
(

1− 4b2

nη2

)
.

This proves the lemma.

A.1 Proof of Proposition 5

If a < min[X] then the statement holds since in (16) the LHS is equal to 1. Below we
assume a ≥ min[X]. By assumption, K∗X(a+ η) is finite, and hence a+ η < max[X].
We can thus apply Lemma 3 to X and conclude that for every n ≥ 1,

P [X1 + · · ·+Xn > na] ≥ e−n·K∗X(a+η)
(

1− 4b2

nη2

)
.

By assumption we have that K∗Y (a)− η ≥ K∗X(a+ η), and so

P [X1 + · · ·+Xn > na] ≥ e−n·K∗Y (a)enη
(

1− 4b2

nη2

)

≥ e−n·K∗Y (a)(1 + η)
(

1− 4b2

nη2

)

Hence, for n ≥ 4b2(1 + η)η−3,

P [X1 + · · ·+Xn > na] ≥ e−n·K∗Y (a).

On the other hand, since a ≥ E[Y ] by assumption, we have the Chernoff bound

P [Y1 + · · ·+ Yn > na] ≤ e−n·K∗Y (a).

This proves the desired result (16).
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B Proof of Lemma 1

An exponential distribution has probability density function that vanishes for negative
u and equals e−u for positive u. Thus F̃1 and G̃1 can be written as

F̃1(a) =
∫ ∞

0
F1(a+ u)e−u du

and likewise
G̃1(a) =

∫ ∞
0

G1(a+ u)e−u du.

Consider the first part of the lemma. Suppose a ≥0, then by assumption F1(a+u) ≤
G1(a+ u) for all u ≥ 0, which implies F̃1(a) ≤ G̃1(a).

For the second part of the lemma, we will establish the following identities:

F̃1(a) =
∫ ∞
−a

F0(v)e−v dv and G̃1(a) =
∫ ∞
−a

G0(v)e−v dv. (23)

Given this, the result would follow easily: If F0(v) ≤ G0(v) for all v ≥ 0, then the
above implies F̃1(a) ≤ G̃1(a) for all a ≤ 0.

To show (23), we recall (11) and write

F̃1(a) =
∫ a

−∞
dF1(u) + ea

∫ ∞
a

e−u dF1(u). (24)

The key observation is that dF1(u) = −eu dF0(−u). Indeed, dF1(u) is the density
under state 1 that the log-likelihood ratio log(dP1/dP0) is equal to u, which is also
the density under state 1 that the opposite log-likelihood ratio log(dP0/dP1) is equal
to −u. By definition of the log-likelihood ratio, this density is scaled by a factor of
e−u when we change measure from state 1 to state 0.

Substituting dF1(u) = −eu dF0(−u) into (24), we have

F̃1(a) =
∫ a

−∞
−eu dF0(−u) + ea

∫ ∞
a
− dF0(−u) =

∫ ∞
−a

e−v dF0(v) + eaF0(−a),

where the second equality uses change of variable from u to v = −u. Integration by
parts then yields (23) and completes the proof.
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C Proof of Lemma 2

Fix θ, we will show the result holds for all sufficiently small positive η. Because
P dominates Q in the Rényi order, and the pair of experiments is generic, the two
log-likelihood ratios satisfy 0 < E[Y θ] < E[Xθ] and max[Y θ] < max[Xθ].

For the first part of the lemma, consider the interval A = [E[Xθ],max[Y θ]]. If
it is empty (i.e., E[Xθ] > max[Y θ]), the result trivially holds by choosing η small.
Otherwise, consider any point a ∈ A. Since a is above the expectation of Xθ,

K∗Xθ(a) = sup
t≥0

ta−KXθ(t).

And because a < max[X] the supremum is achieved at some finite t̂ ≥ 0. Dominance
in the Rényi order implies, by (18),

K∗Xθ(a) = t̂a−KXθ(t̂) ≤ t̂a−KY θ(t̂) ≤ K∗Y θ(a).

The first inequality can only hold equal if t̂ = 0 and a = E[Xθ], but in that case the
second inequality is strict because a is strictly above the expectation of Y θ. Hence
K∗Y θ(a) > K∗Xθ(a) for all a in A. Since A is compact and the two Fenchel transforms
are continuous, we can find ε1 positive such that K∗Y θ(a)− ε1 > K∗Xθ(a) over all a ∈ A.
Choosing positive ε2 sufficiently small, we in fact have K∗Y θ(a)− ε1 > K∗Xθ(a) for all a
in the slightly bigger interval [E[Xθ]− ε2,max[Y θ]]. By uniform continuity, any small
positive η satisfies K∗Xθ(a+ η)−K∗Xθ(a) < ε1

2 for all a in this interval. If in addition
η < min{ ε1

2 , ε2}, then

K∗Y θ(a)− η > K∗Y θ(a)− ε1 + ε1

2 > K∗Xθ(a) + ε1

2 > K∗Xθ(a+ η)

for all a ∈ [E[Xθ]− ε2,max[Y θ]], and thus for a ∈ [E[Xθ]− η,max[Y θ]]. This yields
the desired result.

As for the second half, consider a point a ∈ [0,E[Y θ]]. Since a ≤ E[Y θ] and
a ≥ 0 > min[Y θ],21 there exists a finite t̃ ≤ 0 such that K∗Y θ(a) = t̃a−KY θ(t̃). This t̃
satisfies K ′Y θ(t̃) = a.

We now show that t̃ > −1. The cumulant generating functions of Y θ and Y 1−θ

21The latter holds because max[Y 1−θ] ≥ E[Y 1−θ] > 0, and by definition min[Y θ] = −max[Y 1−θ].
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satisfy for all t ∈ R the relation

KY θ(t) = KY 1−θ(−t− 1)

and hence K ′Y θ(−1) = −K ′Y 1−θ(0) = −E[Y 1−θ] < 0. Since K ′Y θ(t̃) = a ≥ 0, and K ′Y θ is
increasing, we have t̃ ∈ (−1, 0]. Dominance in the Rényi order then implies, by (19),

K∗Y θ(a) = t̃a−KY θ(t̃) ≤ t̃a−KXθ(t̃) ≤ K∗Xθ(a).

Similar to before, the first inequality can only hold equal if t̃ = 0 and a = E[Y θ], but
in that case the second inequality is strict because a is strictly below the expectation
of Xθ. Hence K∗Y θ(a) < K∗Xθ(a) for all a ∈ [0,E[Y θ]]. Using continuity as before, any
sufficiently small η makes K∗Y θ(a− η) < K∗Xθ(a)− η hold for all a in the slightly bigger
interval [0,E[Y θ] + η]. Hence the lemma holds.

D Proof of Proposition 1

Let p1 (resp. p3) be the essential minimum (resp. maximum) of the distribution π of
posterior beliefs induced by P . Since the support of π has at least 3 points, we can
find p2 ∈ (p1, p3) such that π([p1, p2]) > π({p1}) and π([p2, p3]) > π({p3}).

We use this p2 to construct an experiment Q which has signal space {0, 1}, and
which is a garbling of P . Specifically, if a signal realization under P leads to posterior
belief below p2, the garbled signal is 0. If the posterior belief under P is above p2,
the garbled signal is 1. Finally, if the posterior belief is exactly p2, we let the garbled
signal be 0 or 1 with equal probabilities.

Since π([p1, p2]) > π({p1}), the signal realization “0” under experiment Q induces
a posterior belief that is strictly bigger than p1, and smaller than p2. Likewise, the
signal realization “1” induces a belief strictly smaller than p3, and bigger than p2.
Thus P and Q form a generic pair, and the distribution τ of posterior beliefs under Q
is a strict mean-preserving contraction of π. We now recall that the Rényi divergences
are derived from strictly convex indirect utility functions u(p) = −pt(1 − p)1−t for
0 < t < 1 and v(p) = pt(1 − p)1−t for t > 1. Thus, Rθ

P (t) > Rθ
Q(t) for all θ ∈ {0, 1}

and t > 0.
We will perturb Q to be a slightly more informative experiment Q′, such that P

still dominates Q′ in the Rényi order but not in the Blackwell order. For this, suppose
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that under Q the posterior belief equals q1 ∈ (p1, p2) with some probability λ, and
equals q2 ∈ (p2, p3) with remaining probability. Choose any small positive number ε,
and let Q′ be another binary experiment inducing the posterior belief q1 − ε(1− λ)
with probability λ, and inducing the posterior belief q2 + ελ otherwise. Such an
experiment exists, because the expected posterior belief is unchanged. By continuity,
Rθ
P (t) > Rθ

Q′(t) still holds when ε is sufficiently small.22 Since P and Q′ also form a
generic pair, Theorem 1 shows that P dominates Q′ in large samples.

