Incentive Design for Talent Discovery∗

Erik Madsen† Basil Williams‡ Andrzej Skrzypacz§

May 2, 2022

Abstract

We study how talent discovery within organizations distorts employee task choices. These choices are generally suboptimal when employees seek to earn promotions which are awarded based on perceived talent. They can be improved through incentive schemes which pay bonuses and/or reallocate promotions between employees. We show that the optimal incentive tool depends on the desired power of incentives, with low-powered incentives provisioned through bonuses and high-powered incentives achieved by reallocating promotions. Organizations can sometimes further benefit by dividing employees into groups with different promotion rates and bonuses, which we show eliminates the need to promote inefficiently within groups.

Keywords: Incentive pay, promotion policies, career concerns, risk-taking

JEL Classification: D82, D86, M51, M52

1 Introduction

A major personnel challenge faced by many organizations is the identification of talented employees for promotion to senior positions. In practice, talent is typically inferred from on-
the-job performance, linking performance and promotion in a way which generates important incentives for employees. Existing theoretical work, for instance on tournaments (Green and Stokey 1983; Lazear and Rosen 1981; Nalebuff and Stiglitz 1983; Rosen 1986), has focused on the positive implications of these incentives as a spur for effort. However, in roles with significant autonomy, these incentives can generate an agency problem: Employees may spend their time on tasks or projects which optimize their perceived talent rather than their productivity.

Autonomous roles are prevalent in, for example, management, software engineering, and research positions. They are an increasingly important in the modern economy due to rising research and development spending (Bloom et al. 2020) and a labor market transition toward non-routine jobs requiring creative problem-solving and interpersonal skills (Autor, Levy, and Murnane 2003; Levy and Murnane 2004). In this paper we study how the prospect of promotion distorts employee task choices, and we show how incentive schemes can be used to correct these distortions.

We focus on a natural benchmark environment in which, absent the prospect of promotion or monetary incentives, employees are indifferent between alternative uses of their time. Their preferences become misaligned when the organization attempts to solve a basic selection problem: It needs to fill a set of vacant senior positions by promoting a subset of its employees, and it relies on job performance as a signal of suitability for these positions. Inferring talent from performance distorts incentives because employees can trade off short-run productivity against the informativeness of their performance through their task choice.

To model this distortion parsimoniously, we suppose that employees spend their time either on a routine “safe” task or an experimental “risky” task. These tasks could represent, for instance, mutually exclusive projects or alternative approaches to completing an objective. The risky task produces more information about talent than does the safe task, but it is not necessarily more productive in expectation. Rather, relative productivity varies across employees and is privately observed, so that the organization cannot achieve efficiency by

1The seminal review of organizational incentives by Baker, Jensen, and Murphy (1988) observes that “Promotions are used as the primary incentive device in most organizations, including corporations, partnerships, and universities” (emphasis added).

2Employees in autonomous roles tend to possess strong intrinsic motivation to work hard (Hackman and Oldham 1980), suggesting that what they choose to work on may be of greater concern than how hard they work.
simply assigning employees to tasks.

As a preliminary result, we show that the “natural” incentives generated by promoting high-performing employees distort task choices. Depending on the scarcity of promotions, some employees either take undesirable risks in order to achieve an impressive outcome (if promotions are scarce); or else stick to unprofitable safe tasks in order to hedge against a poor outcome (if promotions are plentiful).

To mitigate these distortions, the organization can commit to an incentive scheme which promotes underperforming employees, pays outcome-contingent monetary bonuses, or some combination. While promotions and bonuses are interchangeable as rewards to employees, they impose distinctive costs on the organization—reallocating promotions reduces surplus by hampering selection, while paying bonuses cedes rents to employees. The organization therefore faces a nontrivial tradeoff between the two tools.

We first analyze symmetric incentive schemes, a class of mechanisms which allow employees to freely choose their task and treat employees who choose the same task and achieve the same outcome equivalently. These schemes are an important benchmark class because they decentralize task choices, a key feature of autonomous roles; and because they respect fairness and equity concerns which are salient in many real-world organizations. Symmetric schemes also serve as a key building block for constructing more general asymmetric schemes.

Our first main result characterizes the optimal symmetric incentive scheme implementing a given risk-taking rate across the workforce. The optimal scheme either pays bonuses to underperforming employees or reallocates promotions from outperforming to underperforming ones, but not both. The choice between the two tools hinges on the scheme’s desired incentive power, i.e., how far the target risk-taking rate is from the natural rate. Bonuses turn out to be optimal for providing low-powered incentives, while promotion reallocations are better for providing high-powered incentives. One feature of note is that when the organization stimulates increased risk-taking through bonuses, payments are made specifically for failure on risky tasks, a result reminiscent of the finding in Manso (2011) that experimentation may

3We assume that the organization cannot directly reduce the value of a promotion below some baseline level by shrinking the position’s salary or eliminating perks. This assumption is consistent with the market-signaling theory of promotions developed by Waldman (1984) and Bernhardt (1995), in which promotions signal talent to an external market and unavoidably increase the employee’s wage through competition. It also captures social status or empire-building rewards associated with promotion which cannot be controlled by the organization.
be optimally motivated through failure bonuses.\footnote{In Manso (2011), experimentation must be incentivized because it incurs an effort cost. In our setting, employees’ cost of risk-taking is a reduced chance of receiving a valuable promotion.}

This result suggests distinctive lessons for incentivizing employees in fast- and slow-growing organizations. In a fast-growing organization, opportunities for promotion are plentiful and employees will shy away from risk-taking to maximize their chance of being promoted. In these environments, organizations should reward failure. Meanwhile in a slow-growing organization, promotions are scarce and employees will take excessive risks in order to earn a promotion. In these environments, organizations should reward employees who take on routine or unglamorous tasks.

Our second main result connects the optimal power of incentives to structural features of the internal labor market. We show that when the organization’s selection concern is large or the value of promotion to employees is small, incentives are optimally low-powered and the organization incentivizes with bonuses. Conversely, when selection is relatively unimportant or employees place a high premium on promotion, incentives are optimally high-powered and the organization incentivizes by reallocating promotions. These comparative statics link the structure of optimal incentives to potentially measurable quantities. For instance, the correlation between performance in lower- and higher-level roles in order could be measured to quantify the importance of selection to the organization\footnote{Mean-reversion of performance following promotion has been widely recognized in the literature on the Peter principle, both theoretically (Lazear 2004) and empirically (Benson, Li, and Shue 2019).}, while measures of labor market mobility could proxy for the reward associated with promotion.\footnote{As suggested by the model of Waldman (1984) and Bernhardt (1995), promotions may serve as a public signal of talent and therefore boost an employee’s wage through competition between potential employers.}

Our final results concern asymmetric incentive schemes which can discriminate between observably identical employees. While fairness concerns often limit such discrimination, organizations can sometimes circumvent them by erecting social barriers between firm divisions, for instance through geographic separation between offices housing different teams. We show that when such barriers are possible, the organization may benefit from splitting employees into (at most) two groups and offering different incentive schemes to each group. A key property of optimal asymmetric schemes is that they do not reallocate promotions from high- to low-performers within any group. Instead, any inefficiency in the allocation of promotions arises due to the allotment of promotions between groups.
This analysis implies that, when discrimination between equivalent employees is possible, it is preferable to reallocate promotions “ex ante” rather than “ex post”. That is, employees should be informed about whether they will be favored or disfavored for promotion before rather than after they have chosen a task. In practice, our results suggest that organizations seeking to incentivize diverse task choices may benefit from siloing groups of employees into culturally distinctive divisions, accommodating distinct incentive schemes and patterns of task choice.

The remainder of the paper is organized as follows. In Section 1.1 we discuss related literature. In Section 2 we set up the model. In Section 3 we describe the basic incentive problem faced by the organization. In Section 4 we describe the class of symmetric incentive schemes, and in Section 5 we characterize the optimal symmetric scheme. Section 6 extends our analysis to asymmetric schemes. In Section 7 we discuss a number of generalizations and extensions of our model, and in Section 8 we offer concluding remarks. All proofs are collected in the Appendix.

1.1 Related literature

Our paper contributes to a literature studying how reputational concerns distort an employee’s willingness to take risks. Holmström (1999) (section 3) analyzes this distortion in a career concerns setting where the employee’s compensation is determined entirely by an external market’s perception of their quality. Holmstrom and Ricart I Costa (1986), Zwiebel (1995), Hvide and Kaplan (2005), and Siemsen (2008) have built on the career-concerns framework to model incentive contracting for risk-taking in the shadow of career concerns. In all of these papers, returns to reputation are exogenous and must be offset through incentive pay or restrictions on the employee’s freedom to take risks. In our model, by contrast, the employer can directly control the employee’s reputational concerns by committing to a promotion policy.

A related strand of the literature studies incentives for effort under career concerns; see, e.g., Holmström (1999) (section 2), Dewatripont, Jewitt, and Tirole (1999b), and Gibbons and Murphy (1992). Most closely related is Kaarbøe and Olsen (2006), which studies incentive contracts in a multitask setting. Multitasking generates a tension between the productivity and reputational impact of a given effort allocation, as in models of risk-taking. However, this tradeoff exists alongside additional distortions caused by the potential for shirking and non-contractability of performance signals. Studies of risk-taking, including ours, abstract from these issues to focus on the productivity-reputation tradeoff.
Several papers study environments in which an employee is concerned with the perceptions of their employer rather than the broader market. In Kuvalekar and Lipnowski (2020) and Kostadinov and Kuvalekar (2022), the employer prefers to separate from low-quality employees and cannot commit to a termination policy, generating distortionary returns to reputation similar to career concerns. In Aghion and Jackson (2016) the employer can commit to a replacement policy, allowing it to control the employee’s returns to reputation; however, no incentive payments are allowed. In both settings, the employer faces no constraints on how many employees it can retain, abstracting from any linkage of incentive problems across employees. In our model, this linkage plays a central role in the comparison between bonuses and promotions as incentive tools.

Bar-Isaac and Lévy (2022) study a related risk-taking environment in which an employer motivates hidden effort by committing to make employees visible on an external labor market which can bid up their wage. Thus unlike in our model, career concerns are the solution to an incentive problem rather than the source of one. However, career concerns are also distortionary because the employer cannot commit to assigning employees a particular task, leading it to distort risk-taking in an attempt to hold down future wages. A common theme of our analysis and theirs is that when an organization can design the reputational concerns of its employees, its choice has important consequences for employee risk-taking.

Our paper also contributes to a discussion regarding the relative merits of promotions and money as incentive tools. Baker, Jensen, and Murphy (1988) pose a now-classic empirical puzzle: Rewarding employees with promotions degrades selection and so is less efficient than incentivizing with money, and yet performance pay is rarely observed in practice. Lemieux, MacLeod, and Parent (2009) have more recently found an uptick in the use of performance pay, but they still estimate that around 60% of private-sector employees do not receive any variable pay. Standard solutions to this puzzle are psychological: Performance pay could crowd out intrinsic incentives, or organizational morale might be degraded in the presence of

8Their model shares this feature with Dewatripont, Jewitt, and Tirole (1999a) and Hörner and Lambert (2021), who analyze how the set of performance signals available to the market affects incentives for hidden effort under career concerns.

9This puzzle is also posed in the classic management textbook of Milgrom and Roberts (1992) (pg. 366-367).

10This figure is likely an underestimate of the infrequency of true performance pay, since their measure of variable pay includes bonuses tied to factors other than individual achievement, such as team, division, or firmwide performance.
steep pay differentials across employees with comparable responsibilities. (See Baker, Jensen, and Murphy (1988), section I.A for an overview of these solutions.)

More recently, several economic explanations have been proposed. One theory highlights influence activities in the sense of Milgrom and Roberts (1988). Fairburn and Malcomson (2001) demonstrate this mechanism in a model in which employees can bribe managers to distort subjective performance reviews. In their setting, incentivizing through promotions reduces the susceptibility of managers to influence due to their stake in the firm’s future performance. Another theory emphasizes talent signaling. Schöttner and Thiele (2010) illustrate this possibility in a model in which higher-quality employees value promotion more. In their model, incentive pay compresses effort differentials between high- and low-quality employees, degrading the informativeness of performance as a signal of talent.

Our results provide an alternative rationale for incentivizing with promotions in organizational settings. When an organization wishes to incentivize employees to switch tasks, comparable incentive power is generated by paying bonuses or allocating extra promotions toward incentivized tasks to raise their payoff. However, in an organization with a fixed budget of promotions, reallocating promotions must also decrease the payoff of disincen-
tivized tasks. This extra incentive power makes promotions a superior incentive tool when the organization prefers most employees avoid those tasks.

2 The model

We build a stylized model of organizational task choice in which employees’ risk-taking decisions are distorted by the prospect of promotion. In our model, an organization oversees a unit mass of employees with whom it interacts over two stages. In the first stage, each employee chooses between two tasks which differ in their expected productivity, risk level, and informativeness about talent. In the second stage, the organization observes task choices and outcomes, selects a set of employees to promote, and (potentially) pays monetary bonuses.

Employees have heterogeneous but initially unknown talent, and the organization wishes to allocate promotions to the most-talented employees, as revealed by their task performance. At the same time, employees possess private information about their optimal task, which the organization wishes to incentivize them to use optimally. The tension between selecting

11 This mechanism is also proposed informally in Milgrom and Roberts (1992) (pg. 370).
talented employees and incentivizing efficient task choice lies at the heart of our model. We now discuss each of these model elements in more detail.

Types. Employees are indexed by \(n \in [0, 1] \) and are heterogeneous across two dimensions, summarized by a type \((\theta(n), \Gamma(n))\). The two dimensions of an employee’s type capture two distinct sources of uncertainty. The employee’s quality \(\theta \) summarizes the employee’s general competence, which affects both his performance in his current position and his suitability for promotion. Meanwhile, his match type \(\Gamma \) summarizes information determining his most productive task.

Quality is symmetrically unobserved by the organization and the employee and must be inferred by observing employee performance. We assume that quality takes one of two real values: \(\theta(n) \in \{\bar{\theta}, \underline{\theta}\} \), where \(0 \leq \underline{\theta} < \bar{\theta} \). We will refer to employees of types \(\bar{\theta} \) and \(\underline{\theta} \) as “high-quality” and “low-quality,” respectively. Employee qualities are independently and identically distributed, with \(\Pr(\theta(n) = \bar{\theta}) = \pi_0 \in (0, 1) \). Without loss, we normalize quality levels so that \(\pi_0 \bar{\theta} + (1 - \pi_0) \underline{\theta} = 1 \).

Match types are privately observed by each employee. We assume that they are independently and identically distributed across employees and that qualities and match types are independent: \(\theta(n) \perp \perp \Gamma(n') \) for all employees \(n, n' \). Independence of quality and match type and unobservability of quality implies that employees cannot directly signal their quality through their task choice.

Without loss of generality, we assume that employees are indexed in decreasing order of match type, allowing us to summarize the distribution of match types by a function \(\gamma(n) \) indicating the match type of the \(n \)th employee.\(^\text{12}\) For simplicity, we impose the mild regularity conditions that the distribution of match types has a strictly positive density on its support, and in particular has no gaps or atoms:

Assumption 1. \(\gamma \) is \(C^1 \) and \(\gamma'(n) < 0 \) for all \(n \in [0, 1] \).

First Stage. In the first stage, each employee chooses to complete either a safe task or a risky task. These tasks are specific to a particular employee and may capture distinct activities for employees with different assignments (so that the outcomes of tasks are independent across employees). To focus on a novel set of agency frictions, we assume that the employee

\(^{12}\)Under this convention, an employee’s index is privately observed.
has the same private cost/benefit of performing either task and normalize that cost/benefit
to zero. Absent incentives from bonuses or promotions, the employees are indifferent between
the two tasks.

The two tasks differ in their expected productivity and the variability of their outcome.
The safe task produces a sure payoff of $K \in (0, 1)$ to the organization. We refer to this
outcome as “neutral.” By contrast, the risky task produces a payoff of either 1 or 0 for the
organization, outcomes which we refer to as “success” and “failure”. The risky task succeeds
with probability

$$q(\theta, \Gamma) = \theta \cdot \Gamma.$$

That is, the probability of success is increasing in both an employee’s quality and the match
type, so that the results of the risky task are informative about the employee’s quality. Fur-
ther, since θ and Γ are independent and θ has mean 1, Γ is the employee’s perceived prob-
ability of success on the risky task. To ensure non-trivial incentive problems, we assume
that the task which maximizes the organization’s expected payoff varies across employees:

Assumption 2. $\gamma(0) > K > \gamma(1)$.

This assumption implies that the organization’s first-stage payoff is maximized when
employees with index $n \leq N^0$ choose the risky task, where $N^0 \in (0, 1)$ is the unique solution
to $\gamma(N^0) = K$.

Second Stage. The organization has a mass of unfilled positions of measure $\beta \in (0, 1)$
into which employees can be promoted in the second stage. All positions are identical, and
a position can be assigned to at most one employee. Promoting an employee of quality θ
generates a payoff of $r(\theta)$ to the organization, with $r(\bar{\theta}) > r(\hat{\theta})$. Meanwhile, a promoted em-
ployee enjoys a private benefit of $V > 0$ regardless of quality. An unfilled position generates
a payoff to the organization, which we normalize to 0, and an employee who is not promoted
receives a private benefit of 0.

13Nothing would change if the safe task generated a stochastic output, so long as the outcome was unin-
formative about the employee’s quality.
14To ensure that $q(\theta, \Gamma) \in [0, 1]$ for all θ and Γ, we must have $\gamma(0) \leq 1/\bar{\theta}$. This upper bound is simply a
normalization allowing Γ to be interpreted as an expected success probability.
We assume that \(r(\theta) > 0 \), so that the organization benefits from promoting high-quality employees. We further focus on settings in which \(r(\theta) \) is not too negative, so that the organization prefers to allocate all available positions, even when that means promoting some underperforming employees.\(^{15}\) When the organization optimally allocates all positions, the only payoff variable which matters for designing an incentive scheme is the difference \(r(\theta) - r(\bar{\theta}) \). To economize on notation, we set \(r(\theta) = R > 0 \) and \(r(\bar{\theta}) = 0 \) going forward. The single parameter \(R \) captures the magnitude of the organization’s selection concern.

In addition to allocating promotions, the organization can pay monetary bonuses to employees. We assume that employees enjoy limited liability, so that bonuses cannot be negative.\(^{16}\) The organization and all employees have utility functions that are quasilinear in money, and we assume that \(V, R \), and all task payoffs are normalized so that they are denominated in dollars.

3 The incentive problem

We begin our analysis by showing that, in the absence of an incentive scheme, the amount of risk-taking by employees is generally suboptimal. Section 3.1 characterizes the risk-taking rate which prevails when the organization promotes employees in order of perceived quality. Section 3.2 establishes that this rate is too high when promotions are scarce and too low when they are plentiful, relative to the rate the organization would implement if it were not constrained by employees’ desire for promotion. Section 5.2 proves that an optimal incentive scheme shifts risk-taking toward the unconstrained optimal rate, setting the stage for our characterization of an optimal scheme.

\(^{15}\)More concretely, the organization should be willing to promote employees who failed at a risky task. The lowest possible posterior belief the organization could hold about such an employee’s quality is \(\pi_B = (1 - \bar{\theta}\gamma(0))\pi_0/\gamma(0) \), and so a sufficient condition ensuring that all positions are allocated is \(\pi_B r(\bar{\theta}) + (1 - \pi_B) r(\theta) > 0 \).

\(^{16}\)If promoted employees could be charged for the privilege, the organization could costlessly resolve the underlying incentive problem by extracting all rents from promotion. Limited liability therefore reflects unpledgeability of the employee’s promotion payoff.
3.1 The no-commitment outcome

Absent commitment to an incentive scheme, the organization pays no bonuses and promotes employees in descending order of perceived quality. Since successful risk-taking is good news about quality while failure is bad news, the organization first promotes successful risk-takers, followed by risk-avoiders, and finally resorts to promoting failed risk-takers until all promotions are allocated. (Because promoting a low-quality employee yields a payoff at least as high as leaving a spot unfilled, no promotions are withheld.)

This informal prioritization rule leaves two degrees of freedom for an optimal promotion policy. First, the organization could break ties between observationally equivalent employees in different ways. Second, the organization could deviate from the rule by promoting a measure-zero subset of employees “out-of-order” without reducing total profits. We focus on the unique optimal policy which 1) treats all observationally equivalent employees equally, i.e., promotes uniformly at random from among employees of equal perceived quality in case promotions need to be rationed; and 2) promotes employees strictly in order of perceived quality.\footnote{This policy is unique given a set of posterior beliefs, which are pinned down by Bayes’ rule whenever a positive measure of employees choose the risky task. If Bayes’ rule does not apply, we assume the organization views success as a positive signal about \(\theta \) and failure as a negative signal. Such posteriors would result, for instance, if the organization assumed that the best-matched employee(s) chose the risky task.}

We refer to this allocation rule as the \textit{natural promotion policy}.

The symmetry property of the natural policy is substantive, but constitutes a natural benchmark which would be selected in organizations for which fairness is an important constraint. We will relax it when we consider asymmetric incentive schemes in Section 6.\footnote{For instance, there always exists an outcome with no risk-taking supported by a policy of declining to promote successful risk-takers whenever the set of such employees has measure zero. If employees were discrete, it would never be optimal for the organization to avoid promoting a lone successful risk-taker.}

The strict prioritization property rules out spurious outcomes which would not arise in a model with a finite set of employees.\footnote{This set is unique except possibly up to a single marginal employee.}

We now characterize the risk-taking behavior which prevails under the natural promotion policy.

Proposition 1. Fix all model parameters except for \(\beta \). For every \(\beta \in (0, 1) \), there exists an essentially unique\footnote{This set is unique except possibly up to a single marginal employee.} set of employees \(\mathcal{N}^{nc} \) who select the risky task under the natural promotion policy. There exist cutoffs \(\underline{\beta} \) and \(\overline{\beta} \), satisfying \(0 < \underline{\beta} < \overline{\beta} < 1 \), such that:
• If $\beta < \underline{\beta}$, then $\mathcal{N}^{nc} = [0, 1]$,
• If $\beta \in [\underline{\beta}, \overline{\beta}]$, then $\mathcal{N}^{nc} = [0, N^{nc}]$, where N^{nc} is continuous and decreasing in β and satisfies $N^{nc} = 1$ when $\beta = \underline{\beta}$ and $N^{nc} = 0$ when $\beta = \overline{\beta}$.
• If $\beta > \overline{\beta}$, then $\mathcal{N}^{nc} = \emptyset$.

To unify notation, we extend N^{nc} to all $\beta \in (0, 1)$ by defining $N^{nc} = 1$ for $\beta < \underline{\beta}$ and $N^{nc} = 0$ for $\beta > \overline{\beta}$. This threshold has the property that $\mathcal{N}^{nc} = [0, N^{nc}]$ for all $\beta \leq \overline{\beta}$ and $\mathcal{N}^{nc} = (0, N^{nc})$ for $\beta > \overline{\beta}$. We refer to N^{nc} as the natural or no-commitment risk-taking rate, and illustrate it in Figure 1. Recall that lower-indexed employees are those who are best-matched to the risky task. Proposition 1 therefore establishes that only the best-matched employees select the risky-task, and that the natural risk-taking rate declines as the number of promotions increases.

