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Two-Way Fixed Effects, the Two-Way Mundlak Regression, and
Difference-in-Differences Estimators

Jeffrey M. Wooldridge
Department of Economics
Michigan State University

This Version: August 16, 2021

Abstract: I establish the equivalence between the two-way fixed effects (TWFE)
estimator and an estimator obtained from a pooled ordinary least squares regression
that includes unit-specific time averages and time-period specific cross-sectional
averages, which I call the two-way Mundlak (TWM) regression. This equivalence
furthers our understanding of the anatomy of TWFE, and has several applications.
The equivalence between TWFE and TWM implies that various estimators used for
intervention analysis – with a common entry time into treatment or staggered entry,
with or without covariates – can be computed using TWFE or pooled OLS
regressions that control for time-constant treatment intensities, covariates, and
interactions between them. The approach allows considerable heterogeneity in
treatment effects across treatment intensity, calendar time, and covariates. The
equivalence implies that standard strategies for heterogeneous trends are available to
relax the common trends assumption. Further, the two-way Mundlak regression is
easily adapted to nonlinear models such as exponential models and logit and probit
models.

Acknowledgments: Trang Hoang, Jeff Zabel, and participants at the 15th New York
Camp Econometrics provided helpful comments on earlier drafts.
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1. Introduction

Panel data structures are used routinely across many fields in attempts to determine

causality and estimate the effects of policy interventions. At the micro level, panels are often

characterized by a small number of time periods (T) and a large cross section sample size (N).

At more aggregated levels, the number of time periods may be substantial, possibly even larger

than the cross-sectional dimension.

Regardless of the sizes of T and N, a very common approach to estimating a linear model is

to include both unit fixed effects and time fixed effects in ordinary least squares estimation.

The resulting estimator is often called the “two-way fixed effects” (TWFE) estimator. As is

well known, including unit fixed effects in a linear regression is identical to removing

unit-specific time averages and applying pooled ordinary least squares (OLS) to the

transformed data. (For this reason, the estimator obtained from including unit-specific dummy

variables is often called the within estimator.) Including time fixed effects then removes

secular changes in the economic environment that have the same effect on all units.

Another important algebraic equivalence involving the FE estimator, usually invoked in

microeconometric settings, is the equivalence between the FE estimator that removes

unit-specific effects – the one-way FE estimator (OWFE) – and the Mundlak (1978) device,

which includes unit-specific time averages of time-varying variables and estimates the

resulting equation by random effects (RE). Wooldridge (2019) provides a recent analysis,

showing that an entire class of regressions – including pooled OLS – reproduce the FE

estimator, even in the unbalanced case, provided one is careful about using only the complete

cases in defining the unit-specific time averages. This equivalence has many important

applications. For one, it leads to a robust, variable addition version of the Hausman (1978) test
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for choosing between FE estimation and random effects (RE) estimation, and, even in the

balanced case, it suggests simple hybrid approaches that represent a compromise between FE

and traditional RE. A related point is that it makes clear that the pre-testing problem inherent

in choosing between RE and FE is virtually the same as pre-testing on a set of regressors. In

addition, the equivalence between the one-way FE estimator and the Mundlak regression in the

linear case suggests natural ways to allow correlation between explanatory variables and

unobserved heterogeneity in nonlinear models when the number of time periods is small.

Wooldridge (2019) shows how this can be accomplished even in the context of unbalanced

panels.

In exploiting the equivalence between the one-way FE estimator and the Mundlak

regression in the small T case, time dummies are usually included among the time-varying

covariates because their coefficients can be precisely estimated with a large N. This is the

approach taken in Wooldridge (2019). In the balanced case, the time averages of the time

dummies are redundant because they all average to 1/T; in the unbalanced case, the time

average generally differs by unit. Nevertheless, the equivalence result is purely algebraic, and

so the dimensions of N and T are irrelevant provided they are large enough to actually produce

the FE estimates.

In this paper, I explicitly consider the two-way FE estimator and show that a simple

extension of the Mundlak device reproduces the TWFE estimates. In particular, adding both

the unit-specific time series averages and the period-specific cross-sectional averages in a

POLS regression reproduce the two-way FE estimates. I call the regression with the two sets of

time averages the two-way Mundlak (TWM) regression, and the corresponding estimator the

TWM estimator.
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The algebraic equivalence between the TWFE and TWM estimators is not too surprising,

but it appears to not have been explicitly stated in the literature. The equivalence has several

applications. On a basic level, it is valuable to understand the mechanics of commonly used

estimation methods. The equivalence of TWFE and TWM emphasizes that accounting for lots

of unit and time heterogeneity – by including a full set of two-way “fixed effects” in regression

– can be accomplished by using pooled OLS (or random effects) and including covariates of

much lower dimension. As a specific application, one can see simple ways to test the basic

two-way FE estimator against alternatives that include substantial heterogeneity. I briefly

consider this possibility in Section 4.

Another application of the general result is to common timing difference-in-differences

(DiD) designs – without or with covariates – and also staggered interventions. In Section 5 I

show that, with a common intervention date, a pooled OLS regression that includes an

indicator for eventually being “treated,” a post-treatment time period dummy, and the

treatment indicator – three regressors in addition to an overall constant – is numerically the

same as the full TWFE estimator. (The POLS estimator is, in turn, equal to a commonly used

difference-in-differences estimator.) A simple extension applies when time-constant covariates

are added in a flexible way, showing that several different approaches to estimation – TWFE,

pooled OLS, random effects, and standard difference-in-differences – lead to the same place.

There are good reasons for knowing that TWFE can be relied on in intervention analysis

with staggered intervention times. For one, we know that TWFE is somewhat resilient to

certain kinds of missing data problems – see, for example, Wooldridge (2010, 2019). The

equivalence between TWFE and pooled regressions for intervention analysis breaks down in

the unbalanced case. One can obtain equivalent pooled OLS regressions, as in Wooldridge
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(2019), but it is easier to use TWFE once the proper interaction terms have been constructed,

and those come from first studying the balanced case.

Under weak dependence conditions in the time series dimension (with random sampling in

the cross-sectional dimension), TWFE has an asymptotic bias on the order of 1/T when the

covariates violate strict exogeneity; see Wooldridge (2010, Chapter 10). Further, using N,

T →  asymptotics with independent sampling in the cross-sectional dimension and weak

dependence in the time-series dimension, Hansen (2007) shows that the TWFE estimator is

consistent and asymptotically normal without strict exogeneity. In addition, the TWFE

estimator is easily extended to allow for heterogeneous trends, and so we can estimate the

same set of treatment effects while explicitly allowing for some violations of the common

trend assumption. Finally, it is easy to modify the TWFE estimator to allow for spillover

effects. For example, a policy change in county i may have an effect in an adjacent county, h,

and this is easily handled in a TWFE framework by expanding the treatment variables to allow

spillovers.

For staggered interventions, the basic TWFE estimator has come under considerable

scrutiny lately – see, for example, de Chaisemartin and D’Haultfœuille (2020),

Goodman-Bacon (2021), Callaway and Sant’Anna (2021), Sun and Abraham (2021), and

Borusyak, Jaravel, and Spiess (2021) [BJS (2021)]. In Section 6, I obtain equivalences between

an extended TWFE (ETWFE) estimator and pooled OLS regressions in staggered designs with

lots of heterogeneity in treatment effects. In doing so, I show how the Sun and Abraham

(2021) TWFE approach can be extended to allow covariates to enter flexibly, and I provide the

corresponding pooled OLS estimator that controls for different treatment cohorts, calendar

time effects, and covariates. Plus, I provide fairly simple arguments to show that, under a
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conditional common trends assumption, the ETWFE approach identifies the average treatment

effects for different cohort/time period treatment effects. I cover both the case with a never

treated group and where all units are treated in the last time period. Moreover, because the

POLS/ETWFE estimator is also equivalent to random effects with known (rather than

estimated) transformation parameter, under the standard no serial correlation and

homoskedasticity assumptions, the POLS estimator is best linear unbiased. Thus, this simpler

estimator has the same efficiency as the comparable imputation estimator in BJS (2021).

In Section 7 I show how the algebraic equivalence results lead to simple and easily

interpretable tests of the so-called common (or parallel) trends assumption in

difference-in-differences settings. In particular, the tests are exclusion restriction tests in a full,

unrestricted model, and so insights from pretesting a set of regressors apply directly. I also

propose simple extensions to the basic equation that allows violation of parallel trends.

Section 8 contains brief discussions of the unbalanced case, how to allow for

heterogeneous trends, and how the DiD-type estimators in the linear case can be extended to

nonlinear models, with discussions of binary, fractional, and nonnegative responses. Section 9

contains some concluding remarks. An appendix provides Stata commands for created data

sets that illustrate the relative simple mechanics of computing the estimators and proper

standard errors.

2. Basics of the Two-Way Fixed Effects Estimator

The typical motivation for the TWFE estimator is an equation of the form

yit  xit  ci  ft  uit, t  1, . . . ,T; i  1, . . . ,N,     (2.1)

where xit is 1  K and  is K  1. The ci are unit-specific effects (heterogeneity) and ft are the
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time-specific effects. [The panel is assumed to be balanced. I briefly discuss the unbalanced

case in Section 8.] We need not take a stand on whether ci or ft are properly considered

parameters to estimate or as outcomes of random variables: the results in the section are purely

algebraic. In fact, there is no need to write down an underlying model; equation (2.1) is purely

for motivational purposes.

To describe the TWFE estimator, for each i define a row vector of unit dummy variables as

c i  c1i,c2i, . . . ,cNi, where chi  1 if h  i, chi  0 if h ≠ i. Therefore, for each row

indicated by i, t pairs, exactly one element of c i is equal to unity. Also, the time dummies for

period t are fst : t  2, . . . ,T with fst  1 if s  t, fst  0 if s ≠ t. We drop the first time

period dummy because it is redundant.

The so-called two-way fixed effects estimator, ̂FE, is obtained as the vector of coefficients

on xit in the pooled OLS regression

yit on xit, c1i, c2i, ..., cNi, f2t, ..., fTt, t  1, . . . ,T; i  1, . . . ,N.     (2.2)

Along with ̂FE we obtain estimates of the so-called unit fixed effects, the coefficients on c1i,

c2i, ..., cNi, and the time fixed effects, the coefficients on f2t, ..., fTt. We are not interested in

these coefficients for the purposes of this paper and we do not discuss them further.

A more common way to characterize ̂FE is to drop, say, the first unit dummy variable and

include an overall intercept:

yit on xit, 1, c2i, ..., cNi, f2t, ..., fTt, t  1, . . . ,T; i  1, . . . ,N.     (2.3)

This distinction between (2.2) and (2.3) is unimportant for this paper as they lead to the same

̂FE.

In the small-T, large-N literature, the time effects are often absorbed into xit, in which case
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can study the one-way FE estimator. In the current setup, xit only includes variables that have

some variation across both i and t.

In the large-T panel literature, where one is interested in obtaining valid inference on  as

T →  (usually along with N → ), a “double-demeaning” characterization is used for ̂FE.

See Baltagi (2001). To describe the procedure, define the unit-specific averages over time as

x̄i  T−1∑
t1

T

xit     (2.4)

and let

x̄t  N−1∑
i1

N

xit     (2.5)

be the cross-sectional average for each t. The overall average is

x̄  NT−1∑
i1

N

∑
t1

T

xit  N−1∑
i1

N

x̄i  T−1∑
t1

T

x̄t     (2.6)

be the total average. Define

ẍit  xit − x̄i  − N−1∑
i1

N

xit − x̄i   xit − x̄i − x̄t  x̄,     (2.7)

As shown in Baltagi (2001), ̂FE is the pooled OLS estimator from

yit on ẍit, t  1, . . . ,T; i  1, . . . ,N.     (2.8)

Alternatively, ̂FE is obtained from the POLS regression

ÿit on ẍit, t  1, . . . ,T; i  1, . . . ,N.     (2.9)

where ÿit  yit − ȳi − ȳt  ȳ, and this regression also produces the same residuals as the dummy

variable regression in (2.2). For most purposes, the R-squared from (2.9) gives a more realistic
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measure of goodness-of-fit than (2.2) because it nets out the explanatory power of the unit and

time period fixed effects.

This paper is does not formally consider asymptotic analysis under different scenarios, but

it is worth noting that the problem of computing valid standard errors can be studied by using

one of the two equivalent expressions:

̂FE  ∑
i1

N

∑
t1

T

ẍit′ ẍit

−1

∑
i1

N

∑
t1

T

ẍit′ ÿit  ∑
t1

T

∑
i1

N

ẍit′ ẍit

−1

∑
t1

T

∑
i1

N

ẍit′ ÿit .     (2.10)

After suitable normalization, the first expression is useful under fixed-T, N →  asymptotics

with random sampling across i – as in White (1984) and Arellano (1987) – and also when

T →  slowly enough along with N →  with random sampling across i and weak dependence

across t – as in Hansen (2007). The second expression is useful in T →  setting where

cross-sectional dependence is allowed, as in Driscoll and Kraay (1998) and Vogelsang (2012)

– again, after suitable normalization by the sample sizes.

3. The Two-Way Mundlak Regression

Mundlak (1978) showed that, with xit including any explanatory variables that vary only

across t, including any time period dummies, the one-way FE estimator can be obtained as a

particular GLS estimator by adding the time averages, x̄i, as additional explanatory variables

along with a constant and xit. Wooldridge (2019) showed that an entire class of estimators

based on GLS-like transformations are equivalent to FE. The one we focus on in this paper is

the pooled OLS estimator:

yit on 1, xit, x̄i, t  1, . . . ,T; i  1, . . . ,N.     (3.1)

However, here we want to explicitly separate the time period dummies from the elements of
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xit. As in Section 2, henceforth xit includes only variables that have some variation across both

i and t. The key algebraic result in this paper is that the two-way FE estimate, ̂FE, can be

obtained from from an extension of the usual Mundlak regression:

yit on 1, xit, x̄i, x̄t, t  1, . . . ,T; i  1, . . . ,N.     (3.2)

I call this the two-way Mundlak (TWM) regression and the coefficients on xit, say, ̂M, the

TWM estimates.