It remains to prove that P does not dominate Q′ according to Blackwell. Consider
a decision problem where the prior is uniform, the set of actions is {0, 1}, and payoffs
are given by u(θ = a = 0) = p2, u(θ = a = 1) = 1 − p2 and u(θ 6= a) = 0. The
indirect utility function is v(p) = max{(1− p)p2, p(1− p2)}, which is piece-wise linear
on [0, p2] and [p2, 1] but convex at p2. Recall that in constructing the garbling from
P to Q, those posterior beliefs under P that are below p2 are “averaged” into the
single posterior belief q1 under Q, and those above p2 are averaged into the belief
q2. Thus Q achieves the same expected utility in this decision problem as P (despite
being a garbling). Nevertheless, observe that Q′ achieves higher expected utility in
this decision problem than Q.23 Hence Q′ achieves higher expected utility than P ,
implying that it is not Blackwell dominated.

E Proof of Proposition 2

It is easily checked that the condition R1
P (1/2) > R1

Q(1/2) reduces to

√
α(1− α) >

√
β(1

2 − β) + 1
4 . (25)

22Using the relation between R0
P (t) and R1

P (1− t), it suffices to show RθP (t) > RθQ′(t) for θ ∈ {0, 1}
and t ≥ 1/2. Fixing a large T , then by uniform continuity, RθP (t) > RθQ(t) implies RθP (t) > RθQ′(t)
for t ∈ [1/2, T ] when ε is small. This also holds for t large, because as t→∞ the growth rate of the
Rényi divergences are governed by the maximum of likelihood ratios, which is larger under P than
under Q′.

23Formally, since q1 − ε(1− λ) < q1 < p2 and q2 + ελ > q2 > p2, it holds that

λ · v(q1 − ε(1− λ)) + (1− λ) · v(q2 + ελ) > λ · v(q1) + (1− λ) · v(q2).
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Since the experiments form a generic pair, by Theorem 1, we just need to check
dominance in the Rényi order. Equivalently, we need to show

(1
2 − β)rβ1−r + (1

2 − β)1−rβr + 1
2 < (1− α)rα1−r + (1− α)1−rαr, ∀0 < r < 1;

(26)

(1
2 − β)rβ1−r + (1

2 − β)1−rβr + 1
2 > (1− α)rα1−r + (1− α)1−rαr, ∀r < 0 or r > 1;

(27)

β · ln( β
1
2 − β

) + (1
2 − β) · ln(

1
2 − β
β

) > α · ln( α

1− α) + (1− α) · ln(1− α
α

). (28)

To prove these, it suffices to consider the α that makes (25) hold with equality.24

We will show that the above inequalities hold for this particular α, except that (26)
holds equal at r = 1

2 . Let us define the following function

∆(r) := (1
2 − β)rβ1−r + (1

2 − β)1−rβr + 1
2 − (1− α)rα1−r − (1− α)1−rαr.

When (25) holds with equality, we have ∆(0) = ∆(1
2) = ∆(1) = 0. Thus ∆ has roots

at 0, 1 as well as a double-root at 1
2 . But since ∆ is a weighted sum of 4 exponential

functions plus a constant, it has at most 4 roots (counting multiplicity).25 Hence these
are the only roots, and we deduce that the function ∆ has constant sign on each of
the intervals (−∞, 0), (0, 1

2), (1
2 , 1), (1,∞).

Now observe that since 2β < α ≤ 1
2 , it holds that

1/2−β
β

> 1−α
α

> 1. It is then easy
to check that ∆(r)→∞ as r →∞. Thus ∆(r) is strictly positive for r ∈ (1,∞). As
∆(1) = 0, its derivative is weakly positive. But recall that we have enumerated the
4 roots of ∆. So ∆ cannot have a double-root at r = 1, and it follows that ∆′(1) is
strictly positive. Hence (28) holds.

Note that ∆′(1) > 0 and ∆(1) = 0 also implies ∆(1− ε) < 0. Thus ∆ is negative
on (1

2 , 1). A symmetric argument shows that ∆ is positive on (−∞, 0) and negative
on (0, 1

2). Hence (26) and (27) both hold, completing the proof.
24It is clear that the inequalities are easier to satisfy when α increases in the range [0, 1

2 ].
25This follows from Rolle’s Theorem and an induction argument.
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F Proof of Proposition 3

Denote r = infθ,t R
θ
P (t)

RθQ(t) . We would like to show that P/Q = r. Let n,m be such that
P⊗n � Q⊗m. Then, since ranking of the Rényi divergences is a necessary condition for
Blackwell dominance, and by the additivity of Rényi divergences, n ·Rθ

P (t) ≥ m ·Rθ
Q(t)

for all θ ∈ {0, 1} and t > 0. Thus any such m/n is bounded above by r, and so
P/Q ≤ r.

In the other direction, take any rational number m/n < r. Then, again by
the additivity of the Rényi divergences, P⊗n dominates Q⊗m in the Rényi order.
Furthermore, the fact that limt→∞

RθP (t)
RθQ(t) > m/n implies the pair P⊗n and Q⊗m is

generic. Therefore, by Theorem 1, we have that for some k large enough, P⊗nk � Q⊗mk.

Thus P/Q ≥ mk/nk = m/n. Since this holds for every rational m/n that is less than
r, we can conclude that P/Q ≥ r. Finally, note that each of the functions Rθ

P and Rθ
Q

are positive, increasing and bounded on (0,∞). Furthermore, using

Rθ
P (t)

Rθ
Q(t) = R1−θ

P (1− t)
R1−θ
Q (1− t)

,

for t ∈ (0, 1), we can rewrite

P/Q = inf
θ∈{0,1},
t>0

Rθ
P (t)

Rθ
Q(t) = inf

θ∈{0,1},
t≥ 1

2

Rθ
P (t)

Rθ
Q(t) .

Recall that Rθ
P (t), Rθ

Q(t) are positive, continuous in t and approach max[Xθ] and
max[Y θ] as t→∞. Thus a compactness argument shows that P/Q is always positive.
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Online Appendix

G Proof of Proposition 4

That (i) implies (ii) follows from the fact that Rényi divergences are monotone in the
Blackwell order, and additive with respect to independent experiments.

To show (ii) implies (i), we introduce some notation. Given two experiments
P = (Ω, P0, P1) and Q = (Ξ, Q0, Q1), for each α ∈ [0, 1] we denote by αP +(1−α)Q =
(Ψ,M0,M1) the mixed experiment where the sample space is the disjoint union
Ψ = Ω t Ξ endowed with the corresponding σ-algebra, and the measures M0,M1

satisfy for every measurable E ⊆ Ψ

Mθ(E) = αPθ(E ∩ Ω) + (1− α)Qθ(E ∩ Ξ).

Intuitively, the mixed experiment corresponds to a randomized experiment where P is
carried out with probability α and Q with probability 1− α. The mixture operation
and the product operation satisfy (αP + (1−α)Q)⊗R = α(P ⊗R) + (1−α)(Q⊗R).

Now suppose P dominates Q in the Rényi order, then by Theorem 1, P dominates
Q in the large sample order. The next lemma concludes the proof.

Lemma 4. Let P,Q be bounded experiments such that P dominates Q in the large
sample order. Then there exists a bounded experiment R such that P ⊗R Blackwell
dominates Q⊗R.

This lemma replicates a more general statement that appears in Duan et al. (2005);
Fritz (2017).

