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Abstract 
 

This paper studies Structural Vector Autoregressions in which a structural shock of interest (e.g., 

an oil supply shock) is identified using an external instrument. The external instrument is taken 

to be correlated with the target shock (the instrument is relevant) and to be uncorrelated with 

other shocks of the model (the instrument is exogenous). The potential weak correlation between 

the external instrument and the target structural shock compromises the large-sample validity of 

standard inference. We suggest a confidence set for impulse response coefficients that is not 

affected by the instrument strength (i.e., is weak-instrument robust) and asymptotically coincides 

with the standard confidence set when the instrument is strong. 

 

Keywords: Narrative approach, instrumental variables, weak identification, impulse response 
functions 
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1. Introduction 

 

An increasingly important line of research in Structural Vector Autoregressions (SVARs) 

uses information in variables not included in the system to identify dynamic causal effects, 

which in VAR terminology are “structural impulse response functions.” The work of Romer and 

Romer (1989) is a key precursor to this literature. Their reading of the minutes of the Federal 

Reserve Board allowed them to pinpoint dates at which monetary policy decisions were arguably 

exogenous; i.e., independent of other economic shocks at the time. Their work produced a time 

series of binary indicators of monetary policy decisions. A large number of subsequent papers 

have adopted Romer and Romer’s “narrative approach” to construct time series that capture 

exogenous changes affecting the macroeconomy.1  

Most of the papers in this literature have treated these exogenous variables as a time series 

of structural shocks, and estimated their dynamic effects using distributed lag regressions. But 

these external series are not, strictly speaking, the shocks of interest. Rather, they are variables 

plausibly correlated with a particular structural shock, and uncorrelated with others. It seems 

natural, therefore, to treat these exogenous variables as “external instruments”: the 

macroeconometric counterpart of microeconometric instrumental variables constructed using 

quasi-experiments. Stock (2008) makes this point and shows how these external instruments can 

be used to identify structural shocks in SVARs and their impulse response functions.2  Recent 

applications of the external-instrument approach to SVAR identification and estimation include 

                                                
1 Notable examples include unanticipated defense spending shocks (Ramey and Shapiro (1998)), monetary policy 
shocks (Romer and Romer (2004)), oil market shocks (Hamilton (2003) and Kilian (2008)), tax shocks (Romer and 
Romer (2010)), and government spending shocks (Ramey (2011)). In a similar vein, asset price changes measured 
using high frequency data from financial markets have been used to measure exogenous changes attributed to 
monetary policy; important early examples include Rudebusch (1998), Kuttner (2001). See Ramey (2016) for 
additional references and discussion.  
2 Stock (2008) refers to this as the “natural experiment approach” to SVAR identification, but it has subsequently 
become known as the “external instrument approach.” The idea that these exogenous variables can serve as 
instruments goes back at least as far as Romer and Romer (1989) (see the comments by Blanchard and Sims in the 
published discussion) and has been used in distributed lag regressions (e.g., Hamilton (2003)). Stock (2008) is the 
first reference that we are aware of that explicitly incorporates external instruments in SVAR analysis, and that 
framework has been adopted in the subsequent SVAR literature. In some literature this strategy is termed a “proxy 
variable,” but here we use the more common “external instrument” terminology. 
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Stock and Watson (2012), Mertens and Ravn (2013, 2014), Gertler and Karadi (2015), and 

Mertens and Montiel Olea (2018).3 

External instruments impose second moment restrictions that identify SVAR shocks and 

associated impulse response coefficients, variance decompositions, and other objects of interest 

in SVAR analysis. Standard inference about these objects can be carried using linear and 

nonlinear GMM methods; see Mertens and Ravn (2013). However, an important lesson from the 

use of Instrumental Variables (IV) regression in microeconometrics is that standard methods are 

unreliable when instruments are only weakly correlated with the variable of interest. A large 

weak-instrument IV regression literature has developed both diagnostics for weak instruments 

and weak-instrument robust inference procedures. See Stock, Wright, and Yogo (2002) and 

Andrews, Stock, and Sun (2018) for surveys.  

External instruments in macroeconometrics can also be weak. For example, Ramey (2016, 

2019) reports that most macroeconomic shocks used to estimate the effects of fiscal policy in the 

United States (either changes in government spending or in statutory tax rates) have F-statistics 

below 10.4 In this paper we discuss how this potential weakness compromises the validity of 

standard inference in SVARs. Building on methods that have been successfully used in IV 

regression, we propose weak-instrument robust inference methods for impulse response 

coefficients. The primary focus of the paper is on estimating the dynamic effects of single 

structural shock identified by a single external instrument. We discuss extensions to the 

overidentified case briefly in the text and in more detail in Appendix A.3.2. In Appendix A.6 we 

also study the case where m external instruments are correlated with m structural shocks of 

interest.  

The paper is organized as follows. Section 2 lays out the SVAR and shows how an 

external instrument can be used to identify the structural shock of interest, its impulse response 

                                                
3 Much recent empirical work has used local-projection methods (Jordà (2005)) in place of SVARs to estimate 
dynamic causal effects, increasingly using external instruments. This paper focuses on SVARs with external 
instruments. Stock and Watson (2018) surveys the recent Local-Projection (LP-IV) contributions and compares 
SVAR and LP methods. Plagborg-Møller and Wolf (2019) show that that the infinite-lag LP and SVARIV 
estimands coincide. 
4	For instance, in the sample that excludes the Korean War, the F-statistics of some popular government spending 
shocks –Fisher and Peters (2010), Ben Zeev and Pappa (2017), Ramey (2011) – are below 10; see. p. 120, Fig. 4, 
Panel B in Ramey (2016). Also the F-statistics for some popular measures of unanticipated tax shocks are low: 
Ramey (2016) reports that the first-stage regression of tax revenue on the Romer and Romer (2010) shocks is 1.6. If 
the endogenous regressor is the tax rate (and not tax revenue) the F-statistic is 3.2.   
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coefficients, historical effect on the variables in the VAR, and contribution to forecast error 

variances. Section 3 focuses on inference for impulse response coefficients, studying first the 

strong-instrument properties of standard estimators, then the distortions caused by a weak 

instrument. When the instrument is weak, the estimator of the impulse response function is 

biased towards the Cholesky decomposition impulse response function, with the shock of interest 

ordered first. Section 4 then presents a confidence set (based on the classical Fieller (1944) and 

Anderson-Rubin (1949) methods) that retains its validity when the external instrument is weak 

and coincides with the standard confidence interval when the instrument is strong. This section 

briefly discusses several other issues, including diagnostic tests for weak instruments, and the 

extension of the inference methods to allow for multiple instruments.7 Section 5 includes a brief 

empirical illustration that focuses on the effect of an oil-supply shock on oil prices using Kilian's 

(2009) 3-variable SVAR. Section 6 presents Monte Carlo evidence illustrating the problems of 

conducting standard inference in the presence of a weak instrument and the benefits of our 

proposed method. Section 7 offers a summary and conclusions.  