A threshold risk-taking structure arises because an employee’s probability of successful risk-taking rises with their match type, and success is rewarded while failure is penalized under the natural promotion policy. As a result, employees with the best match types face the largest upsides and smallest downsides from risk-taking. The drop in risk-taking as β rises stems from the fact that each employee’s incentive to take risks weakens as the number
of promotions grows, holding fixed the task choices of all other employees. Intuitively, the bar for promotion drops as more employees are promoted, and so a given employee gains less from successful risk-taking and loses more from failure. This force pushes fewer employees to take risks as β increases.

3.2 Suboptimality of the natural risk-taking rate

We next establish that the natural risk-taking rate is generally suboptimal from the organization’s perspective. That is, it deviates from the rate the organization would choose if employees did not value promotion (i.e., if $V = 0$) and would choose any task recommended by the organization.\(^{20}\) Let N_{fb} be the first-best risk-taking rate the organization would choose in the absence of incentive constraints.\(^{21}\) Note that N_{fb} need not equal N^0, the risk-taking rate maximizing the organization’s first-stage payoff, since an optimal risk-taking rate balances task payoffs and talent discovery.

We now show that the natural risk-taking rate is higher than the first-best rate when β is small and lower when β is large.

Proposition 2. There exists a $\beta_{fb} \in [\beta, \bar{\beta})$ such that

$$
N^{nc}(\beta) = \begin{cases}
N^{fb}(\beta), & \beta < \beta_{fb} \\
= N^{fb}(\beta), & \beta = \beta_{fb} \\
< N^{fb}(\beta), & \beta > \beta_{fb}
\end{cases}
$$

One force driving this result is the simple fact that first stage payoffs are maximized by an interior amount of risk-taking (see Assumption 2). Since N^{nc} is declining in β, this force points in the direction of too much risk-taking for small β and too little for large β. A second force related to talent discovery reinforces this trend. Roughly, for small β only a small number of high-quality employees are needed to maximize promotion payoffs, and so the organization does not benefit from raising N to learn more about employees. As β increases, it becomes important to distinguish high- from low-quality employees on a large scale, and so N^{fb} is boosted by a talent discovery motive. This force also leads to too much risk-taking for small β and too little for large β.

\(^{20}\)Lemma 1, proven below, implies that the organization optimally recommends a threshold risk-taking rule in this scenario.

\(^{21}\) N^{fb} is not guaranteed to be unique. In case of non-uniqueness, Proposition 2 holds for every maximizer.
4 Incentive schemes

Our main results concern how the distortions identified in Section 3 can be mitigated through commitment to an incentive scheme that specifies bonuses and promotion probabilities as a function of task choice and outcome and recommends how employees should use their private information about \(\Gamma \) to choose a task. Incentive schemes represent a natural class of decentralized mechanisms in which employees are free to choose their own task. We defer discussion of centralized mechanisms, in which employees report their private information to employers and receive a task assignment, until Section 7.2.

We impose the following requirements on an incentive scheme:

- **Feasibility**: At most \(\beta \) employees are promoted.
- **Limited liability**: Every employee receives a non-negative bonus.
- **Determinism**: Aggregate promotions and transfers are non-random.
- **Symmetry**: All employees are given the same recommendation (as a function of \(\Gamma \)), and employees with identical task choices and outcomes are treated equally.

Feasibility and limited liability impose the constraints discussed in the model setup. Determinism focuses on schemes which are non-random “in aggregate”, so that within each group of observationally identical employees, the total number of employees promoted and total transfers are deterministic. Finally, symmetry rules out schemes in which employees are split into groups and incentivized to make different task choices through different rewards for particular outcomes. We view symmetry as a realistic and important constraint in light of fairness concerns that limit unequal treatment of similar employees in many contexts. Symmetric schemes will also serve as a key building block for our analysis of more general asymmetric schemes in Section 6.

In line with the requirements above, we formally define an incentive scheme as follows:

Definition 1. An incentive scheme is a triple \(S = (N, T, \sigma) \), where:

- \(N \subset [0, 1] \) is the set of employees to whom the organization recommends the risky task.
- \(T = (T_G, T_0, T_B) \geq 0 \) are the bonuses received by an employee who, respectively, achieves a successful, neutral, or failure outcome.
\(\sigma = (\sigma_G, \sigma_0, \sigma_B) \in [0,1]^3 \) are the probabilities of promotion for an employee who, respectively, achieves a successful, neutral, or failure outcome.

We interpret an incentive scheme as promoting employees uniformly at random from within each group of observationally identical employees. More precisely, suppose that \(\mathcal{N}_G, \mathcal{N}_0, \mathcal{N}_B \) are the sets of employees who, respectively, achieve a successful, neutral, or failure outcome. Then for each \(i \in \{G,0,B\} \), a fraction \(\sigma_i \) of employees from group \(\mathcal{N}_i \) is promoted. Under such a scheme, the measure of employees promoted from each group is non-random, respecting determinism. Of course, from the perspective of any individual employee in group \(\mathcal{N}_i \), promotion is random whenever \(\sigma_i \in (0,1) \), even conditioning on the outcome of their chosen task.

An incentive scheme is \emph{feasible} if it promotes at most \(\beta \) employees, supposing employees choose the task recommended to them.\(^{22}\) This requirement is summarized by the inequality

\[
\beta \geq \int_{\mathcal{N}} (\gamma(n)\sigma_G + (1 - \gamma(n))\sigma_B) \, dn + (1 - |\mathcal{N}|)\sigma_0.
\]

It is \emph{incentive-compatible} if all employees find it optimal to follow the scheme’s risk-taking recommendation. That is,

\[
\gamma(n)(T_G + V\sigma_G) + (1 - \gamma(n))(T_B + V\sigma_B) \begin{cases}
\geq T_0 + V\sigma_0, & \forall n \in \mathcal{N}, \\
\leq T_0 + V\sigma_0, & \forall n \in [0,1] \setminus \mathcal{N}.
\end{cases}
\]

We call an incentive scheme \emph{admissible} if it is both feasible and incentive-compatible. Under any admissible incentive scheme \(\mathcal{S} \), the organization achieves total profits equal to

\[
\Pi(\mathcal{S}) \equiv \int_{\mathcal{N}} \gamma(n) \, dn + (1 - |\mathcal{N}|)K
\]

\[
+ R\pi_0 \left(\int_{\mathcal{N}} (\bar{\theta}\gamma(n)\sigma_G + (1 - \bar{\theta}\gamma(n))\sigma_B) \, dn + (1 - |\mathcal{N}|)\sigma_0 \right)
\]

\[
- \left(\int_{\mathcal{N}} (\gamma(n)T_G + (1 - \gamma(n))T_B) \, dn + (1 - |\mathcal{N}|)T_0 \right).
\]

\(^{22}\)As employees are atomistic, any feasible incentive scheme remains feasible following a deviation by a single employee. Further, such deviations do not affect bonuses or promotion probabilities under a symmetric incentive scheme, which can condition only on the measure of outcomes of each type. The organization’s choice of bonuses and promotion probabilities off-path therefore do not impact employee incentives, and we do not explicitly specify them.

Electronic copy available at: https://ssrn.com/abstract=3705627
In this expression, the first line accounts for task payoffs, the second for promotion payoffs, and the third for bonus payments.23

In general an admissible incentive scheme may recommend that an arbitrary subset of employees choose the risky task. The following lemma shows that attention may be restricted to incentive schemes with a cutoff risk-taking structure, under which only employees with the best match types choose the risky task.

Lemma 1. Fix any admissible incentive scheme \(S = (N, T, \sigma) \) satisfying \(|N| = N\). If \(|N \setminus [0, N]| > 0\), then there exists an admissible incentive scheme \(S' = ([0, N], T', \sigma') \) such that \(\Pi(S') > \Pi(S) \).

In light of this result, going forward we will describe an incentive scheme via a triple \(S = (N, T, \sigma) \) for \(N \in [0, 1] \), with the understanding that such a scheme recommends employees \(n \in [0, N] \) choose the risky task.

5 Optimal incentive schemes

We now characterize the organization’s optimal incentive scheme. Our analysis proceeds in two steps. In Section 5.1, we hold fixed a target risk-taking rate and characterize the optimal incentive scheme implementing the target. We then endogenize the risk-taking rate and identify the optimal direction of incentives in Section 5.2 and the optimal incentive tool in Section 5.3.

Our characterization reveals several key features of an optimal scheme. First, the tradeoff between money and promotions as incentive tools exhibits a bang-bang structure: An optimal scheme reallocates promotions or pays bonuses, but not both. Second, the optimal incentive tool depends on the desired power of incentives, as measured by the distance of the risk-taking rate from the natural rate. Third, the optimal power of incentives depends critically on structural features of the internal labor market, in particular employees’ private value of promotion and the importance of selection to the organization.

Our analysis uncovers a key economic force linking the relative incentive power of bonuses and promotions to the risk-taking rate. While bonuses affect only the payoff of the incentivized group (i.e., the employees who switch tasks in response to the incentive scheme), a

23Recall that we have normalized the value of promoting a low-quality employee to zero.
reallocated promotions additionally reduces the payoff of the disincentivized group (those employees who don’t switch tasks). The relative impact of the two tools on the incentivized group is independent of the risk-taking rate. By contrast, the impact of a reallocated promotion on the disincentivized group is controlled by the relative sizes of the two groups, which varies with the risk-taking rate. In particular, when the incentivized group is large relative to the disincentivized group, the extra incentive power of promotions is large and promotions are an optimal incentive tool.

5.1 Targeting a risk-taking rate

We now derive the optimal incentive scheme implementing an exogenous target risk-taking rate \(N \neq N^{nc} \). Our main result is a linkage between the optimal incentive tool and the extremity of the target risk-taking rate. We prove that if \(N < N^{nc} \) is sufficiently close to zero, or \(N > N^{nc} \) is sufficiently close to 1, an optimal scheme reallocates promotions from high-to low-performers; otherwise, it promotes according to the natural policy and incentivizes by paying bonuses. In other words, promotions are better at providing “high-powered” incentives, while bonuses are superior when incentives need to be “low-powered”.24 We additionally show that when the organization wishes to increase risk-taking using bonuses, it optimally pays bonuses for failure rather than for success.

5.1.1 Decreasing risk-taking

We first consider target rates below the natural rate, i.e., \(0 \leq N < N^{nc} \). (Of course, such targets are relevant only if the natural risk-taking rate is nonzero, or equivalently if \(\beta < \bar{\beta} \).) To increase the fraction of employees choosing the safe task, the organization must increase its relative payoff by either reallocating promotions toward neutral outcomes, paying bonuses for neutral outcomes, or both.

In principle, reallocated promotions might be drawn from either successful or failed risk-takers. However, in the absence of an incentive scheme the promotion probability following failure must be zero. For if failed risk-takers were promoted with positive probability under

\[24\text{Depending on parameters, the low-powered regime may be degenerate, in which case promotions are the optimal incentive tool for all } N. \text{ Formally, we prove a single-crossing result whereby any change in incentive tool as } N \text{ moves away from the natural rate is always from bonuses toward promotions. We also derive conditions under which the low-powered regime is non-degenerate.} \]
the natural promotion policy, then employees choosing the safe task would be promoted with probability 1, and no employees would choose the risky task. Since we assume that $0 < N^{nc}$, reallocated promotions must therefore be drawn from successes.

The following result characterizes an optimal incentive scheme as a function of the risk-taking target.

Theorem 1. Suppose that the organization implements a risk-taking rate $N < N^{nc}$. Then there exists a threshold $\overline{N}_- \in (0, 1]$ such that:

1. If $N \leq \overline{N}_-$, there exists an optimal scheme which pays no bonuses and reallocates promotions from successes toward neutral outcomes.

2. If $N \geq \overline{N}_-$, there exists an optimal scheme which pays a positive bonus following failure outcomes and does not reallocate promotions.

Further, the optimal scheme is unique whenever $N \neq 0, \overline{N}_-$. Holding all other model parameters fixed, if R/V is sufficiently large, then $\overline{N}_- < N^{nc}$.

This result establishes several key properties of an optimal scheme. First, only one incentive tool is used at a time: The organization either pays bonuses or reallocates promotions, but never both in conjunction. In the former case, we will say that the organization “incentivizes with bonuses”, while in the latter we will say that it “incentivizes with promotions”. Second, the optimal tool depends on the size of N, with the optimal tool switching from bonuses to promotions as N decreases. Third, there always exist risk-taking rates for which incentivizing with promotions is optimal; and if R/V is sufficiently large, there additionally exist risk-taking rates for which incentivizing with bonuses is optimal.

The comparison between promotions and bonuses as incentive tools hinges on the *incentive power-per-dollar* (or IPD) of each tool. Each tool’s IPD varies with N in a way which increasingly favors promotions as N drops, a result we now demonstrate heuristically. Suppose that the organization reallocates a measure m of promotions from successes to neutral outcomes. The corresponding shifts in the promotion rates for success and neutral outcomes are

$$
\Delta \sigma_G(m) = -\frac{m}{\mu(N)}, \quad \Delta \sigma_0(m) = \frac{m}{1 - N},
$$

25The one exception is the edge case $N = \overline{N}_-$, in which case any combination of the two tools is optimal.

26The proof of the theorem additionally establishes that \overline{N}_- is strictly decreasing in R/V for sufficiently large values of the ratio, and that $\lim_{R/V \to \infty} \overline{N}_- = 0$.

18
where $\mu(N) = \int_0^N \gamma(n) \, dn$ is the measure of employees achieving the success outcome. Define the incentive power of this scheme to be the amount by which it increases the marginal employee’s utility from choosing the safe task relative to the risky task. Then the total incentive power of a promotion reallocation is

$$V(\Delta \sigma_0(m) - \gamma(N) \Delta \sigma_G(m)) = \left(\frac{1}{1 - N} + \frac{\gamma(N)}{\mu(N)}\right) Vm.$$

The cost to the organization of this promotion reallocation is $R(\pi_G - \pi_0)m$, where π_G is the organization’s posterior belief about the quality of an employee who succeeded on the risky task. This cost reflects diminished talent discovery when the organization deprioritizes successful risk-takers for promotion. The IPD of promotions is therefore

$$IPD^{Pr}(N) = \left(\frac{1}{1 - N} + \frac{\gamma(N)}{\mu(N)}\right) \frac{V/R}{\pi_G - \pi_0}.$$

Meanwhile, a scheme offering a bonus $t \geq 0$ for safe outcomes has total incentive power t and incurs a cost to the organization of $(1 - N)t$. The IPD of bonuses is therefore

$$IPD^B(N) = \frac{1}{1 - N}. $$

Note that the IPD for promotions does not depend on the number of promotions reallocated, and similarly the IPD for bonuses does not depend on the size of the bonus payment. Hence the optimal scheme will exhibit a bang-bang structure, using only the tool with the larger IPD.

The ratio of the two IPDs is

$$\frac{IPD^{Pr}(N)}{IPD^B(N)} = \frac{V/R}{\pi_G - \pi_0} \left(1 + \frac{\gamma(N)(1 - N)}{\mu(N)}\right).$$

Since $\gamma'(N) < 0$ while $\mu'(N) = \gamma(N) > 0$, the IPD of promotions relative to bonuses declines in N, demonstrating why bonuses perform better for large N while promotions are preferrable for small N. In particular, in the limit $N \to 0$, $\mu(N) \to 0$ and the IPD of promotions relative to bonuses grows unboundedly. Thus for sufficiently small N, promotions are used in an optimal scheme. Meanwhile as $N \to N^{nc}$, the ratio of IPDs approaches a finite limit whose size is controlled by V/R. For V/R sufficiently small, the IPD of bonuses exceeds that of promotions for N close to N^{nc}, and bonuses are used in an optimal scheme.

The key distinction between bonuses and promotions as incentive tools is that bonuses impact the payoff only of employees who choose the incentivized task, while reallocated
promotions additionally impact the payoff of employees who choose the disincentivized task. To see this, suppose that instead of reallocating a fixed set of promotions between the two tasks, the organization could increase the payoff of the safe task by generating additional promotions at a constant marginal cost $\bar{R} = R\pi_G$. The IPD of promotions generated this way is

$$\hat{IPD}^{Pr}(N) = \frac{V}{(\bar{R} - R\pi_0)}(1 - N)^{-1},$$

resulting in a relative IPD of promotions versus bonuses equal to

$$\frac{\hat{IPD}^{Pr}(N)}{IPD^B(N)} = \frac{V/R}{\pi_G - \pi_0},$$

which is independent of N.

Compared to this benchmark, a reallocated promotion generates extra incentive power by additionally reducing the payoff of employees choosing the risky task. The (relative) IPD generated by this force depends on the relative sizes of the pools of successful risk-takers and risk-avoiders. As N increases, the pool of successful risk-takers grows larger, diminishing the IPD from withholding promotions; meanwhile the pool of risk-avoiders shrinks, boosting the IPD from paying bonuses. These two trends combine to make promotions less favorable for large N.

5.1.2 Increasing risk-taking

We now turn to environments in which the organization wishes to encourage risk-taking beyond the natural rate, i.e., $1 \geq N > N^{nc}$.\(^{27}\) To boost risk-taking, the organization must increase the relative payoff of taking risks by either reallocating promotions toward risk-takers, paying them bonuses, or both.

Both reallocated promotions and bonuses could in principle be targeted at either success or failure. However, in the absence of an incentive scheme the promotion probability following a success outcome must be 1. For if successful risk-taking did not lead to sure promotion, then under the natural policy safe tasks would yield no chance of promotion. In that case no employees would choose the safe task, a contradiction of our assumption that the natural rate of risk-taking is less than 1. Any reallocated promotions must therefore be allotted to failure.

\(^{27}\)Recall that $N^{nc} < 1$ when $\beta > \hat{\beta}$.

Electronic copy available at: https://ssrn.com/abstract=3705627
The question of when to pay bonuses is less straightforward, since bonus payments are feasible following both success and failure. It turns out that the cost-minimizing bonus scheme pays bonuses only for failure. This is because the incentive power of a bonus is determined by its probability of being earned by the marginal agent, while its cost to the organization is measured by the total number of employees who earn it. Since inframarginal employees fail less often than does the marginal one, success bonuses get paid more often in expectation than to the marginal employee, while failure bonuses get paid less often. The incentive power-per-dollar of bonuses is therefore maximized by paying for failure.

We now formally characterize an optimal incentive scheme as a function of the risk-taking target. Unlike in the case of decreasing the risk-taking rate, a single-crossing result is no longer ensured in general. We first prove a result which holds without any regularity conditions.

Proposition 3. Suppose that the organization implements a risk-taking rate $N > N_{nc}$. Then one of the following schemes is optimal:

(B) The organization pays a positive bonus following failure outcomes and does not reallocate promotions.

(Pr) The organization pays no bonuses and reallocates promotions from neutral outcomes toward failure outcomes.

If $N < 1$ is sufficiently close to 1, then scheme (Pr) is uniquely optimal. Holding all other model parameters fixed, if R/V is sufficiently large and N is sufficiently close to N_{nc}, then scheme (B) is uniquely optimal.

Under a mild regularity condition, a stronger single-crossing result can be proven. Define

$$\Lambda(N) \equiv \frac{N - \mu(N)}{(1 - \gamma(N))(1 - N)},$$

where recall that $\mu(N) = \int_0^N \gamma(n) \, dn$ is the number of successful risk-takers when the risk-taking rate is N.

Theorem 2. Suppose that the organization implements a risk-taking rate $N > N_{nc}$. If Λ is non-decreasing, there exists a threshold $N_+ \in [0, 1)$ such that:

1. If $N < N_+$, there exists an optimal scheme which pays a positive bonus following failure outcomes and does not reallocate promotions.
2. If \(N > \bar{N}_+ \), there exists an optimal scheme which pays no bonuses and reallocates promotions from neutral outcomes toward failure outcomes.

Further, the optimal scheme is unique whenever \(N \neq 1, \bar{N}_+ \). Holding all other model parameters fixed, if \(R/V \) is sufficiently large, then \(\bar{N}_+ > N^{nc} \).

The main features of this result are very similar to the properties of an optimal scheme which decreases \(N \), as characterized in Theorem 1. The forces shaping the two results are closely analogous, except that in the current setting the relative incentive power-per-dollar (IPD) of promotions and bonuses exhibits a more complex dependence on \(N \).

Heuristically, reallocating \(m \) promotions changes the probability of promotion by

\[
\Delta \sigma_0(m) = -\frac{m}{1 - N}, \quad \Delta \sigma_B(m) = \frac{m}{N - \mu(N)},
\]

yielding total incentive power

\[
V((1 - \gamma(N))\Delta \sigma_B(m) - \Delta \sigma_0(m)) = \left(\frac{1 - \gamma(N)}{N - \mu(N)} + \frac{1}{1 - N} \right) Vm
\]

Since the selection cost to the organization of this reallocation is \(R(\pi_0 - \pi_B(N))m \), where \(\pi_B(N) \) is the posterior belief that an employee is high-quality following failure, the IPD of promotions is

\[
IPD^{Pr}(N) = \left(\frac{1 - \gamma(N)}{N - \mu(N)} + \frac{1}{1 - N} \right) \frac{V}{R} \left(\frac{1}{\pi_0 - \pi_B(N)} \right)
\]

Meanwhile, the incentive power of a failure bonus of size \(t \) is \((1 - \gamma(N))t\) and its cost to the organization is \((N - \mu(N))t\), yielding IPD

\[
IPD^B(N) = \frac{1 - \gamma(N)}{N - \mu(N)}.
\]

As in the case of decreasing risk-taking, the IPD for promotions does not depend on the number of reallocated promotions. Similarly, the IPD for bonuses does not depend on the size of the bonus payments. Hence an optimal scheme exhibits a bang-bang structure in which only the tool with a higher IPD is used.

The ratio of these IPDs is

\[
\frac{IPD^{Pr}(N)}{IPD^B(N)} = \frac{V/R}{\pi_0 - \pi_B(N)} \left(1 + \Lambda(N) \right).
\]

In general the organization’s inference from failure becomes weaker as more employees choose the risky task, due to the increased expected probability of failure. (See Appendix A)
for a proof.) In other words, $\pi_B(N)$ is increasing in N. Then so long as $\Lambda(N)$ is nondecreasing, the IPD of promotions relative to bonuses increases in N, making promotions a more attractive incentive tool relative to bonuses as the scheme becomes higher-powered.

Similar to the case of decreasing risk-taking, the key distinction between the two incentive tools is that bonuses impact only the payoff of the incentivized group, while promotions additionally affect the payoff of the disincentivized group. In a benchmark model in which the organization can manufacture promotions at cost $R = R\pi_0$ to reward failure, the resulting IPD would be

$$\hat{IPD}^{Pr}(N) = \frac{V/R}{\pi_0 - \pi_B(N)},$$

which depends on N only due to the weakened inference regarding failure as N increases. So long as the cost of promoting for failure does not vary significantly with N, the optimal incentive tool does not vary with N in this benchmark. Compared to this benchmark, reallocating a promotion generates extra incentive power due to its impact on the payoff of risk-avoiders, and this extra power varies significantly with N.