Proof of Lemma 4. Assume P⊗n � Q⊗n. Let

R = 1
n

(
Q⊗n + P ⊗Q⊗(n−1) + P⊗2 ⊗Q⊗(n−2) + · · ·+ P⊗(n−2) ⊗Q⊗2 + P⊗(n−1) ⊗Q

)
.
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Then

P ⊗R = P ⊗ 1
n

(
Q⊗n + P ⊗Q⊗(n−1) + · · ·+ P⊗(n−2) ⊗Q⊗2 + P⊗(n−1) ⊗Q

)
= 1
n

(
P ⊗Q⊗n + P⊗2 ⊗Q⊗(n−1) + · · ·+ P⊗(n−1) ⊗Q⊗2 + P⊗n ⊗Q

)
� 1
n

(
P ⊗Q⊗n + P⊗2 ⊗Q⊗(n−1) + · · ·+ P⊗(n−1) ⊗Q⊗2 +Q⊗(n+1)

)
= Q⊗ 1

n

(
Q⊗n + P ⊗Q⊗(n−1) + · · ·+ P⊗(n−1) ⊗Q

)
= Q⊗R,

where the middle step uses the assumption P⊗n � Q⊗n, so that P⊗n⊗Q � Q⊗(n+1).

H Proof of Theorem 2

Throughout this section, we denote by D an additive divergence that satisfies the
data-processing inequality and is finite on bounded experiments.

Lemma 5. If a bounded experiment P = (Ω, P0, P1) dominates another bounded
experiment Q = (Ξ, Q0, Q1) in the Blackwell order, then D(P0, P1) ≥ D(Q0, Q1).

Proof. By Blackwell’s Theorem there exists a measurable function σ : Ω→ ∆(Ξ) such
that Qθ(A) =

∫
σ(ω)(A) dPθ(ω) for every measurable A ⊆ Ξ and every θ. Let λ

be the Lebesgue measure on [0, 1]. Since Ω and Ξ are Polish spaces, there exists a
measurable function f : Ω× [0, 1]→ Ξ such that for every ω ∈ Ω, σ(ω) = f(ω, ·)∗(λ),
where f(ω, ·)∗(λ) is the push-forward of λ induced by the function f(ω, ·) (see, for
example, Proposition 10.7.6 in Bogachev, 2007). Hence,

Qθ(A) =
∫
λ({t ∈ [0, 1] : f(ω, t) ∈ A}) dPθ(ω) = f∗(Pθ × λ)(A)

where now f∗(Pθ×λ) is the pushforward of Pθ×λ induced by f . Being a divergence, D
satisfies D(λ, λ) = 0. Moreover, by additivity, D(P0×λ, P1×λ) = D(P0, P1). The data
processing inequality then implies D(P0, P1) = D(P0 × λ, P1 × λ) ≥ D(Q0, Q1).

Lemma 6. If the bounded experiments P = (P0, P1) and Q = (Q0, Q1) satisfy
Rθ
P (t) ≥ Rθ

Q(t) for every t > 0 and θ ∈ {0, 1}, then D(P0, P1) ≥ D(Q0, Q1).

Proof. Suppose first that the strict inequality Rθ
P (t) > Rθ

Q(t) holds for every t > 0,
including at the limit t = ∞ (corresponding to the genericity assumption in the
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main text). Then, by Theorem 1 there exists n such that P⊗n dominates Q⊗n in the
Blackwell order. Hence, by applying the previous lemma and by additivity, we obtain

nD(P0, P1) = D(P n
0 , P

n
1 ) ≥ D(Qn

0 , Q
n
1 ) = nD(Q0, Q1).

More generally, suppose we only have the weak inequality Rθ
P (t) ≥ Rθ

Q(t) for t > 0.
Fix a bounded and non-trivial experiment S = (S0, S1). Then, for every k ∈ N we
have

Rθ
P⊗k⊗S(t) = kRθ

P (t) +Rθ
S(t) > kRθ

Q(t) = Rθ
Q⊗k(t)

for every t ∈ (0,∞] and θ ∈ {0, 1}. Given what we just proved, it follows that

D(P k
0 × S0, P

k
1 × S1) ≥ D(Qk

0, Q
k
1).

By additivity, D(P0, P1) + 1
k
D(S0, S1) ≥ D(Q0, Q1). Since this holds for every k and

D(S0, S1) is finite, the proof is concluded.

Let R = [−∞,∞] be the extended real line. Given a bounded experiment P we
define the function HP : R→ R as

HP (t) =

R
1
P (t) if t ≥ 1/2

R0
P (1− t) if t ≤ 1/2

Recall that the Rényi divergences of an experiment P satisfy the relation (1−t)R1
P (t) =

tR0
P (1 − t). This implies that the function HP is well defined, continuous, and

bounded. It is a convenient representation of the Rényi divergences that retains
the main properties of the latter, and has the advantage of being strictly positive
whenever P is nontrivial. Since HP (t) is continuous and has a compact domain,
it is furthermore bounded away from 0. The functional P 7→ HP satisfies two
additional properties. An experiment P dominates an experiment Q in the Rényi
order if and only if HP (t) > HQ(t) for every t. Moreover, the functional is additive:
HP⊗Q(t) = HP (t) +HQ(t) for every t.

Thus, to prove Theorem 2 it suffices to show that under the hypotheses of the
theorem there exists a finite measure m on R such that for every bounded pair of
measures P0, P1

D(P0, P1) =
∫
R
HP (t) dm(t)
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where P is the experiment (P0, P1). The theorem’s conclusion (7) follows easily from
this by setting dm0(t) = −dm(1− t) and dm1(t) = dm(t) for t ≥ 1

2 .

Let C(R) be the space of continuous functions defined over the compact set R.
Each function HP belongs to C(R). Consider the set

H = {HP : P is a bounded experiment} ⊆ C(R).

By Lemma 6, if HP = HQ then D(P0, P1) = D(Q0, Q1). Thus there exists a map
F : H → R such that D(P0, P1) = F (HP ).

By Lemma 6 the functional F is monotone. It is moreover additive: Given two
experiments P and Q, the additivity of D and the additivity of P 7→ HP imply

F (HP ) + F (HQ) = D(P0, P1) +D(Q0, Q1)

= D(P0 ×Q0, P1 ×Q1)

= F (HP⊗Q)

= F (HP +HQ).

Next, we define coneQ(H) = {∑n
i=1 αiHP i : αi ∈ Q+, P

i is a bounded experiment}
to be the rational cone generated by H, where coefficients (αi) are positive rational
numbers. Similarly define

cone(H) =
{

n∑
i=1

αiHP i : αi ∈ R+, P
i is a bounded experiment

}

to be the cone generated by H, where coefficients can be all positive numbers. Below
we extend the functional F from H to coneQ(H) and then to cone(H).

Because P 7→ HP is additive, H is itself closed under addition. This implies

coneQ(H) =
⋃
n≥1

1
n
H.

Define G : coneQ(H)→ R as G( 1
n
HP ) = 1

n
F (HP ). The functional G is well-defined: If

1
n
HP = 1

m
HQ then HP⊗m = mHP = nHQ = HQ⊗n , which implies mF (HP ) = nF (HQ)

by the additivity of F . Similarly, G inherits the monotonicity and additivity of F on
the larger domain coneQ(H).
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We now show G is a Lipschitz functional, where we endow the space C(R) with
the sup norm. Let S0 be a nontrivial experiment, so that HS0(t) is positive and in
fact bounded away from 0 for every t. By letting S = S⊗k0 for large k, we obtain that
HS(t) > 1 for every t. Given two functions f, f̂ ∈ coneQ(H), we have the pointwise
comparison

f(t) ≤ f̂(t) + ‖f − f̂‖ ×HS(t).

Let r > ‖f − f̂‖ be a rational number. The additivity and the monotonicity of G
imply

G(f) ≤ G(f̂ + rHS) = G(f̂) + rG(HS).

Symmetrically G(f̂) ≤ G(f+rHS) = G(f)+rG(HS), so that |G(f)−G(f̂)| ≤ rG(HS).
By taking the limit r → ‖f − f̂‖ we obtain that G is Lipschitz with Lipschitz constant
G(HS) <∞, i.e.

|G(f)−G(f̂)| ≤ ‖f − f̂‖ ·G(HS).

Thus G can be extended to a Lipschitz functional G defined on the closure of
coneQ(H), which contains cone(H).