Generic Notation: If A is a matrix, Aij denotes its ijth element, Ai denotes its i th column, 

vec(A) denotes the vectorization of A, and vech(A) vectorizes the lower triangular portion of the 

symmetric matrix A. The vector ei denotes the i th column of In, the n×n identity matrix.  

 

2. Model and Identification 

2.1 The Model 

The model is the standard stationary finite-order structural vector autoregression. We use 

the following notation:  

 

Yt = A1Yt-1 + A2Yt-2 + . . . + ApYt-p + ηt ,        (1.1) 

 

where Yt is n×1, and ηt is a vector of reduced-form VAR innovations. The reduced form 

innovations are related to a vector of structural shocks, εt, via  
 

                                                
7 Even though we provide a diagnostic test for weak instruments, we remind the reader that screening on the first-
stage statistic (or any other statistic) can induce size distortions in standard inference procedures related to the well-
known issue of pretesting. For a more detailed discussion see Section 4.1 of Andrews, Stock, and Sun (2018).  
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ηt = Θ0εt,                          (1.2) 

 

where Θ0 is a non-singular n×n matrix; thus, we assume that the structural model is invertible in 

the sense that the VAR forecast errors at date t are a nonsingular transformation of the structural 

errors at date t.8 The structural shocks are assumed to be serially and mutually uncorrelated, with  

  

 E(εt) = 0  and E(εtεt) = D = diag(  , … ,  ). 

 

The implied value of the covariance matrix for the reduced form innovations is 

 

E(ηtηt') = Σ = Θ0DΘ0'.            (1.3) 

 

Yt has a structural moving average representation given by  

 

,           (1.4) 

 

where the notation Ck(A) emphasizes the dependence of the MA coefficients on the AR 

coefficients in A = (A1, A2, … , Ap). Specifically: 

 

,  k = 1, 2, …          (1.5) 

 

with C0(A) = In  and Am = 0 for m > p; see Lütkepohl (1990, 2007). 

The structural impulse response coefficient is the response of Yi,t+k to a one-unit change in 

εj,t, which from (1.4) is 

 

                                                
8	The identification results for historical decompositions, variance decompositions, and the target structural shock 
depend crucially on the invertibility of the matrix Θ0. However, as will be clear below, results concerning 
identification and inference about dynamic impulse responses for a subset of the elements of εt do not require Θ0 to 
be non-singular or square. 

σ 1
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2
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 ∂Yi,t+k/∂εj,t = ,          (1.6) 

 

where ej denotes the j th column of the identity matrix In. 

Target Shock. We focus on identifying the impulse responses to a single structural shock 

(e.g., an oil supply shock in the empirical illustration in Section 5), and without loss of generality 

this shock is ordered first, so the shock of interest is ε1,t. From (1.6), the impulse responses with 

respect to this target shock are determined by Θ0e1 = Θ0,1, the first column of Θ0. 

Scale Normalization.  Because ηt = Θ0εt, the scales of ε1,t and Θ0,1 are not separately 

identified. We normalize the scale of the target shock ε1,t so that it is interpretable in terms of the 

observed data Yt. Specifically, we normalize the size of target shock to have a one unit-

contemporaneous effect on a pre-specified variable Yi*, that is ∂Yi*,t/∂ε1,t = 1. In the empirical 

illustration, ε1 is an oil-supply shock and Yi* is the percent change in global crude oil production, 

so we consider an oil supply shock that leads to a one percent increase in oil production. Without 

loss of generality, we order the data so that i* = 1 and because ∂Y1,t/∂ε1,t = Θ0,11, the scale 

normalization sets Θ0,11 = 1. This is the “unit effect” normalization discussed in detail in Stock 

and Watson (2016). 

 

2.2 Using an external instrument to identify impulse responses and other structural 

parameters 

External Instrument. Let zt denote a scalar random variable that can serve as an 

instrument (or “proxy”) for the target shock. The stochastic process for  is assumed to 

satisfy 

 

Assumption 1 (External Instrument)  

(A1.1)  E[zt ε1,t ] = α ≠ 0.  

(A1.2)  E[zt εj,t] = 0 for j ≠ 1. 

 

This assumption is the SVAR analogue of the familiar definition of an instrumental variable: 

(A1.1) says zt is correlated with the target shock (the instrument is relevant), and (A1.2) says that 

zt is uncorrelated with the other shocks (the instrument is exogenous).  

0( )i k je C A eʹ Θ

{ } 1
( , )t t t
zε

∞

=
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 Although the assumption above is expressed in terms of the unobserved structural shocks, 

it is possible to relate our assumption to the more conventional definition of an instrument 

involving an outcome variable of interest that depends on an observed endogenous variable, 

exogenous variables and an unobserved error term. To illustrate this point, consider the structural 

vector autoregression with only one lag and two variables given by  

 

Y1,t  =  e1
'A1Yt-1 + Θ0,11 ε1,t + Θ0,12ε2,t ,   

Y2,t  =  e2
'A1Yt-1 + Θ0,21ε1,t + Θ0,22ε2,t .  

 

With the unit effect normalization, Θ0,11 = 1, and Θ0,21 is the parameter of interest. Using the 

first equation to solve for ε1,t  and substituting the corresponding value in the second equation 

yields  

 

Y2,t   = Θ0, 21 Y1,t + 𝛾′Yt-1 + 𝛿ε2,t .  

 

The parameter of interest can be obtained from the IV-regression of the outcome variable Y2,t  on 

the variable used for normalization, Y1,t, after controling for lags of Yt. Assumption 1 implies that 

zt  is a valid instrumental variable in the conventional sense: (i) zt is correlated with the 

endogenous regressor, Y1,t, by (A1.1) and (ii) uncorrelated with the error, ε2,t, by (A1.2). 