THEOREM 3.1: For a panel data set of dimensions T and N, assume that

∑
i1

N

∑
t1

T

ẍit′ ẍit     (3.3)

is nonsingular, where ẍit is defined as in (2.7). Let ̂FE be the two-way FE estimate obtained

from (2.2) and let ̂M be the coefficient on xit in (3.2). Then

̂M  ̂FE     (3.4)

Proof: By the Frisch-Waugh (F-W) partialling out theorem, it suffices to show that the ẍit

are the (vector) residuals from the pooled regression

xit on 1, x̄i, x̄t, t  1, . . . ,T; i  1, . . . ,N     (3.5)

By another simple application of F-W, the residuals from (3.5) regression can be obtained by

removing the means from all variables. The common mean is x̄, and so the desired residuals

are obtained from

xit − x̄ on x̄i − x̄, x̄t − x̄     (3.6)

It is easily seen that the two sets of regressors in (3.6) are orthogonal in sample:
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∑
i1

N

∑
t1

T

x̄i − x̄ ′x̄t − x̄  ∑
i1

N

x̄i − x̄
′

∑
t1

T

x̄t − x̄  0     (3.7)

because both sums are for vectors deviated from the overall mean. It follows that in finding the

K  K matrix of OLS coefficients on each 1  K vector in (3.6), we can focus on each term

separately. We now show that the matrix of OLS coefficients on x̄i − x̄ is IK. Let

̂  ∑
i1

N

∑
t1

T

x̄i − x̄ ′x̄i − x̄
−1

∑
i1

N

∑
t1

T

x̄i − x̄ ′xit − x̄

 T∑
i1

N

x̄i − x̄ ′x̄i − x̄
−1

∑
i1

N

x̄i − x̄ ∑
t1

T

xit − x̄

 ∑
i1

N

x̄i − x̄ ′x̄i − x̄
−1

∑
i1

N

x̄i − x̄ T−1∑
t1

T

xit − x̄

 ∑
i1

N

x̄i − x̄ ′x̄i − x̄
−1

∑
i1

N

x̄i − x̄ ′x̄i − x̄  IK

because T−1∑ t1
T xit − x̄  x̄i − x̄.

A symmetric argument shows that the K  K matrix of OLS coefficients on x̄t − x̄ in

regression (3.6) is also IK. Therefore, the residuals from the regression (3.6) are

r̂ it ≡ xit − x̄ − x̄i − x̄IK − x̄t − x̄IK
 xit − x̄i − x̄t  x̄  ẍit. 

Also Theorem 3.1 is purely algebraic, it shows that x̄i and x̄t effectively act as sufficient

statistics in accounting for any unit-specific heterogeneity and time-specific heterogeneity that

is correlated with xit. Rather than having to include N − 1  T − 1 control variables, it

suffices to include 2K control variables, x̄i, x̄t.

We can say something even stronger. Once x̄i, x̄t have been included in the regression,

adding variables that change only across i, say zi, or only across t, say mt, does not affect the
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coefficients on xit. Logically, this is satisfying because we know all such variables are

eliminated by the TWFE transformation. The following result extends Wooldridge (2019,

Proposition 2.1) to the two-way FE setting.

THEOREM 3.2: In the two-way Mundlak regression, include time-constant variables zi

and time-varying variablesmt:

yit on 1, xit, x̄i, x̄t, zi, mt, t  1, . . . ,T; i  1, . . . ,N.     (3.8)

Let ̃M be the K  1 vector of coefficients on xit. Then ̃M  ̂M.

Proof: We apply Frisch-Waugh multiple times and show that the residuals from

xit − x̄ on x̄i − x̄, x̄t − x̄, zi − z̄, mt − m̄     (3.9)

are still ẍit. The first step is to partial out x̄i − x̄, x̄t − x̄ from xit − x̄; from the proof of

Theorem 3.1 we know the residuals are ẍit. Next, we partial x̄i − x̄, x̄t − x̄ out from both

zi − z̄ andmt − m̄. As in Theorem 3.1, because x̄i − x̄ and x̄t − x̄ are orthogonal in sample, we

can regress zi − z̄ separately on x̄i − x̄ and x̄t − x̄ to obtain their (matrix) coefficients. Using

the same argument from Theorem 3.1, the coefficients on x̄t − x̄ are zero. Further, the

residuals from zi − z̄ on x̄i − x̄, say ë i, depend only on i and∑ i1
N ë i  0 (because the both the

dependent variables and independent variables have been centered about their means). Flipping

around the subscripts, the residuals from regressingmt − m̄ on x̄i − x̄ and x̄t − x̄ gives zero

coefficients on the first term and so the residuals depend only on t, say ät, with∑ t1
T ät  0.

By Frisch-Waugh, the residuals from (3.9) are the same as those from

ẍit on ë i, ät, t  1, . . . ,T; i  1, . . . ,N     (3.10)

But it is easily seen that ẍit is orthogonal, in sample, to each of the regressors:
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∑
i1

N

∑
t1

T

ë i′ẍit ∑
i1

N

ë i′∑
t1

T

ẍit  0

∑
i1

N

∑
t1

T

ät′ẍit ∑
t1

T

ät′∑
i1

N

ẍit  0

In fact, this shows that the matrix coefficients on zi − z̄ andmt − m̄ in (3.10) are identically

zero, and so the residuals from (3.10) are simply the ẍit. 

The pooled OLS regression in (3.8) implicitly includes the time averages of all variables

that have some time variation because the time averages of x̄t andmt are simply vectors of

constants, and an overall intercept is included in the regression. Therefore, Proposition 2.1 in

Wooldridge (2019) applies immediately.

COROLLARY 3.3: The pooled OLS estimator ̃M from (3.8), and therefore the TWFE

estimator, are identical to one-way random effects GLS estimator (with a cross-sectional

“random effect”) using the same regressors as in (3.8). 

Wooldridge’s proposition shows that the equivalence holds if one treats the variances in the

typical random effects specification as known, and so POLS is actually best linear unbiased

under standard random effects assumptions. Of course it is also asymptotically efficient under

those same assumptions; see Wooldridge (2010, Section 10.4).

Theorems 3.1 and 3.2 have some simple but useful implications. Suppose, for example, that

an element of xit can be expressed as an interaction between a time-constant variable and

time-varying variable:

xitj  zij  mtj     (3.11)

Then

x̄ij  zij  m̄j, x̄tj  z̄jmtj,     (3.12)
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where m̄j  T−1∑s1
T msj and z̄j  N−1∑h1

N zhj. Therefore, the two-way Mundlak regression

will include zij and mtj as separate regressors (because the averages are constant multiples of zij

and mtj). We will use this simple observation in the sections on intervention analysis.

4. Implications for Panel Factor Models

For the purposes of motivation, again start with the model

yit  xit  ci  ft  uit, t  1, . . . ,T; i  1, . . . ,N.     (4.1)

The factor model literature replaces the additive terms ci  ft with a factor structure, say, ftc i

for ft a 1  P vector of unobserved factors and c i a P  1 vector of unobserved loadings

(heterogeneity). We know from Theorem 3.1 that estimating (4.1) by TWFE is identical to

estimate the following equation by pooled OLS:

yit    xit  x̄i  x̄t  eit,     (4.2)

with ̂FE is the vector on xit. Therefore, one might think of proxying ftc i by including

interactions between x̄i and x̄t, as in

yit    xit  x̄i  x̄t  x̄i ⊗ x̄t  eit     (4.3)

As a simple test of whether having additive unit and time effects is sufficient, one can test

H0 :   0 after POLS estimation of (4.3). Or, drop x̄i and x̄t from (4.3) and estimate in by

TWFE. If H0 is rejected, one might even use (4.3) as a simply way of accounting for a factor

structure.

Pesaran (2006) suggests alternatives to TWFE in the large T case, with a popular estimator

being the pooled common correlated effects (CCEP) estimator. The CCEP estimator involves

projecting the xit onto the cross-sectional averages, x̄t, ȳt, unit-by-unit. The CCEP approach

is untenable with small T and moderate K as the unit-specific regressions will provide perfect
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fits. By contrast, the regression in (4.3) can be used for small T and large K, and knowing that

(4.2) reproduces the TWFE estimator suggests estimating (4.3) can be informative.

One case easily allow heterogeneous slopes that are correlated with xit by expanding (4.3)

even further. A simple approach is to add terms xit ⊗ x̄i − x̄ and xit ⊗ x̄t − x̄ (where the

centering about the overall mean is done to give  an average partial effect interpretation).

Such approaches allow for substantial heterogeneity and are not limited by either small T or

large K. How one does asymptotic inference requires some care, as there are differences

between the small-T, large-N scenarios and situations where T →  asymptotics makes more

sense. But under the null that none of the interactions are needed, the estimator collapses to

TWFE. Even if the interaction terms are statistically significant, changes in the estimates of 

could be relatively minor.

5. Application to Interventions with Common Treatment
Timing

We now consider a intervention analysis setting with panel data, where, in time periods

q − 1 and earlier, no units are subject to the treatment or intervention. At t  q, some units are

subject to the intervention, and the intervention stays in place for the remaining time periods.

This particular setup means we can define a treatment indicator as

wit  di  pt,     (5.1)

where di is a dummy variable that equals one if unit i was eventually subjected to the

intervention and pt is a dummy variable indicating the post-treatment time periods: pt  0,

t  1, . . . ,q − 1, and pt  1, t  q, ..., T. Note that we can write

pt  fqt   fTt
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where fst is a dummy variable equal to one of s  t and zero otherwise. In addition to common

treatment timing, this setup means there is no reversibility: once a unit is subjected to the

intervention it stays in place through time period T. The outcome variable is denoted yit, and

we may observe pre-intervention covariates, xi, which do not change across t.

5.1. Homogeneous Time Effects

For estimating a single policy effect, A simple model underlying causal estimation of the

intervention is

yit  wit  ci  gt  uit, t  1, . . . ,T; i  1,2, . . . ,N,     (5.2)

where, initially, we estimate a constant effect. To allow wit to be correlated with the unit

heterogeneity ci and to account for the possibility that the timing of the intervention might

correspond with secular changes in the aggregate, it is common to use the two-way FE

estimator, ̂FE. The dimensions of T and N, for the purposes of estimation, are essentially

unrestricted. The case T  2 is allowed but not necessary.

Viewed from the dummy variable regression perspective, it appears that the two-way FE

approach, compared with the simple difference-in-differences approach of comparing the

differences in the average changes across time, allows much more flexibility concerning the

nature of endogeneity of the intervention. However, we can use Theorem 3.1 to show this is

not the case. In fact, including time-constant controls or variables changing only across t do

not affect estimation of . We know that such variables would drop out of TWFE estimation if

added. Theorem 3.1 implies that including them in the pooled OLS regression has no effect.

COROLLARY 5.1: Let ̂FE be the two-way FE estimator and let ̂DD be the coefficient on

wit  di  pt from the regression
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yit on 1, wit, di, pt, t  1, . . . ,T; i  1, . . . ,N     (5.3)

Provided∑ i
N∑ t1

N ẅit2  0, ̂DD  ̂FE. Further, adding time constant variables or

cross-sectional constant variables does not affect ̂DD.

Proof: From Theorem 3.1, it suffices to show that regression (5.3) is the Mundlak

regression, in the case of a single covariate, wit  di  pt, that has variation across i and t. But

notice that the time average of wit is simply

w̄i  di  p,     (5.4)

where p  T − q  1/T is the fraction of treated periods. Further, for each t the cross sectional

average is

w̄t  d  pt,     (5.5)

where d is the fraction of units in the sample that are (eventually) treated. Therefore, the

two-way Mundlak regression is

yit on 1, wit, di  p, d  pt, t  1, . . . ,T; i  1, . . . ,N.

Compared with the regression in (5.3), the two control variables, di and pt, have been

multiplied by constants. This leaves the coefficient on wit unchanged, and so ̂DD  ̂M. The

second part of the claim follows from Theorem 3.2. 

An immediate implication of Corollary 5.1 is that the estimates are unchanged if we

replace pt with a full set of time period dummies, f2t, f3t, ..., fTt. Moreover, adding

time-constant controls, xi, and also interacting them with the time-constant treatment indicator,

di, does not change the estimate of . In other words, the long regression

yit on 1,wit, di, f2t, . . . , fTt, xi, di  xi, t  1, . . . ,T; i  1, . . . ,N
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produces the same coefficient on wit as the short regression in (5.3). This somewhat surprising

result appears to have been overlooked in the literature.

The estimated effect does change if we interact xi with pt to allow the effects of the

covariates in the untreated state to change over time or interact wit with xi to allow the

treatment effect to change with xi. In other words, consider the expanded equation

yit    wit  wit  xi − 1  xi  di  di  xi  pt  pt  xi  eit,     (5.6)

where 1 ≡ Exi|di  1 is the average of the covariates over the treated subpopulation. As

discussed below, centering xi about 1 gives  an interesting meaning under standard

assumptions: it is the average treatment effect on the treated, ATT. With the addition of pt  xi

and wit  xi − 1 to the TWFE estimation, we now need to add both xi and di  xi to the

POLS estimation of (5.6) to ensure POLS is the same as TWFE estimation. Again, this follows

from Theorem 3.1, where the time average of pt  xi is proportional to xi, the the time average

of wit  xi − 1  di  pt  xi − 1 is proportional to di  xi − 1, and the cross-sectional

averages of pt  xi and di  pt  xi − 1 consists of terms that are multiples of pt. For the terms

not involving wit, there is no need to center xi because doing so does not change estimation of

 or .