In general the expression Λ capturing this extra incentive power is not guaranteed to be monotone. In particular, while the ratio $(N - \mu(N))/(1 - N)$ is guaranteed to be increasing in N, the factor $1 - \gamma(N)$ in the denominator of Λ is also increasing, possibly leading to non-monotonicity and failure of single-crossing. Despite this complexity, $\Lambda(N)$ is guaranteed to grow without bound as N approaches 1, so that for N sufficiently large promotions are the optimal incentive tool. Additionally, so long as V/R is sufficiently small, the IPD of promotions relative to bonuses is guaranteed to be less than 1 for N close to N^{nc}, yielding bonuses as the optimal incentive tool.

The regularity condition that Λ be monotone is not particularly stringent. We conclude our analysis by demonstrating that the regularity condition is satisfied by a wide class of match type distributions. Let $\bar{\gamma}(N) \equiv \frac{1}{N} \int_0^N \gamma(n) \, dn$ be the average match type of all risk-takers. Since γ is decreasing, so is $\bar{\gamma}$. The following lemma shows that Λ is monotone so long as $\bar{\gamma}$ drops more slowly as N increases.

Lemma 2. If $\bar{\gamma}$ is convex, then Λ is nondecreasing. In particular, $\bar{\gamma}$ is convex if $\gamma(N) = A - BN^k$ for some constants $A, B > 0$ and $k \in (0, 1]$.

Electronic copy available at: https://ssrn.com/abstract=3705627
5.2 The optimal direction of incentives

We next identify the direction of optimal incentives, that is, whether an optimal scheme increases or decreases the risk-taking rate from the natural rate. We show that the answer depends on the direction of the risk-taking distortion identified in Proposition 2. An optimal scheme counteracts this distortion by moving risk-taking in the direction of the first-best rate.

Let N^* be the risk-taking rate induced by an optimal scheme. Recall that N^{nc} is the natural risk-taking rate, while N^{fb} is the first-best risk-taking rate, as characterized in Section 3.

Lemma 3 (The optimal direction of incentives). The organization optimally shifts the risk-taking rate toward the first-best rate:

- If $N^{fb} > N^{nc}$, then $N^* \geq N^{nc}$.
- If $N^{fb} < N^{nc}$, then $N^* \leq N^{nc}$.
- If $N^{fb} = N^{nc}$, then $N^* = N^{nc}$.

This result is most easily demonstrated by supposing that in the absence of incentive constraints, the organization’s profit function $\Pi^{fb}(N)$ is single-peaked in N. In that case, choosing a risk-taking rate N which is further from N^{fb} than N^{nc} must decrease profits: $\Pi^{fb}(N) < \Pi^{fb}(N^{nc})$. Since the profits $\Pi^*(N)$ that can be achieved while respecting incentive constraints must fall below $\Pi^{fb}(N)$ for all $N \neq N^{nc}$, we therefore have $\Pi^*(N) < \Pi^{fb}(N^{nc})$. Meanwhile at the natural rate, incentive constraints are non-binding, implying $\Pi^{fb}(N^{nc}) = \Pi^*(N^{nc})$ and therefore $\Pi^*(N) < \Pi^*(N^{nc})$. Thus any incentive scheme implementing the risk-taking rate N must reduce profits compared to the natural rate, meaning N cannot be an optimal risk-taking rate. In general the unconstrained profit function is not guaranteed to be single-peaked, but it has enough structure that similar reasoning can be used to prove Lemma 3.

5.3 Determining the optimal incentive tool

Given the direction of optimal incentives, the remaining qualitative feature of an optimal incentive scheme to be determined is the optimal incentive tool. Section 5.1 established that

28 N^* is not guaranteed to be unique. In case of non-uniqueness of N^* or N^{fb}, Lemma 3 holds for every selection from each set of maximizers.
the answer depends on the desired power of incentives, that is, how far the organization’s
target level of risk-taking deviates from the natural rate. Of course, the risk-taking target
is itself a choice variable for the organization. The optimal incentive tool must therefore be
jointly determined along with the level of risk-taking to fully characterize an optimal scheme.

Directly characterizing the optimal risk-taking rate requires an optimization of the orga-
nization’s optimal profit function $\Pi^*(N)$, calculated based on the optimal scheme identified
in Section 5.1 across all N. Unfortunately, $\Pi^*(N)$ is a nonlinear function of N which is
typically not quasiconcave. Its maximum is therefore not uniquely characterized by a first-
order condition. Indeed, under many parameterizations the profit function exhibits local
maxima in both the low-powered incentive and high-powered incentive regimes. Calculating
the optimal risk-taking rate therefore requires a comparison of the maximal profits achieved
using each incentive tool, which cannot be accomplished analytically.

Despite these difficulties, we can derive conditions under which the optimal risk-taking
rate is guaranteed to lie in the low- or high-powered regime, yielding a characterization of
the optimal incentive tool. We show that the optimal tool, accounting for endogeneity of the
risk-taking target, depends critically on features of the internal labor market as measured
by R and V.

In general, the incentive costs of reallocating promotions and paying bonuses increase
as R and V increase, respectively. Hence when both R and V are large, it is possible that
no incentive scheme can profitably affect risk-taking. As one component of our results, we
establish conditions under which the optimal incentive scheme implements a risk-taking rate
different from the no-commitment level N_{nc}. We call such an incentive scheme nontrivial.

We first establish that when an employee’s value of promotion V is sufficiently small, the
organization optimally incentivizes with bonuses.

Proposition 4. Hold all model parameters fixed except for V. Suppose that $\beta \neq \beta^{fb}$. Then
for V sufficiently small, there exists a nontrivial optimal incentive scheme, and every optimal
scheme incentivizes with bonuses.

Recall from Proposition 2 that when $\beta \neq \beta^{fb}$, the natural incentives lead to suboptimal
risk-taking. In that case, Proposition 4 establishes that when V is small, there exists an
incentive scheme which improves on the natural incentives, and further an optimal scheme
incentivizes employees to change their risk-taking behavior using bonuses. Intuitively, when
V is small it becomes cheap to influence risk-taking by paying bonuses, while the cost of
incentivizing with promotions remains bounded away from 0 when \(R \) is held fixed.

We next establish that when the value of selection \(R \) is sufficiently small, the organization optimally incentivizes with promotions. Let \(\beta^0 \) be the unique \(\beta \in (\underline{\beta}, \overline{\beta}) \) such that \(\gamma(N^{nc}(\beta)) = K \).

Proposition 5. Hold all model parameters fixed except for \(R \). Suppose that \(\beta \neq \beta^0 \). Then for \(R \) sufficiently small, there exists a nontrivial optimal incentive scheme, and every optimal scheme incentivizes with promotions.

This proposition compares the promotion rate \(\beta \) to the reference level \(\beta^0 \) rather than \(\beta^{fb} \). This is because \(\beta^{fb} \) varies with \(R \), and so the hypothesis \(\beta \neq \beta^{fb} \) cannot be maintained independently of the value of \(R \). It can be shown that as \(R \) goes to zero, \(\beta^{fb} \) approaches \(\beta^0 \). Hence whenever \(\beta \neq \beta^0 \), the risk-taking rate induced by the natural incentives is bounded away from the optimal level for small \(R \). In that case, Proposition 5 establishes that for sufficiently small \(R \), there exists an incentive scheme which improves on the natural incentives, and an optimal scheme incentivizes employees to change their behavior by reallocating promotions. Intuitively, when \(R \) is small it becomes cheap to influence risk-taking by reallocating promotions, while the cost of paying bonuses remains bounded away from 0 when \(V \) is held fixed.

6 Asymmetric incentive schemes

Our analysis so far has assumed that the organization uses schemes which are symmetric: All employees are recommended the same task (as a function of their match type), and all employees who choose the same task and achieve the same outcome are rewarded in the same way. We now examine whether and how an organization can benefit from more general asymmetric schemes. Such schemes may be relevant in large organizations which can introduce social barriers between divisions, for instance by maintaining offices in multiple locations, facilitating separate corporate cultures and incentive schemes across divisions.

We show that the organization can sometimes benefit from dividing employees into multiple groups and offering distinct incentive schemes to each one. While organizations might create such divisions for a number of reasons, such as observable heterogeneity between employees or a desire to induce self-sorting on the basis of private information, our analysis reveals an economic benefit of such divisions even in the absence of any inherent asymmetry.
6.1 Setup

We relax symmetry by allowing the organization to partition employees into multiple groups, each of which is allocated a (potentially unequal) subset of the available promotions. Within each group, the organization commits to a symmetric incentive scheme using the promotions allotted to that group, with the freedom to offer distinct schemes to different groups. Employees observe their assigned group and incentive scheme prior to choosing a task. The following definition formalizes this setup:

Definition 2. An asymmetric incentive scheme consists of a countable set G of employee groups and a set of triples $A = \{(k^g, \beta^g, S^g)\}_{g \in G}$, where

- $k^g \in (0, 1]$ is the measure of employees in group g,
- $\beta^g \in [0, 1]$ is the promotion rate within group g,
- $S^g = (N^g, \sigma^g, T^g)$ is the (symmetric) incentive scheme offered to group g.

We interpret an asymmetric scheme as dividing employees into groups through uniform random assignment. The distribution of qualities and match types within a group is therefore identical to the aggregate population, implying a natural correspondence between each group g and the full organization with promotion rate β^g.

An asymmetric scheme is **feasible** if 1) each scheme S^g is feasible in the sense defined in Section 4 and 2) the number of employees and promotions within each group sum to the aggregate population size and promotion rate:

$$\sum_{g \in G} k^g = 1, \quad \sum_{g \in G} k^g \beta^g = \beta. \tag{2}$$

It is **incentive-compatible** if each scheme S^g is incentive-compatible in the sense defined in Section 4. It is **admissible** if it is both feasible and incentive-compatible.

Under any admissible asymmetric scheme, the organization’s profit from each group g is simply $\Pi(S^g)$, as defined in Section 4, scaled by the number of employees k^g in the group. The total profit from an admissible asymmetric scheme is therefore

$$\sum_{g \in G} k^g \Pi(S^g).$$
6.2 Properties of optimal asymmetric schemes

Holding fixed a group structure $\mathcal{G} = (G, \{k^g, \beta^g\}_{g \in G})$, the organization optimally offers each group the (symmetric) incentive scheme characterized in Section 5. Let $\Pi^*(\beta)$ denote the profits derived from such a scheme, as a function of the promotion rate β. Then the organization’s optimal profits under a given group structure \mathcal{G} are

$$\sum_{g \in G} k^g \Pi^*(\beta^g).$$

Choosing a group structure to optimize this objective is mathematically equivalent to concavifying the symmetric profit function Π^*. Viewed as a concavification problem, the group structure functions as a randomization over β, with probability k^g assigned to promotion rate β^g. The aggregate feasibility constraints (2) ensure that the probabilities sum to 1 and that the average promotion rate is equal to the ex ante promotion rate β. The equivalence with concavification immediately implies that there exists an optimal scheme involving at most two distinct groups.

We next establish that there always exists an optimal asymmetric scheme in which promotions within each group are allocated according to the natural policy. When asymmetric schemes are possible, any reallocation of promotions should therefore be done “ex ante” rather than “ex post”; that is, employees should be informed about whether they will be favored or disfavored for promotion before they choose tasks. One advantage of this form of reallocation is that it relaxes the commitment power required by the organization, since an allocation of promotions between divisions is likely easier to enforce than a commitment to promote subpar candidates within a division.

Theorem 3. There exists an optimal asymmetric incentive scheme involving at most two groups in which promotions are allocated according to the natural policy within each group.

Roughly, this result is proven by establishing that the organization’s profits $\Pi^*(\beta)$ under an optimal symmetric scheme are convex in β whenever the scheme is non-trivial (i.e., induces a risk-taking rate different from $N^{nc}(\beta)$) and incentivizes with promotions. As a result, any mixture over β achieving the concave envelope of profits places no weight on promotion rates

29It can additionally be shown that all optimal schemes exhibit this property under the regularity condition that the optimal incentive scheme is nontrivial when $\beta = \beta^0$, where β^0 is the unique β satisfying $\gamma(N^{nc}(\beta)) = K$.

Electronic copy available at: https://ssrn.com/abstract=3705627
in this region.\footnote{Technically, this conclusion requires that Π^* be strictly convex somewhere in the region, since if Π^* were linear throughout, the concave envelope could coincide with Π^*. In the proof we show that Π^* exhibits sufficient strict convexity to ensure that the concave envelope lies above Π^*.} An optimal group structure must therefore involve only promotion rates β at which an optimal symmetric incentive scheme is either trivial or incentivizes with bonuses. In either case, promotions are allocated according to the natural policy.

Convexity of Π^* can be understood intuitively as follows. Suppose that the organization maintains a fixed risk-taking target N over a range of β. Then as β increases within that range, the organization reallocates proportionally more promotions to maintain indifference of the marginal employee. As a result, promotion payoffs, and therefore total profits $\Pi(N, \beta)$, are linear in β under a fixed target N. The optimal profit function Π^* departs from this benchmark because the organization can flexibly adjust N as β varies. Since the maximum over a set of linear functions is convex, this optionality introduces convexity to $\Pi^*(\beta) = \max_N \Pi(N, \beta)$.

If Π^* were globally convex, an optimal scheme would involve only extremal groups in which employees are never promoted or are promoted with certainty. However, two factors introduce concavity to Π^*. First, reallocated promotions are proportional to β only so long as N_{nc} does not cross the target rate N. (Recall that N_{nc} varies with β, as demonstrated in Section3.) At this crossing point, the required reallocation scheme changes qualitatively, yielding a concave kink in the organization’s profits as β varies while N is held fixed. Second, when an optimal scheme incentivizes using bonuses rather than promotions, total bonus payments (hence also profits) are in general not globally linear in β. Linearity fails both when N_{nc} crosses N, as when incentives are provisioned through promotions, as well as when the marginal group of employees who face rationing under the natural policy changes. At both of these crossing points, the organization’s profit function also exhibits concave kinks.

Given these points of concavity in the underlying profit function for fixed N, the optimized profit function Π^* generally exhibits regions of concavity. (See the examples in Section6.3 for an illustration.) As a result, an optimal asymmetric scheme could involve group(s) with a promotion rate strictly between 0 and 1 who either face only the natural incentives or who are incentivized with bonuses. In fact, this outcome is not just possible but necessary under any optimal scheme. The following proposition establishes this fact formally.

Proposition 6. Under any optimal asymmetric incentive scheme, at least one group g
satisfies $\beta^g \in (0, 1)$.

6.3 Examples

We conclude our analysis with a pair of examples illustrating the process of constructing an optimal asymmetric scheme. In our first example, summarized in Figure 2, promotions are the only relevant incentive tool, corresponding to an environment where R is small. The top panel of the figure plots a possible symmetric profit function Π^* and corresponding concavified profit function Π^{A*} as a function of β, with the associated optimal risk-taking rate N^* plotted in the bottom panel. Π^* is convex wherever the optimal risk-taking rate differs from the natural rate. By contrast, for values of β at which $N^*(\beta) = N^{nc}(\beta)$, optimal symmetric profits are concave in β.

Given the convex-concave-convex structure of Π^*, the concavified profit function Π^{A*} is linear for low and high values of β, and concave over the interior interval (β_*, β^*). If $\beta \in (\beta_*, \beta^*)$, then the organization does not benefit by splitting employees into multiple groups. Otherwise, an optimal asymmetric scheme splits employees into two groups. If $\beta < \beta_*$, one of these groups is promoted at rate β^* while the remaining group receives no promotions; and if $\beta > \beta^*$, one group is promoted at rate β^* while the remaining group is promoted with certainty. In each of these groups, employees face only the natural incentives associated with their promotion rate.

In our next example, summarized in Figure 3, bonuses also play a role in an optimal scheme. The panels of this figure are analogous to the panels of Figure 2. The grey region in the lower panel corresponds to (N, β) pairs for which bonuses are the optimal tool in a symmetric incentive scheme. The green dashed line N^\dagger identifies where the group of agents who face rationing under the natural promotion policy changes with N. Π^* is convex whenever N^* differs from N^{nc} and N^\dagger. By contrast, Π^* has a concave kink when N^* crosses N^{nc} (at $\beta = \beta_*$) and is concave when $N^*(\beta) = N^\dagger(\beta)$. As a result, the concave envelope Π^{A*} is concave at the kink β_* and on the interval (β_*, β^*) and linear elsewhere.

Whenever $\beta \notin \{\beta\} \cup [\beta_*, \beta^*]$, the organization benefits from splitting employees into two groups. In contrast to the previous example, some groups may face a nontrivial incentive scheme that awards them bonuses. In particular, if $\beta \in (\beta_*, \beta^*)$, one group is promoted at rate β_* and awarded bonuses to incentivize a risk-taking rate $N^\dagger(\beta_*) > N^{nc}(\beta_*)$, and the other group is promoted at rate β^* and is offered a trivial incentive scheme, resulting in a
risk-taking rate \(N^{nc}(\beta) \). Similarly, if \(\beta \in (\beta^*, 1) \), one group is promoted at rate \(\beta^* \) and awarded bonuses to incentivize a risk-taking rate \(N^+(\beta^*) \), and the other group is promoted with certainty, requiring no bonuses. Although bonuses are paid in some of these groups, employees in all groups are promoted according to the natural policy within their group.

7 Discussion

7.1 Alternative model specifications

We have formally established our results in a model with a number of stylized features. Nonetheless, several of our main findings are driven by economic mechanisms which are robust to alternative specifications. Most notably:

- The prospect of promotion will distort task choices whenever employees can privately sacrifice expected productivity in order to manipulate organizational learning about their talent.

- The aggregate informativeness of tasks chosen by employees will affect the tradeoff between promotions and bonuses whenever it correlates with the fraction of employees choosing incentivized versus disincentivized tasks.

- Asymmetric schemes will improve overall performance whenever the number of reallocated promotions needed to maintain a fixed risk-taking rate scales approximately linearly in the total number of available promotions.

The forces underpinning each of these findings are present in a wide range of models accommodating alternative specifications of quality types and available tasks. In particular, binary type, task, and outcome sets are not essential, nor is the assumption that the safe task yields no learning. We therefore expect that each of the qualitative features listed above would survive in a richer model, at the cost of increased complexity in the characterization of an optimal incentive scheme.

One qualitative result which we expect not to survive in all alternative specifications of our model is the bang-bang property of an optimal incentive scheme. This property hinges on the linearity of the cost of reallocation promotions. If the outcome space were richer, for instance outcomes on the risky task were continuously distributed, the marginal cost of
Figure 2: An example of an optimal asymmetric incentive scheme. The top panel plots an optimal symmetric profit Π^* as a function of β. The optimal asymmetric profit Π^{A*} is the concavification of $\Pi^*(\cdot)$. The bottom panel plots an optimal risk-taking rate N^* corresponding to $\Pi^*(\cdot)$. In this example, an optimal symmetric scheme incentivizes with promotions for all (N, β).

Electronic copy available at: https://ssrn.com/abstract=3705627
Figure 3: An example of an optimal asymmetric incentive scheme involving bonuses. The panels of this figure are as in Figure 2. The gray shading in the lower panel identifies (N, β) pairs for which an optimal symmetric incentive scheme uses bonuses. The line N^\dagger indicates when the group of rationed employees under the natural promotion policy changes with N.

Electronic copy available at: https://ssrn.com/abstract=3705627
reallocating promotions would rise as promotions are reallocated from increasingly successful risk-takers or toward increasingly unsuccessful ones. Thus an optimal scheme may involve simultaneous use of both promotion reallocation and bonuses in models with richer outcome spaces.

7.2 Centralized mechanisms

Our main results focus on decentralized mechanisms in which employees are free to choose their own task. In principle, an organization with the power to design a general mechanism could do more: They might elicit reports from employees about their task match via a menu of incentive schemes and then directly assign tasks. Such sophisticated mechanisms are rarely observed in practice, and they rely on a strong informational assumption that employees observe their task match at the time of contracting. In practice, employees may choose jobs and sign incentive contracts before they can learn the details of their assignment and accurately assess their task match.

Nonetheless, the fully optimal mechanism could serve as a useful theoretical benchmark to assess how outcomes are shaped by the timing of employee learning. Our model can be extended to accommodate centralized mechanisms, but a full characterization of the optimal mechanism is beyond the scope of this paper due to the complexity of the design problem. The problem is nonstandard in several ways. First, allocations are multidimensional, since the principal must choose the probability of assignment to each task as well as the probability of promotion. Second, promotions and payments can be conditioned not just on an employee’s report, but additionally on the outcome in case the employee is assigned to the risky task. Third, there are complex constraints: a limited liability constraint not present in standard transferable utility models, as well as an aggregate resource constraint that caps the total number of promotions.

Despite these difficulties, we can can solve this problem under some simplifying assumptions. In the Online Appendix we characterize the optimal centralized mechanism when β is sufficiently small and no bonuses are allowed, and we show that it is outcome-equivalent to a (possibly asymmetric) decentralized scheme. In other words, under these conditions a centralized mechanism cannot improve on a decentralized one. We believe that our techniques can be extended to general β, and that outcome-equivalence to a decentralized mechanism would continue to hold. We also conjecture that the optimal mechanism would not change
when bonuses are allowed so long as V (the agent’s value of promotion) is sufficiently large. It is an open question whether centralized mechanisms could improve profits when bonuses are available and V is small.\(^{31}\)

7.3 Moral hazard

Our analysis abstracts from issues of moral hazard to focus on how the prospect of promotion distorts task choices. This abstraction is a reasonable approximation of reality when an employer can directly monitor how hard employees work, or when employees are intrinsically motivated to work hard (as (Hackman and Oldham\(^\text{[1980]}\) document is correlated with worker autonomy). However, in other settings employees might find shirking attractive, in particular when engaged on risky tasks where shirking cannot be distinguished from bad luck.

The presence of such an incentive to shirk would not substantively impact our results so long as the degree of moral hazard is small, because all employees strictly prefer to succeed rather than fail at the risky task. Formally, $V_{\sigma_G} + T_G > V_{\sigma_B} + T_B$ under any optimal scheme. This inequality holds even when failure bonuses are awarded to boost risk-taking, since these bonuses are optimally calibrated to ensure that better-matched employees self-sort into the risky task. As a result, if the marginal cost of effort is sufficiently small, all employees engaged in the risky task prefer not to shirk. (Similarly, employees are never incentivized to sabotage their own work in order to achieve worse outcomes.)

The one exception to this reasoning involves asymmetric incentive schemes which assign some employees to groups in which the promotion rate is 0 or 1. In such groups, employees receive no benefit from success and prefer to shirk in the presence of moral hazard unless additional bonuses are paid. As a result, even a small amount of moral hazard reduces the profitability of asymmetric schemes involving extreme inequality. (Note that in the limit of vanishing effort costs, approximate optimality can be ensured by adding small bonus payments to the optimal scheme characterized in Section \(^6\) or by slightly adjusting group sizes.)