 

Identification of the impulse response coefficients. Let λk,i = ∂Yi,t+k/∂ε1,t denote an 

impulse response coefficient of interest. From (1.6), λk,i depends on the VAR coefficients A and 

the first column of Θ0, that is Θ0,1. From Assumption 1, Θ0,1 is identified up to scale by the 

covariance between zt and the reduced form innovations ηt: 

 

Γ = E(ztηt) = E(zt Θ0εt) = α Θ0,1 .         (1.7) 

 

Using the scale normalization Θ0,11 = 1, Γ11 = E(ztη1,t) = α, so that  

 

Θ0,1 = Γ/Γ11 = Γ/e1'Γ.           (1.8) 
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Thus, the structural impulse response with respect to ε1,t follows directly from (1.6):  

 

λk,i = ei'Ck(A)Γ/e1'Γ.           (1.9) 

 

Identification of {ε1,t}. The instrument can be used to recover the structural shock ε1,t 

from the reduced-form innovations ηt. To see how, use E(ztηt) = Γ = α Θ0e1 and Σ = E(ηtηt') = 

Θ0DΘ0' to write the projection of zt onto ηt as  

 

      (1.10) 

 

This projection determines ε1,t up to the scale factor (α/ ); dividing by  yields 

ε1,t/𝜎! up to sign.  

Identification of the historical decomposition of {Yt}. Another object of interest in 

SVAR analysis is a decomposition of the historical values of Yt into a component associated with 

current and lagged values of ε1,t, say Yt(ε1), and a residual component associated with the other 

structural innovations. The structural moving average (1.4) yields: 

 

   (1.11) 

 

where the second equality follows from  = Θ0,1ε1,t−k.10 

Identification of the variance decomposition. The variance decomposition measures the 

fraction of the k-step ahead forecast error variance for Yi,t+k associated with ε1,t+h for h = 1, …, k. 

Denoting this by FEVDk,i, a direct calculation using (1.5) and (1.11) yields: 

                                                
10 Which in turn follows from Γ=αΘ0,1 (from (1.8)), Γ'Σ -1ηt  = (α/ )ε1,t (from (1.10)), and =α2/ . 
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FEVDk ,i =
Γ ' Cs(A)'eiei 'Cs(A)

s=0

k

∑⎛⎝⎜
⎞
⎠⎟
Γ

(Γ 'Σ−1Γ)ei ' Cs(A)'ΣCs(A)
s=0

k

∑⎛⎝⎜
⎞
⎠⎟
ei

.    (1.12) 

 

3. Inference about impulse response coefficients 

  

3.1 Plug-in estimators and δ-method confidence sets 

The plug-in estimator for λk,i replaces A and Γ  in (1.9) with the corresponding 

estimators:  

 

  = ei'Ck( ) /el' ,                   (2.1) 

 

where is the least squares estimator of the VAR coefficients and  is the sample covariance 

between zt and the VAR residuals.11  

When zt is a strong instrument, confidence sets for impulse responses can be formed in 

the usual way. Under standard assumptions [vec(  − A), (  − Γ)]  has a limiting normal 

distribution. A δ-method calculation implies that  [ − λk,i(A,Γ)] is approximately 

distributed N(0, ) in large samples, where 
 
depends on the limiting variance for the 

estimators  and the gradient of λk,i(A,Γ) with respect to (A,Γ). This leads to the usual 

100×(1-a)% large sample confidence set for λk,i: 

 

                                                
11 Letting Sab =  for matrices at and bt,  with Xt = (1, Y't −1, Y't −2, … , Y't −p)',  where 

=Yt − Xt, and .  
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  ÂT   Γ̂T

 T   
λ̂k ,i( ÂT ,Γ̂T )
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,                   (2.2) 

 

where  is the 1-a percentile of the distribution and
 

 is a consistent estimator for 

 (which could be obtained using the δ-method or a suitably designed bootstrap/resampling 

procedure). 

The presence of e1'  in the denominator of (2.1) suggests that the large-sample normal 

approximation of the distribution of the plug-in estimator may be poor when e1'Γ is small, 

leading to poor coverage of the resulting CSPlug-in confidence set. We outline the familiar 

reasoning in the following subsection.  

 

3.2 Weak-instrument asymptotic distributions of plug-in estimators of impulse response 

coefficients 

The vector Γ is proportional to the covariance between the target structural shock, ε1,t, 

and the instrument, zt, that is Γ= α Θ0,1. To allow for models in which α can be arbitrarily close 

to zero, while recognizing that sampling variability depends on the sample size T, consider a 

sequence of models in which E(ztε1,t) = αT, where αT → α, and α = 0 is allowed.12 This 

framework allows, for example, strong instruments (with αT = α ≠  0), but also weak 

instruments as in Staiger and Stock (1997) (with αT = a/ , so that αT → 0), and other 

sequences with αT → α.  Let ΓT = αTΘ0,1. Under a variety of primitive assumptions, the 

estimators ( , , ) will be asymptotically normally distributed after centering them at the 

true values (A, ΓT, Σ) and scaling by .13 This is summarized in Assumption 2, which we will 

assume holds under local-to-zero and fixed-parameter sequences: 

                                                
12 Formally, this means considering a sequence of stochastic processes, say PT, for , where the expectation 

is taken with respect this process, so that E(ztε1,t) = αT denotes EPT(ztε1,t) = αT  and so forth.  
13	For example, in the context of SVARs with external instruments, Jentsch and Lumsford (2019) impose mixing 
conditions and strict stationarity on  (along with constraints on the roots of the autoregressive lag 

 

CSPlug−in = λk ,i
T λk ,i ( ÂT , Γ̂T )−λk ,i( )
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Assumption 2: (Asymptotic normality of reduced-form statistics) 

 

                            (2.3) 

 

In a strong instrument setting, ΓT = Γ ≠ 0, and Assumption 2, along with the δ-method 

implies that the plug-in estimator is asymptotically normally distributed and this serves as the 

basis for the plug-in confidence set (2.2).  