We now verify that G is still monotone on cone(H). Let f ≥ f̂ be two functions
in cone(H), and take any two sequences { 1

pn
HPn} and { 1

qn
HQn} in coneQ(H) that

converge to f and f̂ as n → ∞. For any positive integer m, convergence in the
sup-norm implies 1

pn
HPn ≥ f − 1

2mHS for all large n, where S is the experiment
with HS > 1 everywhere. Similarly 1

qn
HQn ≤ f̂ + 1

2mHS. Since f ≥ f̂ , we thus
have 1

pn
HPn ≥ 1

qn
HQn − 1

m
HS for all large n. By monotonicity and additivity of G,

G( 1
pn
HPn) ≥ G( 1

qn
HQn)− 1

m
G(HS), which implies G(f) ≥ G(f̂)− 1

m
G(HS) by taking

n→∞. As m is arbitrary, we have shown that G is monotonic.
We show G is additive and satisfies G(af + bf̂) = aG(f) + bG(f̂) for any functions

f, f̂ ∈ cone(H) and a, b ∈ R+. To show this, first suppose a, b are rational numbers.
Consider { 1

pn
HPn} → f and { 1

qn
HQn} → f̂ as above, where f need not be bigger than

f̂ . Then the sequence of functions { a
pn
HPn + b

qn
HQn} ∈ coneQ(H) converges to af + bf̂ .

It follows that

G(af + bf̂) = lim
n→∞

G( a
pn
HPn + b

qn
HQn)

= a · lim
n→∞

G( 1
pn
HPn) + b · lim

n→∞
G( 1
qn
HQn) = a ·G(f) + b ·G(f̂).
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If a, b are real numbers, we can deduce the same result by the Lipschitz property of G.

Consider next V = cone(H)− cone(H), which is vector subspace of C(R). G can
be further extended to a functional I : V → R, defined as

I(M1 −M2) = G(M1)−G(M2)

for all M1,M2 ∈ cone(H). The functional I is well defined and linear because G is
affine. Moreover, by monotonicity of G, I(f) ≥ 0 for any non-negative function f ∈ V .

The following theorem, a generalization of the Hahn-Banach Theorem (see, e.g.,
Theorem 8.32 in Aliprantis and Border, 2006), shows that I can be further extended
to a positive linear functional on the entire space C(R):

Theorem 5 (Kantorovich (1937)). Let V be a vector subspace of C(R) with the
property that for every f ∈ C(R) there exists a function g ∈ V such that g ≥ f . Then
every positive linear functional on V extends to a positive linear functional on C(R).

The “majorization” condition g ≥ f is satisfied because every function in C(R) is
bounded by some n, and V contains the function nHS which takes values greater than
n everywhere.

To summarize, we have obtained a positive linear functional J defined on C(R)
that extends the original functional F (HP ) = D(P0, P1). By the Riesz Representation
Theorem for positive linear functionals over spaces of continuous functions on compact
sets, we conclude that J(f) =

∫
R f(t) dm(t) for some finite measure m. Hence

D(P0, P1) = F (HP ) = J(HP ) is an integral of the Rényi divergences of P , completing
the proof of Theorem 2.

I Necessity of the Genericity Assumption

Here we present examples to show that Theorem 1 does not hold without the genericity
assumption.

Consider the experiments P and Q described in Example 2 in §3.1. Fix α = 1
4 and

β = 1
16 , which satisfy (25). Then by Proposition 2, P dominates Q in large samples.

We will perturb these two experiments by adding another signal realization (to each
experiment) which strongly indicates the true state is 1. The perturbed conditional
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probabilities are given below:

P̃ :
θ x0 x1 x2 x3

0 ε 1
16

1
2

7
16 − ε

1 100ε 7
16

1
2

1
16 − 100ε

Q̃ :
θ y0 y1 y2

0 ε 1
4

3
4 − ε

1 100ε 3
4

1
4 − 100ε

If ε is a small positive number, then by continuity P̃ still dominates Q̃ in the Rényi
order. Nonetheless, we show below that P̃⊗n does not Blackwell dominate Q̃⊗n for
any n and ε > 0.

To do this, let p := 100n−1

100n−1+1 be a threshold belief. We will show that a decision
maker whose indirect utility function is (p− p)+ strictly prefers Q̃⊗n to P̃⊗n. Indeed,
it suffices to focus on posterior beliefs p > p; that is, the likelihood ratio should exceed
100n−1. Under Q̃⊗n, this can only happen if every signal realization is y0, or all but
one signal is y0 and the remaining one is y1. Thus, in the range p > p, the posterior
belief has the following distribution under Q̃⊗n:

p =


100n

100n+1 w.p. 1
2(100n + 1)εn

3·100n−1

3·100n−1+1 w.p. n
8 (3 · 100n−1 + 1)εn−1

Similarly, under P̃⊗n the relevant posterior distribution is

p =


100n

100n+1 w.p. 1
2(100n + 1)εn

7·100n−1

7·100n−1+1 w.p. n
32(7 · 100n−1 + 1)εn−1

Recall that the indirect utility function is (p− p)+. So Q̃⊗n yields higher expected
payoff than P̃⊗n if and only if

n

8 (3·100n−1+1)εn−1·
(

3 · 100n−1

3 · 100n−1 + 1 − p
)
>

n

32(7·100n−1+1)εn−1·
(

7 · 100n−1

7 · 100n−1 + 1 − p
)
.

That is,

4(3·100n−1+1)·
(

3 · 100n−1

3 · 100n−1 + 1 −
100n−1

100n−1 + 1

)
> (7·100n−1+1)·

(
7 · 100n−1

7 · 100n−1 + 1 −
100n−1

100n−1 + 1

)
.

The LHS is computed to be 8·100n−1

100n−1+1 , while the RHS is 6·100n−1

100n−1+1 . Hence the above
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inequality holds, and it follows that P̃⊗n does not Blackwell dominate Q̃⊗n.

J Generalization to Unbounded Experiments

In this section we present two generalizations of Theorem 1 to experiments that may
have unbounded likelihood ratios. Note that the Rényi divergences for an unbounded
experiment can still be defined by (3), (4) and (5), so long as we allow these divergences
to take the value +∞.

The first result shows that Theorem 1 hold without change so long as the dominated
experiment Q is bounded.

Theorem 6. For a generic pair of experiments P and Q where Q is bounded, the
following are equivalent:

(i). P dominates Q in large samples.

(ii). P dominates Q in the Rényi order.

To interpret the statement, “generic” means (as in the main text) that log dP1
dP0

has
different essential maximum and minimum from log dQ1

dQ0
. In the current setting P

may be unbounded, so that its log-likelihood ratio may have essential maximum +∞
and/or minimum −∞. In those cases the the genericity assumption is automatically
satisfied.

We also reiterate that dominance in the Rényi order means the Rényi divergences
of P and Q are ranked as Rθ

P (t) > Rθ
Q(t) for all t > 0 and θ ∈ {0, 1}. Since Q is by

assumption bounded, Rθ
Q(t) is always finite. Thus the requirement in (ii) is that Rθ

P (t)
is either a bigger finite number, or it is +∞.

Our second result in this section deals with pairs of experiments where both P
and Q may be unbounded, but they still have finite Rényi divergences. To state the
result, we need to generalize the notion of genericity as follows: Say P and Q form a
generic pair, if for both θ = 0 and θ = 1,

lim inf
t→∞

|Rθ
P (t)−Rθ

Q(t)| > 0. (29)

Note that when P and Q are bounded, Rθ
P (t) → max[Xθ] and Rθ

Q(t) → max[Y θ]
as t → ∞. So in this special case the genericity assumption reduces to the one we
introduced in the main text.
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The following result shows that under one extra assumption, Theorem 1 once again
extends.

Theorem 7. Suppose P and Q are a generic pair of (possibly unbounded) experiments
with finite Rényi divergences. Let (Xθ), (Y θ) be the corresponding log-likelihood ratios,
and suppose further that their cumulant generating functions satisfy supt∈RK ′′Xθ(t) <∞
and supt∈RK ′′Y θ(t) <∞.26 Then the following are equivalent:

(i). P dominates Q in large samples.

(ii). P dominates Q in the Rényi order.

We note that if a random variable X is bounded between −b and b, then its Rényi
divergences are finite, and K ′′X(t) ≤ b2 for every t.27 Thus Theorem 7 is another strict
generalization of Theorem 1 beyond bounded experiments.

More generally, the following is a sufficient condition for Theorem 7 to apply.
Roughly speaking, we require the log-likelihood ratios Xθ, Y θ to have tails decaying
faster than some Gaussian distribution.

Lemma 7. Let X be a random variable whose distribution admits a density h(x) that
is positive and twice continuously differentiable. Suppose there exists ε > 0 and M > 0
such that the following holds:

∂2 log h(x)
∂x2 ≤ −ε for all |x| > M.

Then the cumulant generating function KX(t) is finite for every t, and supt∈RK ′′X(t) <
∞.