Designing an optimal asymmetric incentive scheme under moral hazard, or an optimal symmetric scheme when shirking incentives are strong, would require incorporating a lower bound on the permitted gap in payoffs following success versus failure on the risky task.

\(^{31}\)Some of the techniques developed in the Online Appendix should help resolve this question, but new allocation tradeoffs would arise and the limited liability constraint would need to be incorporated.
This constraint does not affect the marginal tradeoff between bonuses and promotions, and therefore preserves the basic connection between the risk-taking rate and the optimal incentive tool. However, it could overturn the result that bonuses are optimally paid for failure rather than success, and would affect the quantitative details of an optimal scheme. We leave a detailed exploration of these issues to future work.

8 Conclusion

In this paper we have analyzed how talent selection in organizations incentivizes employees to distort task choices in order to earn promotions. In general, these incentives lead some employees to choose unproductive tasks which either increase the chance of a favorable talent inference or minimize the chance of an unfavorable inference. We show how these distortions can be corrected via decentralized incentive schemes which reallocate promotions between groups of employees or pay bonuses as rewards for choosing particular tasks. In the process, we uncover a novel tradeoff between the two incentive tools, with bonuses emerging as the optimal tool for providing low-powered incentives, while promotions are preferable for provisioning high-powered incentives. Finally, we show that when the organization can divide employees into multiple groups with different promotion rates and incentive schemes, such divisions can improve overall performance and eliminate the need to promote inefficiently within groups.

Appendix

A Notation for proofs

Given a risk-taking set \(\mathcal{N} \), define

\[
\mu(\mathcal{N}) \equiv \int_{\mathcal{N}} \gamma(n) \, dn, \quad Q(\mathcal{N}) \equiv \int_{\mathcal{N}} q(\bar{\theta}, \gamma(n)) \, dn.
\]

The quantity \(\mu(\mathcal{N}) \) is the measure of successful risk-takers, while \(Q(\mathcal{N}) \) is the measure of successful risk-takers conditioning on their quality being high. Let \(\pi_G(\mathcal{N}) \) and \(\pi_B(\mathcal{N}) \) be the organization’s posterior belief about the quality of an agent who succeeds and fails at
risk-taking, respectively. By Bayes’ rule,
\[
\pi_G(N) = \frac{Q(N)}{\mu(N)} \pi_0, \quad \pi_B(N) = \frac{|N| - Q(N)}{|N| - \mu(N)} \pi_0
\]
whenever \(|N| > 0\). Since \(q(\bar{\theta}, \Gamma) = \bar{\theta} \Gamma\), we have \(Q(N) = \bar{\theta} \mu(N)\), and so \(\pi_G\) is independent of \(N\) and will be written without an argument going forward.

For \(N \in [0, 1]\), let
\[
\mu(N) \equiv \mu([0, N]), \quad Q(N) \equiv Q([0, N]), \quad \rho(N) \equiv \mu(N) + \gamma(N)(1 - N).
\]
For \(N \in (0, 1]\), define \(\pi_B(N) \equiv \pi_B([0, N])\). The following lemma establishes that \(\pi_B\) is monotone in \(N\), so that we may extend \(\pi_B\) to \(N = 0\) by defining \(\pi_B(0) \equiv \lim_{N \downarrow 0} \pi_B(N)\).

Lemma A.1. \(\pi_B'(N) > 0\) for every \(N \in (0, 1]\).

Proof. By Bayes’ rule,
\[
\pi_B(N) = \frac{\int_0^N (1 - q(\bar{\theta}, \gamma(n))) \, dn}{\int_0^N (1 - \gamma(n)) \, dn} \pi_0.
\]
Differentiating this expression yields
\[
\pi_B'(N) = \pi_B(N) \left(\frac{1 - q(\bar{\theta}, \gamma(N))}{\int_0^N (1 - q(\bar{\theta}, \gamma(n))) \, dn} - \frac{1 - \gamma(N)}{\int_0^N (1 - \gamma(n)) \, dn} \right).
\]
Since \(q(\bar{\theta}, \Gamma) = \bar{\theta} \Gamma\), we have
\[
\frac{1 - q(\bar{\theta}, \Gamma)}{1 - \Gamma} = 1 - \frac{q(\bar{\theta}, \Gamma) - \Gamma}{1 - \Gamma} = 1 - \frac{\bar{\theta} - 1}{\Gamma - 1 - 1},
\]
which is strictly decreasing in \(\Gamma\) given that \(\bar{\theta} > 1\). We may therefore write
\[
\int_0^N (1 - q(\bar{\theta}, \gamma(n))) \, dn = \int_0^N \frac{1 - q(\bar{\theta}, \gamma(n))}{1 - \gamma(n)} (1 - \gamma(n)) \, dn
\]
\[
< \frac{1 - q(\bar{\theta}, \gamma(N))}{1 - \gamma(N)} \int_0^N (1 - \gamma(n)) \, dn.
\]
Combining this bound with the previous expression for \(\pi_B'(N)\) yields \(\pi_B'(N) > 0\). \(\Box\)

Given any incentive scheme \(S = (N, T, \sigma)\), the principal’s total profits under \(S\) can be written
\[
\Pi(S) = f(N) + \Pi^{pr}(S) + \Pi^B(S),
\]
Electronic copy available at: https://ssrn.com/abstract=3705627
where
\[f(N) \equiv \int_N^\infty \gamma(n) \, dn + K(1 - |N|) \]
are total expected task payoffs,
\[\Pi^{Pr}(S) \equiv R(\mu(N)\pi_G\sigma_G + (|N| - \mu(N))\pi_B(N)\sigma_B + (1 - |N|)\pi_0\sigma_0) \]
are total expected promotion payoffs, and
\[\Pi^B(S) \equiv -\mu(N)T_G - (|N| - \mu(N))T_B - (1 - |N|)T_0 \]
are total profits from bonus payments (which are always non-positive given limited liability). Using Bayes’ rule, promotion profits can also be written
\[\Pi^{Pr}(S) = R\pi_0 (Q(N)\sigma_G + (|N| - Q(N))\sigma_B + (1 - |N|)\sigma_0). \]

Let
\[M(S) \equiv \mu(N)\sigma_G + (|N| - \mu(N))\sigma_B + (1 - |N|)\sigma_0 \]
denote the total number of employees promoted under \(S \).

B Natural promotion policy

In this appendix we characterize the no-commitment promotion rates \(\sigma^nc_i(N, \beta) \) associated with the natural promotion policy for each group \(i \in \{G, B, 0\} \) given any risk-taking rate \(N \) and promotion rate \(\beta \).

For any \(N \in [0, 1] \), let
\[\nu(N) \equiv \mu(N) + (1 - N) \]
be the measure of successful risk-takers plus risk-avoiders. Note that \(\mu'(N) = \gamma(N) > 0 \) while \(\nu'(N) = \gamma(N) - 1 < 0 \) for all \(N \in (0, 1) \). Let
\[N^1(\beta) \equiv \sup\{N : \mu(N) \leq \beta\} \]
be the largest risk-taking rate such that the measure of successful risk-takers does not exceed \(\beta \), and let
\[N^1(\beta) \equiv \sup\{N : \nu(N) \geq \beta\} \]
be the largest risk-taking rate such that the measure of successful risk-takers plus risk-avoiders exceeds β. Note that N^\dagger and N^\ddagger are both positive for all $\beta \in (0, 1)$, N^\dagger is nondecreasing in β while N^\ddagger is nonincreasing in β, and each is strictly monotone whenever it is less than 1. Further $N^\dagger(\beta) < 1$ iff $\beta < \beta \equiv \mu(1)$, while $N^\ddagger(\beta) < 1$ iff $\beta > \beta$.

These properties of N^\dagger and N^\ddagger imply that if $\beta \leq \beta$, then $\sigma^{nc}_{B}(N, \beta) = 0$ for all N, while

$$
\sigma^{nc}_{G}(N, \beta) = \begin{cases}
1, & N \leq N^\dagger(\beta) \\
\beta/\mu(N), & N > N^\dagger(\beta)
\end{cases}
$$

Meanwhile if $\beta > \beta$, then $\sigma^{nc}_{G}(N, \beta) = 1$ for all N, while

$$
\sigma^{nc}_{0}(N, \beta) = \begin{cases}
\beta - \mu(N)/(1 - N), & N \leq N^\dagger(\beta) \\
1, & N > N^\dagger(\beta)
\end{cases}
$$

$$
\sigma^{nc}_{B}(N, \beta) = \begin{cases}
0, & N \leq N^\dagger(\beta) \\
(\beta - \nu(N))/(N - \mu(N)), & N > N^\dagger(\beta)
\end{cases}
$$

(When $N \in \{0, 1\}$, we have used the tie-breaking rule that employees are promoted in order of perceived quality even up to measure-zero sets. When $N = 0$, we have additionally used the posterior belief specification discussed in fn [17] under which successful risk-takers are perceived to be of higher quality than other employees while failed risk-takers are believed to be of lower quality.)

Let

$$
\Pi^{fb}(N, \beta) \equiv f(N) + R\pi_0(Q(N)\sigma^{nc}_{G}(N, \beta) + (N - Q(N))\sigma^{nc}_{B}(N, \beta) + (1 - N)\sigma^{nc}_{0}(N, \beta))
$$

be the firm’s profits under the natural promotion policy supposing that the risk-taking rate is exogenously set at N. That is, this profit function ignores incentive constraints on how much risk-taking can be implemented through efficient promotion. Then $N^{fb}(\beta) = \arg\max_{N \in [0, 1]} \Pi^{fb}(N, \beta)$, where throughout this appendix we make the dependence of N^{fb} on β explicit.

Lemma B.1. If $\beta \leq \beta$, then $\Pi^{fb}(N, \beta)$ is strictly concave in N and $N^{fb}(\beta)$ is single-valued.
If $\beta > \overline{\beta}$, then $\Pi^{fb}(N, \beta)$ is strictly concave in N on $[0, N^{\dagger} \beta]$, and one of the following holds:

- $N^{fb}(\beta)$ is single-valued, $N^{fb}(\beta) < N^{\dagger} \beta$, and $\Pi^{fb}(N, \beta)$ is decreasing in N on $[N^{\dagger} \beta, 1]$,
- $\min N^{fb}(\beta) \geq N^{\dagger} \beta$ and $\Pi^{fb}(N, \beta)$ is increasing in N on $[0, N^{\dagger} \beta]$.

Proof. Suppose first that $N \leq \min \{N^{\dagger} \beta, N^{\ddagger} \beta\}$. Then

$$
\Pi^{fb}(N, \beta) = f(N) + R\pi_0(Q(N) + \beta - \mu(N)).
$$

Differentiating wrt N yields

$$
\frac{\partial \Pi^{fb}}{\partial N}(N, \beta) = \gamma(N) - K + R\pi_0(q(\overline{\theta}, \gamma(N))) - \gamma(N).
$$

Recall that $q(\overline{\theta}, \Gamma) = \overline{\theta}\Gamma$, and so this expression may be simplified to read

$$
\frac{\partial \Pi^{fb}}{\partial N}(N, \beta) = \gamma(N) - K + R\pi_0(\overline{\theta} - 1)\gamma(N).
$$

Since $\gamma'(N) < 0$ for all N, this derivative is strictly decreasing in N, and so $\Pi^{fb}(N, \beta)$ is strictly concave in N on $[0, \min\{N^{\dagger} \beta, N^{\ddagger} \beta\}]$. When $\beta = \overline{\beta}$, we have $N^{\dagger} \beta = N^{\ddagger} \beta = 1$, establishing strict concavity on $[0, 1]$.

Next suppose that $\beta < \overline{\beta}$, so that $N^{\dagger} \beta = 1 > N^{\ddagger} \beta$. For $N \geq N^{\dagger} \beta$, we have

$$
\Pi^{fb}(N, \beta) = f(N) + R\pi_0(Q(N) + \beta - \mu(N)).
$$

Differentiating this expression wrt N yields

$$
\frac{\partial \Pi^{fb}}{\partial N}(N, \beta) = \gamma(N) - K,
$$

which is strictly decreasing in N. So $\Pi^{fb}(N, \beta)$ is strictly concave in N on $[N^{\dagger} \beta, 1]$. Further,

$$
\frac{\partial \Pi^{fb}}{\partial N}(N^{\dagger} \beta, \beta) = \gamma(N^{\dagger} \beta) - K + R\pi_0(\overline{\theta} - 1)\gamma(N^{\dagger} \beta)
$$

$$
> \gamma(N^{\dagger} \beta) - K = \frac{\partial \Pi^{fb}}{\partial N}(N^{\dagger} \beta, +, \beta),
$$

so $\Pi^{fb}(N, \beta)$ has a concave kink at $N = N^{\dagger} \beta$. Concavity on either side of the kink therefore implies strict concavity over the entire domain $[0, 1]$. Since any strictly concave function has a unique maximizer, $N^{fb}(\beta)$ is single-valued.
Finally, suppose that \(\beta > \overline{\beta} \), so that \(N^\dagger(\beta) = 1 > N^\dagger(\beta) \). For \(N \geq N^\dagger(\beta) \), we have

\[
\Pi_f^b(N, \beta) = f(N) + R\pi_0 \left(Q(N) + 1 - N + \frac{\beta - \nu(N)}{N - \mu(N)}(N - Q(N)) \right).
\]

Using the definition of \(\nu(N) \), this is equivalently

\[
\Pi_f^b(N, \beta) = f(N) + R(\pi_0 - (1 - \beta)\pi_B(N)).
\]

So

\[
\frac{\partial \Pi_f^b}{\partial N}(N, \beta) = \gamma(N) - K - R(1 - \beta)\pi'_B(N).
\]

Lemma \(\text{\ref{correctness}} \) established that \(\pi'_B(N) > 0 \) for all \(N > 0 \), so that

\[
\frac{\partial \Pi_f^b}{\partial N}(N, \beta) < \gamma(N) - K < \gamma(N^\dagger(\beta)) - K < \frac{\partial \Pi_f^b}{\partial N}(N^\dagger(\beta)-, \beta)
\]

for all \(N > N^\dagger(\beta) \). Let \(\Delta \equiv \frac{\partial \Pi_f^b}{\partial N}(N^\dagger(\beta)-, \beta) \). If \(\Delta < 0 \), then \(\Pi_f^b(N, \beta) \) is decreasing for \(N \geq N^\dagger(\beta) \) as well as for \(N < N^\dagger(\beta) \) sufficiently large, and it must be that all maximizers of \(\Pi_f^b \) are strictly smaller than \(N^\dagger(\beta) \). Since these maximizers are therefore also maximizers of the strictly concave function \(\Pi_f^b(\cdot, \beta) \) on the domain \([0, N^\dagger(\beta)]\), there must be a unique maximizer. On the other hand, if \(\Delta \geq 0 \), then by strict concavity \(\Pi_f^b(N, \beta) \) must be increasing for \(N \leq N^\dagger(\beta) \), so that all maximizers of \(\Pi_f^b(\cdot, \beta) \) are no smaller than \(N^\dagger(\beta) \). \(\square \)

C Proof of Lemma \(\text{\ref{correctness}} \)

If \(N \in \{0,1\} \), then trivially \(|\mathcal{N} \setminus [0, N]| = 0 \) and there is nothing to prove. For the remainder of the proof, we assume that \(N \in (0,1) \). The proof proceeds in two parts. In the first part, we fix a scheme \(\mathcal{S} = (\mathcal{N}, T, \sigma) \) satisfying \(V\sigma_B + T_B = V\sigma_G + T_G \) and construct an admissible scheme \(\mathcal{S}' = ([0, N], T', \sigma') \) such that \(\Pi(\mathcal{S}') > \Pi(\mathcal{S}) \). In the second part, we show that among all admissible schemes \(\mathcal{S} = ([1 - N, 1], T, \sigma) \) satisfying \(V\sigma_B + T_B \geq V\sigma_G + T_G \), a profit-maximizing scheme exists, and any such scheme satisfies \(V\sigma_B + T_B = V\sigma_G + T_G \).

The two results establish the lemma by the following logic. If \(V\sigma_G + T_G > V\sigma_B + T_B \), then incentive-compatibility combined with \(N \in (0,1) \) imply that \(\mathcal{N} = [0, N] \). Thus the hypothesis of the lemma requires \(V\sigma_B + T_B \geq V\sigma_G + T_B \). In case the inequality binds, the first result produces the desired scheme. In case it is slack, incentive-compatibility requires that \(\mathcal{N} = [1 - N, 1] \), since the payoff to risk-taking is strictly increasing in \(n \). But then the
second result implies that S is dominated by a scheme $S' = ([1 - N, 1], T', \sigma')$ satisfying $V\sigma'_B + T'_B = V\sigma'_G + T'_G$. And by the first result, S' is in turn dominated by a scheme $S'' = ([0, N], T'', \sigma'')$.

C.1 Part 1

Fix a scheme $S = (N, T, \sigma)$ satisfying $V\sigma_B + T_B = V\sigma_G + T_G$, which may be equivalently written as the identity $T_B - T_G = V(\sigma_G - \sigma_B)$. In this case the expected payoff to risk-taking is the same for all employees. Then since $N \in (0, 1)$, incentive-compatibility requires that all employees must be indifferent between risk-taking and not, implying

$$V\sigma_G + T_G = V\sigma_0 + T_0 = V\sigma_B + T_B.$$

Suppose first that $\sigma_G = \sigma_B = \bar{\sigma}$ for some $\bar{\sigma}$. Then $T_G = T_B = \bar{T}$ for some \bar{T}, and the bonus and promotion payoffs under S may be written

$$\Pi^{Pr}(S) = R\pi_0(N\bar{\sigma} + (1 - N)\sigma_0), \quad \Pi^B(S) = -N\bar{T} - (1 - N)T_0.$$

Meanwhile the total number of employees promoted is

$$M(S) = N\bar{\sigma} + (1 - N)\sigma_0$$

Promotion and bonus payoffs are independent of N, holding fixed $|\mathcal{N}| = N$, as is the total number of employees promoted. In particular, they are unchanged under the modified scheme $S' = ([0, N], T, \sigma)$, which is therefore admissible. Meanwhile $f(N) > f(N)$ given that productivity increases as risk-taking shifts toward employees with higher-promise projects. Hence $\Pi(S') > \Pi(S)$.

Next suppose that $\sigma_G > \sigma_B$. Define a family of schemes $S'(<\Delta) = ([0, N], T'(<\Delta), \sigma'(<\Delta))$ for $\Delta \in [0, \sigma_G - \sigma_B]$, where $\sigma'_G(\Delta) = \sigma_G - \Delta$, $T'_G(\Delta) = T_G + V\Delta$, and all remaining components of $\sigma'(<\Delta)$ and $T'(<\Delta)$ agree with σ and T. Note that $S'(<\Delta)$ is incentive-compatible for any choice of Δ. Meanwhile $M(S'(\Delta))$ is strictly decreasing in Δ, and $\sigma_G > \sigma_B$ along with $\mu(N) > \mu(N)$ imply that

$$M(S'(0)) = \mu(N)(\sigma_G - \sigma_B) + N\sigma_B + (1 - N)\sigma_0$$

$$> \mu(N)(\sigma_G - \sigma_B) + N\sigma_B + (1 - N)\sigma_0 = M(S)$$

Electronic copy available at: https://ssrn.com/abstract=3705627
while

\[M(S'(\sigma_G - \sigma_B)) = N\sigma_B + (1 - N)\sigma_0 < \mu(N)\sigma_G + (N - \mu(N))\sigma_B + (1 - N)\sigma_0 = M(S). \]

Let \(\Delta^* \in (0, \sigma_G - \sigma_B) \) be the unique \(\Delta \) such that \(M(S'(\Delta)) = M(S) \). Then \(S'(\Delta^*) \) is admissible, and we will further show that \(\Pi(S'(\Delta^*)) > \Pi(S) \). Since \(f(N) > f(N') \), it is sufficient to show that neither bonus nor promotion profits decrease under the modified scheme.

Solving the equation \(M(S'(\Delta^*)) = M(S) \) for \(\Delta \) yields

\[\Delta^* = (\sigma_G - \sigma_B) \left(1 - \frac{\mu(N)}{\mu(N')} \right). \]

Calculating the difference in bonus profits between \(S \) and \(S'(\Delta^*) \) yields

\[\Pi^B(S'(\Delta^*)) - \Pi^B(S) = -(\mu(N) - \mu(N'))(T_G - T_B) - V\mu(N)\Delta^*. \]

Inserting the explicit form of \(\Delta^* \) and using the identity \(T_B - T_G = V(\sigma_G - \sigma_B) \) yields \(\Pi^B(S'(\Delta^*)) - \Pi^B(S) = 0 \). So the modified scheme generates the same total bonus profits as does the original scheme.

Meanwhile, calculating the difference in promotion payoffs between the two schemes yields

\[\Pi^{Pr}(S'(\Delta^*)) - \Pi^{Pr}(S) = R\pi_0 Q(N) \left((\sigma_G - \sigma_B) \left(1 - \frac{Q(N)}{Q(N')} \right) - \Delta^* \right). \]

Inserting the explicit form of \(\Delta^* \) reduces this expression to

\[\Pi^{Pr}(S'(\Delta^*)) - \Pi^{Pr}(S) = R\pi_0 Q(N)(\sigma_G - \sigma_B) \left(\frac{\mu(N)}{\mu(N')} - \frac{Q(N)}{Q(N')} \right). \]

Since \(\pi_G = Q(N)/\mu(N) = Q(N)/\mu(N) \), it follows that \(\Pi^{Pr}(S'(\Delta^*)) = \Pi^{Pr}(S) \), and so the modified scheme yields identical promotion profits.

Finally, suppose that \(\sigma_G < \sigma_B \). Define a family of schemes \(S'(\Delta) = ([0, N], T'(\Delta), \sigma'(\Delta)) \) for \(\Delta \in [0, \sigma_B - \sigma_G] \), where \(\sigma'_G(\Delta) = \sigma_G + \Delta, T'_G(\Delta) = T_G - V\Delta, \) and all remaining components of \(\sigma'(\Delta) \) and \(T'(\Delta) \) agree with \(\sigma \) and \(T \). Using work nearly identical to the \(\sigma_G > \sigma_B \) case, it can be established that \(M(S'(\Delta)) \) is strictly increasing in \(\Delta \), and there exists a unique \(\Delta^* \in (0, \sigma_B - \sigma_G) \) such that \(M(S'(\Delta^*)) = M(S) \). In addition,

\[T'_G(\Delta^*) - T_B = T_G - T_B - V\Delta^* = V(\sigma_B - \sigma_G - \Delta^*) > 0, \]

so \(T'_G(\Delta^*) > 0 \). The resulting scheme \(S'(\Delta^*) \) is therefore admissible, and under it task payoffs strictly rise while promotion and bonus profits are unchanged as compared to \(S \).
C.2 Part 2

We now study the problem of maximizing $\Pi(S)$ among all admissible schemes $S = ([1 - N, 1], T, \sigma)$. Incentive-compatibility for this class of schemes is equivalent to

$$\begin{cases} V\sigma_B + T_B \geq V\sigma_G + T_G, \\ \gamma(1 - N)(V\sigma_G + T_G) + (1 - \gamma(1 - N))(V\sigma_B + T_B) = V\sigma_0 + T_0 \end{cases}$$

The first condition ensures that the payoff to risk-taking is larger for higher-indexed employees, while the second condition ensures that the marginal employee N is indifferent between risk-taking or not.