But suppose instead that the instrument is weak in the sense that αT = a/  where a is 

held fixed as T → ∞. A straightforward calculation (see Appendix A.1.1 for details) then shows 

that the plug-in estimator has the weak-instrument asymptotic representation, 

 

 ⇒  ,          (2.4)  

 

where δk,i = (ei'Ck(A) −λk,ie1')' and ξ is defined in (2.3). Thus, the plug-in estimator is equal to the 

true value of the impulse response plus a ratio of correlated normal random variables. This is the 

SVAR analogue of Staiger and Stock (1997)’s asymptotic representation of the IV estimator in a 

just-identified linear model with a single right-hand side endogenous regressor and a single weak 

instrument. 14  The parameter (aΘ0,11)2/Var(el'ξ) is analogous to the so-called concentration 

parameter in IV regression (see for example Stock and Yogo (2005) and Andrews and Stock 

(2005)).  

Just as in the IV model, the plug-in estimator (2.1) is not consistent, the usual Wald test 

for testing the null hypothesis λk,i = λ0 does not have the correct size, and the plug-in confidence 
                                                                                                                                                       
polynomial) to derive a joint central limit theorem. They also show that, under further restrictions, a residual-based 
moving block-bootstrap can be used to approximate the limiting normal distribution in (2.3).			
14 The results in Staiger and Stock (1997) imply that whenever the first-stage coefficient of a linear IV model is 
local-to-zero the IV estimator, denoted 𝛽!", converges in distribution to β + z1/(z2 + c), where (z1 z2) are bivariate 
normal, β is the true parameter, and c is the scalar localization parameter.  
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sets (2.2) (which are based on inverting the Wald test) will not have the proper coverage 

probability. 

When instruments are weak, the plug-in estimator (2.1) is biased toward the probability 

limit of the estimator of the impulse response coefficient estimated by ordering Y1,t first in a 

Cholesky decomposition of the innovation variance matrix, that is, when the shock of interest is 

identified by placing it first in a Wold causal ordering. This result obtains by noting that, under 

the unit effect normalization, the IV estimator of Θ0,1 is obtained as the IV estimator in the 

regressions, 

 

       ,  j = 2,…, n      (2.5) 

 

using the instrument zt (or its innovation), where  is the vector of innovations and ut is a 

generic error term (see for example Stock and Watson (2018), equation (21)). This formulation 

of the SVAR-IV estimator of Θ0,1 makes it possible to apply standard results about the bias of the 

distribution of the IV estimator under weak instruments (c.f., Nelson and Startz (1990) and 

Staiger and Stock (1997)). In particular, if zt is weak, the IV estimator will be biased towards the 

probability limit of the OLS estimator of (2.5). The OLS estimator of Θ0,1 in (2.5) is the first 

column of the Cholesky decomposition with the shock of interest ordered first. This result 

suggests caution in interpreting the near-coincidence of Cholesky and external instrument 

estimates of impulse responses as evidence in favor of the Cholesky ordering assumption without 

evidence on instrument strength.  

 

3.3 Weak-instrument asymptotic distributions of plug-in estimators of other objects of 

interest in SVAR analysis 

As shown in equations (1.10), (1.11), and (1.12), the time series of the target shock, its 

contribution to yt, and the forecast error decomposition can be written as functions of the 

reduced-form VAR parameters, (A,Σ), the covariance of the instrument and the reduced form 

errors, Γ, and (for the target shock and historical decompositions) the data. Inference about the 

true values of these objects − their values associated with the true value of (A,Σ,Γ)  − is standard 

and straightforward when zt is a strong instrument. Examination of (1.10), (1.11), and (1.12) 

0,1 1,ˆ ˆjt j t tuη η=Θ +

ˆtη
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shows that, with Γ bounded away from zero, each of these objects is a well-behaved smooth 

function of (A,Σ,Γ). Assumption 2 and the δ-method then imply that the corresponding plug-in 

estimators are normally distributed in large samples with a covariance matrix that is readily 

computed from the large-sample covariance matrix of and the relevant gradient 

vector.  

Equations (1.11) and (1.12) show that the historical and variance decompositions are 

ratios of quadratic functions of Γ, so (generically) the resulting gradients either converge to zero 

or diverge as Γ→ 0. Thus, δ-method/bootstrap inference based on plug-in estimators for the 

historical and variance decompositions is not robust to weak instruments.  

The weak-instrument representation of the estimate of the shock, for use in historical 

decomposition, and of the FEVD are, respectively, 

 

  (2.6) 

FEVD! k ,i =
Γ* ' Cs(A)'eiei 'Cs(A)

s=0

k

∑⎛⎝⎜
⎞
⎠⎟
Γ*

(Γ* 'Σ−1Γ* )ei ' Cs(A)'ΣCs(A)
s=0

k

∑⎛⎝⎜
⎞
⎠⎟
ei

,   (2.7) 

 

where . These expressions are derived in Appendix A.1.2.  

 

 

4. Weak-instrument robust confidence sets 

 

The analogy between inference in the linear IV model and SVAR impulse responses 

carries over to the construction of weak-instrument robust confidence sets using analogues of 

Fieller-method confidence sets for the ratio of two normal means (Fieller (1944)) and the 

Anderson-Rubin (1949) confidence sets for coefficients in the linear IV model. To see how, it is 

useful to briefly review Fieller’s problem and the Anderson-Rubin confidence set. 

Fieller’s problem and Anderson-Rubin confidence set. Suppose (X, Y) are bivariate 

normally distributed with mean (βπ, π) and covariance matrix Σ. Fieller’s problem is to construct 

( ÂT ,Γ̂T , Σ̂T )

( ) ( ) ( )
1/2

1 1
1, 0 0 0ˆ t ta a aε ξ η ξ ξ− −⎡ ⎤ʹ ʹ⇒ + Θ Σ + Θ Σ + Θ⎢ ⎥⎣ ⎦

*
0,1aξΓ = + Θ
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a confidence interval for the ratio of the two means, β. The null hypothesis β = β0 implies that X 

− β0Y ~ N(0, σ(β0)2), where σ(β0)2 = ,  and q(β0) = (X − β0Y)2/σ(β0)2 ~ .  

With Σ known, the 100%(1-a) Anderson-Rubin (AR) confidence set for β can then be 

constructed as CSAR = {β | q(β) ≤ }.16,17 An important property of the AR  confidence set is 

that it is valid for any value π , including values arbitrarily close to zero. When π = 0, β is not 

identified, and (as discussed in footnote 16) the confidence set will have infinite length with 

probability 1−a. 

