Princeton Webinar

The Economic Geography of Climate Change

Esteban Rossi-Hansberg Princeton University

Markus Brunnermeier Princeton

01. Oct. 2020

markus'academy Hosted from **PRINCETON** Available for **EVERYONE**, WORLDWIDE

Every Thursday at 12:30 (New York Time)

Previous

Upcoming

Jean Tirole "Public & Private Sphere and the Authentic Self"

- Chris Sims "How to worry about government debt"
- Bengt Holmstrom "Seasonal COVID"

Esther Duflo (later)

Richard Zeckhauser "... on geo engineering"

Markus' intro on **Climate Change**

- Malthusian approach vs.
 Innovation approach
 - Mitigation (reduce pollution)
 - Adaptation (dams/seawalls, migration, ...)
 - Amelioration (geo engineering, ...)

Dynamic effects

Over 100 years – uncertainty : main driver is mean-reversion

Planning certainty is key for innovation

Carbon tax path

Role of Risk/Uncertainty

- 1. About climate change "Climate volatility"
- 2. About damage function (of climate change)
- 3. About **policy** and response to policy
 - ⇒ Makes remaining consumption more volatile too
- Uncertainty: Future counts more, but delays action

- Long-run $Var[g_c]$ depends mostly on mean-reversion
 - Tipping points

Communicate policy response (if, then ...) to reduce uncertainty
 Don't off-load risk to innovators and adopters

4

Migration as Adaptation Strategy?

Migration?

- Migration and Political Conflict
 - Canada approach welcoming immigrants
 - Implicit social contract and migration
 - What will Russia do?
- Migration: shift or jump (depends on moving fixed costs)
 - Shift: everyone moves a bit to the north (push through land price)
 - Jump: people in areas under waters move
 - What's socially optimal? What is individually optimal?
- Migration and "Climate Volatility"
 - Move several times a year at short notice to escape storms?

6

2 Types of Innovations – diabolic loop

- 1. Innovation to reduce emissions
- 2. Innovation to better cope with different climate
 - The air conditioning diabolic loop

- Which innovation/adaptation is more likely?
- Which innovation will unregulated market economy pick?

Poll Results

- 1. What are the main mechanisms economies have to adapt to climate change?
 - a. Technological innovations
 - b. Mobility
 - c. International trade
- What are the best policies to combat climate change? 2.
 - Carbon taxes a.
 - b. Clean energy subsidies
 - **Emission restrictions** С.
- Do you think international transfers to help countries confront the cost of 3. climate change are need?
 - Yes а.
 - b. No

8

Thank you!

markus@princeton.edu

The Economic Geography of Global Warming

José-Luis Cruz (Princeton University)

Esteban Rossi-Hansberg (Princeton University)

Markus' Academy, October 2020

An Economic Assessment Model

- Global warming is a protracted, global, phenomenon with heterogeneous local effects
- Standard climate models use loss functions relating aggregate economic outcomes to climate variables
 - ► Fail to incorporate behavioral responses, and therefore economic adaptation
 - Ignore the vast spatial heterogeneity in climate damages
- We propose and quantify a spatial and dynamic assessment model
 - Emphasizing the role of economic adaptation through migration, trade, and innovation

Model Characteristics

- We extend the spatial growth model in Desmet et al. (2018)
 - Add natality, energy, carbon cycle, and local temperature effect on amenities and productivities

- \blacktriangleright Quantify using $1^{\circ}\times1^{\circ}$ G-Econ data on population and income in 2000
- ► Set trade and mobility frictions to match gravity and net migration flows
- Natality that depends on income and temperature

Cruz and Rossi-Hansberg

Local Temperature Down-scaling

- We let $T_{t+1}(r) = T_t(r) + g(r) \cdot (T_{t+1} T_t)$
 - \blacktriangleright where $g(\cdot)$ is a function of latitude, longitude, elevation, distance to coast, distance to ocean, distance to water, vegetation density and albedo

Damage Functions

- Invert fundamental amenities and productivities consistent with observed data (1990, 1995, 2000, 2005)
- Estimate damage function given by