We first argue that the optimal achievable profits are unchanged if the problem is modified to impose the bonus cap $T_G, T_0, T_B \leq T$ for sufficiently large T. For if not, then there would exist a sequence of admissible schemes $S^n = ([1 - N, 1], T^n, \sigma^n)$ for $n = 1, 2, \ldots$ such that $\Pi(S^{n+1}) > \Pi(S^n)$ for each n and $\max\{T^n_G, T^n_0, T^n_B\} \to \infty$. But also the profit under each S^n can be bounded above by

$$\Pi(S^n) \leq f(N) + R\beta - \mu([1 - N, 1])T^n_G - (N - \mu([1 - N, 1]))T^n_B - (1 - N)T^n_0$$

$$\leq f(N) + R\beta - \min\{\mu([1 - N, 1]), N - \mu([1 - N, 1]), 1 - N\} \max\{T^n_G, T^n_0, T^n_B\},$$

and this upper bound approaches $-\infty$ as $n \to \infty$ given that $\min\{\mu([1 - N, 1]), N - \mu([1 - N, 1]), 1 - N\} > 0$. This contradicts the hypothesis that profits are increasing in n, and so a sufficiently large upper bound on bonuses must not impact achievable profits.

Once a cap on bonuses is imposed, the resulting optimization problem involves a continuous objective function and a compact constraint set. Then by the maximum theorem, an optimal scheme must exist. By the argument of the previous paragraph, this scheme must also maximize the principal’s profits absent a cap on bonuses, supposing the cap is set sufficiently large. Thus an optimal scheme exists in the original problem with no bonus cap.

In the remainder of the proof, we argue that any optimal scheme in the class of interest must satisfy $V\sigma_B + T_B = V\sigma_G + T_G$. It is sufficient to show that any scheme satisfying $V\sigma_B + T_B > V\sigma_G + T_G$ can be modified to obtain another admissible scheme in the class of interest yielding strictly higher profits. To that end, fix a scheme $S = ([1 - N, 1], T, \sigma)$ satisfying $V\sigma_B + T_B > V\sigma_G + T_G$.

We begin by showing that unless $\min\{T_G, T_0\} = 0$ and $T_B = 0$, we can modify bonuses to increase profits. Suppose first that $\min\{T_G, T_0\} > 0$. Then there exists a $\Delta > 0$ sufficiently
small such that the new bonus scheme \(T' = (T_G - \Delta / \gamma(1 - N), T_0 - \Delta, T_B) \) satisfies the non-negativity constraints on bonuses. By construction, this new set of bonuses is fully incentive-compatible for every \(\Delta > 0 \). Further, this change strictly decreases total bonus payments. So the modified scheme increases total profits.

A similar argument yields profitable improvements if \(\min\{T_B, T_0\} > 0 \). Thus in particular if \(T_B > 0 \) and \(T_0 > 0 \), there exists a profitable improvement. Suppose instead that \(T_B > 0 \) and \(T_0 = 0 \). Consider a modified bonus scheme \(T'(\Delta) \) which sets

\[
T'_G(\Delta) = T_G + \Delta \frac{1 - \gamma(1 - N)}{\gamma(1 - N)}, \quad T'_0(\Delta) = 0, \quad T'_B(\Delta) = T_B - \Delta.
\]

This new bonus scheme preserves incentive-compatibility for the marginal employee for all \(\Delta \). Further, for \(\Delta > 0 \) sufficiently small, \(T'_B(\Delta) > 0 \) and \(V_{\sigma_B} + T'_G(\Delta) < V_{\sigma_B} + T'_B(\Delta) \), so that the scheme satisfies the non-negativity constraints on bonuses and is incentive-compatible. Letting \(S'(\Delta) = ([1 - N, 1], T'(\Delta), \sigma) \), we have

\[
\Pi^B(S'(\Delta)) = -T_0(1 - N) - T'_G(\Delta)\mu([1 - N, 1]) - T'_B(\Delta)(N - \mu([1 - N, 1])).
\]

Differentiating wrt \(\Delta \) yields

\[
\frac{d}{d\Delta} \Pi^B(S'(\Delta)) = -\frac{\mu([1 - N, 1])}{\gamma(1 - N)} + N.
\]

Since \(\gamma \) is strictly decreasing, \(\mu([1 - N, 1]) < \gamma(1 - N)N \), so that this derivative is strictly positive. Thus total profits from bonuses (i.e., the negative of total bonus payments) increases in \(\Delta \), meaning that for sufficiently small \(\Delta > 0 \) the modified scheme \(S'(\Delta) \) is admissible and strictly increases profits.

We have so far found a profitable modification of any scheme satisfying \(\min\{T_G, T_0\} > 0 \) or \(T_B > 0 \). It remains only to find a profitable modification in case \(\min\{T_G, T_0\} = 0 \) and \(T_B = 0 \). Incentive-compatibility for the marginal employee, combined with \(V_{\sigma_B} + T_B > V_{\sigma_B} + T_G \) and \(T_B = 0 \), implies that

\[
V_{\sigma_B} > V_{\sigma_0} + T_0 > V_{\sigma_B} + T_G.
\]

In particular, \(\sigma_B > \sigma_G, \sigma_0 \), and so \(\sigma_G, \sigma_0 < 1 \).

Consider a family of modified schemes \(S'(\Delta, \alpha) = ([1 - N, 1], T, \sigma'(\Delta, \alpha)) \) for \(\alpha \in (0, 1) \) and \(\Delta > 0 \) with

\[
s'_G(\Delta, \alpha) = (1 - \alpha)\sigma_G + \alpha\sigma + \Delta, \quad s'_B(\Delta, \alpha) = (1 - \alpha)\sigma_B + \alpha\sigma + \Delta, \quad s'_0(\Delta, \alpha) = \sigma_0 + \Delta.
\]
where $\overline{\sigma} \equiv \gamma(1 - N)\sigma_G + (1 - \gamma(1 - N))\sigma_B$. All schemes in this family satisfy incentive-compatibility for the marginal employee. Full incentive-compatibility then requires

$$V\sigma'_B(\Delta, \alpha) + T_B \geq V\sigma'_G(\Delta, \alpha) + T_G$$

or

$$(1 - \alpha)V(\sigma_B - \sigma_G) \geq T_G - T_B.$$

Since $V\sigma_B + T_B > V\sigma_G + T_G$, this inequality is slack when $\alpha = 0$, and so holds for $\alpha \in (0, 1)$ sufficiently small.

Under $S'(0, \alpha)$, the total number of promoted employees is

$$M(S'(0, \alpha)) = \mu([1 - N, 1])\sigma'_G(0, \alpha) + (N - \mu([1 - N, 1]))\sigma'_B(0, \alpha) + (1 - N)\sigma'_0(0, \alpha) = (1 - \alpha)M(S) + \alpha(N\overline{\sigma} + (1 - N)\sigma_0)$$

Since $\gamma(1 - N) > \mu([1 - N, 1])/N$ and $\sigma_G < \sigma_B$, we have

$$\overline{\sigma} = \gamma(1 - N)\sigma_G + (1 - \gamma(1 - N))\sigma_B < \frac{\mu([1 - N, 1])}{N}\sigma_G + \frac{N - \mu([1 - N, 1])}{N}\sigma_B,$$

and therefore $M(S'(0, \alpha)) < M(S)$. Since $M(S'(\Delta, \alpha))$ is increasing and unbounded in Δ, there exists a unique $\Delta^* > 0$ such that $M(S'(\Delta^*, \alpha)) = M(S)$.

We next show that the promotion probabilities under $S'(\Delta^*, \alpha)$ are feasible for sufficiently small $\alpha \in (0, 1)$. Since each component of $\sigma'(\Delta, \alpha)$ is a sum of non-negative and positive terms, it must be that $\sigma'(\Delta, \alpha) > 0$ for any $\Delta > 0$ and $\alpha \in (0, 1)$. It remains to check the upper bound $\sigma'(\Delta^*, \alpha) \leq 1$. Note that Δ^* satisfies

$$M(S) = (1 - \alpha)M(S) + \alpha(N\overline{\sigma} + (1 - N)\sigma_0) + \Delta^*,$$

or $\Delta^* = \alpha\Delta^0$, where $\Delta^0 \equiv M(S) - N\overline{\sigma} - (1 - N)\sigma_0$. Since $\Delta^* > 0$, also $\Delta^0 > 0$. The promotion probabilities $\sigma'_G(\Delta^*, \alpha)$ and $\sigma'_0(\Delta^*, \alpha)$ may be written in terms of Δ^0 as

$$\sigma'_G(\Delta^*, \alpha) = (1 - \alpha)\sigma_G + \alpha(\overline{\sigma} + \Delta^0), \quad \sigma'_0(\Delta^*, \alpha) = (1 - \alpha)\sigma_0 + \alpha(\sigma_0 + \Delta^0).$$

Then as $\sigma_G, \sigma_0 < 1$ and $\overline{\sigma}, \Delta^0$ are independent of α, it must be that $\sigma'_G(\Delta^*, \alpha), \sigma'_0(\Delta^*, \alpha) < 1$ for α sufficiently small. Additionally, $\sigma'_0(\Delta^*, \alpha) > \sigma_0$ for any $\alpha(0, 1)$, given that $\Delta^0 > 0$. Meanwhile, $\overline{\sigma}$ is a weighted average of σ_G and σ_B, and so $\overline{\sigma} > \min\{\sigma_G, \sigma_B\}$. Since $\sigma_B > \sigma_G$, this implies $\overline{\sigma} > \sigma_G$, so that $\sigma'_G(\Delta^*, \alpha) > \sigma_G$ for all $\alpha \in (0, 1)$. Then since $M(S'(\Delta^*, \alpha)) = M(S)$, it must be that $\sigma'_B(\Delta^*, \alpha) < \sigma_B \leq 1$ for all $\alpha \in (0, 1)$.

46
We have shown that for \(\alpha \in (0,1) \) sufficiently small, the scheme \(S'(\Delta^*, \alpha) \) is admissible. The final step is to show that this modified scheme raises profits. Since risk-taking and bonuses are unchanged, we need only check that promotion payoffs rise. This follows from the fact that the modified scheme preserves the total number of promoted employees, while reallocating promotions from failed risk-takers to successful risk-takers and risk-avoiders. Since \(\pi_G > \pi_0 > \pi_B(\mathcal{N}) \), this reallocation must therefore raise promotion payoffs.

D Proof of Proposition 1

Given a risk-taking set \(\mathcal{N} \subset [0,1] \) and promotion rate \(\beta \), let \(\sigma_{nc}^i(\mathcal{N}, \beta) \) be the probability of promotion for employees in group \(i \in \{G, 0, B\} \) under the natural promotion policy. In general

\[
\sigma_{nc}^G(\mathcal{N}, \beta) \geq \sigma_{nc}^0(\mathcal{N}, \beta) \geq \sigma_{nc}^B(\mathcal{N}, \beta),
\]

since employees are promoted strictly in order of perceived quality and \(\pi_G(\mathcal{N}) > \pi_0 > \pi_B(\mathcal{N}) \) given any risk-taking set \(\mathcal{N} \).\(^{32}\) Additionally, feasibility implies that \(\sigma_{nc}^B(\mathcal{N}, \beta) < 1 \), while \(\sigma_{nc}^B(\mathcal{N}, \beta) > 0 \) only if \(\sigma_{nc}^G(\mathcal{N}, \beta) = 1 \). Hence \(\sigma_{nc}^G(\mathcal{N}, \beta) > \sigma_{nc}^B(\mathcal{N}, \beta) \). It follows that the payoff to risk-taking is strictly increasing in an employee’s match type. Hence any equilibrium risk-taking set must satisfy \(\mathcal{N} = \emptyset, \mathcal{N} = [0, N], \) or \(\mathcal{N} = [0, N) \) for some risk-taking rate \(N \in [0,1] \).

We first characterize all \(\beta \) for which \(\mathcal{N} = \emptyset \) is an equilibrium. Note that \(\sigma_{nc}^G(\emptyset, \beta) = 1, \sigma_{nc}^0(\emptyset, \beta) = \beta, \) and \(\sigma_{nc}^B(\emptyset, \beta) = 0 \). It is an equilibrium outcome for all employees to avoid risk-taking iff this is true for the best-matched agent, who succeeds on the risky task with probability \(\gamma(0) \). Given the promotion probabilities just reported, \(\mathcal{N} = \emptyset \) is an equilibrium iff \(\beta \geq \beta \equiv \gamma(0) \). Note that when \(\beta = \beta \), this logic implies that \(\mathcal{N} = \{0\} \) is also an equilibrium.

We next characterize all \(\beta \) for which \(\mathcal{N} = [0,1] \) is an equilibrium. Suppose first that \(\mu(1) < \beta \), where \(\mu \) is as defined in Appendix A. Then \(\sigma_{nc}^G([0,1], \beta) = 1, \sigma_{nc}^0([0,1], \beta) = 1, \) and \(\sigma_{nc}^B([0,1], \beta) = (\beta - \mu(1))/(1 - \mu(1)) \). Since \(\sigma_{nc}^G([0,1], \beta) > \sigma_{nc}^B([0,1], \beta) \), it cannot be optimal for any employee to choose the risky task, and so \(\mathcal{N} = [0,1] \) cannot be an equilibrium. If instead \(\mu(1) \geq \beta \), then \(\sigma_{nc}^G([0,1], \beta) = \beta/\mu(1), \sigma_{nc}^0([0,1], \beta) = 0, \) and \(\sigma_{nc}^B([0,1], \beta) = 0 \). In this case it is optimal for all employees to choose the risky task.

\(^{32}\) If \(|\mathcal{N}| > 0 \) then this ranking of posteriors is implied by Bayes’ rule. If \(|\mathcal{N}| = 0, \) in which case \(\pi_G(\mathcal{N}) \) and \(\pi_B(\mathcal{N}) \) cannot be computed by Bayes’ rule, this ranking is directly imposed, as discussed in fn 17.
\(\mathcal{N} = [0, 1] \) is an equilibrium iff \(\beta \leq \underline{\beta} \equiv \mu(1) \). Note that
\[
\mu(1) = \int_{0}^{1} \gamma(n) \, dn < \gamma(0),
\]
so that \(\underline{\beta} < \overline{\beta} \). Additionally, this logic implies that \(\mathcal{N} = [0, 1] \) is an equilibrium when \(\beta = \underline{\beta} \); and if \(\gamma(1) = 0 \) then \(\mathcal{N} = [0, 1] \) is an equilibrium for all \(\beta < \underline{\beta} \).

We now characterize all \(\beta \) for which \(\mathcal{N} = [0, N] \) is an equilibrium for \(N \in (0, 1) \). Suppose first that \(\beta \geq \underline{\beta} \). Then
\[
\mu(N) < \mu(1) = \int_{0}^{1} \gamma(n) \, dn < \gamma(0) \leq \beta,
\]
and so \(\sigma_{nc}^{G}([0, N], \beta) = 1 \). Additionally,
\[
\frac{\beta - \mu(N)}{1 - N} \geq \frac{\gamma(0) - \mu(N)}{1 - N}.
\]
Then since
\[
\mu(N) = \int_{0}^{N} \gamma(n) \, dn < \int_{0}^{N} \gamma(0) \, dn = N \gamma(0),
\]
we have \((\beta - \mu(N))/(1 - N) > 1 \). Hence \(\sigma_{0}^{nc}([0, N], \beta) = 1 \). Since \(\sigma_{B}^{nc}([0, N], \beta) < 1 \), it cannot be optimal for any employee to choose the risky task, meaning \(\mathcal{N} = [0, N] \) cannot be an equilibrium.

Suppose next that \(\beta \leq \underline{\beta} \). If \(\mu(N) \geq \beta \), then \(\sigma_{0}^{nc}([0, N], \beta) = 0 \) and it cannot be optimal for any (except possibly the worst-matched, in case \(\gamma(1) = 0 \)) employee to choose the safe task, meaning \(\mathcal{N} = [0, N] \) cannot be an equilibrium. If on the other hand \(\mu(N) < \beta \) then \(\sigma_{G}^{nc}([0, N], \beta) = 1 \). Additionally,
\[
\frac{\beta - \mu(N)}{1 - N} \leq \frac{\mu(1) - \mu(N)}{1 - N} = \frac{1}{1 - N} \int_{1-N}^{1} \gamma(n) \, dn < \gamma(N).
\]
Since \(\gamma(N) < 1 \), we therefore have \(\sigma_{0}^{nc}([0, N], \beta) = (\beta - \mu(N))/(1 - N) \) and \(\sigma_{B}^{nc}([0, N], \beta) = 0 \).

The marginal employee’s payoff gain from switching from the safe to the risky task is therefore
\[
\gamma(N) - \frac{\beta - \mu(N)}{1 - N} > 0,
\]
meaning that employees slightly less well-matched than \(N \) would also strictly gain from switching to the risky task, and so \(\mathcal{N} = [0, N] \) cannot be an equilibrium.

Finally, suppose that \(\beta \in (\underline{\beta}, \overline{\beta}) \). Since \(\mu(N) < \mu(1) < \beta \), it must be that \(\sigma_{G}^{nc}([0, N], \beta) = 1 \). \(\mathcal{N} = [0, N] \) is an equilibrium iff the marginal employee is indifferent between the two tasks.
That is, we must have \((\beta - \mu(N))/(1 - N) < 1\), so that \(\sigma^{nc}_0([0, N], \beta) = (\beta - \mu(N))/(1 - N)\) while \(\sigma^{nc}_B([0, N], \beta) = 0\), and additionally
\[
\gamma(N) = \frac{\beta - \mu(N)}{1 - N}.
\]
Since \(\gamma(N) < 1\), the former condition is satisfied if the latter is. And the latter condition may be equivalently written \(\rho(N) = \beta\), where \(\rho(N) \equiv \mu(N) + \gamma(N)(1 - N)\). Note that \(\rho'(N) = \gamma'(N)(1 - N) < 0\), and \(\rho(0) = \beta\) while \(\rho(1) = \beta\). Hence there exists a unique \(N^nc \in (0, 1)\) such that \(\mathcal{N} = [0, N^{nc}]\) is an equilibrium. Additionally, \(\mathcal{N} = [0, N]\) is also an equilibrium whenever \(\mathcal{N} = [0, N^{nc}]\) is.

The work above establishes that for each \(\beta \in (0, 1)\), there exists an (essentially) unique equilibrium risk-taking set. When \(\beta < \beta\) we have \(\mathcal{N} = [0, 1]\), when \(\beta > \beta\) we have \(\mathcal{N} = \emptyset\), and when \(\beta \in (\beta, \beta)\) we have \(\mathcal{N} = [0, N^{nc}]\), where \(\rho(N^{nc}) = \beta\). The risk-taking rate \(N^{nc}\) satisfies the comparative static
\[
\frac{dN^{nc}}{d\beta} = \frac{1}{\rho'(N^{nc})} < 0,
\]
so that \(N^{nc}\) is decreasing in \(\beta\). Additionally, \(\rho(1) = \beta\) and \(\rho(0) = \beta\), so that \(N^{nc} \to 1\) when \(\beta \to \beta\) and \(N^{nc} \to 0\) when \(\beta \to \beta\). Defining \(N^{nc} = 1\) in the former case and \(N^{nc} = 0\) in the latter case, we may write \(\mathcal{N} = [0, N^{nc}]\) for \(\beta \in [\beta, \beta]\).

\section*{E Proof of Proposition 2}

Throughout this proof, we assume for simplicity that \(N^{fb}\) is single-valued. If it isn’t, the proof holds for any selection from the set of maximizers of \(\Pi^{fb}(N, \beta)\). We will also write \(N^{fb}(\beta)\) and \(N^{nc}(\beta)\) to make explicit the dependence of each of these quantities on \(\beta\).

In the absence of incentive constraints, the organization’s profits under risk-taking rate \(N\) are \(\Pi^{fb}(N, \beta)\), as characterized in Appendix B. We will make free use of expressions for \(\partial \Pi^{fb}/\partial N\) calculated in the proof of Lemma B.1. We will also make use of the following basic fact about \(N^{nc}(\beta)\).

\textbf{Lemma E.1.} \(N^{nc}(\beta) \leq N^1(\beta)\) for all \(\beta \in (0, 1)\), with the inequality strict if and only if \(\beta > \beta\).
Proof. For $\beta \leq \underline{\beta}$ we have $N^{nc}(\beta) = N^\dagger(\beta) = 1$. Meanwhile for $\beta \geq \overline{\beta}$ we have $N^{nc}(\beta) = 0 < N^\dagger(\beta)$. Finally, for $\beta \in (\underline{\beta}, \overline{\beta})$, $N^{nc}(\beta)$ satisfies $\rho(N^{nc}(\beta)) = \beta$ while $N^\dagger(\beta)$ satisfies $\nu(N^\dagger(\beta)) = \beta$. Note that for all $N < 1$,

$$\rho(N) = \mu(N) + \gamma(N)(1-N) < \mu(N) + (1-N) = \nu(N).$$

Then since $N^{nc}(\beta) < 1$ for $\beta \in (\underline{\beta}, \overline{\beta})$, we have $\nu(N^{nc}(\beta)) > \beta = \nu(N^\dagger(\beta))$. Now, $\nu'(N) = \gamma(N) - 1 < 0$ for all $N \in (0,1)$, so ν is decreasing in N. It follows that $N^{nc}(\beta) < N^\dagger(\beta)$. □

Suppose first that $\beta < \underline{\beta}$. Then $N^\dagger(\beta) < 1 = N^{nc}(\beta)$, and so for N close to $N^{nc}(\beta)$ we have

$$\frac{\partial \Pi^f_b}{\partial N}(N,\beta) = \gamma(N) - K,$$

which under Assumption 2 is strictly negative for N sufficiently close to 1. Hence $N^f_b(\beta) < N^{nc}(\beta)$.

Now suppose that $\beta \geq \overline{\beta}$. Then $N^\dagger(\beta) > 0 = N^{nc}(\beta)$, and for N close to $N^{nc}(\beta)$ we have

$$\frac{\partial \Pi^f_b}{\partial N}(N,\beta) = \gamma(N) - K + R\pi_0(\overline{\beta} - 1)\gamma(N).$$

Since $\gamma(N) > K$ for N close to zero, this expression is positive for N sufficiently small. Hence $N^f_b(\beta) > N^{nc}(\beta)$.