 

4.1 Inference for impulse response coefficients (single structural shock identified by a single 

external instrument) 

To understand how the AR method can be used to form weak-instrument robust 

confidence sets for the coefficients of impulse response function, suppose the instrument is valid 

(so that αT ≠ 0), but potentially weak (αT → α, where α = 0 is allowed). Let HT denote the 2×1 

vector composed of the numerator and denominator of the expression defining the impulse 

response coefficient in (1.9): 

 

       (2.8)  

 

                                                
16 In Fieller's (1944) formulation, X and Y correspond to sample means from an i.i.d. normal sample, Σ is unknown 
and inference is based on the squared Student-t distribution instead of the  distribution. Anderson and Rubin 
(1949) showed how to extend Fieller’s construction to IV regression (a nontrivial extension at the time). In the 
Anderson-Rubin formulation, X is the OLS estimator of the regression coefficient of the outcome variable on the 
instrument and Y is the OLS estimator of the first-stage coefficient. 
17 The inequality q(β) ≤  defining the Anderson-Rubin confidence set is quadratic in β, which in standard 

form can be written as aβ2 + bβ + c  ≤ 0, where (a,b,c) are functions of (X,Y,Σ). The structure of the problem (c.f., 
Fieller (1944) and Kendall and Stuart (1979 section 20.35)) yields the following features of the confidence set: (1) 
∈ CSAR; (2) if a > 0, the confidence set is the interval (-b ± (b2-4ac)1/2)/2a; (3) if a < 0, the confidence interval 

includes either the entire real line or the union of the two sets (-∞, −[b + (b2-4ac)1/2]/2a) and (−[b − (b2-4ac)1/2]/2a , 
∞); (4) when Y2/  ≤  (so the hypothesis µY = 0 is not rejected), the confidence set for β is the entire real line. 

2 2 2
0 02X XY Yσ β σ β σ− + χ1

2

χ1,1−a
2

  

HT =
ei 'Ck ( A)ΓT

e1 'ΓT

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
,

χ1
2

, aχ −
2
1 1

β̂

Yσ
2

, aχ −
2
1 1
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so that λk,i =  HT,1/ HT,2, and let  denote the plug-in estimator of HT constructing by replacing 

(A,ΓT) with ( ). Note that HT is a differentiable function of A and a linear function of ΓT , so 

that (from Assumption 2 and the δ-method) ~ N(0,Ω), where Ω depends on 

W and the gradient of limT→∞ HT with respect to (A,Γ). Importantly, this result follows regardless 

of the strength of the instrument (ΓT =αT Θ0,1 → α Θ0,1 = Γ, with Γ = 0 allowed).  

Large sample theory thus yields the approximation , where the 

parameter of interest is the ratio of the means HT,1/HT,2. This is Fieller’s problem. The null 

hypothesis λk,i = λ0 imposes a linear restriction on the means: HT,1 − λ0HT,2 = 0, which can be 

tested using the Wald statistic  

 

 ,    (2.9) 

 

where  are consistent estimators of the elements of the covariance matrix Ω. Inverting this 

test yields the Anderson-Rubin confidence set18 

 

CSAR = {λk,i | qT(λk,i) ≤  }.                       (2.10) 

 

The weak and strong-instrument validity of the CSAR is summarized in the following:  

 

Proposition 1 (Asymptotic validity of CSAR) 

                                                
18	The S-region of Stock and Wright (2000) based on the moment condition E(ztηt) - αΘ0,1= 0 is not the same as the 
Anderson-Rubin confidence set in (2.10).  The S-test of Stock and Wright (2000), which is inverted to construct the 
S-region, postulates a null hypothesis for the full vector of contemporaneous impulse responses (that is, the full 
vector Θ0,1). Thus, to conduct inference about a particular entry of Θ0,1, the S-region has to be projected; resulting in 
conservative inference due to the usual projection bias. See Appendix A.6 more discussion. In addition, inference 
about dynamic impulse responses also takes into account the sampling uncertainty in the estimated values of the 
autoregressive coefficients.   

  ĤT

  ÂT ,Γ̂T

ˆ( )T TT H H η− ⇒

ˆ ~ ( , )
a

T TH N H T − Ω1

  
qT (λ0 ) =

T ĤT ,1   − λ0ĤT ,2( )2

ω̂ T ,11 − 2λ0ω̂T ,12 + λ0
2ω̂T ,22

  
ω̂T ,ij

  
χ1,1−a

2
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Let CSAR (1-a) denote the AR confidence set (2.10) with nominal coverage 1−a, and let 

PT denote the probability distribution for  under the stochastic process 

corresponding to αT, the covariance between zt and ε1,t. Suppose 

(i) Assumptions 1 and 2 are satisfied, 

(ii) αT → α  (which may be 0) 

(iii)  ≠ 0 

Then: limT→∞ PT(λk,i ∈ CSAR (1-a)) = 1-a. 

 

Proof: See Appendix A.2. 

 

The covariance matrix in the asymptotic distribution of  is Ω = G(A,Γ)WG(A,Γ)', where G 

denotes the limit of the gradient of HT in (2.8) with respect to (A,Γ) and W is asymptotic variance 

of the estimators from Assumption 2.19 This suggests the estimator 

, so that (iii) is satisfied if G(A,Γ) ≠ 0 and is consistent for W.  

A natural question to ask is whether the weak-instrument robustness of the AR 

confidence set comes at the cost of reduced accuracy (or increased expected length) when the 

instrument is strong. The next proposition shows that that the “distance” between the  

Anderson-Rubin confidence set and the δ-method confidence interval converges to zero when 

the instrument is strong. In this sense, there is no cost from using the robust confidence set. 

Let dH(A,B) denote the Hausdorff distance between two subsets A and B of the real line:  

 

  

 

Proposition 2 (Strong-instrument asymptotic equivalence of CSPlug-in
 and CSAR)  

Let CSPlug-in (1-a) and CSAR (1-a) denote the confidence sets given in (2.2) and (2.10) with 

nominal coverage 1−a. Suppose  
                                                
19 We derive analytical expressions for G(A,Γ) and include them in the MATLAB suite that implements the 
Anderson-Rubin confidence set. 