In obtaining a feasible estimate, the population mean is replaced with the average over the

treated units, x̄1 ≡ N1
−1∑ i1

N di  xi. Therefore, the POLS version of the estimation is

yit on 1, wit, wit  xi − x̄1, xi, di, di  xi, pt, pt  xi, t  1, . . . ,T; i  1, . . . ,N.     (5.7)

Comparing (5.7) with (5.3) shows how easy it is to allow substantial heterogeneity in

common-timing DiD designs while staying within a simple estimation framework. Whether

one implements the method using POLS or extended TWFE is irrelevant because they are
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identical.

As a technical point, whether one uses POLS with the controls xi, di, di  xi, and pt or

drops all of these terms and applies TWFE, one should consider adjusting the standard errors

to account for the sampling error in x̄1. If one does not adjust the standard errors, it is the same

as conditioning inference on the observed xi. In practice, the adjustment seems to make only a

small difference in the standard errors. Nevertheless, statistical packages such as Stata have a

built-in command that computes average partial effects and accounts for sampling error in the

sample averages that appear in the APE. In using such commands, it is important to define the

treatment indicator, wit, and compute the APE with respect to it and average over the di  1

subgroup. The remaining terms involving di and pt effectively act as controls along with the

covariates. Incidentally, it is incorrect to replace wit in (5.6) with di  pt and compute the APE

with respect to di.

When T  2, we can make a connection with the Heckman, Ichimura, and Todd (1997)

[HIT (1997)] regression adjustment approach when applied to panel data. It is easily seen when

T  2 that the pooled regression in (5.7), which is saturated across all for groups, is identical to

estimating four separate linear regression functions: for the control group in t  1 and t  2

and for the (eventually) treated group in t  1 and 2. The coefficient on wit is identical to

average the difference-in-differences of the estimated regression functions across the di  1

subsample. This is a linear regression version of the estimator proposed by HIT (1997).

We can connect the TWFE and POLS estimation to standard difference-in-differences

estimation by noting further algebraic equivalences. First, without covariates, one can show

that the coefficient on wit in regression (5.3) can be written as
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̂  N1
−1∑

i1

N

di  Δȳi − N0
−1∑

i1

N

1 − di  Δȳi,

where

Δȳi ≡ T − q  1−1∑
tq

T

yit − q − 1−1∑
t1

q−1

yit  ȳi,post − ȳi,pre     (5.8)

is the change in means for unit i from the pre-treatment period to the post-treatment period. In

other words, we can collapse the data to a simple cross section consisting of

Δȳi,di : i  1, . . . ,N and then ̂ is the simple difference-in-means estimator using Δȳi as

the outcome variable. In the T  2 case, we have the usual difference Δȳi  Δyi  yi2 − yi1.

This characterization of ̂ is useful in situations where N is small but we are willing to assume

that the equation Δȳi    di  ui roughly satisfies the classical linear model assumptions

(CLM)– see Wooldridge (2019, Chapter 4) – so that inference about  can be based on the

TN−2 distribution. Under the CLM assumptions, we could even have a single treated unit along

with as few as two control units. If T is reasonably large and weak dependence holds across t,

the central limit theorem helps ensure Δȳi has an approximate normal distribution.

When covariates are added, as in (5.6) or the TWFE equivalent, the estimate of ̂ is

obtained by applying standard regression adjustment (RA) to the cross sectional data

Δȳi,di,xi : i  1, . . . ,N. In particular, suppose we estimate separate linear regression

functions (for di  0 and di  1) with dependent variable Δȳi and covariates xi and call the

resulting “treatment effect” estimator ̂. Then ̂  ̂ from (5.7) (and, therefore, its TWFE

equivalent). Equivalently, ̂ obtained from the regression

Δȳi on 1, di, xi, di  xi − x̄1, i  1, . . . ,N.     (5.9)
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When T  2 the regression in (5.9) becomes

Δyi on 1, di, xi, di  xi − x̄1, i  1, . . . ,N,     (5.10)

which is numerically identical to TWFE. As discussed above, this regression produces a

parametric version of the HIT (1997) estimator for panel data. Below we will discuss

implications for applying other treatment effects esimators, including doubly robust estimators

that combine regression adjustment and propensity score weighting.

5.2. Heterogeneous Time Effects

We can easily find equivalent estimators in settings where the treatment effect is allowed to

vary by time and even by both time and covariates. Without covariates, consider

yit  qwit  fqt   Twit  fTt  ci  gt  uit,     (5.11)

where, again, frt is a dummy variable equal to unity of r  t and zero otherwise. This

specification allows the policy effect to be different in each of the treated periods. As usual,

the two-way FE estimator removes ci and gt. In showing the equivalent pooled OLS regression

based on Theorem 3.1, note that, for r  q, . . . ,T,

wit  frt  di  pt  frt  difqt   fTtfrt  difrt     (5.12)

because frtfst  0, r ≠ t, and frtfrt  frt. Therefore, equation (5.11) is is equivalent to

yit  qdi  fqt   Tdi  fTt  ci  gt  uit

The time averages of di  frt are simply di/T for all r and the cross-sectional averages are

d̄  frt, where, again, d̄ is the fraction of treated units in the sample. Therefore, the two-way

Mundlak equation involves adding di and the period dummies fqt, ..., fTt. Note that it is no

longer sufficient to add just the post-period dummy, pt, to reproduce TWFE. Therefore,

estimating the following equation by POLS is, for the purposes of obtaining ̂q, ̂q1, ..., ̂T,
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equivalent to TWM:

yit    qdi  fqt   Tdi  fTt  di  qfqt   TfTt  eit

   qwit  fqt   Twit  fTt  di  qfqt   TfTt  eit     (5.13)

Moreover, estimating this equation by random effects (in the cross-sectional dimension) gives

exactly the same estimates.

In estimating (5.13), one can test whether the r are constant across r. Equivalently, wit can

be included by itself so its coefficient is the base estimate for the first period, q, and then the

coefficients on the interactions wit  frt  di  frt, r  q  1, ..., T, become the differences with

period q. It follows from Theorem 3.2 that including the time period dummies before period q

does not change the ̂r. In fact, Theorem 3.2 implies that including additional variables that

change only across i or only across t will not change the estimates.

It also can be shown that the ̂r are obtained by separate DiD analyses by collapsing the

q − 1 pre-periods into a single control period and then using periods q, q  1, ..., T in turn as

treatment periods. This is also the same as defining, for each i and r ∈ q, . . . ,T, the

difference between yir and the pre-intervention average,

ẏir ≡ yir − q − 1−1∑
t1

q−1

yit  yir − ȳi,pre,     (5.14)

and then computing

̂r  N1
−1∑

i1

N

diẏir − N0
−1∑

i1

N

1 − diẏir

We can include time constant controls, xi, although, as putting them in additive form with

constant coefficient has no effect – again a consequence of Theorem 3.2. A flexible

specification also allows the policy effects to change with xi, as in the equation
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yit  qwit  fqt   Twit  fTt  wit  fqt  xi − 1q   wit  fTt  xi − 1T
 fqt  xiq   fTt  xiT  ci  gt  uit

    (5.15)

In addition to allowing separate treatment effects in each time period, and TEs that can also

change with xi, this equation allows the controls xi to have different effects on the control

units in the different time periods. As before, 1 would be replaced with x̄1  N1
−1∑ i1

N di  xi.

Two-way fixed effects estimation of (5.15) is straightforward. Along with the ̂r one can

see how the effect policy changes with xi and across time, or both. A slightly more convenient

formulation for testing is to replace wit  fqt with wit and wit  fqt  xi − 1 with wit  xi − 1

and then the remaining coefficients are compared relative to the first intervention period.

Compared with the usual TWFE estimator, which replaces all terms in (5.15) with the single

variable wit, the extended version allows much more flexibility. This highlights the important

point that there is nothing inherently wrong with TWFE, which is an estimation method. The

problem with how TWFE is implemented in DiD settings is that it is applied to a restrictive

model.

We can, of course, impose restrictions on (5.15), which may be desirable if N is not large.

To impose a constant effect across time, but allow the effect to depend on xi, include only wit

and wit  xi − 1 and not interactions with the time dummies. Hybrids are possible, too, such

as including wit  fqt, ..., wit  fTt but only including interactions between the treatment and

covariates, wit  xi − 1, and imposing the same coefficients in all time periods.

What is the Mundlak regression corresponding to (5.15)? As before, di must be included,

as must be fqt, ..., fTt. The time average of frt  xi is simply xi/T, and so we must include xi on

its own. The cross-sectional average is frt  x̄, which means we just need to include the period

dummies, fqt, ..., fTt – which we already knew. The time averages of di  frtxi − 1 is
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di  xi − 1/T, and so di  xi must appear. Again, the cross-sectional averages are just

constant multiples of frt. The two-way Mundlak equation therefore looks like

yit    qwit  fqt   Twit  fTt  wit  fqt  xi − 1q   wit  fTt  xi − 1T
 fqt  xiq   fTt  xiT  di  xi  di  xi  qfqt   TfTt  eit

    (5.16

and we estimate this by pooled OLS. Again, as discussed at the end of Section 3, RE

estimation of this same equation produces identical estimates. With large N and small T, we

can try to improve efficiency beyond the POLS/RE estimator by using a feasible GLS

procedure on (5.16) that allows any pattern of changing variances or serial correlation.

Because there still could be heteroskedasticity as a function of di,xi, we should use fully

robust inference because any such procedure should be viewed as quasi-GLS.

As in the case without covariates, estimating (5.16) by POLS is the same as analyzing each

post-treatment period separately with the first q − 1 periods collapsed into a single control

period. One way to obtain the estimates is to use the panel data in periods 1, 2, ..., q − 1 and a

given r ∈ q,q  1, . . . ,T and estimate the equation

yit    rwit  wit  xi − x̄1r  frt  xir  di  di  xi  rfrt  errorit     (5.17)

by POLS. Equivalently, drop xi, di, and di  xi and use two-way FE.

In order to use something other than regression adjustment, it is useful to know that ̂r is

obtained by defining ẏir as in (5.14) and then using regression adjustment (RA) on the resulting

cross section, where coefficients on xi are allowed to vary across di  0 and di  1. The OLS

regression would be

ẏir on 1, di, xi, di  xi − x̄1, i  1, . . . ,N     (5.18)

and then ̂r is the coefficient on di. As usual, built-in features of packages such as Stata make
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it easy to adjust the standard errors for sampling error in x̄1.

5.3.What is Being Estimated?

Estimating a flexible equation such as (5.15) by TWFE or, equivalently, (5.16) by POLS or

RE, to obtain the effects of policy intervention intuitively seems like a good idea, especially

given that these include much more heterogeneity in the treatment effects compared with the

constant-coefficient TWFE estimator. From a traditional perspective it is easy to figure out

what the coefficients on the treatment indicators are consistently estimating. For example, take

the equation without covariates but allowing time-varying treatment effects:

Eyt|d    qd  fqt   Td  fTt  d  qfqt   TfTt

Setting d  0 gives

Eyt|d  0  , t  1, . . . ,q − 1

   t, t  q, . . . ,T

and setting d  1 gives

Eyt|d  1    , t  1, . . . ,q − 1

     t  t, t  q, . . . ,T

Therefore, for given r ≥ q and any t  q,

r  Eyr|d  1 − Eyr|d  0 − Eyt|d  1 − Eyt|d  0

 Eyr|d  1 − Eyt|d  1 − Eyr|d  0 − Eyt|d  0

    (5.19)

which is a population difference-in-differences expression.

In modern discussions of intervention analysis, there is more interest in determining when

parameters such as the r can be interepreted as average treatment effects in a setting with

explicitly potential outcomes. Here I characterize what is identified when we use an extension

of the TWFE estimator that allows for time-varying treatment effects and for flexibly including
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covariates, xi. The underlying sampling scenario is random sampling across i, so we can state

assumptions in terms of the population.

We take the T time periods, t  1, . . . ,T, as given. Randomness comes from assignment to

the control (d  0) or treatment (d  1) groups. The initial period, at the least, is a control

period. The intervention occurs at time q for all treated units and any treated unit remains

treated through period T. Because of the simple intervention pattern, we can denote the

potential outcomes are yt0,yt1 : t  1, . . . ,T, where yt0 is the outcome in the control

state and yt1 is the outcome in the treated state, where the treatment is defined by d. We

observe either yt0 or yt1, but not both.

For each t, the treatment effect (due to the intervention occuring at t  q) is

tet  yt1 − yt0     (5.20)

Because the intervention occurs at t  q, we have no way of identifying average treatment

effects prior to the intervention. In fact, below we will assume such effects are zero. The focus

is naturally on average effects for t ≥ q. In particular, we are interested in the average

treatment effect on the treated in each of the treated time periods:

 t ≡ Eyt1 − yt0|d  1, t  q,q  1, . . . ,T     (5.21)

I start with the case without covariates as it is more easily seen how identification works.