Finally, suppose that $\beta \in [\underline{\beta}, \overline{\beta})$. Lemma E.1 established that $N^{nc}(\beta) \leq N^\dagger(\beta)$. Over the range $[0, N^\dagger(\beta))$,

$$\frac{\partial \Pi^f_b}{\partial N}(N,\beta) = \gamma(N) - K + R\pi_0(\overline{\beta} - 1)\gamma(N),$$

which is continuous and decreasing in N and independent of β. Going forward, we’ll suppress β from the argument of Π^f_b when evaluating it at $N \leq N^\dagger(\beta)$. Proposition II additionally established that $N^{nc}(\beta)$ is continuous and decreasing in β on the interval $[\underline{\beta}, \overline{\beta}]$. It follows that $\frac{\partial \Pi^f_b}{\partial N}(N^{nc}(\beta))$ is continuous and increasing in β on $[\underline{\beta}, \overline{\beta}]$. At the upper limit of this interval,

$$\frac{\partial \Pi^f_b}{\partial N}(N^{nc}(\overline{\beta})) = (1 + R\pi_0(\overline{\beta} - 1))\gamma(0) - K > 0.$$

Meanwhile at the lower end of the interval,

$$\frac{\partial \Pi^f_b}{\partial N}(N^{nc}(\underline{\beta})) = \Delta,$$

where $\Delta \equiv (1 + R\pi_0(\overline{\beta} - 1))\gamma(1) - K$.

50
Suppose first that $\Delta \geq 0$. Then $\frac{\partial \Pi^b}{\partial N}(N^{nc}(\beta)) > 0$ for all $\beta \in (\underline{\beta}, \overline{\beta})$. In that case strict concavity of $\Pi^b(N)$ on the interval $[0, N^\dagger(\beta)]$, established in Lemma B.1 ensures that $N^f_b(\beta) > N^{nc}(\beta)$ for all $\beta \in (\underline{\beta}, \overline{\beta})$. Meanwhile when $\beta = \underline{\beta}$, we have $N^{nc}(\beta) = 1$ and $\frac{\partial \Pi^b}{\partial N}(N^{nc}(\beta)) = \Delta \geq 0$, in which case strict concavity along with the identity $N^\dagger(\underline{\beta}) = 1$ implies that $N^f_b(\beta) = 1 = N^{nc}(\beta)$. Then letting $\beta^f_b = \underline{\beta}$, the claimed properties of $N^f_b(\beta) - N^{nc}(\beta)$ hold.

Suppose instead that $\Delta < 0$. Then by continuity and strict monotonicity, there exists a unique $\beta^0 \in (\underline{\beta}, \overline{\beta})$ such that $\frac{\partial \Pi^b}{\partial N}(N^{nc}(\beta^0)) = 0$. For $\beta > \beta^0$ we have $\frac{\partial}{\partial N} \Pi^b(N^{nc}(\beta), \beta) > 0$, in which case strict concavity of $\Pi^b(N, \beta)$ in N over $[0, N^\dagger(\beta)]$ ensures that $N^f_b(\beta) > N^{nc}(\beta)$. Meanwhile for $\beta < \beta^0$ we have $\frac{\partial \Pi^b}{\partial N}(N^{nc}(\beta)) < 0$, ensuring that also $\frac{\partial \Pi^b}{\partial N}(N) < 0$ for all $N \in (N^{nc}(\beta), N^\dagger(\beta))$. Then either $N^f_b(\beta) \leq N^\dagger(\beta)$ and $N^{nc}(\beta) > N^\dagger(\beta)$, or else $N^f_b(\beta) > N^\dagger(\beta)$. But Lemma B.1 established that in the latter case, Π^b is increasing in N on $[0, N^\dagger(\beta)]$, a contradiction. So must be that $N^f_b(\beta) > N^\dagger(\beta)$. Then letting $\beta^f_b = \beta^0$, the claimed properties of $N^f_b(\beta) - N^{nc}(\beta)$ hold.

\section{Proof of Lemma 3}

Throughout this proof, we assume for simplicity that N^* and N^f_b are single-valued. If they aren’t, the proof holds for any selection from each set of maximizers. We will also write $N^*(\beta)$ and $N^f_b(\beta)$ to make explicit the dependence of each of these quantities on β.

Let $\Pi^*(N, \beta)$ be the organization’s profits under an optimal incentive scheme inducing risk-taking rate β, while (as defined in Appendix B) $\Pi^f_b(N, \beta)$ are its profits in an environment without incentive constraints. In general $\Pi^*(N, \beta) \leq \Pi^f_b(N, \beta)$, and the inequality is strict for any $N \neq N^{nc}(\beta)$, since to induce any such N the organization must either promote inefficiently, pay bonuses, or both. It follows immediately that $N^*(\beta) = N^f_b(\beta)$ in case $N^f_b(\beta) = N^{nc}(\beta)$.

Suppose that $N^f_b(\beta) > N^{nc}(\beta)$. This hypothesis implies that $N^{nc}(\beta) < 1$, so that $\beta > \overline{\beta}$. Lemma B.1 established that for $\beta \geq \underline{\beta}$, $\Pi^f_b(N, \beta)$ is strictly concave on $[0, N^\dagger(\beta)]$, and if $N^f_b(\beta) \geq N^\dagger(\beta)$ then $\Pi^f_b(N, \beta)$ is increasing in N on $[0, N^\dagger(\beta)]$. Meanwhile, Lemma E.1 established that $N^{nc}(\beta) \leq N^\dagger(\beta)$. The hypothesis $N^f_b(\beta) > N^{nc}(\beta)$ therefore implies that $\Pi^f_b(N, \beta)$ is increasing on $[0, N^{nc}(\beta)]$, so that $\Pi^f_b(N, \beta) < \Pi^f_b(N^{nc}(\beta), \beta)$ for all $N < N^{nc}(\beta)$. It follows that $\Pi^*(N, \beta) < \Pi^f_b(N^{nc}(\beta), \beta) = \Pi^*(N^{nc}(\beta), \beta)$ for all such N.

Electronic copy available at: https://ssrn.com/abstract=3705627
establishing \(N^*(\beta) \geq N^{nc}(\beta) \).

Finally, suppose that \(N^{fb}(\beta) < N^{nc}(\beta) \). This hypothesis implies in particular that \(N^{fb}(\beta) < N^\dagger(\beta) \). If \(\beta \geq \beta_\dagger \), then Lemma B.1 implies that \(\Pi^f(N,\beta) \) is decreasing in \(N \) on \([N^{nc}(\beta), 1] \), so that \(\Pi^f(N,\beta) < \Pi^{fb}(N^{nc}(\beta),\beta) \) for all \(N > N^{nc}(\beta) \). It follows that \(\Pi^*(N,\beta) < \Pi^{fb}(N^{nc}(\beta),\beta) = \Pi^*(N^{nc}(\beta),\beta) \) for all such \(N \), establishing \(N^*(\beta) \leq N^{nc}(\beta) \). If on the other hand \(\beta < \beta_\dagger \), then Lemma B.1 established that \(\Pi^{fb}(N,\beta) \) is strictly concave in \(N \) on \([0, 1] \). The hypothesis \(N^{fb}(\beta) < N^{nc}(\beta) \) therefore implies that \(\Pi^{fb}(N,\beta) < \Pi^{fb}(N^{nc}(\beta),\beta) \) for all \(N > N^{nc}(\beta) \). Hence \(\Pi^*(N,\beta) < \Pi^{fb}(N^{nc}(\beta),\beta) = \Pi^*(N^{nc}(\beta),\beta) \) for all such \(N \), establishing \(N^*(\beta) \leq N^{nc}(\beta) \).

\section{Proof of Theorem 1}

We first characterize an optimal policy for \(N \in (0, N^{nc}) \), and return to the extremal case \(N = 0 \) at the end of the proof. When \(N \) is interior, the risk-taking set \([0, N]\) is incentive-compatible if and only if 1) the marginal employee is indifferent between tasks, and 2) the payoff from successful risk-taking exceeds the payoff from failed risk-taking. Formally, these constraints are

\[
\gamma(N)(V\sigma_G + T_G) + (1 - \gamma(N))(V\sigma_B + T_B) = V\sigma_0 + T_0, \tag{IC-N}
\]

\[
V\sigma_G + T_G \geq V\sigma_B + T_B. \tag{IC-\Delta}
\]

We solve the relaxed problem enforcing only \([IC-N]\), and verify that the resulting optimal scheme satisfies \([IC-\Delta]\). We begin by proving a useful auxiliary lemma.

\textbf{Lemma G.1.} If the promotion scheme \(\sigma \) is feasible and \(\sigma_G = 1 \), then

\[
\gamma(N)\sigma_G + (1 - \gamma(N))\sigma_B - \sigma_0 > 0.
\]

\textit{Proof.} \(N < N^{nc}(\beta) \leq N^\dagger(\beta) \) implies that \(\sigma_{B}^{nc}(N,\beta) = 0 \), so \(\sigma_B \geq \sigma_B^{nc}(N,\beta) \). If \(\sigma_G = 1 \), then feasibility additionally requires that \(N \leq N^\dagger(\beta) \), in which case \(\sigma_G = \sigma_G^{nc}(N,\beta) \). This identity combined with \(\sigma_B \geq \sigma_B^{nc}(N,\beta) \) then implies \(\sigma_0 \leq \sigma_0^{nc}(N,\beta) \) if feasibility is to be satisfied. Thus

\[
\gamma(N)\sigma_G + (1 - \gamma(N))\sigma_B - \sigma_0 \geq \gamma(N)\sigma_{G}^{nc}(N,\beta) + (1 - \gamma(N))\sigma_{B}^{nc}(N,\beta) - \sigma_0^{nc}(N,\beta).
\]

Meanwhile \(N < N^{nc}(\beta) \) implies that the rhs of the previous inequality is positive, yielding the desired bound. \(\square \)
G.1 \(T_G = 0 \)

We first show that any scheme satisfying \(T_G > 0 \) is suboptimal. Fix such a scheme. Define a new bonus scheme \(T' \) by \(T'_G = 0 \), \(T'_B = T_B + \frac{\gamma(N)}{1 - \gamma(N)}T_G \), and \(T'_0 = T_0 \). This modification does not disturb \([IC-N]\) and pays out total bonuses

\[
B' = (N - \mu(N)) \frac{\gamma(N)}{1 - \gamma(N)}T_G + (N - \mu(N))T_B + (1 - N)T_0.
\]

Now, for any \(n > 0 \) we have \(\gamma(n) < \mu(n)/n \) given that \(\mu(n)/n \) is the average of \(\gamma \) over \([0, n]\), and \(\gamma \) is strictly decreasing. Hence

\[
\frac{\gamma(N)}{1 - \gamma(N)} < \frac{\mu(N)/N}{1 - \mu(N)/N} = \frac{\mu(N)}{N - \mu(N)},
\]

and so

\[
B' < \mu(N)T_G + (N - \mu(N))T_B + (1 - N)T_0 = B,
\]

where \(B \) are total bonus payments under the original scheme. This modification to the bonus scheme therefore reduces total bonus payments and increases profits.

G.2 \(T_B = 0 \)

Going forward, we restrict attention to schemes satisfying \(T_G = 0 \). We next show that any scheme satisfying \(T_B > 0 \) is suboptimal. Fix such a scheme.

First suppose that \(T_0 > 0 \). Pass to the modified bonus scheme \(T' \) satisfying \(T'_B = T_B - (1 - \gamma(N))\Delta \) and \(T'_0 = T_0 - \Delta \), which satisfies \([IC-N]\) for any \(\Delta \), and for \(\Delta > 0 \) sufficiently small also satisfies the non-negativity constraint on bonuses. This modification strictly reduces bonuses payments and therefore increases profits.

Suppose instead that \(T_0 = 0 \). In this case,

\[
\gamma(N)\sigma_G + (1 - \gamma(N))\sigma_B - \sigma_0 = -(1 - \gamma(N))T_B/V < 0.
\]

This inequality immediately implies \(\sigma_0 > 0 \), given that \(\sigma_G, \sigma_B \geq 0 \). It also implies that \(\sigma_G < 1 \) by Lemma \([G.1]\). Pass to the modified bonus and promotion scheme \((T', \sigma')\) which sets \(\sigma'_0 = \sigma_0 - \Delta \), \(\sigma'_G = \sigma_G + \Delta(1 - N)/\mu(N) \), and

\[
T'_B = T_B - V\frac{\Delta}{1 - \gamma(N)} \left(1 + (1 - N)\frac{\gamma(N)}{\mu(N)} \right),
\]

Electronic copy available at: https://ssrn.com/abstract=3705627
with all other promotion probabilities and bonuses unchanged. By construction, this modified scheme preserves (IC-N) and the number of promoted employees. Therefore for any \(\Delta > 0 \), it reallocates promotions from risk-avoiders to successful risk-takers, strictly increasing promotion payoffs given that \(\pi_G > \pi_0 \). Finally, for \(\Delta > 0 \) sufficiently small the modified scheme respects the non-negativity constraint on bonuses given that \(T_B > 0 \), as well as the boundary constraints on promotion probabilities given that \(\sigma_0 > 0 \) and \(\sigma_G < 1 \). So this modification is feasible and increases profits.

G.3 \(\sigma_B = 0 \)

Going forward, we restrict attention to schemes satisfying \(T_B = 0 \). We now show that any scheme satisfying \(\sigma_B > 0 \) is suboptimal. Fix such a scheme. Then (IC-N) may be rearranged to read

\[
\gamma(N)\sigma_G + (1 - \gamma(N))\sigma_B - \sigma_0 = T_0/V \geq 0,
\]

implying that \(\sigma_0 < 1 \) given that \(\sigma_G, \sigma_B \leq 1 \) and \(\sigma_G = \sigma_B = \sigma_0 = 1 \) violates feasibility.

First suppose that \(T_0 > 0 \). Pass to the modified bonus and promotion schemes \((T', \sigma')\), where \(\sigma'_0 = \sigma_0 + \Delta \), \(\sigma'_B = \sigma_B - \Delta(1 - N)/(N - \mu(N)) \), \(\sigma'_G = \sigma_G \), and

\[
T'_0 = T_0 - V \Delta \left(1 + (1 - N) \frac{1 - \gamma(N)}{N - \mu(N)} \right).
\]

By construction, this modified scheme preserves (IC-N) and the number of promoted employees for any \(\Delta \). Therefore for \(\Delta > 0 \) it shifts promotions from failed risk-takers toward risk-avoiders, increasing total promotion payoffs given that \(\pi_0 > \pi_B(N) \). It additionally reduces total bonus payments. Finally, for \(\Delta > 0 \) sufficiently small it respects the bonus non-negativity constraint and the boundary constraints on promotion probabilities given that \(\sigma_0 < 1 \) and \(\sigma_B > 0 \). So this modification is feasible and increases profits.

Suppose instead that \(T_0 = 0 \) and \(\sigma_0 = 0 \). In this case (IC-N) requires that \(\sigma_G = \sigma_B = 0 \) as well. But then the modified promotion scheme \(\sigma' = \sigma + \Delta \) preserves (IC-N) for any \(\Delta \) and remains feasible for sufficiently small \(\Delta > 0 \). Since all promoted employees yield a positive payoff for the organization, this modification raises profits.

Finally, suppose that \(T_0 \) and \(\sigma_0 > 0 \). In this case Lemma [G.1] additionally implies that \(\sigma_G < 1 \). Consider the modified promotion scheme \(\sigma' \), where

\[
\sigma'_B = \sigma_B - \Delta, \quad \sigma'_0 = \sigma_0 - \frac{\rho(N) - \gamma(N)}{\rho(N)} \Delta, \quad \sigma'_G = \sigma_G + \frac{1 - \rho(N)}{\rho(N)} \Delta.
\]
By construction, this modification preserves both (IC-N) and the number of promoted employees. Further, \(\rho(N) = \gamma(N) + \mu(N) - N\gamma(N) \), and as noted earlier \(\mu(N) > N\gamma(N) \). Hence \(\rho(N) > \gamma(N) \). So for all \(\Delta > 0 \) this modification reallocates promotions from failed risk-takers and risk-avoiders to successful risk-takers, increasing total promotion payoffs given that \(\pi_G > \pi_0, \pi_B(N) \). Finally, for \(\Delta > 0 \) sufficiently small this modification respects the boundary constraints on promotion probabilities given that \(\sigma_B, \sigma_0 > 0 \) while \(\sigma_G < 1 \). So this modification is feasible and increases profits.

G.4 \(M(S) = \beta \)

Going forward, we will restrict attention to schemes satisfying \(\sigma_B = 0 \). We next show that any scheme which does not promote \(\beta \) employees is suboptimal. Fix such a scheme. Then (IC-N) reads \(\gamma(N)\sigma_G = \sigma_0 + T_0/V \), which combined with \(\gamma(N) > 0 \) implies that either \(\max\{\sigma_G, \sigma_0\} < 1 \) or else \(1 = \sigma_G > \sigma_0 \).

First suppose that \(\max\{\sigma_G, \sigma_0\} < 1 \). Pass to the modified scheme \((\sigma'_G, \sigma'_0) = (\sigma_G + \Delta, \sigma_0 + \gamma(N)\Delta) \), which preserves (IC-N) and, for sufficiently small \(\Delta > 0 \), remains feasible. Since this modification increases the number of promoted employees, and since every promoted employee yields a positive payoff to the organization, this modification must increase profits.

Suppose instead that \(1 = \sigma_G > \sigma_0 \). In this case Lemma G.1 implies that \(T_0 > 0 \). Then a modified scheme setting \(\sigma'_0 = \sigma_0 + \Delta \) and \(T'_0 = T_0 - V\Delta \) preserves (IC-N), and for sufficiently small \(\Delta > 0 \) it increases the number of employees while remaining feasible. Since every promoted employee yields a positive payoff to the organization, and since the modified scheme additionally reduces bonus payments, this modification must increase profits. Going forward we restrict attention to schemes which saturate the feasibility constraint.

G.5 The optimal scheme

To complete the characterization of an optimal scheme, we enforce \(T_G = T_B = \sigma_B = 0 \) and solve the optimization problem

\[
\max_{\sigma_G, \sigma_0, T_0} R(\mu(N)\pi_G\sigma_G + (1 - N)\pi_0\sigma_0) - (1 - N)T_0
\]

subject to the boundary constraints \(\sigma_G, \sigma_0 \in [0, 1] \) and \(T_0 \geq 0 \), the IC constraint (IC-N), which reduces to

\[
\gamma(N)\sigma_G = \sigma_0 + T_0/V,
\]
and the binding feasibility constraint

\[\beta = \mu(N)\sigma_G + (1 - N)\sigma_0. \]

Notice that any solution to this problem trivially satisfies (IC-Δ) given that \(\sigma_B = T_B = 0 \).

Solving the feasibility and IC constraints for \(\sigma_0 \) and \(T_0 \) yields

\[\sigma_0(\sigma_G) = \frac{\beta - \mu(N)\sigma_G}{1 - N}, \quad T_0(\sigma_G) = V\rho(N)\sigma_G - \beta \]

Using these expressions to eliminate \(\sigma_0 \) and \(T_0 \) from the maximization problem yields

\[\max_{\sigma_G} \beta(V + R\pi_0) + (R\mu(N)(\pi_G - \pi_0) - V\rho(N))\sigma_G \]

subject to the boundary constraints that \(\sigma_G, \sigma_0 \in [0, 1] \) and \(T_0 \geq 0 \).

Note that the boundary constraints on \(\sigma_0 \) and \(T_0 \) implicitly place additional constraints on \(\sigma_G \), given that each is a function of \(\sigma_G \). They collectively imply that \(\sigma_G \in [\underline{\sigma}_G, \overline{\sigma}_G] \), where

\[\underline{\sigma}_G \equiv \min \left\{ \frac{\beta}{\mu(N)}, 1 \right\}, \quad \overline{\sigma}_G \equiv \max \left\{ \frac{\beta - (1 - N)}{\mu(N)}, \frac{\beta}{\rho(N)} \right\}. \]

Since the reduced objective is affine in \(\sigma_G \) with slope

\[\xi_-(N) \equiv R\mu(N)(\pi_G - \pi_0) - V\rho(N), \]

the optimal value of \(\sigma_G \) is therefore

\[\sigma^*_G = \begin{cases} \underline{\sigma}_G & \text{if } \xi_-(N) > 0 \\ \overline{\sigma}_G & \text{if } \xi_-(N) < 0. \end{cases} \]

(If \(\xi_-(N) = 0 \), then there exist a continuum of optimal schemes.)

We now characterize the sign of \(\xi_- \) as a function of \(N \). Since \(\rho \) is strictly decreasing while \(\mu \) is strictly increasing, \(\xi_- \) is strictly increasing. Further, \(\xi_-(0) = -V\rho(0) = -V\gamma(0) < 0 \), while \(\xi_-(1) = \mu(1)(R(\pi_G - \pi_0) - V) \). Let

\[\overline{N}_-(R, V) \equiv \sup \{ N \in [0, 1] : \xi_-(N) < 0 \}. \]

Given that \(\xi_- \) is strictly increasing in \(N \), \(N < \overline{N}_-(R, V) \) implies that \(\xi_-(N) < 0 \) while \(N > \overline{N}_-(R, V) \) implies that \(\xi_-(N) > 0 \).

To establish the claimed comparative statics of \(\overline{N}_-(R, V) \) in \(R \) and \(V \), first note that \(\overline{N}_-(R, V) \) depends on \(R, V \) only through the ratio \(V/R \). If \(V/R \geq \pi_G - \pi_0 \), then \(\xi_-(N) \leq 0 \) for
all \(N \) and \(N_{-}(R, V) = 1 \). Meanwhile if \(V/R < \pi_{G} - \pi_{B} \), then \(\xi_{-}(1) > 0 \) and \(N_{-}(R, V) \in (0, 1) \). Further, \(\xi_{-}(N) \) is increasing in \(R \) and decreasing in \(V \) for all \(N > 0 \), implying that \(N_{-}(R, V) \) is increasing in \(V/R \) whenever it is interior. Finally, for every \(N > 0 \), \(\xi_{-}(N) > 0 \) for \(V/R \) sufficiently small. Thus \(\lim_{V/R \to 0} N_{-}(R, V) = 0 \). The comparative statics with respect to \(R \) and \(V \) follow immediately from this analysis.

We next show that the scheme satisfying \(\sigma^{*}_{G} = \sigma_{G} \) corresponds to efficient promotion and a positive bonus for safe approaches. Recall the efficient promotion probabilities \(\sigma_{i}^{nc} \) characterized in Appendix B. For all \(N \) we have \(\sigma_{G} = \sigma_{i}^{nc}(N, \beta) \). Meanwhile \(N < N^{nc} \leq N^{\dagger}(\beta) \) implies that \(\sigma_{0}^{nc}(N, \beta) = (\beta - \mu(N))\sigma_{i}^{nc}(N, \beta)/(1 - N) = \sigma_{0}(\sigma_{G}) \) and \(\sigma_{H}^{nc}(N, \beta) = 0 = \sigma_{B} \). So this scheme promotes efficiently.