Note that ∂2 log h(x)
∂x2 ≤ −ε implies the standard assumption that the density h is

(strictly) log-concave. The requirement that the same ε works for all large x makes our
assumption stronger, and in particular rules out densities such as h1(x) = c1 · e−λ1|x| or
h2(x) = c2 · e−λ2|x|1.99 .28 Nonetheless, any Gaussian density h satisfies the assumption

26Since KX0(t) = KX1(−1 − t), it suffices to check the assumptions supt∈RK ′′Xθ(t) < ∞ and
supt∈RK ′′Y θ (t) <∞ for one of the two states.

27The latter follows by showing K ′′X(t) to be the variance of some random variable X̂ that shares
the same support as X. See Proposition 6 and its proof.

28It is easy to see that the random variable with density h1(x) does not have finite Rényi divergences
everywhere. It can also be shown that the random variable with density h2(x) has a cumulant
generating function with K ′′X(t)→∞ as t→∞. Thus, it seems difficult to substantially weaken the
condition in Lemma 7 while maintaining the same result.
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regardless of how big the variance is, and so does any other density that decays faster
at infinity. Hence Theorem 7 is applicable to a broad class of unbounded experiments.

Below we prove Theorem 6, Theorem 7 and Lemma 7 in turn.

J.1 Proof of Theorem 6

That (i) implies (ii) follows from the same argument as in §5.1. To prove (ii) implies
(i), the idea is to garble P into a bounded experiment P̃ that still has higher Rényi
divergences than Q. By Theorem 1, P̃⊗n Blackwell dominates Q⊗n for all large n.
But since P Blackwell dominates P̃ , P⊗n also Blackwell dominates P̃⊗n. Therefore,
by transitivity, we would be able to conclude that P⊗n Blackwell dominates Q⊗n for
all large n.

To construct such a P̃ , we first note that by taking t → ∞, R1
P (t) > R1

Q(t)
implies max[X1] ≥ max[Y 1] where X1 and Y 1 are the log-likelihood ratios. Similarly
max[X0] ≥ max[Y 0]. By the genericity assumption, both comparisons are in fact
strict. We can thus find a pair of positive numbers b1 ∈ (max[Y 1],max[X1]) and
b0 ∈ (max[Y 0],max[X0]) = (−min[Y 1],−min[X1]). These numbers will be fixed
throughout.

Now take any positive number B ≥ max{b1, b0}. We construct a garbling of P ,
denoted PB, as follows: All signal realizations under P that induce a log-likelihood
ratio log dP1

dP0
greater than B (if any) are garbled into a single signal s, and similarly

all realizations with log-likelihood ratio less than −B are garbled into another signal
s. The remaining signal realizations under P (with log-likelihood ratio in [−B,B])
are unchanged under PB. It is easy to see that not only is PB a garbling of P , but
more generally PB is a garbling of PB′ whenever B′ > B. Thus, as B increases, the
experiment PB becomes more informative in the Blackwell sense.

Let Rθ
PB

(t) denote the Rényi divergences of PB. Since the Rényi order extends the
Blackwell order, we know that as B increases, Rθ

PB
(t) also increases for each θ and t,

with an upper bound of Rθ
P (t). In fact, we can show that for fixed θ and t,

lim
B→∞

Rθ
PB

(t) = Rθ
P (t).

The proof is technical and deferred to later. Assuming this, we next show that for
sufficiently large B, Rθ

PB
(t) > Rθ

Q(t) holds for all t ≥ 1/2 (thus for all t > 0, by (6)).
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This will prove PB as the desired garbling P̃ that dominates Q in the Rényi order,
which will complete the proof of the theorem.29

To this end, fix θ = 1, and define for each B a set

TB = {t ≥ 1/2 : R1
PB

(t) ≤ R1
Q(t)}.

By continuity of the Rényi divergences, TB is a closed set. Moreover, as t→∞ we
have R1

PB
(t) → max[X1

B], where X1
B is the log-likelihood ratio of state 1 to state 0,

distributed under the experiment PB and true state 1. By the assumption B ≥ b1 and
the construction of PB, we have that

P[X1
B ≥ b1] = P[X1 ≥ b1],

which is positive because b1 < max[X1]. Thus max[X1
B] ≥ b1. It follows that

lim
t→∞

R1
PB

(t) ≥ b1 > max[Y 1] = lim
t→∞

R1
Q(t).

Hence R1
PB

(t) > R1
Q(t) for all large t and TB is a bounded set.

We have shown that each TB is compact set. Note also that because R1
PB

(t)
increases in B, the set TB shrinks as B increases. Therefore, by the finite intersection
property, either there exists some t that belongs to every TB, or TB is the empty set
for all large B. The former is impossible because R1

PB
(t) ≤ R1

Q(t) for all B would
imply R1

P (t) ≤ R1
Q(t) in the limit, contradicting the assumption in (ii).

We thus conclude that TB must be empty for all large B. In other words, when
B is large R1

PB
(t) > R1

Q(t) holds for all t ≥ 1
2 . A symmetric argument shows that

R0
PB

(t) > R0
Q(t) holds for all t ≥ 1

2 , completing the proof.

It remains to show limB→∞R
θ
PB

(t) = Rθ
P (t). We again fix θ = 1 for easier

exposition. Consider the following three cases:

Case 1: t > 1. We recall that R1
PB

(t) = 1
t−1 logE[e(t−1)X1

B ]. So we need to show

lim
B→∞

E[e(t−1)X1
B ] = E[e(t−1)X1 ].

29Note that B ≥ max{b1, b2} ensures PB and Q is a generic pair, so we can apply Theorem 1 to
deduce P⊗nB � Q⊗n for large n. Therefore P⊗n � P⊗nB � Q⊗n.
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Since R1
PB

(t) ≤ R1
P (t) for each B, the LHS above is weakly smaller than the RHS. On

the other hand, by construction X1
B coincides with X1 conditional on being in the

interval [−B,B]. As the exponential function is always positive, we have

E[e(t−1)X1
B ] ≥ P

[
|X1

B| ≤ B
]
· E[e(t−1)X1

B | |X1
B| ≤ B]

= P
[
|X1| ≤ B

]
· E[e(t−1)X1 | |X1| ≤ B].

Taking the limit as B →∞, we obtain limB→∞ E[e(t−1)X1
B ] ≥ E[e(t−1)X1 ], which proves

they are equal.

Case 2: t = 1. Here we have R1
PB

(1) = E[X1
B]. So we need to show

lim
B→∞

E[X1
B] = E[X1].

Once again we already know the LHS is weakly smaller, so it suffices to show the
opposite inequality. By construction, X1

B coincides with X1 on the interval [−B,B].
Other than this part, there is probability P[X1 > B] that signal s occurs under the
experiment PB; when this happens we also have X1

B > B, which contributes a positive
amount to E[X1

B].
With remaining probability P[X1 < −B], the signal s occurs, and the induced log-

likelihood ratio X1
B is at least logP[X1 < −B] (since this event occurs with probability

at most one under state 0). Here the contribution to E[X1
B] can be negative, but is no

less than P[X1 < −B] · logP[X1 < −B].
Summarizing, for each B we have

E[X1
B] ≥ P

[
|X1| ≤ B

]
· E[X1 | |X1| ≤ B] + P[X1 < −B] · logP[X1 < −B].

Taking the limit as B →∞, the first summand on the RHS converges to E[X1]. In
addition, the second summand vanishes because P[X1 < −B]→ 0 and limx→0 x log x =
0. We thus obtain limB→∞ E[X1

B] ≥ E[X1] as desired.

Case 3: t ∈ (0, 1). In this case we will again show

lim
B→∞

E[e(t−1)X1
B ] = E[e(t−1)X1 ].

56



Since R1
PB

(t) ≤ R1
P (t), and R1

PB
(t) = 1

t−1 logE[e(t−1)X1
B ], the negative factor 1

t−1 implies
that the LHS above is now weakly bigger than the RHS.

To prove it is smaller, we proceed as in Case 2. With probability P[X1 > B] the
signal s occurs, and the induced log-likelihood ratio X1

B is at least logP[X1 > B]. As
t− 1 is negative here, the contribution of this part to E[e(t−1)X1

B ] is at most

P[X1 > B] · E[e(t−1) log P[X1>B]] = (P[X1 > B])t.