There are two assumptions that restrict the relationship between potential outcomes and the

treatment assignment. The first has been called the “no anticipation” assumption, which, in the

panel data literature, is technically similar to a “strict exogeneity” assumption. There are two

implications of the assumption. First, because the potential outcomes before t  q are defined

in terms of the treatment d determined later, it means that units do not change their behavior in
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anticipation of the treatment in ways that would affect the outcome. Another implication is that

the mechanism used in deciding the treatment and control groups does not base it on

systematic differences in potential outcomes prior to the intervention. When T  2, Heckman,

Ichimura, and Todd (1997) explicitly state the assumption as y11  y10 and the extension

here is

yt1  yt0, t  q     (5.22)

As in Callaway and Sant’Anna (2021) and Sun and Abraham (2021), we can get by with a

weaker assumption.

Assumption NA (No Anticipation): For t  q,

Eyt1 − yt0|d  1  0.      (5.23)

Notice that the quantities in (5.23) are the ATTs prior to the intervention. As pointed out

by Callaway and Sant’Anna (2021), with more than one pre-intervention period the NA

assumption can be relaxed by allowing (5.23) to fail, say, with t  q − 1. For example, maybe

units just prior to the intervention change their behavior in anticipation but that does not

happen two periods prior. In that case, one can drop the t  q − 1 period is dropped from the

analysis. In what follows I use the assumption as stated in (5.23); occasionally, for the

purposes of simplifying the discussion, I will act as if (5.22) holds.

The second restriction is a standard version of the common (or parallel) trends assumption;

it is used by Heckman, Ichimura, and Todd (1997), Abadie (2005), and Sant’Anna and Zhao

(2021) in the T  2 setup.

Assumption CT (Common Trend): With the (eventually) treated indicator given by d,

Eyt0 − y10|d  Eyt0 − y10 ≡ t, t  2, . . . ,T.      (5.24)
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The assumption is given by the first equality, which says that the average trend in the control

state, in every period relative to the initial period, does not depend on treatment status. Once

we assume a common trend, we define it to be t. It is easily seen that an equivalent

assumption is to impose common trends across any two periods:

Eyt0 − yt−10|d  Eyt0 − yt−10, t  2, . . . ,T.

Now write the observed outcome as

yt  yt0  d  yt1 − yt0  yt  yt0  d  tet     (5.25)

and take the expectation conditional on d:

Eyt|d  Eyt0|d  d  Etet|d

 Eyt0|d  d   t     (5.26)

because d  Etet|d  d  Etet|d  1. [This follows from the simple representation

Etet|d  1 − d  Etet|d  0  d  Etet|d  1.] Next, write yt0 in terms of its initial

period and the gain over the period:

yt0  y10  gt0, t  2, . . . ,T

gt0 ≡ yt0 − y10

    (5.27)

Now we impose the CT assumption, which can be written as

Egt0|d  Egt0 ≡ t, t  2, . . . ,T     (5.28)

Finally, because d is binary, we can always write

Ey10|d    d     (5.29)

Combining (5.26) through (5.29) gives, with 1 ≡ 0,

Eyt|d    d  t  d   t, t  1, . . . ,T     (5.30)
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Under Assumption NA,  t  0 for t  q, and so

Eyt|d    d  t, t  q

   d  t  d   t, t  q, . . . ,T

    (5.31)

It is easily seen that these equations identified all of the parameters – particularly the  t. The

number of parameters in (5.30) is 2  T − 1  T − q  1  2T  1 − q. There are 2T cell

means corresponding the two treatment groups over T time periods. If q  2 – its smallest

allowable value – then there are the same number of parameters as means. Essentially, this is a

way of seeing that we cannot test the combination of Assumptions NA and CT when q  2.

When q  2, the NA and CT assumptions impose q − 2 restrictions on the 2T cell means

determined by d, t.

For implementation, it is useful to write the estimating equation in terms of time dummies

as

Eyt|d    d  2f2t   TfTt  qd  fqt   Td  fTt, t  1, . . . ,T     (5.32)

Equivalently, for a random draw i and letting wit  di  pt, we can write

Eyit|di    di  2f2t   TfTt  qwit  fqt   Twit  fTt, t  1, . . . ,T     (5.33)

Given a random sample of size N from the population, consistent estimators of r are obtained

from the pooled OLS regression

yit on 1, di, f2t, ..., fTt, wit  fqt, ..., wit  fTt, t  1, . . . ,T; i  1, . . . ,N     (5.34)

From Theorem 3.1, the regression in (5.34) produces estimates of the ̂ t equivalent to the

TWFE estimator. Moreover, we need only include the time-averages and cross-sectional

averages of difrt, r  q, . . . ,T, which means that only the time dummies fqt, ..., fT are needed in

(5.34) along with di. This algebraic equivalance is useful for testing the common trend
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assumption, something I take up in Section 7.

We can relax the common trend assumption if we have some constant (pre-intervention)

covariates, and also allow the treatment effects to depend on the covariates. We also need to

modify the no anticipation assumption so that the pre-intervention treatment effects are zero

for all subpopulations defined by x.

Assumption CNA (Conditional No Anticipation): For treatment indicator d and

covariates x,

Eyt1 − yt0|d  1,x  0, t  q.      (5.35)

As before, this assumption is satisfied if we assume yt1  yt0, t  q.

Assumption CCT (Conditional Common Trends): For treatment indicator d and

covariates x,

Eyt0 − y10|d,x  Eyt0 − y10|x, t  2, . . . ,T.      (5.36)

To derive an estimating equation, again write yt as in (5.25), but now take the expectation

conditional on d,x:

Eyt|d,x  Eyt0|d,x  d  Etet|d,x

Now, define the ATT conditional on x as

 tx ≡ Etet|d  1,x

so that

Eyt|d,x  Eyt0|d,x  d   tx     (5.37)

By iterated expecations,  t  E tx|d  1.

Next, writing yt0 as in (5.27),
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Eyt0|d,x  Ey10|d,x  Egt0|d,x, t  2, . . . ,T

and by the CCT assumption Egt0|d,x  Egt0|x,

Eyt0|d,x  Ey10|d,x  Egt0|x     (5.38)

and so

Eyt|d,x  Ey10|d,x  Egt0|x  d   tx     (5.39)

In principle, there are no restrictions on Ey10|d,x or Egt0|x. Here we assume linearity

to lead to a simple analysis.

Assumption LIN (Linear in Parameters): For covariates x, which many include any

functions of underlying control variables,

Ey10|d,x    d  ẋ  d  ẋ     (5.40)

Egt0|x  t  ẋt, t  2, . . . ,T     (5.41)

 tx   t  ẋt, t  q, . . . ,T     (5.42)

where

ẋ ≡ x − Ex|d  1 ≡ x − 1.      (5.43)

Notice that by centering x about Ex|d  1 we force the intercept in the equation for  tx

to be the parameter of interest,  t.

Substituting the conditional mean expressions into We can now obtain an estimating

equation:

Eyt|d,x    d  ẋ  d  ẋ  t  ẋt   td  d  ẋt, t  1, . . . ,T     (5.44)

For t  q, Assumption NA implies  t  0, t  0. As before, we can combine the expressions
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into one that is the basis for pooled OLS estimation, adding an i subscript for emphasis (and

setting 1  0):

Eyit|di,xi    di  ẋi  di  ẋi  2f2t   TfTt
 f2t  ẋi2   fTt  ẋiT  qdi  fqt   Tdi  fTt

 di  fqt  ẋiq   di  fTt  ẋiT     (5.45)

As a consequence of Theorem 3.1, we only have to include the time dummies and their

interactions with ẋi for periods q and later, and so the pooled OLS regression is

yit on 1, di, ẋi, di  ẋi, fqt, ..., fTt, fqt  ẋi, ..., fTt  ẋi,

di  fqt, ..., di  fTt, di  fqt  ẋi, ..., di  fTt  ẋi,     (5.46)

where the regression is operationalized by now taking ẋi  xi − x̄1. As before, one should,

technically, should correct the standard errors due to the sampling variation in x̄1. From

Theorem 3.1, the pooled OLS regression produces estimates on all coefficients identical to the

TWFE estimates where we drop the time-constant variables di, ẋi, and di  ẋi. The POLS

formulation has the benefit of producing coefficients on di, ẋi, and di  ẋi to determine that

nature of selection intro treatment and to see whether the covariates have the anticipated signs.

Also, for estimating the treatment effects it is only necessary to center the covariates when they

are interacted with the treatment indicators di  frt, r  q, . . . ,T, but centering the covariates in

all interactions gives the coefficients on di and fqt, ..., fTt sensible interpretations; the

coefficient on di allows one to study the nature of the selection bias into exposure.

One can typically use built-in software commands to estimate the ATTs and account for the

sampling error in x̄1. Stata’s “margins” command can be used for these purposes. Then the

regression should be run explicitly with the time-varying treatment indicator, wit  di  pt, and

without centering the covariates. Using the simple fact that di  frt  wit  frt, the regression
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without centering the covariates is

yit on 1, di, xi, di  xi, fqt, ..., fTt, fqt  xi, ..., fTt  xi,

wit  fqt, ..., wit  fTt, wit  fqt  xi, ..., wit  fTt  xi     (5.47)

Then, the average partial effect is computed with respect to w and with the appropriate time

dummy turned on to reflect the different post-treatment periods. Then, the averaging is over

the treated subsample, di  1. The appendix provides sample Stata commands. Because the

covariates have not been centered before creating the interactions, the usual warning applies:

the coefficients mostly will be meaningless, as the estimated effects will be for the

subpopulation determined by x  0 (which is often impossible or, at a minimum, not very

interesting).

6. Application to Staggered Interventions

We now turn to the more complicated setting of staggered interventions. As in Section 5,

the first time of entry is q, but only some units are subjected to the intervention during period

q. At period q  1, more units join the treated group, and so on, until period T. We assume that

q  1 so there is at least one untreated period. We still assume that the treatment is irreversible,

as in Callaway and Sant’Anna (2021), Sun and Abraham (2021), Borusyak, Jaravel, and Spiess

(2021), and other work.

The TWFE estimator that imposes a constant effect has come under much scrutiny lately

with staggered interventions. Goodman-Bacon (2021) and de Chaisemartin and D’Haultfœuille

(2021) use different characterizations of the parameter identified by the simple two-way FE

estimator – when a single coefficient on the time-varying treatment indiciator, wit, is estimated.

Goodman-Bacon (2021) shows that the estimand can be written as a weighted average of

several different 2  2 DiD parameters, some of which make no sense (for example, using an
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earlier treated group as a control for a later treated group). de Chaisemartin and D’Haultfœuille

(2021) write the estimated as a weighted average of certain causal effects and, in this

representation, where some of the weights can be negative. Here I show how the usual TWFE

estimator can be made much more flexible and, under standard parallel trend assumptions,

identifies interesting average treatment effects. Essentially, I provide a regression-based

alternative to Callaway and Sant’Anna (2021) under a slightly different but similar set of

assumptions. One of the important conclusions is that there is nothing inherently wrong with

TWFE as an estimation method. The problem is that it is often applied to a model that is too

restrictive.

6.1. Assumptions and Estimating Equations

One way to view the staggered intervention is that it generates different levels of exposure

to the treatment, as determined by the date of the intervention. The earlier a unit is subjected to

the intervention, the longer the exposure in later time periods. We define treatment cohort

dummies, dq, ..., dq, that indicate when a unit was first subjected to the intervention. Given a

never treated group, there are T − q  2 total treatment levels. The general discussion in what

follows acts as if there is a never-treated cohort, although that is not necessary. However, as I

discuss further in Section 6.7, if all units are eventually treated then the ATT of the group that

enters in the final period is not identified.

Given that the staggered entry leads to different treatment effect intensities, it is natural to

think in terms of an expanded set of potential outcomes. The notation here is a bit tricky

because there are multiple treatment levels determined by when a unit is initially exposed to

the intervention. For r ∈ q,q  1, . . . ,T, ytr ytr is the potential outcome during time

period t if a unit enters the treated state in time period r. We also need a notation for the
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potential outcome if a unit is not subjected to the intervention during the time periods under

study, 1,2, . . . ,T. One possibility is yt0, which, in the common timing case, simply denotes

the no treated state. This notation has some drawbacks because then when we write ytr the

amount of time in treatment is not decreasing in r. A more subtle issue is that there is a

difference between the outcome in the untreated state and the never treated state (although the

no anticipation assumption will essentially assume these are the same). Therefore, I borrow the

notation from Athey and Imbens (2021) and use yt to denote the potential outcome in time t

if a unit is never treated (in the period under study). A notation such as ytT  might be

technically more precise but is less appealing.

I initially focus on the treatment effects that are standard in the staggered assignment

literature [Athey and Imbens (2021), Callaway and Sant’Anna (2021), and Sun and Abraham

(2021)], the difference in potential outcomes first receiving treatment in period r and never

receiving it:

tetr  ytr − yt, r  q, . . . ,T     (6.1)

[Below I will discuss other treatment effects, such as ytr − ytr  1 for t ≥ r, which is the

incremental effect of having been first exposed in period r compared with period r  1]

As in Callaway and Sant’Anna (2021) and Sun and Abraham (2021), the treatment effects

we hope to identify are the ATTs in periods where the cohorts are actually subjected to the

intervention:

rt ≡ Etetr|dr  1, r  q, . . . ,T; t  r, . . . ,T.     (6.2)

The requirement that we have one untreated period means q ≥ 2. If a unit enters treatment in

period r then we can hope to estimate ATTs for this treatment cohort in periods
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r, r  1, . . . ,T. If there is no new entry into treatment in some periods then some of the rt.

If there all units are treated by period T then the rT, r  q, . . . ,T are not identified, although

other treatment effects can be under suitable assumptions.

Given the analysis in the common timing case, it is clear we need to rule out anticipatory

effects.