Meanwhile \(T_{0}(\sigma_{G}) > 0 \) iff \(\sigma_{G} > \beta/\rho(N) \). If \(N \geq N^{\dagger}(\beta) \), then \(\sigma_{G} = \beta/\mu(N) \). Since \(\rho(N) > \mu(N) \) for all \(N < 1 \), the desired inequality holds in this case. If instead \(N < N^{\dagger}(\beta) \), then \(\sigma_{G} = 1 \). In this case the desired inequality amounts to \(\rho(N) > \beta \). Suppose first that \(\beta \leq \beta_{+} \). Then \(N^{nc} = 1 \), and since \(\rho \) is strictly decreasing in \(N \), the desired inequality holds for \(N < N^{nc} \) if \(\rho(1) \geq \beta_{+} \). Since \(\rho(1) = \mu(1) = \beta_{+} \), the result follows. Next suppose that \(\beta \in (\beta_{-}, \beta_{+}) \). Then \(N^{nc} \) satisfies \(\rho(N^{nc}) = \beta \), and so \(\rho(N) > \beta \) for all \(N < N^{nc} \). Finally, if \(\beta \geq \beta_{+} \) then \(N^{nc} = 0 \) and there are no risk-taking rates strictly below \(N^{nc} \). So the bonus is strictly positive in all cases.

We now show that the scheme satisfying \(\sigma^{*}_{G} = \sigma_{G} \) reallocates promotions from successful risk-takers to risk-avoiders and pays no bonuses. Since \(\sigma_{G} > \sigma_{G} \), \(\sigma_{0}(\sigma_{G}) \) is decreasing in \(\sigma_{G} \), and \(\sigma_{G} \) induces efficient promotion, the results about promotion follow immediately. The zero bonus result follows from the following lemma, which ensures that \(\sigma_{G} = \beta/\rho(N) \).

Lemma G.2. \(\frac{\beta - (1 - n)}{\mu(n)} < \frac{\beta}{\rho(n)} \) for all \(n \in (0, 1) \).

Proof. Some algebra shows that this inequality is equivalent to \(\zeta(n) > 0 \), where \(\zeta(n) \equiv \mu(n) + \gamma(n)(1 - n - \beta) \). Differentiating this expression yields \(\zeta'(n) = \gamma'(n)(1 - n - \beta) \), which crosses zero from exactly once at \(n = 1 - \beta \), from below. Hence \(\zeta \) is minimized at \(n = 1 - \beta \). Evaluating \(\zeta \) at this point yields \(\zeta(1 - \beta) = \mu(1 - \beta) > 0 \), so \(\zeta \) is positive everywhere. \(\square \)

We complete the proof by returning to the extremal case \(N = 0 \). We analyze this case by taking the limit of the optimal scheme for \(N > 0 \) and invoking the maximum theorem. The organization’s objective function is continuous in \((N, T, \sigma) \), and the set of feasible, IC incentive schemes is characterized by a set of equalities and weak inequalities which are each
continuous in \(N\). Thus the constraint correspondence is continuous in \(N\). It is not formally compact-valued, as transfers are unbounded. However, it is easy to show that placing a sufficiently large bound on transfers, uniformly for all \(N\), does not change the optimal scheme for any \(N\). (See the proof of Lemma 1 for a detailed argument.) Thus it is without loss to pass to the modified problem with a sufficiently large bound on transfers. The maximum theorem may then be invoked to conclude that our characterized optimal incentive scheme for \(N > 0\) remains optimal (though not uniquely so) in the limit \(N = 0\).

\[\text{H Proof of Proposition 3 and Theorem 2}\]

We first characterize an optimal policy for \(N \in (N^{nc}, 1)\), and return to the extremal case \(N = 1\) at the end of the proof. When \(N\) is interior, the risk-taking set \([0, N]\) is incentive-compatible if and only the constraints \([\text{IC-N}]\) and \([\text{IC-\Delta}]\) defined in the proof of Theorem 1 hold. We solve the relaxed problem enforcing only \([\text{IC-N}]\), and verify that the resulting optimal scheme satisfies \([\text{IC-\Delta}]\).

\[\text{H.1 } T_G = 0\]

We first observe that any scheme satisfying \(T_G > 0\) is suboptimal. This result follows from an argument identical to the one used in the proof of Theorem 1. Going forward, we restrict attention to schemes satisfying \(T_G = 0\). We begin by proving a useful auxiliary lemma.

Lemma H.1. If the promotion scheme \(\sigma\) promotes \(\beta\) employees and \(\sigma_B = 0\), then

\[\gamma(N)\sigma_G + (1 - \gamma(N))\sigma_B - \sigma_0 < 0.\]

Proof. Since efficient promotion maximizes \(\sigma_G\) subject to feasibility, any feasible scheme must satisfy \(\sigma_G \leq \sigma_G^{nc}(N, \beta)\). If \(\sigma_B = 0\) and the feasibility constraint is saturated, then it must additionally be that \(\sigma_0 \geq \sigma_0^{nc}(N, \beta)\). Thus

\[\gamma(N)\sigma_G + (1 - \gamma(N))\sigma_B - \sigma_0 \leq \gamma(N)\sigma_G^{nc}(N, \beta) + (1 - \gamma(N))\sigma_B^{nc}(N, \beta) - \sigma_0^{nc}(N, \beta).\]

Meanwhile \(N > N^{nc}(\beta)\) implies that the rhs of the previous inequality is negative, yielding the desired bound. \(\square\)
H.2 \hspace{1cm} T_0 = 0

We next show that any scheme satisfying $T_0 > 0$ is suboptimal. Fix any such scheme.

First suppose that $T_B > 0$. Pass to the modified bonus scheme T' satisfying $T'_0 = T_0 - (1 - \gamma(N))\Delta$ and $T'_B = T_B - \Delta$, which satisfies (IC-N) for any Δ, and for $\Delta > 0$ sufficiently small also satisfies the non-negativity constraint on bonuses. This modification therefore strictly reduces bonuses payments and increases profits.

Suppose instead that $T_B = 0$. In this case

$$\gamma(N)\sigma_G + (1 - \gamma(N))\sigma_B - \sigma_0 = T_0/V > 0.$$

This inequality along with the bounds $\sigma_G, \sigma_B \leq 1$ imply that $\sigma_0 < 1$. If the feasibility constraint is slack, then pass to the modified bonus and promotion schemes (T', σ'), where $\sigma'_0 = \sigma_0 + \Delta$, $T'_0 = T_0 - V\Delta$, and all other promotion probabilities and bonuses unchanged. This modified scheme preserves (IC-N), and for $\Delta > 0$ sufficiently small it remains feasible; satisfies the non-negativity constraint on bonuses and the boundary constraints on promotion probabilities; reduces bonus payments; and promotes weakly more employees in every group than the original scheme. Since every employee promoted yields a positive profit to the organization, this modification improves on the original scheme.

If instead the feasibility constraint is saturated, then (IC-N) and Lemma H.1 imply that $\sigma_B > 0$. So pass to the modified bonus and promotion scheme (T', σ') which sets $\sigma'_0 = \sigma_0 + \Delta$, $\sigma'_B = \sigma_B - \Delta(1 - N)/(N - \mu(N))$, and

$$T'_0 = T_0 - V\Delta \left(1 + (1 - N) \frac{1 - \gamma(N)}{N - \mu(N)}\right),$$

with all other promotion probabilities and bonuses unchanged. By construction, this modified scheme preserves (IC-N) and the number of employees promoted. Therefore for any $\Delta > 0$, it reallocates promotions from failed risk-takers to risk-avoiders, strictly increasing promotion payoffs given that $\pi_0 > \pi_B(N)$. Finally, for $\Delta > 0$ sufficiently small the modified scheme respects the non-negativity constraint on bonuses given that $T_0 > 0$ and the boundary constraints on promotion probabilities given that $\sigma_0 > 0$ and $\sigma_G < 1$. So this modification is feasible and increases promotion payoffs while decreasing bonus payments, increasing total profits.
H.3 $\sigma_G = 1$

Going forward, we restrict attention to schemes satisfying $T_0 = 0$. We now show that any scheme satisfying $\sigma_G < 1$ is suboptimal. Fix any such scheme. Then (IC-N) may be rearranged to read

$$\gamma(N)\sigma_G + (1 - \gamma(N))\sigma_B - \sigma_0 = -(1 - \gamma(N))T_B/V \leq 0.$$

Suppose that $\sigma_0 = 0$. In this case (IC-N) implies that $\sigma_G = \sigma_B = 0$ as well. So pass to the modified promotion scheme $\sigma' = \sigma + \Delta$. This modified scheme preserves the relaxed IC constraint for any Δ, and for $\Delta > 0$ sufficiently small it promotes more employees and remains feasible. Since every promoted employee yields a positive payoff to the organization, this modification improves payoffs.

Suppose instead that $\sigma_0 > 0$ and $T_B > 0$. Pass to the modified bonus and promotion schemes (T', σ'), where $\sigma'_0 = \sigma_0 - \Delta$, $\sigma'_G = \sigma_G + \Delta(1 - N)/\mu(N)$, $\sigma'_B = \sigma_B$, and

$$T'_B = T_B - \frac{V\Delta}{1 - \gamma(N)} \left(1 + (1 - N)\frac{\gamma(N)}{\mu(N)} \right).$$

By construction, this modified scheme preserves (IC-N) and the number of promoted employees for any Δ. Therefore for $\Delta > 0$ it shifts promotions from risk-avoiders toward successful risk-takers, increasing total promotion payoffs given that $\pi_G > \pi_0$. It additionally reduces total bonus payments. Finally, for $\Delta > 0$ sufficiently small it respects the bonus non-negativity constraint and the boundary constraints on promotion probabilities given that $\sigma_G < 1$ and $\sigma_0 > 0$. So this modification is feasible and increases profits.

Finally, suppose that $\sigma_0 > 0$ and $T_B = 0$. Then (IC-N) reads

$$\gamma(N)\sigma_G + (1 - \gamma(N))\sigma_B - \sigma_0 = 0.$$

Since $\sigma_G < 1$, this constraint implies that also $\sigma_0 < 1$. If the feasibility constraint is not saturated, then pass to the modified promotion scheme σ' satisfying $\sigma'_G = \sigma_G + \Delta$, $\sigma'_0 = \sigma_0 + \gamma(N)\Delta$, and $\sigma'_B = \sigma_B$. This modification preserves the relaxed IC constraint, and for sufficiently small $\Delta > 0$ it raises the number of employees promoted, preserves feasibility, and satisfies the promotion probability boundary constraints given that $\sigma_G, \sigma_0 < 1$. Since every promoted employee yields positive profits for the organization, this modification increases profits.
If instead the feasibility constraint is saturated, then Lemma H.1 along with (IC-N) imply that $\sigma_B > 0$. So pass to the modified promotion scheme σ', where

$$
\sigma'_B = \sigma_B - \Delta, \quad \sigma'_0 = \sigma_0 - \frac{\rho(N) - \gamma(N)}{\rho(N)} \Delta, \quad \sigma'_G = \sigma_G + \frac{1 - \rho(N)}{\rho(N)} \Delta.
$$

By construction, this modification preserves both (IC-N) and the number of promoted employees. Further, $\rho(N) = \gamma(N) + \mu(N) - N\gamma(N)$, and since $\mu(N)/N$ is an average of γ over the interval $[0, N]$, $\mu(N) > N\gamma(N)$. Hence $\rho(N) > \gamma(N)$. So for all $\Delta > 0$ this modification reallocates promotions from failed risk-takers and risk-avoiders to successful risk-takers, increasing total promotion payoffs given that $\pi_G > \pi_0, \pi_B(N)$. Finally, for $\Delta > 0$ sufficiently small this modification respects the boundary constraints on promotion probabilities given that $\sigma_G < 1$ and $\sigma_0 > 0$ by hypothesis while $\sigma_B > 0$ as established above. So this modification is feasible and increases profits.

H.4 $M(S) = \beta$

Going forward, we will restrict attention to schemes satisfying $\sigma_G = 1$. We next show that any scheme which does not promote β employees is suboptimal. Fix such a scheme. The constraint (IC-N) reads

$$
\gamma(N) + (1 - \gamma(N))(\sigma_B + T_B/V) = \sigma_0,
$$

which combined with $\gamma(N) < 1$ implies that either $\sigma_B = \sigma_0 = 1$ or else $\sigma_0 > \sigma_B$. The first possibility violates feasibility, so assume the latter inequality.

If $\sigma_0 < 1$, then pass to the modified scheme $(\sigma'_B, \sigma'_0) = (\sigma_B + \Delta, \sigma_0 + (1 - \gamma(N))\Delta)$, which preserves (IC-N) and, for sufficiently small $\Delta > 0$, remains feasible. Since this modification increases the number of promoted employees, and since every promoted employee yields a positive payoff to the organization, this modification must increase profits.

If instead $\sigma_0 = 1$, then (IC-N) combined with $\sigma_B < \sigma_0$ imply that $T_B > 0$. Pass to a modified scheme setting $\sigma'_B = \sigma_B + \Delta$ and $T'_B = T_B - V\Delta$. For sufficiently small $\Delta > 0$ this modification preserves (IC-N) and weakly increases the number of employees promoted in each group while remaining feasible and respecting the promotion probability boundary constraints. Since every promoted employee yields a positive payoff to the organization, and since the modified scheme additionally decreases bonuses, this modification must increase profits. Going forward we restrict attention to schemes which saturate the feasibility constraint.
H.5 The optimal scheme

To complete the characterization of an optimal scheme, we enforce $T_G = T_0 = 0$ and $\sigma_G = 1$ and solve the optimization problem

$$\max_{\sigma_B, \sigma_0, T_B} R(\mu(N)\pi_G + (N - \mu(N))\pi_B(N)\sigma_B + (1 - N)\pi_0\sigma_0) - (N - \mu(N))T_B$$

subject to the boundary constraints $\sigma_B, \sigma_0 \in [0, 1]$ and $T_B \geq 0$, the IC constraint [IC-N], which reads

$$\gamma(N) + (1 - \gamma(N))(\sigma_B + T_B/V) = \sigma_0,$$

and the binding feasibility constraint

$$\beta = \mu(N) + (N - \mu(N))\sigma_B + (1 - N)\sigma_0.$$

Note that [IC-N] combined with the upper bound $\sigma_0 \leq 1$ implies that $\sigma_B + T_B/V \leq 1 = \sigma_G + T_G/V$. Hence any solution to this problem automatically satisfies [IC-∆].

Solving the feasibility and IC constraints for σ_0 and T_B yields

$$\sigma_0(\sigma_B) = \frac{\beta - \mu(N) - (N - \mu(N))\sigma_B}{1 - N}, \quad T_B(\sigma_B) = V\frac{\beta - \rho(N) - (1 - \rho(N))\sigma_B}{(1 - N)(1 - \gamma(N))}.$$

Using these expressions to eliminate σ_0 and T_B from the maximization problem yields, up to additive and multiplicative constants which do not affect the solution,

$$\max_{\sigma_B} (V(1 - \rho(N)) - R(\pi_0 - \pi_B(N))(1 - N)(1 - \gamma(N)))\sigma_B$$

subject to the boundary constraints that $\sigma_B, \sigma_0 \in [0, 1]$ and $T_B \geq 0$.

The boundary constraints on σ_0 and T_B implicitly place additional constraints on σ_B, given that each is a function of σ_B. They collectively imply that $\sigma_B \in [\underline{\sigma}_B, \overline{\sigma}_B]$, where

$$\underline{\sigma}_B \equiv \min \left\{ \frac{\beta - \mu(N)}{N - \mu(N)}, \frac{\beta - \rho(N)}{1 - \rho(N)} \right\}, \quad \overline{\sigma}_B \equiv \max \left\{ \frac{\beta - \nu(N)}{N - \mu(N)}, 0 \right\},$$

where $\nu(N) = \mu(N) + (1 - N)$ is as defined in Appendix B. Since the reduced objective is linear in σ_B with a slope of the same sign as

$$\xi_+(N) \equiv V(1 - \rho(N)) - R(\pi_0 - \pi_B(N))(1 - N)(1 - \gamma(N)),$$

the optimal value of σ_B is therefore

$$\sigma_B^* = \begin{cases} \overline{\sigma}_B & \text{if } \xi_+(N) > 0 \\ \underline{\sigma}_B & \text{if } \xi_+(N) < 0. \end{cases}$$
(If $\xi_+(N) = 0$, then there exist a continuum of optimal schemes.)

We now characterize the sign of ξ_+ as a function of N. Let $\Delta \pi(N) \equiv \pi_0 - \pi_B(N)$. Lemma A.1 established that $\pi_B(N)$ is increasing in N, and so $\Delta \pi(N)$ is decreasing in N. Note that ξ_+ satisfies the boundary conditions $\xi_+(1) = 1 - \mu(1) > 0$ and $\xi_+(0) = (1 - \gamma(0))(V - R\Delta \pi(0))$. Suppose first that $R \leq V/\Delta \pi(0)$. Then for all $N \in (0, 1)$,

$$\xi_+(N) \geq V(1 - \rho(N)) - V\frac{\Delta \pi(N)}{\Delta \pi(0)}(1 - N)(1 - \gamma(N))$$

$$> V(1 - \rho(N) - (1 - N)(1 - \gamma(N)))$$

$$= V(N - \mu(N)) > 0.$$

Suppose instead that $R > V/\Delta \pi(0)$. Then $\xi_+(0) < 0$ given that $\gamma(0) < 1$, meaning ξ_+ is negative for N sufficiently close to 0 and positive for N sufficiently close to 1. Note that

$$\frac{1 - \rho(N)}{(1 - N)(1 - \gamma(N))} = 1 + \Lambda(N),$$

so we may write

$$\xi_+(N) = (1 - N)(1 - \gamma(N)) (V(1 + \Lambda(N)) - R\Delta \pi(N)).$$

If $\Lambda(N)$ is nondecreasing, then the fact that $\Delta \pi(N)$ is decreasing implies that $V(1 + \Lambda(N)) - R\Delta \pi(N)$ is increasing in N. Given the boundary conditions $\xi_+(0) < 0 < \xi_+(1)$, it follows that ξ_+ crosses zero exactly once.

Let

$$\overline{N}_+(R, V) \equiv \inf\{N \in [0, 1] : \xi_+(N) > 0\}.$$

To establish the claimed comparative statics of $\overline{N}_+(R, V)$ in R and V, first note that $\overline{N}_+(R, V)$ depends on R, V only through the ratio V/R. If $V/R \geq \Delta \pi(0)$, then $\xi_+(N) \geq 0$ for all N and $\overline{N}_+(R, V) = 0$. Meanwhile if $V/R < \Delta \pi(0)$, then $\xi_+(0) < 0$ and $\overline{N}_+(R, V) \in (0, 1)$. Further, $\xi_+(N)$ is increasing in V and decreasing in R for all $N < 1$, implying that $\overline{N}_+(R, V)$ is decreasing in V/R whenever it is interior. Finally, for every $N > 0$, $\xi_+(N) < 0$ for V/R sufficiently small. Thus $\lim_{V/R \to 0} \overline{N}_+(R, V) = 1$. The comparative statics with respect to R and V follow immediately from this analysis.

We next show that the scheme satisfying $\sigma^*_B = \sigma_B$ corresponds to efficient promotion and a positive bonus for failed risk-takers. Recall the efficient promotion probabilities σ^{nc}_i characterized in Appendix B. Given that $N > N^{nc}$, we must have $N^{nc} < 1$, implying $\beta > \beta.$
For all such β, $\sigma_{nc}^*(N, \beta) = \sigma_B$ and $\sigma_{nc}^*(N, \beta) = 1 = \sigma_G$. The fact that the optimal promotion scheme and efficient promotion both saturate the feasibility constraint then ensures that $\sigma_0(\sigma_B) = \sigma_{nc}^*(N, \beta)$. So this scheme promotes efficiently.

Meanwhile $T_B(\sigma_B) > 0$ iff $\sigma_B < (\beta - \rho(N))/(1 - \rho(N))$. We first establish that the rhs of this bound is strictly positive for all $N > N_{nc}$. If $\beta \geq \beta_\ast$, then $N_{nc} = 0$, and since ρ is strictly decreasing, $\beta - \rho(N) > \beta_\ast - \rho(0) = \beta_\ast - \gamma(0) = 0$. If $\beta \in (\beta_\ast, \beta_\ast)$, then $\rho(N_{nc}) = \beta$, and since ρ is strictly decreasing we have $\beta - \rho(N) > 0$. Finally, if $\beta < \beta_\ast$, then as observed above there exist no $N > N_{nc}$. So $\beta > \rho(N)$ in all cases, ensuring that the rhs of the bound is positive. If $N \leq N^{\dagger}(\beta)$, then $\sigma_B = 0$, and so the desired bound holds given positivity of the rhs. On the other hand, if $N > N^{\dagger}(\beta)$, then $\sigma_B = (\beta - \nu(N))/(N - \mu(N))$, and the following lemma establishes the desired result that the bonus is strictly positive.

Lemma H.2. $(\beta - \nu(n))/(n - \mu(n)) < (\beta - \rho(n))/(1 - \rho(n))$ for all $n \in (0, 1)$.

Proof. Fix $n \in (0, 1]$, and define

$$\Delta(\beta) \equiv \frac{\beta - \rho(n)}{1 - \rho(n)} - \frac{\beta - \nu(n)}{n - \mu(n)}.$$

Note that $\Delta(\beta)$ is affine in β. Additionally, $\Delta(1) = 0$ while $\Delta(0) = (1 - \gamma(n))(1 - n)/(n - \mu(n))(1 - \rho(n)) > 0$. Hence $\Delta(\beta) > 0$ for all $\beta \in (0, 1)$.

We now show that the scheme satisfying $\sigma_{nc}^*(N, \beta) = \sigma_B$ reallocates promotions from risk-avoiders to failed risk-takers and pays no bonuses. Since $\sigma_B > \sigma_B$, $\sigma_0(\sigma_B)$ is decreasing in σ_B, and σ_B induces efficient promotion, the results about promotion follow immediately. The zero bonus result follows from the following lemma, which ensures that $\sigma_B = (\beta - \rho(N))/(1 - \rho(N))$ for $\beta \geq \beta_\ast$. As observed above, when $\beta < \beta_\ast$ there are no risk-taking rates greater than $N_{nc}(\beta)$. So it is without loss to restrict attention to $\beta \geq \beta_\ast$.

Lemma H.3. $(\beta - \rho(n))/(1 - \rho(n)) \leq (\beta - \mu(n))/(n - \mu(n))$ for all $n \in (0, 1]$ and $\beta \geq \beta_\ast$.

Proof. Fixing $n \in (0, 1]$, let

$$\Delta(\beta) \equiv \frac{\beta - \mu(n)}{n - \mu(n)} - \frac{\beta - \rho(n)}{1 - \rho(n)}.$$

Note that $\Delta(\beta)$ is affine in β. We first show that $\Delta(\beta) \geq 0$. To see this, observe that $\beta_\ast = \mu(1) \geq \mu(n)$, while ρ is a strictly decreasing function of n and so $\rho(n) \geq \rho(1) = \mu(1) = \beta_\ast$.

64
Meanwhile some algebra reveals that

\[\Delta(1) = \frac{1 - n}{n - \mu(n)} \geq 0. \]

It follows that \(\Delta(\beta) \geq 0 \) for all \(\beta \in [\beta, 1) \), yielding the desired result. \(\square \)

The extremal case \(N = 1 \) follows by taking the limit of the optimal scheme for \(N < 1 \) and invoking the maximum theorem, in a manner analogous to the treatment of the \(N = 0 \) case in the proof of Theorem 1.