Similarly the contribution of the signal s is at most (P[X1 < −B])t. We thus have

E[e(t−1)X1
B ] ≤ P

[
|X1| ≤ B

]
·E[e(t−1)X1 | |X1| ≤ B] + (P[X1 > B])t + (P[X1 < −B])t.

As B →∞, both (P[X1 > B])t and (P[X1 < −B])t vanish since t > 0. We therefore
conclude limB→∞ E[e(t−1)X1

B ] ≤ E[e(t−1)X1 ], completing the whole proof.

J.2 Proof of Theorem 7

We only need to prove (ii) implies (i). Here we will follow the arguments in §5.6 and
make necessary modifications. Since Lemma 1 remains valid, it suffices to prove (22),
i.e.,

P
[
X1

1 + · · ·+X1
n ≤ na

]
≤ P

[
Y 1

1 + · · ·+ Y 1
n ≤ na

]
, for all a ≥ 0.

The analysis of the four cases in §5.6 relies on Lemma 2 and Proposition 5. We will
show later that Lemma 2 continues to hold even if P and Q are unbounded (but have
finite Rényi divergences). On the other hand, Proposition 5 cannot hold as stated,
but we do have the following modified version where b2 is replaced by supt∈RK ′′X(t):

Proposition 6. Let X and Y be random variables with finite cumulant generating
functions KX(t) and KY (t). Further let X1, . . . , Xn, Y1, . . . , Yn be i.i.d. copies of X
and Y respectively. Suppose a ≥ E[Y ], and η > 0 satisfies K∗Y (a) − η > K∗X(a + η).
Then for all n ≥ 4(1 + η)η−3 · supt∈RK ′′X(t), it holds that

P [X1 + · · ·+Xn > na] ≥ P [Y1 + · · ·+ Yn > na].

Using Lemma 2 and Proposition 6, we can replicate the results in Cases 1, 2
and 4 in §5.6. Specifically, let M = max{supt∈RK ′′X1(t), supt∈RK ′′Y 1(t)}, then for all
n ≥ 4M(1 + η)η−3 the inequality P [X1

1 + · · ·+X1
n ≤ na] ≤ P [Y 1

1 + · · ·+ Y 1
n ≤ na]
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holds for values of a outside of the interval (E[Y ] + η,E[X]− η) in Case 3.
Turning to a ∈ (E[Y ] + η,E[X]− η), we can still use the Chebyshev inequality to

deduce
P
[
X1

1 + · · ·+X1
n ≤ na

]
≤ Var[X1]

nη2 = K ′′X1(0)
nη2 ≤ M

nη2 .

Similarly we also have

P
[
Y 1

1 + · · ·+ Y 1
n ≤ na

]
≥ 1− Var[Y 1]

nη2 ≥ 1− M

nη2 .

Thus P [X1
1 + · · ·+X1

n ≤ na] ≤ P [Y 1
1 + · · ·+ Y 1

n ≤ na] holds for all n ≥ 2Mη−2, and
hence for all n ≥ 4M(1 + η)η−3. This then implies that P⊗n Blackwell dominates Q⊗n

for all n ≥ 4M(1 + η)η−3.
Below we supply the proofs for Lemma 2 (for unbounded experiments) and Propo-

sition 6.

Proof of Lemma 2 for unbounded experiments. We note that the second part K∗Y θ(a−
η) < K∗Xθ(a) − η continues to hold. This is because, by the same argument as in
the case of bounded experiments, K∗Y θ(a) < K∗Xθ(a) holds for all a in the compact
interval [0,E[Y θ]]. Thus by (uniform) continuity, we can “squeeze in” a small positive
η without changing the inequality.

The first part of Lemma 2 also holds so long as max[Y θ] is finite, in which case
the range of a under consideration is again compact. If instead max[Y θ] = ∞, we
use a new argument that takes advantage of the genericity assumption. Note that
by assumption, Rθ

P (t)−Rθ
Q(t) is positive for each θ and t. Given this, the genericity

assumption (29) further implies this difference is bounded away from zero as t→∞.
That is, there exists small ε > 0 and large T > 1 such that

Rθ
P (t)−Rθ

Q(t) > ε for all θ ∈ {0, 1}, t > T.

Since Kθ
X(t) = tRθ

P (t+ 1), we deduce

Kθ
X(t)−Kθ

Y (t) > εt >
ε

2(t+ 1) for all θ ∈ {0, 1}, t > T. (30)

We can now prove the first part of Lemma 2. Define δ > 0 by K ′Xθ(T ) = E[Xθ] + δ.
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The original proof of Lemma 2 yields that for all sufficiently small η > 0,

K∗Y θ(a)− η > K∗Xθ(a+ η) holds for E[Xθ]− η ≤ a ≤ E[Xθ] + δ.

Note that E[Xθ] + δ is finite, so the range of a considered above is compact, enabling
us to use the original argument. We claim that by choosing η < ε/2, where ε is defined
earlier, the same inequality holds even if a is bigger than E[Xθ] + δ. For this define t̂
by K ′Xθ(t̂) = a+ η, then t̂ > T by the convexity of KX . Therefore, by (30),

K∗Xθ(a+ η) = t̂(a+ η)−KXθ(t̂)

< t̂(a+ η)−KY θ(t̂)−
ε

2(t̂+ 1)

< t̂(a+ η)−KY θ(t̂)− η(t̂+ 1)

= t̂a−KY θ(t̂)− η

≤ K∗Y θ(a)− η.

This completes the proof of Lemma 2 for unbounded experiments.

Proof of Proposition 6. Following the original proof of Proposition 5, we just need to
show a modified version of Lemma 3 (with supt∈RK ′′X(t) replacing b2):

P [X1 + · · ·+Xn > na] ≥ e−n·K∗X(a+η)
(

1− 4 · supt∈RK ′′X(t)
nη2

)
.

This follows the same proof as in §A, except that in applying the Chebyshev inequality,
we now use

Var[Ŝn] = nVar[X̂] = n ·K ′′X(t) ≤ n · sup
t̂∈R

K ′′X(t̂)

instead of Var[Ŝn] ≤ nb2. The key equality Var[X̂] = K ′′X(t) holds because

Var[X̂] = E[X̂2]− E[X̂]2 = E[X2etX ]
E[etX ] −

(
E[XetX ]
E[etX ]

)2

= K ′′X(t).

Hence the result.
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J.3 Proof of Lemma 7

We first prove KX is everywhere finite, i.e., logE[etX ] is finite for every t. Using the
density h(x), we can write

E[etX ] =
∫ ∞
−∞

h(x)etx dx =
∫ ∞
−∞

etx+l(x) dx,

where we define `(x) = log h(x). Since by assumption `′′(x) ≤ −ε for |x| > M , it is
easy to show `(x) ≤ − ε

4x
2 as |x| → ∞. Hence the above integral is finite.

To prove K ′′X is bounded, we begin with the formula

K ′′X(t) = E[X2etX ] · E[etX ]− E[XetX ]2
E[etX ]2 .

Let X1, X2 be i.i.d. copies of X. Then the denominator above is E[etX1 ] · E[etX2 ] =
E[et(X1+X2)]. The numerator can be rewritten as

E[X2
1 etX1 ] · E[etX2 ]− E[X1etX1 ] · E[X2etX2 ]

=E[(X2
1 −X1X2) · et(X1+X2)]

=E[X
2
1 −X1X2 +X2

2 −X1X2

2 · et(X1+X2)]

=E[ (X1 −X2)2

2 · et(X1+X2)],

where the penultimate step uses the symmetry between X1 and X2. Define

D(s) = E[(X1 −X2)2 | X1 +X2 = s].

Then we have shown that

K ′′X(t) =
1
2E[D(X1 +X2) · et(X1+X2)]

E[et(X1+X2)] .

Thus, in order to show K ′′X is bounded, it suffices to show D(s) is bounded as s varies.

Recall that by assumption `′′(x) ≤ −ε for |x| > M . We will show (with proof
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deferred to later) there exists S > 2M , such that

`′(x)− `′(s− x) ≤ − ε2(2x− s) for all s > S, x >
s

2 . (31)

Note that (31) in particular implies `′(x)− `′(s−x) ≤ −1 for x > s
2 +C, with C = ε−1.