Assumption NA (No Anticipation, Staggered): For treatment cohorts r  q, q  1, . . . ,T,

Eytr − yt|d  0, t  r.      (6.3)

The stronger form of NA, ytr  yt for t  r, means that regardless of when a unit is first

exposed to the intervention the potential outcomes are the same prior to exposure. For

example, if T  5 and q  3, yt3  yt4  yt5  yt for all t  3,

yt4  yt5  yt for all t  4, and yt5  yt for t  5. This has important

implications for how one effectively defines control groups. For example, if the first period of

exposure is t  3 then cohorts r ∈ 4,5, contain valid control units.

I state the common trends assumption for the staggered case as follows.

Assumption CTS (Common Trend, Staggered): With the treatment cohort dummies dq,

..., dT,

Eyt − y1|dq, . . . ,dT   Eyt − y1 ≡ t, t  2, . . . ,T.      (6.4)

As before, this is the same as assuming that the average trends in adjacent time periods do not

change with exposure:

Eyt − yt−1|dq, . . . ,dT   Eyt − yt−1, t  2, . . . ,T     (6.5)

The latter statement is similar to Callaway and Sant’Anna (2021), although they define the

condition relative to a never treated group or a yet-to-be-treated group. Here, the CT
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assumption is stated entirely in terms of the potential outcome in the never treated state –

whether or not we observe never treated units – and so is more in the spirit of the usual

potential outcomes setting.

Initially, we assume that there is a never treated (NT) group and that there is nonzero

probability of entry in each period. This means that the rt will be identified for r ∈ q, . . . ,T

and t ∈ r, . . . ,T.

In deriving estimating equations, it is useful to write the observed outcome in any period t

as

yt  yt  dq  ytq − yt  dq1  ytq  1 − yt   dT  yTT − yt

 yt  dq  tetq   dT  tetT     (6.6)

Underlying this equation is that dq   dT is not identically one, so that

d ≡ 1 − dq   dT is not identically zero. It follows that

Eyt|d  Eyt|d  dq  Etetq|d   dT  EtetT|d     (6.7)

Because of the mutually exclusive nature of the cohort dummies, and that every unit is in one

and only one treatment group (including the never treated group), we can always write

drEtetr|dq, . . . ,dt   drEtetr|dr  1     (6.8)

and so

Eyt|d  Eyt|d  dq  Etetq|dq  1   dT  EtetT|dT  1     (6.9)

For t  r, Assumption NAS implies that Etetr|dr  1  0. Therefore, for t  q,

Eyt|d  Eyt|d

and for t ≥ q,
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Eyt|d  Eyt|d  dq  Etetq|dq  1   dt  Etett|dt  1

≡ Eyt|d  dqqt   dt tt     (6.10)

Next, write yt in terms of the initial outcome in the NT state and the change relative to the

first period as

yt  y1  gt, t  2, . . . ,T

Imposing Assumption CTS (and 1  0 because  is already the intercept for the first time

period),

Eyt|d  Ey1|d  Egt|d ≡   qdq   TdT  t     (6.11)

where the equation

Ey1|d    qdq   TdT     (6.12)

is definitional because the cohort indicators are mutually exclusive and, along with the NT

group, exhaustive. Combining (6.10), (6.11), and (6.12), we have for 1 ≤ t  q,

Eyt|d    qdq   TdT  t,     (6.13)

and for q ≤ t ≤ T,

Eyt|d    qdq   TdT  t  qtdq    ttdt     (6.14)

The CCT assumption imposes common coefficients on the dq for t  q but with an intercept

shift given by t relative to t  1. To impose these common coefficients in estimation, it is

useful to have an equation for any t that includes time period dummies fst:

Eyt|d    qdq   TdT ∑
s2

T

sfst ∑
rq

T

∑
sr

T

rsdr  fst     (6.15)

For a random draw i, we have
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Eyit|di    qdiq   TdiT ∑
s2

T

sfst ∑
rq

T

∑
sr

T

rsdir  fst

It is also useful to write an equivalent equation that includes the binary, time-varying treatment

indicator, wit:

Eyit|di    qdiq   TdiT ∑
s2

T

sfst ∑
rq

T

∑
sr

T

rswit  dir  fst,     (6.16)

which emphasizes that the analysis here allows for substantial treatment effect heterogeneity

beyond the approach that includes only wit by itself and estimates a single treatment effect.

The equivalence follows because wit  diq  pqt  di,q1  pq  1t   diT  pTt, where prt

is a dummy variable indicating t ≥ r. It follows that wit  dir  fst  dir  fst for s ≥ r.

The coefficients in (6.15), including the rs, are consistently estimated using the POLS

regression

yit on 1, diq, ..., diT, f2t, ..., fTt, diq  fqt, ..., diq  fTt, ..., diT  fTt     (6.17)

In fact, the estimators are unbiased conditional on their being new units in each treatment

cohort. In other words, we interact the cohort dummies with the time dummies corresponding

to those periods where a cohort is subjected to the intervention. If new units enter in every

period and there is a never-treated group, then there are T − q  1T − q  2/2 estimated

effects. As before, there is an equivalent TWFE estimator obtained by just including the

treatment effect interactions, diq  fqt, ..., diq  fTt, ..., diT  fTt, and dropping

1,diq,… ,diT, f2t,… , fTt . Also, the time period dummies prior to q can be dropped without

affecting the estimates.

While the main purpose of this section is to discuss identification and the mechanics of

39



POLS and TWFE estimation, using asymptotic inference requires a sufficient number of

treated units for a particular cohort within each time period. With few new treated units, one

might have no choice but to impose restrictions on the treatment effects. I discuss this further

below.

6.2. Other Treatment Effects

One can also ask about identification of treatment effects other than just ATTs relative to

the never treated state. For example, for r ≥ q and r  1 ≤ t  T, consider

ytr − ytr  1,

the “gain” in period t of having been exposed to the intervention for one more period: rather

than being first exposed in period r  1, exposure happens one period earlier. Define the ATT

for the subgroup actually treated in the earlier period:

r:r1,t ≡ Eytr − ytr  1|dr  1     (6.18)

Now, write

ytr − ytr  1  ytr − yt − ytr  1 − yt

and so

r:r1,t  rt − Eytr  1 − yt|dr  1

Next, write

ytr  1 − yt  ytr  1 − y1r  1 − yt − y1  y1r  1 − y1.

By no anticipation, the last term is zero. [Stated in terms of conditional means we would have

to strengthen the assumption to Ey1r  1 − y1|dr  1  0.] Therefore,
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Eytr  1 − yt|dr  1  Eytr  1 − y1r  1|dr  1

− Eyt − y1|dr  1

By the CT assumption, the second term is the same as Eyt − y1|dr1  1. For the first

term, we have to add the CT assumption

Eytr  1 − y1r  1|d  Eytr  1 − y1r  1,     (6.19)

which says CT holds not just for the never treated state but also for other treated states. Under

this assumption,

Eytr  1 − yt|dr  1  Eytr  1 − yt|dr1  1 ≡ r1,t.

Therefore, we have shown, under the stronger NA and CT assumptions,

r:r1,t  rt − r1,t,     (6.20)

which is the natural definition of the marginal increment of being treated one period earlier

(with or without an explicit potential outcomes framework).

In order to obtain the incremental effects as differences rt − st for r ≤ s ≤ t, we need

parallel trends to hold in every treated state except for r  q – the first treated cohort. Because

r  q is never used as an initial state – units cannot be exposed to the treatment earlier – we

need not restrict ytq − y1q.

6.3. Adding Covariates

If we simply add covariates xi to (6.17), or even interactions dir  xi, the estimated

treatment effects do not change. As in the common intervention case, this algebraic result

follows from Theorem 3.2. However, having access to covariates allows us to relax the

common trends assumption even in the staggered case. We first write the no anticipation

assumption as follows:
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Assumption CNAS (Conditional No Anticipation, Staggered): For treatment cohorts

r  q, q  1, . . . ,T and cohort indicators dr,

Eytr − yt|dr  1,x  0, t  r.      (6.21)

Again, this assumption clearly holds of we simply assume ytr  yt, t  r.

Assumption CCTS (Conditional Common Trends, Staggered): For cohort indicators dr

and covariates x,

Eyt − y1|d,x  Eyt − y1|x, t  2, . . . ,T.      (6.22)

The interpretation of this assumption is essentially the same as in the common intervention

case.

Now we initially focus on the ATTs conditional on the covariates,

rtx ≡ Etetr|dr  1,x     (6.23)

and then average out across the distribution of x conditional on dr  1 to obtain the ATTs.

Again write yt as in (6.6) so that

Eyt|d,x  Eyt|d,x  dq  Etetq|d,x   dT  EtetT|d,x     (6.24)

Because of the mutually exclusive nature of the cohort dummies, and that every unit is in one

and only one treatment group (which includes a never treated group), we can always write

drEtetr|d,x  drEtetr|dr  1,x ≡ drrtx

Therefore, we can write

Eyt|d,x  Eyt|d,x  dq  qtx   dT  Ttx     (6.25)

Note that by Assumption CNA, rtx  0 if t  r, and so drrtx  0 if t  r.

Next, write the outcome in the never treated state as the first period value plus the time
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change:

yt  y1  gt, t  2, . . . ,T

By the CCTS assumption,

Eyt|d,x  Ey1|d,x  Egt|d,x  Ey1|d,x  Egt|x     (6.26)

Assumption LINS (Linear in Parameters. Staggered): For covariates x,

Ey1|d,x    qdq   TdT  x  dq  xq   dT  xT     (6.27)

Egt|x  t  xt, t  2, . . . ,T     (6.28)

rtx  rt  ẋrrt, r  q, . . . ,T; t  r, . . . ,T     (6.29)

where

ẋr ≡ x − Ex|dr  1 ≡ x − r.      (6.30)

Note how in (6.30) the controls have been centered about the within-cohort mean. This

ensures that the intercept is rt, the parameter we want to estimate on the interactions between

the cohort dummies and calendar time dummies.

Combining (6.25), (6.27), and the linear conditional expectations, and imposing the NA

assumption, it follows that, for t ≥ q,

Eyt|dq, . . . ,dT,x    qdq   TdT  x  dq  xq   dT  xT
 t  xt  qtdq  dq  ẋqqt  q1,tdq1  dq1  ẋq1q1,t

   ttdt  dt  ẋttt

    (6.31)

We can write the estimating equation that includes all parameters by using the time period

dummies:
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Eyt|dq, . . . ,dT,x   ∑
rq

T

rdr  x ∑
rq

T

dr  xr ∑
s2

T

sfst ∑
s2

T

fst  xs

∑
rq

T

∑
sr

T

rsdr  fst ∑
rq

T

∑
sr

T

dr  fst  ẋrrs

    (6.32)

For a random draw i, and with the treatment indicator wit,

Eyit|diq, . . . ,diT,xi   ∑
rq

T

rdir  xi ∑
rq

T

dir  xir ∑
s2

T

sfst ∑
s2

T

fst  xis

∑
rq

T

∑
sr

T

rswit  dir  fst ∑
rq

T

∑
sr

T

wit  dir  fst  ẋirrs,

    (6.33)

which emphasizes that we are allowing the effect of treatment to change with cohort, calendar

time, and control variables. When we operationalize the POLS regression, we use deviations

from the cohort averages:

ẋir  xi − x̄r  xi − Nr−1∑
h1

N

dhrxh.     (6.34)

We can drop the terms fst and fst  xi for s  q or include them without changing the ATT

estimates or the coefficients that measure moderating effects of the covariates. One version of

the regression, across all i and t, is

yit on 1, diq, ..., diT, xi, diq  xi, ..., diT  xi, fqt, ..., fTt, fqt  xi, ..., fTt  xi,

wit  diq  fqt, ..., wit  diq  fTt, ..., wit  di,q1  fq  1t, ..., wit  di,q1  fTt, ..., wit  diT  fTt,

wit  diq  fqt  ẋiq, ..., wit  diq  fTt  ẋiT, wit  di,q1  fq  1t  ẋiq, ...,

wit  di,q1  fTt  ẋiT, ..., wit  diT  fTt  ẋiT

    (6.35)

Alternatively – although the coefficients themselves would be difficult to interpret – we do not

demean the xi in the last terms and instead compute the average partial effect with respect to w,

restrict attention to the relevant cohort-time period pair, and then average over the dr  1
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subsample. (See the appendix for how this can be done in Stata.)

The regression in (6.35) uses levels controls for covariates and, effectively, treatment

intensity. By contrast, Callaway and Sant’Anna (2021) use differences of the outcome variable

and use inverse probability weighting. Because the expectation in (6.33) is in levels, it

immediately suggests nonlinear models when yit is limited in some way. I touch on this

possibility in Section

As in all previous cases, there is an equivalent TWFE estimator when all time constant

variables are dropped from (6.33) and fst and fst  xi are kept along with the terms involving

wit. Compared with the basic TWFE analysis, which imposes a constant coefficient on wit,

TWFE estimation of (6.33) allows for considerable heterogeneity. Compared with Sun and

Abraham (2021), I explicitly allow covariates in order to make the common trends assumption

more plausible and to allow treatment effects to vary by observed covariates.

6.4. Statistical Properties

It is useful to summarize the statistical properties of the POLS/ETWFE estimator by stating

somewhat formal results. The following statements assume random sampling across i and

enough finite moments. Unbiasedness, consistency, and asymptotic normality follow

essentially immediately from (6.33). Let D be the NT  T − q  1 matrix of cohort indicators

and let X be the NT  K matrix of covariates. For the consistency statement, let zit be the row

vector of explanatory variables in (6.33) and Zi the matrix obtained by stacking the zit from

t  1, . . . ,T. Naturally, these results include estimation common timing as a special case.