  {Yt , zt}t=1
T

  Ω̂T
p⎯ →⎯ Ω

  ĤT

  Ω̂T = G( ÂT ,Γ̂T )ŴTG( ÂT ,Γ̂T )'

  ŴT

  
dH ( A, B) = max sup

x∈A
inf
y∈B

d(x, y),sup
y∈B

inf
x∈A

d(x, y)⎧
⎨
⎩

⎫
⎬
⎭

.
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(i) Assumptions 1 and 2 are satisfied, 

(ii) αT → α ≠ 0, 

(iii.a)  ≠ 0, and 

(iii.b) .  

Then:   

 

Proof: See Appendix A.2.2 

 

In Appendix A.2.2 we also show that Proposition 2 implies that the tests for the null 

hypothesis λk,i  = λ0  corresponding to  CSPlug-in (1-a) and CSAR (1-a) have the same local power. 

Proposition 2 applies to the just-identified case. Inference for the overidentified case is discussed 

below; inference for the model with m target shocks and m instruments is discussed in Appendix 

A.6. 

 

4.2 Diagnostic for weak instruments 

The instrument is weak if E(ztε1t) = α is small relative to the sampling error in . The 

expression for the estimator of Θ0,1 as the IV estimator in (2.5) shows that the heteroskedasticity-

robust first-stage F statistic provides a measure of the strength of the instrument in this setting 

too, where the first-stage regression is of Y1,t against zt (including VAR lags of Yt  as exogenous 

controls).20 The heteroskedasticity-robust first-stage F can be compared to the Stock-Yogo 

(2005) critical values or to some rule of thumb, such as F>10. When there are multiple 

instruments and heteroskedasticity is a concern, the Montiel Olea-Pflueger (2013) effective first-

stage F is recommended, for the reasons discussed in I. Andrews, Stock, and Sun (2018). We do 

remind the reader that pretending that standard confidence bands are correct as long as the F-

statistic indicates the instrument is not too weak can dramatically increase size distortions due to 

the well-known pre-testing issues; see Section 4.1 in Andrews, Stock, and Sun (2018) for 

simulation evidence supporting this point.   

                                                
20 Under some circumstances it might be desirable to also add lags of zt; see Stock and Watson (2018). 

Ω̂T
p⎯ →⎯ Ω

σ̂ T ,k ,i
2 →

p

σ k ,i
2

TdH CST
AR(1− a),CST

Plug−in (1− a)( )→
p

0.

  α̂T
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An alternative diagnostic arises from noting that, with Θ0,11 normalized to equal 1, α 

equals Γ1,1. Because , the Wald statistic ξ1 =  also is a 

measure of instrument strength. Under weak instrument asymptotics, ξ1 has the same 

noncentrality parameter as the heteroskedasticity-robust first-stage F, although algebraic 

manipulations and numerical simulations suggest ξ1 will tend to be smaller in finite samples than 

the first-stage F. The statistic ξ1 has the feature that the 100%(1-a) Anderson-Rubin (AR) 

confidence set is a bounded interval if and only if ξ1>  (see footnote 17). 

 

4.3 Extensions 

Overidentification. If there are M > 1 instruments, zm,t for m = 1, …, M, for the target 

structural shock, ε1,t, it is conceptually straightforward to extend the Anderson-Rubin confidence 

set. Let Γ̂m,t = (1/ T ) zm,tη̂tt=1

T∑ , and construct the statistic sm,T (λ) = T ei 'Ck ( ÂT )− λe1 '( )Γ̂m,T , for 

m = 1, … , M.  Suppose (extending Assumption 2) that 

T vec( ÂT )− vec(A)( ) ', T Γ̂1,T − E(z1,tηt )( ) ',…, T Γ̂1,T − E(z1,tηt )( ) '( ) '   
is asymptotically normal. Then sT(λ) = (s1,T(λ), … , sM,T(λ))ʹ will be asymptotically normal as 

well, provided that λ is the true impulse response coefficient. If ŴT (λ)  is a consistent estimator 

for the covariance matrix of sT(λ), the analogue of the Anderson-Rubin type confidence set 

collects the values of λ such that sT (λ)'ŴT (λ)sT (λ) ≤ χM ,1−α
2 . 

In the over-identified case, the Anderson-Rubin confidence set is known to be valid for 

both weak- and strong-instruments, but inefficient relative to standard confidence sets when the 

instruments are strong. Appendix A.3.2 also discusses how weak-instrument robust methods 

developed for over-identified IV regression, such as the Lagrange Multiplier and the Quasi-

Conditional Likelihood Ratio test, can be applied for inference about impulse response 

coefficients in the SVAR model.  

Inference about FEVDs and historical decompositions. For inference about impulse 

responses, the lack of robustness of plug-in δ-methods can be solved using the Anderson-Rubin 

method. Broadly speaking, this is possible because Γ enters “linearly” in the numerator and 

denominator of (1.9). Such a simplification is not possible for historical and variance 

  
T Γ̂T − ΓT( ) d⎯ →⎯ N (0,WΓ )

  
T Γ̂2

T ,1 / ŴΓ ,11

χ1,1−a
2
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decompositions because Γ enters the numerator and denominator of (1.11) and (1.12) as 

quadratic functions. Weak-instrument robust inference for these objects is not addressed in this 

paper and remains an area of on-going research.21 

r instruments for r structural shocks: Identification and Inference. Appendix A.6 

discusses the extension to r instruments and r structural shocks. We show that r external 

instruments and r(r+1)/2 additional restrictions suffice for identification.  

Weak-instrument robust inference about the impulse responses associated to one of the r 

structural shocks is difficult, as there are several nuisance parameters that cannot be estimated 

when the instruments are weak (for example, the other structural impulse responses of interest). 

We show that it is possible to construct a weak-instrument robust confidence region for the full 

vector of contemporaneous impulse responses using the S-test of Stock and Wright (2000). The 

main limitation of this procedure is that its projection for one dynamic impulse response 

coefficient will be inefficient relative to strong-instrument confidence sets.   