Given this, we can show D(s) is bounded.
Without loss consider s ≥ 0. We use the density h(x) to write

D(s) =
∫∞
−∞ h(x)h(s− x)(2x− s)2 dx∫∞

−∞ h(x)h(s− x) dx =
∫∞
s/2 h(x)h(s− x)(2x− s)2 dx∫∞

s/2 h(x)h(s− x) dx (32)

Since D(s) is continuous, it suffices to prove it is bounded when s > S, where S is
given earlier. We now break the integral in (32) into two parts, with cutoff s/2 + 2C:

D(s) =
∫ s/2+2C
s/2 h(x)h(s− x)(2x− s)2 dx∫∞

s/2 h(x)h(s− x) dx +
∫∞
s/2+2C h(x)h(s− x)(2x− s)2 dx∫∞

s/2 h(x)h(s− x) dx .

The first term is bounded by 16C2, which is the maximum value of (2x − s)2 for
x ∈ [s/2, s/2 + 2C]. To bound the second term, we rewrite it as

∫ ∞
s/2+2C

el(x)+l(s−x)∫∞
s/2 el(y)+l(s−y) dy · (2x− s)

2 dx. (33)

As l′(y)− l′(s−y) ≤ −1 for y ≥ s/2+C, we have l(y)+ l(s−y) ≥ x−y+ l(x)+ l(s−x)
for all x ≥ y ≥ s/2 + C. Thus
∫ ∞
s/2

el(y)+l(s−y) dy ≥
∫ x

s/2+C
el(y)+l(s−y) dy ≥

∫ x

s/2+C
ex−y+l(x)+l(s−x) dy = (ex−s/2−C−1)el(x)+l(s−x).

Plugging back into (33), the second term contributing to D(s) is bounded above by
∫ ∞
s/2+2C

1
ex−s/2−C − 1 · (2x− s)

2 dx =
∫ ∞
C

1
eu − 1 · (2u+ 2C)2 du,

where we used change of variable from x to u = x− s/2−C. Since the RHS is a finite
constant independent of s, we conclude that D(s) is bounded even as s→∞.

It remains to prove (31). We write the difference on the LHS as
∫ x
s−x `

′′(u) du. If
s− x > M , the result follows from the fact that `′′(u) ≤ −ε ≤ − ε

2 for every u in the
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range of integration. Suppose instead that s− x ≤M , thus x ≥ s−M . In this case
because `′′(u) can only be positive for u ∈ [−M,M ], we have

∫ x

s−x
`′′(u) du ≤ −ε(2x− s− 2M) +

∫ M

−M
|`′′(u)| du

=− ε(x− s/2)− ε(x− s/2− 2M) +
∫ M

−M
|`′′(u)| du

≤ −ε(x− s/2)− ε(s/2− 3M) +
∫ M

−M
|`′′(u)| du

≤ −ε(x− s/2).

The penultimate inequality uses x ≥ s−M , whereas the last inequality holds when s
is sufficiently large (since

∫M
−M |`′′(u)| du is finite by the assumption that h is positive

and twice continuously differentiable). This completes the proof.

K Necessary Condition for Large Sample Dominance with
Many States

In this section we show that the Rényi order can be generalized to more than two
states to yield a general necessary condition for large sample dominance. Consider
k + 1 states θ ∈ {0, 1, . . . , k} and two experiments P = (Ω, (Pθ)), Q = (Ξ, (Qθ))
revealing information about these states. Conditioning on θ = 0, we consider the
moment generating function of the log-likelihood ratio vector (dP0

dP1
, . . . , dP0

dPk
), given by

MX0(t) =
∫

Ω
e
∑k

j=1 tj log dP0(ω)
dPj(ω) dP0(ω) (34)

with t = (t1, . . . , tk) ∈ Rk. Similarly define MY 0(t) for the experiment Q.
By the same argument as in §5.1 (see the derivation of (8)), MX0(t) would be the

ex-ante expected payoff from observing P , in a decision problem with uniform prior
and indirect utility function

v(p) = (k + 1)p1+t1+···+tk
0 · p−t11 · · · p−tkk ,

where p = (p0, p1, . . . , pk) represents the belief about the k + 1 states. If the function
v(p) were convex in p, then it is indeed an indirect utility function. Blackwell dominance
of P over Q then requires MX0(t) ≥MY 0(t). Since the moment generating function
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is raised to the n-th power when n i.i.d. samples are drawn, we would be able to
conclude that MX0(t) ≥MY 0(t) also has to hold if P dominates Q in large samples.
If instead v(p) were concave, then −v(p) is an indirect utility function, leading to the
reverse ranking between the moment generating functions.

We can characterize those parameters t = (t1, . . . , tk) that make the function v(p)
globally convex/concave. To make the result easy to state, we make the variables
symmetric and consider a function of the form

v(p) = (k + 1)pα0
0 · pα1

1 · · · p
αk
k

with α0 + α1 + · · ·+ αk = 1.

Lemma 8. Consider the function v(p) defined above, over the domain p ∈ int(∆k).
Suppose α0 + α1 + · · · + αk = 1 and α0 > 0. Then v(p) is convex in p if and
only if α1, . . . , αk are all non-positive. Conversely, v(p) is concave in p if and only
if α1, . . . , αk are non-negative. Moreover, the convexity/concavity is strict when
α1, . . . , αk are strictly negative/positive.

The proof of this lemma is deferred to the end of the section. Note that unlike the
case of two states, there are situations where v(p) is neither convex nor concave.

By rewriting αj = −tj for 1 ≤ j ≤ k, we obtain the following necessary condition
for Blackwell dominance in large samples. Say the experiments P and Q form a
generic pair, if for every pair of states i 6= j, the maximum and minimum of log dPi

dPj
differ from those of log dQi

dQj .

Proposition 7. Suppose P and Q are a generic pair of bounded experiments for k+ 1
states. If P Blackwell dominates Q in large samples, then the following conditions
hold:30

(i). For all t ∈ Rk
+\{0}, MX0(t) > MY 0(t) and symmetrically MXi(t) > MY i(t) if

we define the moment generating functions for true state i analogously to (34);

(ii). For all t ∈ Rk
−\{0} such that ∑k

j=1 tj > −1, MX0(t) < MY 0(t) and symmetrically
MXi(t) < MY i(t) for 1 ≤ i ≤ k;

30We exclude t = {0} from the conditions because MX(0) = MY (0) = 1 always holds.
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(iii). For every pair of states i 6= j, the Kullback-Leibler divergence between Pi and Pj
exceeds the divergence between Qi and Qj:

∫
Ω

log dPi(ω)
dPj(ω) dPi(ω) >

∫
Ξ

log dQi(ξ)
dQj(ξ)

dQi(ξ).

To understand Proposition 7, note from (34) that when tj are all positive, a bigger
value of MX0(t) indicates higher likelihood ratios dP0

dPj between state 0 and every other
state j, when state 0 is the true state. It is intuitive that in this case MX0(t) > MY 0(t)
corresponds to P being (on average) a more informative experiment than Q.31 This
is the content of part (i), which generalizes the comparison of Rényi divergences
Rθ
P (t) > Rθ

Q(t) in the two state case, for t > 1.
Conversely, part (ii) says that when tj are all negative (subject to the extra condition∑

j tj > −1), informativeness is captured by the reverse ranking MX0(t) < MY 0(t). In
this case, the smaller value of MX0(t) actually indicates higher likelihood ratios dP0

dPj
under true state 0. This part generalizes the comparison Rθ

P (t) > Rθ
Q(t) for t ∈ (0, 1).

Finally, part (iii) directly imposes the Rényi comparison Rθ
P (1) > Rθ

Q(1) when it
is applied to every pair of states.

We conjecture that the set of necessary conditions identified in Proposition 7
are also sufficient for large sample Blackwell dominance; see §6 for discussion of the
difficulties.

Below we supply the proof of Lemma 8:

Proof of Lemma 8. The Hessian matrix of v(·) at p is computed as

Hessv(p) = v(p)×


α0(α0−1)

p2
0

α0α1
p0p1

. . .
α0α1
p0p1

α1(α1−1)
p2

1
. . .

. . . . . . . . .