THEOREM 6.1 (Unbiasedness and Consistency): Under Assumptions CNA, CCT, and

LIN, the POLS estimator ̂  ̂rs from (6.35) has the following properties:

(i) The ̂ is unbiased for the  conditional on D,X for any realization where the standard
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rank condition holds. (This means that each treatment cohort has a sufficient number of units

and there is no perfect collinearity among the covariates.)

(ii) For fixed T, ̂
p
→  provided EZi′Zi is nonsingular.

(iii) For fixed T, N ̂ −  is asymptotically normal with the asymptotic variance the usual

sandwich form.

Unbiasedness follows because under random sampling implies that the conditional mean in

(6.33) is also the mean conditional on D,X. Consistency and asymptotic normality (with the

sandwich form of the asymptotic variance) are standard; see, for example, Wooldridge (2010,

Section 7.3).

THEOREM 6.2 (Efficiency of POLS): Under the assumptions in Theorem 6.1, write (6.33)

in composite error form as

yit   ∑
rq

T

rdir  xi ∑
rq

T

dir  xir ∑
s2

T

sfst ∑
s2

T

fst  xis

∑
rq

T

∑
sr

T

rswit  dir  fst ∑
rq

T

∑
sr

T

wit  dir  fst  ẋirrs  ci  uit, t  1, . . . ,T     (6.36)

where

Eai|di,xi  0, Eui|ci,di,xi  0     (6.37)

Assume in addition that

Varci|di,xi  a2

Varui|ci,di,xi  u2IT

    (6.38)

    (6.39)

where ui′ ≡ ui1,ui2, . . . ,uiT. Then the POLS estimator ̂  ̂rs has the following properties:

(i) ̂ is the best linear unbiased estimator (BLUE) of ̂ conditional on D,X for any

realization where the standard rank condition holds.
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(ii) ̂ is asymptotically efficient in the class of estimators consistent under the assumptions

of Theorem 6.1. 

The BLUE result is somewhat subtle but it follows from the fact that the POLS estimator is

the same as random effects even if we could use the true variances a2 and u2, a result that

follows from Corollary 3.3. If we define vit  ai  uit and vi′ ≡ vi1,vi2, . . . ,viT then

Varvi|di,xi has the random effects structure, and so the RE estimator is BLUE. The

asymptotic result follows from standard asymptotic efficiency of GLS for fixed-T panel data

asymptotics when the variance-covariance matrix is correctly specified. See Wooldridge

(2020, Section 10.4).

BJS (2021), assuming that all randomness stems from the error term uit in (6.36), show that

their imputation estimators are also BLUE under an assumption similar to (6.38). The BJS

estimators have a fixed effects flavor and it would not be surprising if some version is identical

the to POLS/RE/ETWFE estimator studied here. As stated before, one benefit of the

POLS/ETWFE approach is its simplicity in obtaining robust standard errors of any

combination of the ̂rs.

6.5. Aggregating and Imposing Restrictions on the Treatment Effects

An equation such as (6.33) contains many parameters, some of which may not be estimable

depending on the pattern of assignment. Even if we can obtain an estimator for each r, t

combination with r ∈ q, . . . ,T, t ∈ r, . . . ,T, the number of units entering treatment in a

particular cohort might not produce suitably precise estimates. And, there is always the worry

that the asymptotic approximations to the confidence intervals and t statistics are poor. Using

long differencing combined with regression adjustment and IPW, Callaway and Sant’Anna

(2021) suggest aggregating the rt. Here, such aggregation is much easier because it can be
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done within standard regression analysis.

The case of common treatment timing is relatively straightforward, as the number of

treated and control units in each post-intervention period is the same. Therefore, provided the

initial intervention is applied to sufficiently many units, the usual asymptotic approximations

for standard errors and confidence intervals should work well. In this setting, one might want

to impose restrictions on how the covariates appear. For example, rather than have a full set of

interactions wit  frt  xi − 1, r  q, . . . ,T, one might include, in the TWFE estimation, only

the interactions wit  pt  xi − 1 for the post-treatment dummy pt. In this case, one should

include (at least) pt  xi − 1, too.

In the case of staggered interventions, two related approaches are possible for reducing the

number of treatment effects. First, one might aggregate the separate TEs into a small number.

For example, in the model with a full set of TEs, define the parameter of interest to be

̄ ≡ 1
T − q  1T − q  2/2 ∑

rq

T

∑
tr

T

rt     (6.40)

After obtaining the ̂rt using the TWFE with covariates or the pooled OLS equivalent, it is easy

in standard regression packages to obtain the standard error of

̄ because it is just a linear

function of the ̂rt. Or, we might compute the average effect by entry cohort:


̄ r ≡ 1

T − r  1 ∑
tr

T

̂rt,     (6.41)

so there is one effect per entry cohort.

Alternatively, one might directly impose restrictions on the rt. For example, common

effect within cohort is obtained by
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rt  rr, t  r, r  1, . . . ,T; r  q, . . . ,T     (6.42)

Then there are only T − q  1 different average treatment effects rather than

T − q  1T − q  2/2 ATTs. This restriction is imposed using treatment indicators wit  dri

for r  q, . . . ,T rather than the triple interactions wit  dri  fst. Or, one can allow different

effects across calendar time but impose homogeneity by cohort: rt   tt, r  q, . . . , t,

t  q, . . . ,T. In implementation, this means only including wit  fst, s  q, . . . ,T in the

estimating equation.

Another potentially attractive restriction that can substantially reduce the number of

parameters is to assume that treatment effect differs only by treatment intensity. The

restrictions can be written, for parameters  t−r1, as

rt   t−r1, t  r, . . . ,T; r  q, . . . ,T.     (6.43)

When t  r a unit has been exposed for one period, and the restrictions in (6.43) mean that the

immediate impact is the same across entry cohort. If t − r  1 then a unit is in its second period

of exposure. And so on. For example, with T  8 and staggered interventions starting in period

q  5, there would be four treatment effect parameters corresponding to four intensity levels –

rather than 10 in the unrestricted model. Imposing these restrictions is easily done by creating a

set of treatment intensity indicators and including them in place of the indicators wit  dir  fst.

With many treated time periods and N not especially large, one might partition the cohorts

into something like “early treated,” “middle treated,” and “late treated.”

It is also prudent in many cases to impose restrictions on the vectors rs. A natural

restriction is common effects by cohort, and so the interaction terms become wit  dri  ẋir. One

might even impose rs   for all r and s and then center xi about the mean computed from all
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(eventually) treated units.

Any restrictions imposed is easily tested by estimating the unrestricted model and then

testing the corresponding linear restrictions using a robust Wald statistic that allows general

serial correlation and heteroskedasticity. See the supplemental materials for examples.

6.6. Restricted Treatment Patterns

In many intervention analyses with staggered treatment the intervention pattern is not

completely general. One common case is when entry stops at a certain point but the units

(control and treated) are followed for subsequent periods. This is an easy case to handle

because there are simply fewer entry cohorts, and so the cohort dummies after the final entry

period are simply dropped from the analysis. In particular, equations (6.16) and (6.33) will

have fewer treatment interactions as well as interactions with the covariates in the latter case.

For example, suppose T  8, q  5, but entry occurs only in periods five and six. Then the

interactions one can include without consider covariates are d5f5t, d5f6t, d5f7t, d5f8t, d6f6t,

d6f7t, and d6f8t. It is still possible to estimate dynamic effects of the intervention for the two

entering cohorts.

6.7.What if all Units are Eventually Treated?

In some designs, all units eventually enter the treated state. It is straightforward to modify

the previous analysis so that a conditional mean similar to (6.32) still identifies interesting

treatment effects. Consequently, we can resolve the identification issue that has been raised by

Callaway and Sant’Anna (2021) and BJS (2021). For example, BJS (2021) use potential

outcomes yt0 and yt1 and so it is more difficult define the incremental effect of an earlier

exposure to treatment relative to first exposure in the final period.

With d ≡ 0, we effectively take the cohort entering in the final period – at which points
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are units are treated – as the base group. Now define treatment effects

r:T,t  Eytr − ytT|dr  1, r  q, . . . ,T − 1, t  r, . . . ,T,     (6.44)

so that r:T,t is the ATT in period t when moving from treatment in the final period T to any

earlier period q ≤ r ≤ T − 1. For example, with T  6 and q  4, there are entry cohorts in

periods four, five, and six. We cannot, in general, identify a treatment effect for the final entry

cohort because, with a never treated group, there is no suitable control group for the final

period cohort. But we can estimate the TEs given in (6.44) by simply stating the no

anticipation and parallel trend assumptions for the dT  1 rather than d  1 group. This is

easily seen by writing

yt  ytT  dqytq − ytT   dT−1ytT − 1 − ytT

and so, letting d  dq, . . . ,dT−1,

Eyt|d,x  EytT|d,x  dqEytq − ytT|d,x   dT−1EytT − 1 − ytT|d,x

 EytT|d,x  dq  q:T,tx   dT−1  T−1:T,tx     (6.45)

where

r:T,tx ≡ Eytr − ytT|dr  1,x, r  q, . . . ,T − 1, t  r, . . . ,T

Writing

ytT  y1T  gtT

the conditional CT assumption is now

EgtT|d,x  EgtT|x

The no anticipation assumption is as in the case with a never treated group: replace “” with

“T” and state it for entry cohorts r  q, . . . ,T − 1. Then, with linearity of the conditional
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expectations as in Assumption LINS, the analog of (6.32) is

Eyt|dq, . . . ,dT−1,x   ∑
rq

T−1

rdr  x ∑
rq

T−1

dr  xr ∑
s2

T

sfst ∑
s2

T

fst  xt

∑
rq

T−1

∑
sr

T

r:T,tdr  fst ∑
rq

T−1

∑
sr

T

dr  fst  ẋrrs

    (6.46)

and then the POLS regression looks like

yit on 1, diq, ..., di,T−1, xi, diq  xi, ..., di,T−1  xi, fqt, ..., fTt, fqt  xi, ..., fTt  xi,

wit  diq  fqt, ..., wit  diq  fTt, ...,

wit  di,q1  fq  1t, ..., wit  di,q1  fTt, ..., wit  diT−1  fT − 1t, wit  diT−1  fTt
wit  diq  fqt  ẋiq, ..., wit  diq  fTt  ẋi,T−1, wit  di,q1  fq  1t  ẋiq, ...,

wit  di,q1  fTt  ẋi,T−1, ..., wit  di,T−1  fT − 1t  ẋi,T−1, wit  di,T−1  fTt  ẋi,T−1

    (6.47)

Just as in the case with the never treated cohort, the regression is easy to describe and to

implement. We simply drop all terms corresponding to the final cohort, which means all of the

terms that depend on diT: the final entry cohort now acts as the control group. The coefficients

on terms of the form wit  dir  fst are ATTs relative the the last entry cohort. As usual, it is

sufficient to use the interactions dir  fst because wit  dir  fst  dir  fst.

This analysis shows that a lot still can be learned even if there is no never treated cohort. In

fact, under no anticipation, if we want to imagine there could be never treated units then we

can take ytT  yt for t  T by the no anticipation assumption: prior to the last cohort

being treated their outcome is the same as in the never treated state. If we take this stance then,

for r  T, the treatment effects r:T,t, t  r, . . . ,T, are exactly as we had before with a never

treated cohort. The primary change is that in the last period we have no choice but to compare

the earlier treated cohorts with the final treated cohort, and so we etimate r:T,T for

r  q, . . . ,T − 1. Compared with the case with a never treated group we lose only one ATT
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parameter. This is different from other approaches when there is no NT cohort – for example,

CS (2021) – where no treatment effects are estimated in the final period.

6.8. Some Simple Cases

It is helpful to consider some simple cases in order to understand how pooled OLS

(extended TWFE) uses information in the data under no anticipation and common trends. First

consider the case T  3 where t  1 is the untreated period and entry is staggered at t  2 and

t  3. Initially assume that there is a never treated group, so there are three treatment effects

that we defined earlier: 22, 23 (the two effects for the first entry cohort) and 33. Without

covariates, the POLS regression is

yit on 1, di2, di3, f2t, f3t, di2  f2t, di2  f3t, di3  f3t, t  1,2,3; i  1,2, . . . ,N     (6.48)

Consider the estimate ̂22, the coefficient on di2  f2t. It can be shown that this estimate is

identical to dropping the last time period and running the regression

yit on 1, di2, f2t, di2  f2t, t  1,2; i  1,2, . . . ,N     (6.49)

and, again, obtaining the coefficient on di2  f2t. This shorter regression is precisely the simple

two-period DiD regression where both d  1 and d3  1 are used as the control group. Using

both the never treated and yet-to-be treated is the the correct thing to do because, if we believe

the NA and CT assumptions, the potential outcomes yt3 and yt are the same for t ≤ 2.

The DiD estimate from (6.49) is the usual one:

̂22  N2
−1∑

t1

N

di2Δyi2 − N − N2−1∑
t1

N

1 − di2Δyi2

which shows that any use of regression adjustment or IPW methods should be based on

Δyi2  yi2 − yi1 with the control group including the never treated units and those first treated
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in t  3. In cases where a never treated group exists, Callaway and Sant’Anna (2021) separate

the NT group from other potential controls and therefore does not use all of the information

availabe in the identifying assumptions. In the simplest case, this would mean separate

estimates of 22 using the di  1 as the control group and then di3  1 as the control group.

This may seem more robust than combining them into a single control group, but Assumptions

NA and CT are already combined and used for identification of the treatment effects. Pooled

OLS incorparates the information in the maintained assumptions and in some cases is the most

efficient estimator in terms of exact variance and asymptotically.