We show that a natural extension of our Anderson-Rubin confidence set can alleviate 

some of the problems associated to projecting the S-region. We focus on the empirically relevant 

case r=2. We follow Mertens and Ravn (2013) and achieve identification by imposing an 

additional “zero” restriction on one of the columns of the contemporaneous impulse responses 

(for example 𝑐′Θ!,! =  0). We also normalize the response of one variable to the two structural 

shocks of interest.  Our suggested procedure tests a null hypothesis that restricts the dynamic 

response of one variable to both shocks (𝜆!,!,! ≡ 𝑒!!𝐶! 𝐴 Θ!,!, 𝜆!,!,! ≡ 𝑒!!𝐶!(𝐴)Θ!,!), but  also 

restricts the value of 𝑐′Θ!,! (the linear combination that identifies the first target shock, but 

imposed on the response to the second structural shock). Then, we can test the null hypothesis  

 

𝐻!: 𝜆!,!,! = 𝑎!,  𝜆!,!,! = 𝑏!, 𝑐!Θ!,! = 𝑐!,   

using the statistic  

 

                                                
21 One way to construct a conservative weak-instrument confidence set for the forecast error decomposition is to 
note (from (1.12)) that FEVDk,i = ω'Qk,i(A,Σ)ω, where ω = Σ1/2Γ/(Γ'ΣΓ)1/2 and Qk,i(A,Σ) is a matrix that depends on 
the reduced-form parameters only through (A,Σ). Because ω'ω = 1, mineig(Qk,i(A,Σ)) ≤ FEVDk,i ≤ maxeig(Qk,i(A,Σ)), 
and a confidence set can be constructed for this interval. However, because Qk,i(A,Σ) does not depend on any 
identifying information in Γ, this is a confidence set for the variance decomposition associated with any possible 
structural shock, and is therefore likely to be extremely conservative. 
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𝑇𝑣𝑒𝑐 𝑒!!𝐶! 𝐴 Γ− [𝑎!, 𝑏!]Φ!! , 

 

where Γ is the sample estimator of the covariance between the reduced-form shocks and the 

instruments, and Φ!!  is an estimator of the covariance between the target structural shocks and 

instruments. This estimator is computed under the null hypothesis and is linear in Γ. All details 

are provided in Appendix A.6.  

 

 

 

 

5. An illustrative example 

 

Kilian (2009) used a 3-variable SVAR to investigate the effect of oil-supply and oil-

demand shocks on oil production and oil prices. In this section we use Kilian’s model and data as 

a simple example to illustrate the external-instrument methods discussed above.22 

The three variables in Kilian’s (2009) SVAR are the percent change in global crude oil 

production (prod), real oil prices (rpo), and a global real activity index of dry goods shipments 

(rea). Kilian uses these variables to identify three structural shocks − oil supply (εSupply), 

aggregate demand (εAg.Demand), and oil-specific demand (εOil-Spec.Demand)  − using the Wold causal 

ordering (εSupply, εAg.Demand, εOil-Spec.Demand) in the VAR with variables ordered as (prod, rea, rpo). 

We focus on the oil supply shock identified using the same reduced-form VAR as Kilian (2009), 

but with an external instrument.  

We use Kilian’s (2008) measure of “exogenous oil supply shocks” as the external 

instrument. The instrument measures shortfalls in OPEC oil production associated with wars and 

civil disruptions. Because this variable measures shortfalls in production, it is plausibly 
                                                
22	In	Appendix A.7 we provide another short illustrative example where we revisit the question of whether real 
economic activity in the United States (measured by the Gross Domestic Product, henceforth GDP) responds to cuts 
in marginal tax rates. We show that the strong-instrument SVAR-IV estimate of the 1-period ahead response of GDP 
to a tax shock that decreases average marginal tax rates in 1% loses its statistical significance when we use the 
weak-instrument robust techniques introduced in the paper. The application also shows that not all the results are 
rendered insignificant. For example, the short-run elasticity of taxable income remains statistically above zero.    
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correlated with the structural oil supply shock εSupply, and because it measures shortfalls 

associated with political events such as wars in the Middle East, it is plausibly uncorrelated with 

the two oil demand shocks. Thus, Kilian’s (2008) measure plausibly satisfies the conditions for 

an external instrument given in Assumption 1. 

Of course, while Assumption 1 implies that the external instrument is valid, the internal 

validity of the SVAR depends on additional assumptions, notably (1.1) and (1.2). From  (1.1), 

the VAR coefficients are assumed to be time-invariant, and from (1.2), the structural shocks are 

contemporaneous linear functions of the VAR reduced-form forecast errors: εt = . The 

recent empirical literature using SVARs to model the oil market has questioned both of these 

assumptions (see Stock and Watson (2016) for discussion). We are sympathetic to these concerns 

and to the post-Kilian (2009) literature that expands the variables in the VAR (e.g., Aastveit 

(2014)), and uses sign restrictions to help identify the dynamic effects of oil supply shocks in 

both frequentist (e.g, Kilian and Murphy (2012)) and Bayes (e.g., Baumeister and Hamilton 

(2018)) settings. That said, the simplicity of Kilian's (2009) 3-variable time-invariant VAR 

makes it an ideal framework for illustrating the use of external instruments. 

Kilian’s (2009) analysis used monthly data from 1973:M1-2007:M12. The instrument, 

Kilian’s (2008) exogenous oil supply shock series, is available from 1973:M1-2004:M9, and we 

use the common sample period (1973:M1-2004:M9) for the analysis.23  Following Kilian (2009), 

the VAR is estimated using p = 24 lags and a constant term. The covariance matrix W is 

estimated using a standard Eicker-White robust estimator (equivalently, a Newey-West HAC 

estimator with 0 lags). The confidence sets presented in Section 3 were based on δ-method 

approximations that relied on gradients of particular functions with respect to A and Γ. We have 

created a Matlab suite to implement our confidence set using analytical formulae for these 

gradients. We also suggest a simple bootstrap-like method that involves sampling (vec( ), ) 

from an estimated normal distribution consistent with Assumption 2. Details are provided in 

Appendix A.4.24 

                                                
23 We use the common sample period for (yt, zt) for convenience. In principle, the entire sample period can be used 
to estimate the VAR parameters, and a shorter sample period used to estimate Γ. This entails only a modification in 
estimator used for the covariance matrix W in assumption 2.  
24 The bootstrap method is more computationally intensive than the δ-method (because it requires re-sampling from 
the reduced-form parameters and constructing quantiles of a test statistic over a grid of possible values for the 
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Weak-instrument diagnostics. The statistic ξ1 = = 4.4 and the robust first-

stage statistic is 9.4. Both statistics are below the Staiger-Stock value of 10, suggesting that the 

instrument is weak. However, because ξ1 > 3.84 (the 5%  critical value), the 95% Anderson-

Rubin weak-instrument confidence sets for the impulse response coefficients are bounded 

intervals (see footnote 16). 