 .
31To prove the strict inequality MX0(t) > MY 0(t), suppose that t1, . . . , tl are positive whereas

tl+1, . . . , tk are zero, for some 1 ≤ l ≤ k. Let P̃ = (Ω, (P0, . . . , Pl)) be the restriction of the experiment
P to the first l + 1 states; similarly define Q̃. Then P⊗n � Q⊗n implies P̃⊗n � Q̃⊗n, which must in
fact be a strict comparison by the genericity assumption. Therefore, as the indirect utility function
ṽ(p0, . . . , pl) = (k + 1)p1+t1+···+tl

0 · p−t11 · · · p−tlk is strictly convex on the smaller belief space ∆l

(Lemma 8), the ex-ante expected payoff MX0(t) must be strictly higher than MY 0(t).
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For any direction (x0, x1, . . . , xk), the directional second derivative of v(·) at p is thus

(x0, x1, . . . )·


α0(α0−1)

p2
0

α0α1
p0p1

. . .
α0α1
p0p1

α1(α1−1)
p2

1
. . .

. . . . . . . . .

·

x0

x1

. . .

 =
(

k∑
i=0

αixi
pi

)2

−
k∑
i=0

αix
2
i

p2
i

, (35)

where for simplicity we have ignored the positive factor v(p) as it does not affect the
sign.

We first use this to show that if α1 > 0 (or any αj > 0), then the function v(p) is
not convex for p ∈ int(∆k). Indeed, consider the direction (1,−1, 0, 0, . . . , 0), which
maintains p ∈ int(∆k). The directional second derivative can be computed as

α0(α0 − 1)
p2

0
− 2α0α1

p0p1
+ α1(α1 − 1)

p2
1

.

Suppose p0 = α0x, p1 = α1x for some small positive number x, and p2, p3, . . . are
arbitrary. Then the above second derivative simplifies to − (α0+α1)

α0α1x2 < 0. Thus v(p) is
not convex along this direction.

Suppose instead α1, . . . , αk ≤ 0, we will show v(p) is convex. For this it suffices to
show the RHS of (35) is non-negative. Indeed, by the Cauchy-Schwartz inequality,

( k∑
i=0

αixi
pi

)2

+ −α1x
2
1

p2
1

+ · · ·+ −αkx
2
k

p2
k

 · (1 + (−α1) + · · ·+ (−αk))

≥
(

k∑
i=0

αixi
pi

+ −α1x1

p1
+ · · ·+ −αkxk

pk

)2

=
(
α0x0

p0

)2

.

Using α0 +α1 + · · ·+αk = 1 to simplify, this exactly implies
(∑k

i=0
αixi
pi

)2
≥ ∑k

i=0
αix

2
i

p2
i

as desired. In fact, v(p) is convex for all p� 0, including p ∈ int(∆k).
Moreover, if α1, . . . , αk are strictly negative, then the equality condition of the

Cauchy-Schwartz inequality above requires ∑k
i=0

αixi
pi

= x1
p1

= · · · = xk
pk
, which in

turn implies that x0, x1, . . . , xk have the same sign (under the assumption α0 > 0 >
α1, . . . , αk). Thus, for any direction (x0, x1, . . . , xk) with x0 + x1 + · · · + xk = 0,
the directional second derivative of v is strictly positive. So v is strictly convex for
p ∈ int(∆k).

Next, we will show that if α1 < 0 (or any αj < 0), then the function v(p) is not
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concave for p ∈ int(∆k). For this we again consider the second derivative along the
direction (1,−1, 0, 0, . . . , 0), which is α0(α0−1)

p2
0
− 2α0α1

p0p1
+ α1(α1−1)

p2
1

. As α1 < 0, we have
α1(α1 − 1) > 0. Thus for p0 close to 1 and p1 close to 0, the above second derivative
is positive and v(p) is not concave along this direction.

Finally, we show that if α1, . . . , αk ≥ 0, then the function v(p) is concave. By the
Cauchy-Schwartz inequality,

(
k∑
i=0

αix
2
i

p2
i

)
·
(

k∑
i=0

αi

)
≥
(

k∑
i=0

αixi
pi

)2

.

Since ∑k
i=0 αi = 1, this implies the RHS of (35) is non-positive. Hence v has non-

positive directional second derivatives and must be globally concave.
Moreover, if α1, . . . , αk are strictly positive, then the equality condition of the

Cauchy-Schwartz inequality requires x0
p0

= x1
p1

= · · · = xk
pk
, which in turn requires

x0, x1, . . . , xk to have the same sign. By the same argument as above, we conclude
that in this case v is strictly concave for p ∈ int(∆k).

L Proof of a Conjecture Regarding Majorization

Jensen (2019) studies the majorization order on finitely supported distributions. Given
two such distributions µ and ν, µ is said to majorize ν if for every n ≥ 1 it holds that
the sum of the largest n probabilities in µ is greater than or equal to the sum of the n
largest probabilities in ν. The Rényi entropy of a distribution µ defined on a finite set
S is given by

Hµ(α) = 1
1− α log

(∑
s∈S

µ(s)α
)
,

for α ∈ [0,∞) \ {1}. As with our definition of Rényi divergences, this definition is
extended to α = 1 by continuity to equal the Shannon entropy, and extended to
α =∞ to equal − log maxs µ(s). Hence Hµ is defined on [0,∞].

Note that Hµ(0) is the size of the support of µ. In his Proposition 3.7, Jensen
shows that if Hµ(α) < Hν(α) for all α ∈ [0,∞] then the n-fold product µ×n majorizes
ν×n.

Commenting on his Proposition 3.7, Jensen writes “The author cautiously conjec-
tures that . . . the requirement of a sharp inequality at 0 could be replaced by a similar
condition regarding the α-Rényi entropies for negative α.”
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To understand this statement in terms of the nomenclature and notation of our
paper, we identify each distribution µ whose support is a finite set S with the
experiment P µ = (S, P1, P0), where P1 = µ and P0 is the uniform distribution on S.
There is a simple connection between the Rényi entropy of µ and the Rényi divergence
of P µ. For α ≥ 0,

Hµ(α) = log |S| −R1
P (α). (36)

As Jensen suggests, Hµ(α) for negative α is also important, as it relates to R0
P . For

α ≤ 0,
Hµ(α) = log |S| − α

1− αR
0
P (1− α), (37)

which extends to α = −∞ to equal − log mins µ(s). Moreover, note that

H ′µ(0) = −R0
P (1) = log |S|+ 1

|S|
∑
s∈S

log µ(s). (38)

As shown by Torgersen (1985, p. 264), when µ and ν have the same support size,
then majorization of ν by µ is equivalent to Blackwell dominance of P µ over P ν . Thus
Jensen’s Proposition 3.7, which assumes that the support sizes are different, has no
implications for Blackwell dominance. However, our result on Blackwell dominance
does have implications for majorization. In particular, the following proposition follows
immediately from the application of Theorem 1 to experiments of the form P µ.

Proposition 8. Let µ, ν be finitely supported distributions with the same support size
(i.e., Hµ(0) = Hν(0)), and such that Hµ(∞) 6= Hν(∞) and Hµ(−∞) 6= Hν(−∞).
Then the following are equivalent:

(i). Hµ(α) < Hν(α) for all α ∈ (0,∞], Hµ(α) > Hν(α) for all α ∈ [−∞, 0) and
H ′µ(0) < H ′ν(0).32

(ii). There exists an n0 such that µ×n majorizes ν×n for every n ≥ n0.

Proof. For notational ease, let P denote P µ and Q denote P ν . The assumption
Hµ(α) < Hν(α) for all α > 0 is equivalent, via (36), to R1

P (t) > R1
Q(t) for all t > 0,

and to R0
P (t) > R0

Q(t) for all t ∈ (0, 1), using R0
P (t) = t

1−tR
1
P (1− t) for 0 < t < 1.

32This last condition is necessary for majorization, but it was not recognized in the original
conjecture of Jensen (2019).
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On the other hand, Hµ(α) > Hν(α) for all α < 0 and H ′µ(0) < H ′ν(0) is equivalent,
via (37) and (38), to R0

P (t) > R0
Q(t) for all t ≥ 1. So (i) is equivalent to P dominating

Q in the Rényi order.
Finally, the assumptions that Hµ(∞) 6= Hν(∞) and Hµ(−∞) 6= Hν(−∞) translate

into maxs µ(s) 6= maxs ν(s) and mins µ(s) 6= mins ν(s), which are in turn equivalent
to requiring that P and Q be a generic pair. Therefore, by Theorem 1, (i) is equivalent
to P⊗n Blackwell dominates Q⊗n for every large n. It follows from Torgersen (1985)
that (i) is equivalent to (ii).
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