Now consider estimating 33  Ey33 − y3|d3  1. Because the r  2 cohort has

been already treated it is not used as part of the control group, so we are relying on the never

treated group. In doing so, we should recognize that information is available in the usual

one-period difference and the two-period difference. To see why, first write

y33 − y3  y33 − y23 − y3 − y2  y23 − y2

Therefore,

33  Ey33 − y23|d3  1 − Ey3 − y2|d3  1

The first of these is always identified and the second is identified by the CT assumption

because

Ey3 − y2|d3  1  Ey3 − y2|d  1

The method of moments estimator is then just the usual two-period DiD from t  2 to t  3,

with r  3 the treatment group and r   the control group.

Using DiD for t ∈ 2,3 ignores useful information available in the first period outcomes.

To see why, now write
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y33 − y3  y33 − y13 − y3 − y1  y13 − y1

Again, imposing NA and CT,

33  Ey33 − y13|d3  1 − Ey3 − y1|d  1

which shows that we can use a long difference, from period one to three, in a standard DiD

analysis. But there is no need to separate them. What makes sense is to use a common timing

scenario with q  3 and the first two periods as control periods, with r  3 the treated group

and r   the control group. This is precisely what POLS/TWFE does. In fact, in the general

case, the POLS estimates of the rr are identical to using a “rolling DiD” method, where

not-yet-treated units and periods t  1 , . . . , r − 1 are used as the control groups. By

Assumptions CNA and CCT, the pre-treatment time periods can (and should be) averaged into

a single unit, and that is what POLS does.

If in the previous setup all units are treated by t  3, there are only two parameters to

estimate. We called these 2:3,2 and 2:3,3 in Section 6.2, where the former is also 2:,2

under no anticipation. As shown in Section 6.4, the POLS estimator (ETWFE) provides

unbiased and consisent estimators of these parameters. Methods that require a “not yet treated”

group do not identify 2:3,3, the impact in period three of having been treated one period

earlier. Pooled OLS identifies these effects in the general case and for all combinations of

cohort/calendar time combinations that have causal interpretations.

A related point concerns adding more pre-treatment periods. Suppose T  4 and q  3, so

there are two control periods. Estimating the conditional mean in (6.16) will properly use both

time periods in the control group. This is true with or without covariates. Using the t  1 and

t  2 time periods separately as controls, as in Callaway and Sant’Anna (2021), is inefficient
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(regardless of the approach taken, whether pure regression adjustment or combining regression

with inverse probability weighting). As the number of pre-treatment periods increases, POLS

will become even more efficient compared with CS (2021).
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7. Testing and Relaxing the Common Trends Assumption

The POLS/ETWFE framework gives a simple framework for testing the null hypothesis

that the common trends assumption holds (assuming no anticipation). The algebraic

equivalences we relied on earlier provide insight into the nature of the pre-testing problem –

something investigated in depth by Roth (2020). It is also easy to allow for certain kinds of

heterogeneous trends by expanding the earlier equations.

7.1. Testing the Null of Common Trends

First consider the simplest case where we can test the CT assumption: T  3 and the only

treated period is t  3. Because there are two pre-treatment periods we can test the CT

assumption. There are many approaches the produce the same statistic. One possibility is to

perform a standard two-period DiD using periods one and two. In other words, let

Δyi2  yi2 − yi1 and then run the simple regression Δyi2 on 1, di. Under the null of CT, the

coefficient on di is zero, and so we can use a heteroskedasticity-robust t statistic. In effect, we

are computing a treatment effect before the treatment took place. This is a kind of placebo test.

Note that it can reject due to failure of no anticipation or common trends. As emphasized by

Roth (2020), subsequent inference on the ATT after “passing” the common trends test can be

misleading.

An equivalent way to obtain the test statistic is to run the pooled regression

yit on 1, di, f2t, di  f2t, f3t, di  f3t, t  1,2,3; i  1, . . . ,N     (7.1)

and obtain the cluster-robust t statistic on di  f2t. The regression in (7.1) is saturated: we are

estimating the six cell means determined by the pairs d, t for d ∈ 0,1, t ∈ 1,2,3. The

typical approach in an empirical study would be to fail to reject CT if the t statistic is not
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significant, at, say, the 5% level. The previous algebraic equivalences help us understand that

the pre-testing problem is identical to pre-testing on an explanatory variable. If we drop di  f2t

from the regression (7.1) then the presence of f2t does not affect the coefficient on di  f3t,

which is ̂3. Thus, dropping di  f2t means we are back to the POLS regression that delivers the

ATT:

yit on 1, di, f3t, di  f3t, t  1,2,3; i  1, . . . ,N

A test of CT can be obtained in the general case with q − 1 control periods and common

entry at time q. The expanded equation for testing CT is

yit    di  2f2t   TfTt ∑
s2

q−1

sdi  fst ∑
sq

T

sdi  fst  uit     (7.2)

and the null hypothesis is

H0 : s  0, s  2, . . . ,q − 1     (7.3)

for a total of q − 2 restrictions. We would test these restrictions using a cluster-robust Wald

statistic. Note that the coefficients on d  fst for the treated periods are not shown as the ATTs

because if we allow nonzero s then the s are not ATTs in general. If we estimate the

equation with all s set to zero then we obtain the ̂ t from Section 5.2. This, again, illustrates

that pre-testing for CT is the same as pre-testing a set of q − 2 variables.

One of the main reasons for collecting data on covariates is to relax the unconditional

common trends assumption. Therefore, one should add the terms

di  fqt  ẋi, ..., di  fTt  ẋi, f2t  xi, ..., fTt  xi, xi, di  xi

to equation (7.2) and thest the same null in (7.3). If the null is imposed then we are back to the

original estimates of the time-varying ATTs.
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An alternative test replaces the q − 2 interactions with the single variable

di  t     (7.4)

which takes the alternative to CT to be a different linear for the treated group. With q  3 this

will produce the same statistic as (7.3), but with q  3 the tests differ.

In the staggered case the number of place treatment indicators that can be included varies

with treatment cohort. The last cohort has the most number of such indicators (assuming a

never treated group). One can include diT  f2t, ..., diT  ftT − 1, whereas for the first treated

cohort the terms consist of diq  f2t, ..., diq  ftq − 1. (If q  2 then no terms are included for

the first treated cohort.) Generally, write the augmented equation as

yit    qdiq   TdiT  2f2t   TfTt

∑
rq

T

∑
s2

r−1

rsdir  fst ∑
rq

T

∑
sr

T

rsdir  fst  uit     (7.5)

and the null hypothesis is

H0 : rs  0, r  q, . . . ,T, s  2, . . . , r − 1     (7.6)

When we have covariates and are relying on the conditional version of CT, we should modify

both versions of the test. The general idea is straightforward once we realize we need to allow

full flexibility in the pre-treatment trends for the never treated state. Therefore, take the

regression in (6.35) and add the variables

f2t, . . . , ftq − 1, f2t  xi, . . . , ftq − 1  xi,

diqf2t, ..., diqftq − 1, di,q1f2t, ..., di,q1fqt, diTf2t, ..., , ..., diTftT − 1

    (7.7)

    (7.8)

and then, again, jointly test the T − q  1q − 2 variables in (7.8). If these variables are

dropped then adding the variables in (7.7) does not affect the estimated ATTs or the
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coefficients measuring the moderating effects. This test does not check for alternatives where

violations of CT may depend on the xi; that would be costly in terms of degrees of freedom,

and we are seeking a test with reasonable power. Alternatively, replace the variables in (7.8)

with the cohort-specific trends, dir  t. In either case were are testing for pre-trends prior to the

first intervention period even in the staggered case.

If there is no never treated group then, as discussion Section 6.7, we simply drop all terms

involving dT because last cohort to be treated becomes the comparision group; see equation

(6.46). The terms diTf2t, ..., diTftT − 1 are dropped and the last set of terms is di,T−1f2t, ...,

di,T−1ftT − 2. Naturally, this reduces the number of restrictions being tested compared with

when there is a never treated group.

7.2. Allowing Heterogeneous Trends

In the common treatment timing case with only two pre-treatment periods, we noted that

using dir  t in place of dir  f2t, r  q, . . . ,T, gives the same statistic for testing the null

hypothesis of common trends. But they can deliver very different estimates on the

post-intervention interaction terms that are used to estimate the treatment effects. In fact, the

estimates on the actual treatment indicators dir  fst, s ≥ r can be very different. This

observation is one way of saying that correcting for heterogenous trends is generally difficult

even when there are only two pre-intervention periods because it relies on specific assumptions

about the underlying trends.

As models for heterogeneous trends, using dir  f2t versus dir  t are very different, with the

latter being more realistic. To see why, consider the very simple case with a common

intervention date of q  3 and no covariates. Letting git0 denote the growth from period 1 to

t in the control state. The two models of heterogeneous trends are

60



Egit0|di   t  di  f2t, t  2, . . . ,T     (7.9)

Egit0|d  t  di  t, t  2, . . . ,T     (7.10)

In the first case, we can write

Egit0|di  1 − Egit0|di  0  , t  2

 0, t  2

    (7.11)

which means that any violation of CT happens only in period t  2 and then reverts back to

common trends. By contrast, (7.10) implies

Egit0|di  1 − Egit0|di  0    t, t  2, . . . ,T

which can also be written as

Egi,t10|di  1 − Egit0|di  1 − Egi,t10|di  0 − Egit0|di  0  , t  2, . . . ,T,     (7.

which allows for a constant difference in trends between the treated units and the control units.

While restrictive, (7.12) seems much more plausible than (7.11). Plus, with more intervention

periods the equation in (7.10) can allow for more polynomials in t. While more terms also can

be added to (7.9), any extension would still have the implication that the difference in trends in

the untreated state is always zero post-intervention.

The linear trend specification also leads to appealing estimators in simple cases. Again take

T  3 where the intervention occurs only in t  3. The regression that incorporates a

heterogenous linear trend is

yit on 1, di, f2t, f3t, di  t, di  f3t, t  1,2,3; i  1, . . . ,N

and the estimator of the treatment effect is the coefficient on di  f3t. It turns out that we can

write that coefficient as
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̂3,DDD  N1
−1∑

i1

N

di  Δ2yi3 − N0
−1∑

i1

N

1 − di  Δ2yi3

 ȳ3,trt − ȳ2,trt − ȳ3,con − ȳ2,con − ȳ2,trt − ȳ1,trt − ȳ2,con − ȳ1,con

    (7.14)

    (7.15)

where Δ2yi3  yi3 − yi2 − yi1 − yi1 is the second difference of the response variable in the

last time period. Equation (7.14) shows that ̂3,DDD is the coefficient on di in the simple

cross-sectional regression

Δ2yi3 on 1, di, i  1, . . . ,N

whereas equation (7.15) shows that ̂3,DDD is a difference-in-difference-in-differences (DiDiD)

estimator. The second term in brackets in (7.15) is precisely the estimator underlying the

common trends test discussed earlier. Here, it is used to adjust the usual two period DiD

estimator, ȳ3,trt − ȳ2,trt − ȳ3,con − ȳ2,con, for differences in trends prior to the intervention.

With staggered intervention we can add the terms

diq  t, di,q1  t, ..., diT−1  t, diT  t

along with the time dummies from the pre-intervention periods to any of the previous

estimations, including the regression (6.35) that allows for substantial heterogeneity. As

discussed earlier, a valid test of the null of conditional CT is a joint test of these terms. If there

is no never treated group, diT is dropped everywhere with the final cohort serving as the base

group.

With enough data, one might also include interactions dir  t  xi in addition to fst  xi for

s  q to allow the heterogeneous trends to depend on the observed covariates. Centering the

covariates is optional because doing so does not affect the ATTs for the different cohorts

across calendar time.

A fixed effects approach would drop the time constant variables and include a

62



heterogeneous trend along with the intercept:

yit  ci  hit ∑
s2

T

sfst ∑
s2

T

fst  xit

∑
rq

T

∑
sr

T

rswit  dir  fst ∑
rq

T

∑
sr

T

wit  dir  fst  ẋirrs  uit,

    (7.14)

which is an extension of (6.36). Given at least two pre-treatment periods, we can remove

ci  htt by using unit-specific detrending of yit and all of terms on the right-hand side. For

example, for each i we regress yit on 1, t and obtain the residuals, ÿit. After doing the same for

each term on the RHS, we obtain, say, z̈it. Then we estimate all of the coefficients from a

pooled OLS regression ÿit on z̈it. If N is large relative to T and we assume independence across

i, one simply clusters the standard errors for serial correlation and heteroskedasticity. With

more pre-treatment periods one can include more flexible unit-specific trends. See Wooldridge

(2005) and Wooldridge (2010, Chapter 11) for further discussion.

8. Additional Issues and Extensions

8.1. Comments on Unbalanced Panels

When a panel data set is unbalanced due to missing data on some variables – in the context

of Sections 5 and 6, this would be missing data on yit, since when one uses covariates that do

not change over time you are dropping units ahead of time with missing data on x – the

equivalences derived earlier no longer hold. The pooled OLS regressions do not, in general,

properly account for the possibility that that missingness can be due to unobserved

heterogeneity. Moreover, in the fixed effects formulations, a full set of time period dummies

should be included everywhere, including interacting with covariates when covariate

adjustment is used. Even in the common timing case it is no longer sufficient to control for
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time effects by simply including a postt dummy indicator.