Impulse response coefficients. Figure 1 shows the estimated impulse response 

coefficients and corresponding CSPlug-in and CSAR confidence sets.25 The 68% weak-instrument 

robust CSAR confidence sets essentially coincide with the strong-instrument CSPlug-in intervals, but 

the 95% CSAR confidence sets suggest considerably more uncertainty than their strong-instrument 

counterparts. 

An important finding in Kilian (2009), was that Cholesky-identified oil supply shocks 

had small effects on oil prices. This is evident in panel A, which plots (in red) the estimated 

impulse response coefficients for the Cholesky-identified shock. The point estimates imply that a 

Cholesky-identified oil supply shock that increases oil supply by 1% on impact, leads to a fall in 

prices of 0.03% on impact and has a maximum price effect of -0.07% after four months. In 

contrast, the corresponding supply shock identified using the external instrument leads to fall in 

prices of 0.14% on impact and maximum price effect of -0.22% after four months. But, while the 

external-instrument identified price effects are larger than the Cholesky-identified effect, both 

are small in an absolute sense, and Kilian’s overall conclusion of small price effects is consistent 

with the external-instrument estimates and associated weak-instrument robust confidence sets. 

 

6. Monte Carlo Evidence 

 

We conduct a simple Monte Carlo exercise to analyze the coverage of the CSPlug-in and 

CSAR confidence sets. The data generating process for the Monte Carlo exercise is parameterized 

by the matrix of autoregressive coefficients, the matrix of contemporaneous impulse response 

                                                                                                                                                       
impulse response coefficients), but does not require computation of the gradient of the expression in equation (2.5). 
The bootstrap method proposed here, which re-samples the values of the SVAR-IV reduced-form parameters, could 
be replaced by any other bootstrap procedure, such as the block bootstrap for proxy SVARs proposed by Jentsch and 
Lunsford (2016).  
25 In appendix A.4 we also compare the CSAR reported in Figure 1 with its bootstrap version. 

T Γ̂2T ,1 / ŴΓ ,11

χ1
2
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coefficients, the variance of the structural innovations, and the joint distribution of the external 

instrument and target shock. We explain our choice of these parameters below. 

We consider T = 356 observations from a 3-dimensional vector Yt generated by a reduced-

form VAR model with reduced-form parameters (A,Σ) equal to those estimated from Kilian’s 

(2008) data. The sample size matches the number of observations in Kilian’s application.  

For the matrix of contemporaneous impulse response coefficients, Θ0, we make the first 

column equal to  where b = (1 1 -1)'. The signs of this vector are in line with the 

typical interpretation of an expansionary supply shock. The remaining columns of Θ0 are chosen 

to satisfy the equation Θ0Θ0' = Σ. 

We use a linear measurement error model for the external instrument: 

         zt = µZ + αε1,t + σZνt  

The structural shocks εt = (ε1,t ε2,t ε3,t) and νt are independent standard normal random variables. 

The parameters µZ and σZ 
 are chosen to match the first and second moment of Kilian’s external 

instrument. We vary the parameter 𝛼  to obtain two different values of the concentration 

parameter (Tα)2/Var(zt η1t ): 3.7 and 10.09. Our simulations, reported in Figure 2, show that the 

coverage of the nominal 95% δ-method confidence interval (CSPlug-in) can be as low as 85% for 

some horizons when the concentration parameter is small. The CSAR confidence exhibits some 

distortion (presumably because the critical values are based on large sample approximations), but 

it is never below 90%. As expected, the coverage of CSPlug-in improves as the concentration 

parameter increases.  

  In Appendix A.5 we also report the coverage of the bootstrap version of the CSAR. There 

is a slight improvement in the coverage of CSAR confidence set, but the difference does not seem 

substantial. This suggests that although there can be some gain in using critical values that are 

not computed explicitly using large sample formulae, improved coverage comes from choosing a 

weak-instrument robust procedure. Finally, we also report simulations for a sample size of 

T=1500. We use this to show that in a sufficiently large sample the Monte Carlo coverage of 

CSAR essentially coincides with the nominal level.  

 

7. Conclusions 

 

b / b 'Σb
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This paper studied SVARs identified using an external instrument. The external 

instrument was taken to be correlated with the target shock (e.g., the short-fall of OPEC oil 

production is correlated with the aggregate oil supply shock) and to be uncorrelated with other 

shocks in the model. Standard estimators for the model’s reduced-form parameters (including the 

covariance of the instrument and the reduced-form errors) are normally distributed in large 

samples. We provide formulae for SVAR parameters like impulse response coefficients or 

variance decompositions as a function of these reduced-form parameters. The analysis shows 

that the large-sample distribution of such SVAR parameter estimators depends on the strength of 

the instrument. When the instrument is highly correlated with the target structural shock (so that 

the instrument is strong), standard δ-method arguments imply that SVAR parameter estimators 

are approximately normally distributed and the usual Wald tests and associated confidence sets 

have the correct size and coverage probability. However, when the external instrument is weak, 

the distribution of SVAR parameter estimators is not well approximated by the Normal 

distribution, so the usual Wald tests and confidence sets are invalid. 

This paper shows that confidence sets for impulse response coefficients constructed using 

Fieller (1944) and Anderson and Rubin (1949) methods are valid when external instruments are 

weak and asymptotically coincide with the usual confidence sets when instruments are strong 

and the model is just identified. Thus, these weak-instrument robust confidence sets should 

routinely be used for impulse response coefficients identified with an external instrument. Along 

with our weak-instrument robust confidence sets, we suggest that practitioners report either the 

Wald statistic for the null hypothesis that the external instrument is irrelevant, or the 

heteroskedasticity-robust first-stage F statistic as described in Section 4.2. Large values of these 

statistics (e.g., above 10) suggest approximately valid coverage of standard 95% confidence 

intervals.  
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Figure 1: Impulse response coefficients for an oil-supply shock 
 

A. 68% Confidence Sets 
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Figure 2: Coverage rates for nominal 95% confidence intervals 

 
A. Concentration Parameter: 3.7 
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B. Concentration Parameter: 10.09 
 

 
 
 
Notes: These figures show coverage rates for nominal 95% CSPlug-in and CSAR confidence sets for 
impulse responses at horizons 0-20 periods (labeled "months" in the figures).  The SVAR design 
is discussed in the text. The experiments use T = 356 and 1000 Monte Carlo simulations. 
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