 $\mathsf{Log-Amenity}_t(r) = \sum_{j=1}^J \delta_j^b \cdot T_t(r) \cdot \mathbb{1}\{T_t(r) \in \mathcal{T}_j\} + \iota(r) + \iota_t(s_j) + \varepsilon_t(r)$

 $\text{Log-Productivity}_t(r) = \sum_{j=1}^J \delta_j^a \cdot T_t(r) \cdot \mathbbm{1}\{T_t(r) \in \mathcal{T}_j\} + \delta^z \cdot Z(r) + \iota_t(s_j) + \varepsilon_t(r)$

Fossil and Clean Energy Costs

① Fossil fuel extraction cost $f(\cdot)$

Set initial productivities to match fossil and clean energy use map

 \bigcirc Set relative fossil and clean technology growth to match historical CO₂ emissions and clean energy use

Baseline Scenario: CO2 Emissions and Global Temperature

temperature

Baseline Scenario: Amenities and Productivities

worst-case

Baseline Scenario: Global and Local Population

Baseline Scenario: Welfare Cost of Global Warming

Baseline Scenario: Uncertainty about Damage Functions

Baseline Scenario: Uncertainty about Damage Functions

Adaptation: Migration

real GDP

Adaptation: Trade

real GDP

Adaptation: Innovation

real GDP

Carbon Taxes

- Carbon tax of 50% equals 37 usd/tCO₂; similar to maximum in EU Emissions Trading Scheme
- ► Carbon tax of 200% equals 146 usd/tCO₂; similar to Swedish Tax

energy population

Carbon Taxes: Dynamic Effects

• Aggregate gains depend on discount factor and BGP growth rate

	Real GDP			Welfare		
	BGP gr	β =0.965	$\beta = 0.969$	BGP gr	$\beta = 0.965$	$\beta = 0.969$
$\tau=0\%$	3.050%	1	1	3.011%	1	1
$\tau {=} 50\%$	3.054%	0.991	1.020	3.015%	0.995	1.014
$\tau{=}100\%$	3.057%	0.986	1.032	3.017%	0.992	1.022
$\tau {=} 200\%$	3.060%	0.980	1.046	3.019%	0.988	1.030

Carbon Taxes: Local Effects

real GDP r

real income

Clean Energy Subsidies

Clean Energy Subsidies: Dynamic Effects

• Aggregate gains depend on discount factor and BGP growth rate

	Real GDP			Welfare		
	BGP gr	β =0.965	β =0.969	BGP gr	β =0.965	$\beta = 0.969$
s=0%	3.050%	1	1	3.011%	1	1
s=25%	3.047%	1.011	1.008	3.007%	1.007	1.002
s=50%	3.040%	1.033	1.020	2.999%	1.020	1.000
s=75%	3.018%	1.095	1.039	2.976%	1.051	0.984

Clean Energy Subsidies: Local Effects

real GDP

real income

Conclusions

- We develop an economic spatial growth model of global warming
 - ► Accounts for adaptation through trade, migration, innovation
- Estimate impact of temperature on fundamentals
 - Heterogeneous spatial effect of temperature for amenities and productivities
- Large heterogeneity in climate damages over space
 - From welfare losses of 10% to gains of 15%
 - On average, welfare losses of 3%
 - Large role of adaptation, particularly migration
- Carbon taxes create trade-off between present and future benefit
 - Large disagreement across regions

Thank You

Estimation: Energy

back

Estimation: Temperature

back

Amenities and Productivities

back

Welfare Cost of Global Warming

back

Baseline Scenario: Real GDP Cost of Global Warming

back

Real GDP Cost of Global Warming

back

Adaptation: Migration and Real GDP

back

Adaptation: Trade and Real GDP

back

Adaptation: Innovation and Real GDP

back

Carbon Taxes: Energy Price

Carbon Taxes: Energy Price

back

Carbon Taxes: Population

Carbon Taxes: Population

back

Carbon Taxes: Local Real GDP

back

Carbon Taxes: Local Real Income

back

Clean Energy Subsidies: Local Real GDP

back

Clean Energy Subsidies: Local Real Income

back