Once we are including a full set of time period dummies, we can obtain a POLS (or RE)

estimator equivalent to two-way FE by applying Wooldridge (2019). For example, in the case

of common treatment time, with wit  di  pt, the underlying equation that allows for

differential effects across time is

yit  qwit  fqt   q1wit  fTt  2f2t   TfTt  ci  uit     (8.1)

With sit denoting the complete cases indicator (sit  1 if yit is observed), one must include the

terms

di  fqi, ..., di  fTi, f2i, ..., fTi     (8.2)

where

fri  Ti
−1∑

t1

T

sitfrt

and Ti  ∑ t1
T sit is the number of complete cases for unit i. (Any unit with Ti  0 is

necessarily dropped, and Ti  1 units do not contribute to the estimation.) The POLS

regression becomes

yit on 1, di  fqt, ..., di  fTt, f2t, fTt, di  fqi, ..., di  fTi, f2i, ..., fTi     (8.3)

Of course, it is much easier to use TWFE on the unbalanced panel once the interaction terms

wit  frt have been created. This is even moreso in the case of staggered interventions.

8.2. Nonlinear Models

As mentioned in the introduction, once we understand the relationships among estimators

in the linear case, some flexible strategies for nonlinear models immediately suggest

themselves. When yit ≥ 0 – it can be discrete, continuous, or mixed – a particularly attractive
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approach is to assume an exponential mean function. The analog of (6.16) is

Eyit|diq, . . . ,diT  exp   qdiq   TdiT ∑
s2

T

sfst ∑
rq

T

∑
sr

T

rswit  dir  fst ,     (8.4)

and a convenient, fully robust estimation method is the pooled Poisson quasi-MLE; see, for

example, Wooldridge (2010, Chapter 13). The parameter rs is the ATT for cohort r in

calendar time t (so conditional on dr  1) for t  r, . . . ,T, r  q, . . . ,T. Because of the

exponential functional form, rs is (approximately) a proportionate effect. One could compute

a more accurate proportional effect, especially when rs is large, by evaluating the mean

function at wit  1 and wit  0 and setting the cohort and time dummies equal to the

appropriate combination of zeros and ones. If the intervention date is common, the cohort

dummies are replaced with a single di, and then treatment terms are simply the interactions

wit  fqt, wit  fq  1t, ..., wit  fTt.

It turns out to be equivalent to drop the time-constant controls dir and introduce

multiplicative heterogeneity:

Eyit|diq, . . . ,diT,ci  ci exp ∑
s2

T

sfst ∑
rq

T

∑
sr

T

rswit  dir  fst .     (8.5)

Specifically, it can be shown that when (7.7) is used with the fixed effects Poisson quasi-MLE

– see Wooldridge (1999, 2010) – it produces the same estimates of the rs as the pooled

Poisson estimates that include diq, . . . ,diT as control variables. The FEP estimator is fully

robust to distributional misspecification and serial dependence, and robust inference is readily

available. Plus, nothing special needs to be done if the panel is unbalanced.

It is straightforward to add covariates, as in (6.33). The following mean can be estimated
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using FE Poisson:

Eyit|diq, . . . ,diT,xi,ci  ci exp ∑
s2

T

sfst ∑
s2

T

fst  xis ∑
rq

T

∑
sr

T

rswit  dir  fst

∑
rq

T

∑
sr

T

wit  dir  fst  ẋirrs     (8.6)

where, as in the linear case, we demean the covariates that interact with treatment cohort r:

ẋir  xi − Exi|dir  1, r  q, . . . ,T.

Alternatively, one can use pooled Poisson regression with mean function

Eyit|diq, . . . ,diT,xi  exp  ∑
rq

T

rdir  xi ∑
rq

T

dir  xir ∑
s2

T

sfst ∑
s2

T

fst  xis

∑
rq

T

∑
sr

T

rswit  dir  fst ∑
rq

T

∑
sr

T

wit  dir  fst  ẋirrs     (8.7)

Naturally, in order to identify ATTs, we must impose some sort of common trend

assumption. In the case with covariates, that assumption is in terms of ratios rather than

differences:

Eyt|dq, . . . ,dT,x
Ey1|dq, . . . ,dT,x


Eyt|x
Ey1|x

, t  2, . . . ,T     (8.8)

When yit is binary or fractional, nonlinear models that respect the bounded nature of yit are

attractive. For example, with  the logistic function, a natural alternative to the linear

equation in (6.33) is
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Eyit|diq, . . . ,diT,xi    ∑
rq

T

rdir  xi ∑
rq

T

dir  xir ∑
s2

T

sfst ∑
s2

T

fst  xit

∑
rq

T

∑
sr

T

rswit  dir  fst ∑
rq

T

∑
sr

T

wit  dir  fst  xirs ,     (8.9)

where I dropped the demeaning of the covariates and relabeled the coefficients on the

interactions wit  dir  fst to emphasize that these parameters are not average treatment effects

(even with covariate demeaning). Instead, one needs to compute the average partial effect

using discrete differences at wit  0 and wit  1, and choosing the different time periods, and

then averaging over the relevant cohort. Packages that compute average partial effects for

logit, probit (and fractional versions of these) make such calculations, along with standard

errors, relatively simple.

As in all DiD-type estimators, underlying (8.9) is a conditional common trends assumption,

but it would be effectively stated on an underlying latent variable, say, yit∗ that follows a linear

model. I leave the exact nature of such assumptions to future research. Adding terms such as

dir  t, and even dir  t  xi to the mean functions in (8.7) and (8.9) provides even more

flexibility when there are at least two pre-intervention periods. These suggestions should be

formally studied to ensure that interesting average treatment effects are being recovered, but

that should be the case under reasonable assumptions.

Incidentally, when yit is binary one might think of using a fixed effects logit (conditional

MLE) estimation strategy, where the time-constant variables dir and in dir  xi are dropped.

This approach is not recommended, for two reasons. First, consistency of the parameter

estimators relies heavily on the assumption of serial independence in underlying idiosyncratic

errors. Just as important is that, even under (conditional) serial independence, the FE logit
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approach does not identify average treatment effects unless T is large enough to provide

precise estimates of the unobserved heterogeneity. And even then, inference is very difficult.

8.3. Comments on Standard Errors

For panel data structures with N reasonably large and T not very large, at a minimum one

should compute standard errors that allow for arbitrary serial correlation and

heteroskedasticity. A more difficult issue is deciding whether to cluster at a level other than the

unit level i. If the assignment is fully or partly made at a group level, g, then there is a case to

be made for clustering at the level of g. The case can be made using a model-based approach

with group-level heterogeneous treatment effects [for example, Wooldridge (2003)] or a

design-based approach [as in Abadie, Athey, Imbens, and Wooldridge (2017)]. As an example,

suppose that a staggered intervention occurs at the school level, i, but the probability of a

school’s being subjected to the intervention varies by school district, g. Generally, clustering at

the school level will not properly account for the assignment uncertainty (including in the case

where we observe the entire population of schools in a state, say). Clustering at the higher level

can be conservative but is simple. See AAIW (2017) for additional discusion in a simple

cross-sectional setting.

9. Concluding Remarks

The equivalence between the TWFE estimator and the TWM regression increases our

understanding of commonly used estimators, especially difference-in-differences estimators

with complicated intervention patters. It also highlights that, provided one allows treatment

effects to be suitably heterogeneous, there is nothing inherently wrong with using TWFE in

situations such as staggered interventions – a point that is also clear from Sun and Abraham

(2021). In fact, because we know that TWFE is consistent for unbalanced panels (as the
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cross-sectional sample size grows with T fixed), even when selection is correlated with

additive, unobserved heterogeneity, it has advantages over other estimators that include

time-constant cohort indicators and time effects.

The point here is not to conclude that other recent approaches – such de Chaisemartin and

D’Haultfœuille (2021), Callaway and Sant’Anna (2021), Borusyak, Jaravel, and Spiess (2021),

, among others – are not valuable and cannot improve over flexible TWFE methods. But I am

recommending not to abandon simple regression approaches because I have shown they

identify the treatment effects of interest very generally and can be made very flexible.

Restrictions on treatment effects are easy to test and impose. Other than linearity of the

conditional means in the covariates, the POLS/ETWFE approach offers everything one would

want for staggered designs: it is simple, flexible, and has exact and asymptotic efficiency

properties under the “ideal” assumptions. Competing estimation methods, such as Callaway

and Sant’Anna (2021), do not exploit all available restrictions that are used for identification.

Another nice feature of a flexible TWFE approach is that it is easily extended to allow for

heterogeneous trends, which can help when one suspects the common trends assumption is

violated. Future simulation studies, empirical research, and even a competition where

researchers apply their methods to various problems where they do not know the way the data

were generated could help shed light on the advantages of each approach.

The equivalence between pooled OLS and ETWFE estimators in the balanced, linear case

suggests simple strategies for nonlinear models. The exponential case is fairly straightforward,

as it is easy to define treatment effects in terms of percentage changes and a suitable common

trends assumption is readily identified. Moreover, the fixed effects Poisson estimator is fully

robust and, as with the linear FE estimator, allows selection to be correlated with the
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multiplicative heterogeneity. An in-depth analysis of nonnegative responses, as well as when

yit is binary or fractional, is left for future research.
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Supplemental Material: Implementing the DiD Estimators in
Stata

The Stata data files and associated “do” files show how to implement most of the

estimators described in Sections 5, 6, and even 7. The time-varying treatment indicator, wit, is

included in the data set. In my view, this variable always should be included to allow for

simple calculation of the average treatment effects and standard errors, and, as discussed in

Section 6.3, to make it easy to impose restrictions on treatment effects. In the common entry

date case, it is then easy to obtain di and in the staggered entry case it is easy to define the

cohort treatment indicators.

The statistical analysis implicit in the estimation assumes independence across i and that N

is large enough and T not so large so that clustering for serial correlation (and

heteroskedasticity) can be justified. Moreover, in the staggered case, if there are few new

entries into treatment for a given time period then the standard errors may be misleading. As

discussed in Section 6.3, one might have to assume some homogeneity across intensity or time

in order to obtain reliable standard errors.

Speaking of standard errors, the various procedures that produce identical estimates do not

always produce identical standard errors – but they should be close. The differences are due to

degrees-of-freedom adjustments when including extra time effects or different conventions

across commands on how to adjust for degrees of freedom.

Common Entry Date

Suppose first that T  2 and that the panel is balanced. The covariates do not change over

time. The following commands all give the same estimates of the ATT as the coefficient on w.

For simplicity, they are shown for a single covariate. Multiple covariates is easily handled by
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including all of the terms for the single covariate.

xtset cid tid

sum x if d

gen x_dm  x - r(mean)

reg y i.w i.w#c.x_dm i.d i.f2 x

i.d#x i.f2#c.x, vce(cluster cid)

reg D.y w i.w#c,x_dm x, vce(robust)

xtreg y i.w i.w#c.x_dm i.f2 i.f2#x, fe vce(cluster cid)

xtreg y i.w i.w#x_dm i.d i.f2 x

i.d#c.x i.f2#c.x, re vce(cluster cid)

gen dy  D.y

teffects ra (dy x) (w), atet

The final teffects command has the virtue of providing a standard error that adjusts for

the sample averages (over the treated subsample) of the covariates. Alternatively, one could

forego the centering and use the margins command with the vce(uncond) option. For

example,

xtreg y i.w i.w#c.x i.f2 i.f2#c.x, fe vce(cluster cid)

margins, dydx(w) vce(uncond) subpop(if d  1)

With an unbalanced panel, TWFE is preferred because it allows correlation between

sample selection and the unobserved heterogeneity.

For any T and any number of treatment periods, let postt be the binary indicator for the post

intervention periods. The following commands are equivalent:

reg y i.w i.w#c.x_dm i.d i.post x i.d#c.x
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i.post#c.x, vce(cluster cid)

xtreg y i.w i.w#i.c.x_dm i.post i.post#c.x, fe vce(cluster

cid)

xtreg y i.w i.w#i.c.x_dm i.tid i.tid#c.x, fe vce(cluster cid)

xtreg y i.w i.w#i.c.x i.post i.post#xc, fe vce(cluster cid)

margins, dydx(w) vce(uncond) subpop(if d  1)

In the supplemental materials, I generated a data set with T  4 with two control and two

treated periods, with common entry. The data are in the Stata file did_4.dta. There is nothing

important about T  4 or the fact that the number of control and treated time periods are the

same. The Stata do file, did_4.do, can be used to verify equivalences among the various

estimators discussed in Section 5. Moreover, it shows how to test the null of common trends.

In addition to the linear model – applied to the variable logyit – an exponential model is

applied to yit. In this case, using fixed effects Poisson and a pooled Poisson estimator are

identical only when there are no covariates.

Staggered Entry

Assume that the first treated cohort is at t  q and the cohorth dummies have been defined.

Below, they are dq, dqp1, ..., dT. Again, for simplicity assume a single covariate. I show only

the fixed effects version of the command where the covariates have been demeaned.

xtset cid tid

sum x if dq

gen x_dmq  x - r(mean)

...

sum x if dT
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gen x_dmT  x - r(mean)

xtreg y c.dq#c.fq ... c.dq#c.fT

c.dqp1#c.fqp1 ... c.dqp1#c.fT ... c.dT#c.fT

c.dq#c.fq#c.x_dmq ... c.dq#c.fT#c.x_dmT

c.dqp1#c.fqp1#c.x_dmqp1 ... dqp1#c.fT#c.x_dmqp1

... dT#c.fT#c.x_dmT

fq ... fT c.fq#c.x ... c.fT#c.x, fe vce(cluster cid)

I generated a staggered intervention with six time periods, with three acting as the control

and three as the treatment. In period four (2014), some units are treated for the first time. In

periods five and six (2015 and 2016), additional units are treated. Many units are never treated.

The Stata data set is staggered_6.dta, and this can be used to run the code in staggered_6.do.

As in the previous case, both linear and exponential models are estimated depending on

whether the dependent variable is logyit or yit  0. Also, a binary variable is generated to

show how binary response models can easily replace the linear model estimated by pooled

OLS. Fractional responses are handled similarly, using either the Stata glm command or

fracreg.
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