I Proof of Lemma 2

Note that \(\Lambda \) is nondecreasing so long as \((N - \mu(N))/(1 - \gamma(N)) \) is nondecreasing, or equivalently if \(\log(N - \mu(N)) \) is concave. Write

\[\log(N - \mu(N)) = \log N + \log(1 - \bar{\gamma}(N)). \]

The first term on the rhs is immediately concave, while when \(\bar{\gamma} \) is convex the second is a composition of two concave functions, the outer of which is increasing. Hence the composition is also concave. \(\log(N - \mu(N)) \) is therefore a sum of two concave functions and so concave. If \(\gamma(N) = A - BN^k \), then

\[\bar{\gamma}(N) = A - \frac{B}{k + 1}N^k. \]

So long as \(k \in (0, 1] \), this expression is convex.

J Proof of Proposition 4

Let \(\Pi^{Pr}(N) \) be the organization’s profits under an optimal promotion-reallocation scheme implementing target rate \(N \), with \(\Pi^B(N, V) \) defined similarly for an optimal bonus scheme. (\(\Pi^{Pr} \) is independent of \(V \), while \(\Pi^B \) in general depends on \(V \), and our notation reflects this fact.) These profit functions can be decomposed as

\[\Pi^{Pr}(N) = \Pi^{fb}(N) - \Delta^{Pr}(N), \quad \Pi^B(N, V) = \Pi^{fb}(N) - \Delta^B(N) V, \]

where \(\Pi^{fb}(N) \) is the organization’s profit under risk-taking rate \(N \) and the natural promotion policy (as defined in Appendix E) and \(\Delta^{Pr} \) and \(\Delta^B \) are incentive costs which are continuous, non-negative for all \(N \), and strictly positive whenever \(N \neq N^{nc} \).

Electronic copy available at: https://ssrn.com/abstract=3705627
Define

\[\Pi^{*,Pr}(N) \equiv \max_N \Pi^{Pr}(N), \quad \Pi^{*,B}(V) \equiv \max_N \Pi^B(N,V), \quad \overline{\Pi} \equiv \max_N \Pi^{fb}(N) \]

Note that \(\Pi^{Pr}(N) < \Pi^{fb}(N) \leq \overline{\Pi} \) for all \(N \). Meanwhile the hypothesis \(\beta \neq \beta^{fb} \) implies that \(N^{nc} \) is not a maximizer of \(\Pi^{fb} \) and therefore \(\Pi^{Pr}(N^{nc}) = \Pi^{fb}(N^{nc}) < \overline{\Pi} \). Then since \(\Pi^{Pr}(N) \) is continuous in \(N \) over the compact domain \([0, 1]\), it must be that \(\Pi^{*,Pr} < \Pi \).

Meanwhile, \(\Pi^B(N,0) = \Pi^{fb}(N) \) for all \(N \), so that \(\Pi^{*,B}(0) = \Pi \). Further, the maximum theorem implies that \(\Pi^{*,B}(V) \) is continuous in \(V \), so for \(V \) sufficiently close to 0 we must have \(\Pi^{*,B}(V) > \Pi^{*,Pr} \). For such values of \(V \), an optimal bonus scheme outperforms an optimal promotion scheme, and so is a globally optimal incentive scheme. Since \(\Pi^{*,Pr} \geq \Pi^{fb}(N^{nc}) \), this scheme must further satisfy \(\Pi^{*,B}(V) > \Pi^{fb}(N^{nc}) \). Hence there exists a nontrivial optimal incentive scheme.

\[\text{K Proof of Proposition 5} \]

Let \(\Pi^{Pr}(N,R) \) be the organization’s profits under an optimal promotion-reallocation scheme implementing target rate \(N \), with \(\Pi^B(N,R) \) defined similarly for an optimal bonus scheme. (Both functions depend on \(R \) in general, and our notation reflects this dependence.) These profit functions can be decomposed as

\[\Pi^{Pr}(N,R) = \Pi^{fb}(N,R) - \Delta^{Pr}(N)R, \quad \Pi^B(N,R) = \Pi^{fb}(N,R) - \Delta^B(N), \]

where \(\Pi^{fb}(N,R) \) is the organization’s profit under risk-taking rate \(N \) and the natural promotion policy (as defined in Appendix [B]) and \(\Delta^{Pr} \) and \(\Delta^B \) are incentive costs which are continuous, non-negative for all \(N \), and strictly positive whenever \(N \neq N^{nc} \).

Define

\[\Pi^{*,Pr}(R) \equiv \max_N \Pi^{Pr}(N,R), \quad \Pi^{*,B}(R) \equiv \max_N \Pi^B(N,R), \quad \Pi(\cdot) \equiv \max_N \Pi^{fb}(N,R) \]

Note that \(\Pi^{fb}(N,0) = f([0,N]) \), which is uniquely maximized by the risk-taking rate \(N^0 \) which satisfies \(\gamma(N^0) = K \). Recall that \(\beta^0 \) is characterized by \(\gamma(N^{nc}(\beta^0)) = K \). By hypothesis \(\beta \neq \beta^0 \), and therefore \(\Pi^{fb}(N^{nc},0) < \Pi(0) \).

Since \(\Pi^{Pr}(N,0) = \Pi^{fb}(N,0) \) for all \(N \), we must have \(\Pi^{*,Pr}(0) = \Pi(0) \). Meanwhile, since \(\Pi^B(N,0) < \Pi^{fb}(N,0) \leq \Pi(0) \) for all \(N \neq N^{nc} \), while \(\Pi^B(N^{nc},0) = \Pi^{fb}(N^{nc},0) < \Pi(0) \),
continuity of \(\Pi^B \) in \(N \) over the compact set \([0, 1]\) implies that \(\Pi^{*,B}(0) < \Pi(0) \). By the maximum theorem, \(\Pi^{*,Pr}, \Pi^{*,B}, \text{ and } \Pi \) are each continuous in \(R \). It follows that \(\Pi(R) - \Pi^{*,B}(R) = \Pi(R) - \Pi^{*,Pr}(R) \) for sufficiently small \(R \). Equivalently, \(\Pi^{*,Pr}(R) > \Pi^{*,B}(R) \) for sufficiently small \(R \). Thus an optimal promotion scheme outperforms an optimal bonus scheme for small \(R \), and so it must be a globally optimal incentive scheme. Further, since \(\Pi^{*,B}(R) \geq \Pi^{fb}(N^{nc}, R) \), it must also be that \(\Pi^{*,Pr}(R) > \Pi^{fb}(N^{nc}, R) \). Hence there exists a nontrivial optimal incentive scheme.

L Proof of Theorem 3

Given a risk-taking rate \(N \in [0, 1] \) and a promotion rate \(\beta \), define \(\Pi^{Pr}(N, \beta) \) to be the profits under an optimal symmetric promotion reallocation scheme implementing risk-taking rate \(N \), with \(\Pi^B(N, \beta) \) defined analogously with respect to symmetric bonus schemes. Define

\[
\Pi^{*,Pr}(\beta) \equiv \max_N \Pi^{Pr}(N, \beta), \quad \Pi^{*,B}(\beta) \equiv \max_N \Pi^B(N, \beta), \quad \Pi^*(\beta) \equiv \max\{\Pi^{Pr}(\beta), \Pi^B(\beta)\}.
\]

In light of Theorem 1 and Proposition 3, \(\Pi^*(\beta) \) must be the firm’s optimal profits among all symmetric incentive schemes. Also let \(\Pi^{nc}(\beta) \) be the firm’s no-commitment profits, and \(N^{*,Pr}(\beta) \equiv \arg\max_N \Pi^{Pr}(N, \beta) \) be the set of optimal risk-taking rates under promotion reallocation schemes. Note that this set need not be a singleton.

Given an asymmetric incentive scheme, a group \(g \), and promotion rates \(\beta_1 \) and \(\beta_2 \) such that \(\beta_2 > \beta_g > \beta_1 \), a new asymmetric incentive scheme can be created by splitting group \(g \) into two groups \(g_1 \) and \(g_2 \) with promotion rates \(\beta_1 \) and \(\beta_2 \) and population sizes \(k^{g_1} \) and \(k^{g_2} \) uniquely defined by

\[
k^g = k^{g_1} + k^{g_2}, \quad \beta = k^{g_1} \beta_1 + k^{g_2} \beta_2.
\]

Going forward, we will refer to this splitting procedure as a \((\beta_1, \beta_2)\)-split of a given group.

Given the promotion probabilities under an optimal promotion reallocation scheme derived in the proofs of Theorem 1 and Proposition 3, \(\Pi^{Pr}(N, \beta) \) may be written

\[
\Pi^{Pr}(N, \beta) \equiv \begin{cases}
\Pi^{Pr}(N, \beta) & \text{if } N \leq N^{nc}(\beta) \\
\Pi^{Pr}_+(N, \beta) & \text{if } N \geq N^{nc}(\beta),
\end{cases}
\]

Electronic copy available at: https://ssrn.com/abstract=3705627
where
\[
\Pi^P_r(N, \beta) \equiv f(N) + R\beta \left(\pi_0 + \frac{\mu(N)}{\rho(N)}(\pi_G - \pi_0) \right),
\]
\[
\Pi^P_+(N, \beta) \equiv f(N) + R \left(\beta\pi_0 + (1 - \beta) \frac{\mu(N)}{1 - \rho(N)}(\pi_G - \pi_0) \right).
\]

Note that both \(\Pi_-\) and \(\Pi_+\) are affine in \(\beta\) for fixed \(N\). This fact implies the following useful auxiliary result.

Lemma L.1. Fix an asymmetric scheme and a group \(g\) such that \(\Pi^{*,Pr}(\beta^g) \geq \Pi^*(\beta^g)\) and \(N^g \in N^{*,Pr}(\beta^g)\). Suppose the promotion rates \(\beta_1\) and \(\beta_2\) satisfy \(\beta_1 < \beta^g < \beta_2\) and \(\text{sign}(N^{nc}(\beta_1) - N^g) = \text{sign}(N^{nc}(\beta_2) - N^g)\). Then a \((\beta_1, \beta_2)\)-split of group \(g\) weakly improves the organization’s profits. If additionally \(N^g \notin N^{*,Pr}(\beta_1) \cap N^{*,Pr}(\beta_2)\), then this split strictly improves the organization’s profits.

Proof. Fix \(N_1 \in N^{*,Pr}(\beta_1)\) and \(N_2 \in N^{*,Pr}(\beta_2)\). Then \(\Pi^{Pr}(N_1, \beta_1) \geq \Pi^{Pr}(N^g, \beta_1)\) and \(\Pi^{Pr}(N_2, \beta_2) \geq \Pi^{Pr}(N^g, \beta_2)\), and if \(N^g \notin N^{*,Pr}(\beta_1) \cap N^{*,Pr}(\beta_2)\), then at least one inequality is strict. Let \(k^{g_1}\) and \(k^{g_2}\) be the corresponding group sizes under a \((\beta_1, \beta_2)\)-split of group \(g\). Then

\[
k^{g_1}\Pi^*(\beta_1) + k^{g_2}\Pi^*(\beta_2) \geq k^{g_1}\Pi^{*,Pr}(\beta_1) + k^{g_2}\Pi^{*,Pr}(\beta_2)
= k^{g_1}\Pi^{Pr}(N_1, \beta_1) + k^{g_2}\Pi^{Pr}(N_2, \beta_2)
\geq k^{g_1}\Pi^{Pr}(N^g, \beta_1) + k^{g_2}\Pi^{Pr}(N^g, \beta_2),
\]

with the final inequality strict if \(N^g \notin N^{*,Pr}(\beta_1) \cap N^{*,Pr}(\beta_2)\). Now, the hypothesis that \(\text{sign}(N^{nc}(\beta_1) - N^g) = \text{sign}(N^{nc}(\beta_2) - N^g)\) implies that \(\Pi^{Pr}(N^g, \beta)\) is affine wrt \(\beta\) on the range \([\beta_1, \beta_2]\). Hence

\[
k^{g_1}\Pi^{Pr}(N^g, \beta_1) + k^{g_2}\Pi^{Pr}(N^g, \beta_2) = \Pi^{Pr}(N^g, \beta^g) = \Pi^*(\beta^g).
\]

So

\[
k^{g_1}\Pi^*(\beta_1) + k^{g_2}\Pi^*(\beta_2) \geq \Pi^*(\beta^g),
\]

and the inequality is strict if \(N^g \notin N^{*,Pr}(\beta_1) \cap N^{*,Pr}(\beta_2)\). Since the lhs of this inequality is the organization’s total profit from the two groups created by a \((\beta_1, \beta_2)\)-split of group \(g\), while the rhs is its profit under group \(g\) in the original scheme, the result of the lemma statement follows.
By the maximum theorem, Π^* is continuous in β and hence bounded over the compact interval $[0, 1]$. Let Π^{A*} be the concave envelope of Π^*, which is guaranteed to exist given boundedness of $\Pi^*(\beta)$. Then for each β, either $\Pi^{A*}(\beta) = \Pi^*(\beta)$, in which case the optimal symmetric scheme remains optimal in the wider class of asymmetric schemes; or else $\Pi^{A*}(\beta) > \Pi^*(\beta)$. In the latter case, define

$$\beta_* \equiv \max\{\beta' < \beta : \Pi^{A*}(\beta') = \Pi^*(\beta')\}, \quad \beta^* \equiv \min\{\beta' > \beta : \Pi^{A*}(\beta') = \Pi^*(\beta')\}.$$

Then the asymmetric scheme which splits the population into two groups with promotion rates $\beta_1 = \beta_*$ and $\beta_2 = \beta^*$ and population sizes $k_1 = k$ and $k_2 = 1 - k$, where k satisfies

$$\beta = k\beta_* + (1-k)\beta^*, \quad k \in [0,1],$$

is optimal. Hence in either case an optimal asymmetric scheme exists, involving no more than two groups.

We first suppose that $N^0 \notin N^{*,Pr}(\beta^0)$, where recall that N^0 is defined by $\gamma(N^0) = k$ and β^0 is defined by $N^{nc}(\beta^0) = N^0$. We prove that under this condition, every group in any optimal asymmetric scheme is promoted according to the natural policy. Given that an optimal scheme with at most two groups exists, the theorem follows. At the end of the proof, we return to the case of $N^0 \in N^{*,Pr}(\beta^0)$.

Fix an asymmetric scheme and a group g in which employees are not promoted according to the natural policy. Then $\Pi^{*,Pr}(\beta^g) \geq \Pi^{*,B}(\beta^g)$, $N^g \in N^{*,Pr}(\beta^g)$, and $N^g \notin N^{nc}(\beta^g)$. Suppose first that $N^g < N^{nc}(\beta^g)$. Set $\beta_1 = 0$ and $\beta_2 = \beta^g + \epsilon$, where $\epsilon > 0$ is small enough that $N^{nc}(\beta_2) > N^g$. Since N^{nc} is nonincreasing, we have $N^{nc}(\beta_1) \geq N^{nc}(\beta_2)$. Therefore $\text{sign}(N^{nc}(\beta_1) - N^g) = \text{sign}(N^{nc}(\beta_2) - N^g) = 1$. Further, $\Pi^{Pr}(N,\beta_1) = f(N)$ is uniquely maximized by $N^{*,Pr}(\beta_1) = \{N^0\}$. Suppose that $N^g = N^0$. Then $N^{nc}(\beta^g) > N^0$, so that $\Pi^{Pr}(N,\beta^g) = \Pi_{Pr}^-(N,\beta^g)$ for N close to N^0. But since μ is increasing while ρ is decreasing, $\Pi_{Pr}^-(N,\beta^g)$ is increasing in N at $N = N^0$, meaning that N^0 cannot optimize $\Pi^{Pr}(N,\beta^g)$, a contradiction. Hence $N^g \neq N^0$ and so $N^g \notin N^{*,Pr}(\beta_1)$. Lemma L.1 therefore implies that a (β_1, β_2)-split of group g strictly improves the organization’s profits. In other words, whenever $N^g < N^{nc}(\beta^g)$, the original scheme is suboptimal.

Suppose instead that $N^g > N^{nc}(\beta^g)$. Set $\beta_2 = 1$ and $\beta_1 = \beta^g - \epsilon$, where $\epsilon > 0$ is small enough that $N^{nc}(\beta_1) < N^g$. Since N^{nc} is nonincreasing, we have $N^{nc}(\beta_2) \leq N^{nc}(\beta^g)$. Therefore $\text{sign}(N^{nc}(\beta_1) - N^g) = \text{sign}(N^{nc}(\beta_2) - N^g) = -1$. Further, $\Pi^{Pr}(N,\beta_2) = f(N)$ is uniquely maximized by $N^{*,Pr}(\beta_2) = \{N^0\}$. If $N^g \neq N^0$, then Lemma L.1 implies that
a (β_1, β_2)-split of group g strictly improves the organization’s profits. On the other hand if $N^g = N^0$, then $N^{nc}(\beta^g) < N^0$ and so $\beta^g > \beta^0$. Hence we may take $\beta_1 = \beta^0$. Then by hypothesis $N^0 \notin N^{*Pr}(\beta_1)$, so that by Lemma 1 a ($\beta_1, \beta_2$)-split of group g strictly improves the organization’s profits. In other words, whenever $N^g > N^{nc}(\beta^g)$, the original scheme is suboptimal.

We now consider the case $N^0 \in N^{*Pr}(\beta^0)$. Under an optimal asymmetric incentive scheme, the logic of the previous two paragraphs rules out a promotion scheme different from the natural policy except in a group g satisfying $\beta^g > \beta^0$ and $N^g = N^0 > N^{nc}(\beta^g)$. If there exists an optimal scheme involving two groups, neither of which satisfy these properties, then the theorem is proven. Otherwise, there must exist an optimal scheme \mathcal{A} involving two groups and a group satisfying these properties, which without loss we will label $g = 1$. Since this group is part of an optimal scheme, $\Pi^*(\beta^1) = \Pi^{A^*}(\beta^1)$. The work of the previous paragraph implies that a ($\beta^0, 1$)-split of group 1 weakly improves the organization’s profits. But since by hypothesis g is part of an optimal scheme, this split must exactly preserve the organization’s profits, meaning the resulting scheme \mathcal{A}' is also optimal. Hence $\Pi^*(\beta^0) = \Pi^{A^*}(\beta^0)$ and $\Pi^*(1) = \Pi^{A^*}(1)$. Additionally, since Π^{A^*} is weakly concave, the fact that $\Pi^*(\beta^1) = \Pi^{A^*}(\beta^1)$ and a ($\beta^0, 1$)-split of group g preserves total profits implies that Π^{A^*} must be linear on $[\beta^0, 1]$.

Suppose first that $\beta \in [\beta^0, 1)$. Then since $\Pi^*(\beta^0) = \Pi^{A^*}(\beta^0)$, $\Pi^*(1) = \Pi^{A^*}(1)$, and Π^{A^*} is linear on $[\beta^0, 1]$, an asymmetric scheme involving at most two groups with promotion rates β^0 and 1 must be optimal. In the latter group the natural promotion policy is trivially optimal. And in the former group, either bonuses are optimal or else the optimal incentive scheme is trivial given the hypothesis that $N^0 = N^{nc}(\beta^0) \notin N^{*Pr}(\beta^0)$. In either case, the natural promotion policy is optimal. So this scheme satisfies the properties claimed by the theorem. Suppose instead that $\beta < \beta^0$. Then given $\Pi^*(\beta^0) = \Pi^{A^*}(\beta^0)$, there must exist an optimal scheme involving at most two groups in which promotion rates in each group are no larger than β^0. But as noted above, under any optimal scheme all groups satisfying $\beta^g \leq \beta^0$ must involve only natural promotion incentives. So again the theorem holds.

M Proof of Proposition 6

All notation in this proof is as in the proof of Theorem 3. Suppose by way of contradiction that there existed an optimal scheme involving only groups with extremal promotion rates.
Then Π^{A*} must be linear on $[0,1]$. Since $\Pi^*(0) = f(N^0)$ while $\Pi^*(1) = f(N^0) + R\pi_0$, we must therefore have

$$\Pi^{A*}(\beta) = f(N^0) + R\pi_0 \beta.$$

To reach the desired contradiction, we need only show that $\Pi^*(\beta) > f(N^0) + R\pi_0 \beta$ for sufficiently small $\beta > 0$. Note that for $\beta \leq \beta_0$,

$$\Pi^*(\beta) \geq \Pi^{*,Pr}(\beta) = \max_N \Pi^{Pr}(N,\beta).$$

Since $\arg\max_N \Pi^{Pr}(N,0) = \{N^0\}$, the envelope theorem implies that

$$\frac{d\Pi^{*,Pr}}{d\beta}(0) = R \left(\frac{\mu(N^0)}{\rho(N^0)}(\pi_G - \pi_0) \right) > R\pi_0.$$

Then since $\Pi^{*,Pr}(0) = f(N^0)$, we have $\Pi^{*,Pr}(\beta) > f(N_0) + R\pi_0 \beta$ for sufficiently small β, proving the result.

References

Online Appendix to “Incentive Design for Talent Discovery”

Erik Madsen* Basil Williams† Andrzej Skrzypacz‡

May 2, 2022

In Section 6, we have characterized the optimal asymmetric scheme, and in Section 7 we have discussed the possibility that even more complex mechanisms could be used in some organizations. For example, if the employees observe their Γ before they are assigned to different groups, would it be valuable for the organization to sort them between groups based on their reported Γ?

We now show that, at least in the case of small β and no bonuses, the optimal asymmetric scheme we have found in Section 7 cannot be improved upon by more complex mechanisms.

For this analysis, we introduce the following notation. A direct revelation mechanism specifies $x_S(\Gamma), x_R(\Gamma)$ - the probability the agent with type Γ is assigned to the safe and risky task. It also specifies $\sigma_0(\Gamma), \sigma_G(\Gamma)$ - the probability of promotion conditional on being assigned to the safe task and conditional on being assigned to the risky task and getting a good outcome, respectively.

$\Delta_R = R_G - R_0$. Let $F(\Gamma)$ be the distribution of Γ in the population of employees induced by the $\gamma(n)$ function. Let $\Gamma = \gamma(0)$ be the highest type and $\underline{\Gamma} = \gamma(1)$ be the lowest type.

*Department of Economics, New York University. Email: emadsen@nyu.edu
†Department of Economics, New York University. Email: basil.williams@nyu.edu
‡Stanford Graduate School of Business, Stanford University. Email: skrz@stanford.edu

1To simplify notation, we ignore the possibility of promotion after failure since we are trying to solve the problem of too many agents taking risky tasks. It can be shown that for small β it is indeed optimal for the principal to not promote after failures.
in the support of the distribution. Our assumptions about γ imply that F has positive density $f(\Gamma)$ in the range $[\underline{\Gamma}, \overline{\Gamma}]$ and no atoms.

Let $\hat{\Gamma}$ be the solution to $(\Gamma - K) + \Gamma \Delta_R = 0$. That is, $\hat{\Gamma}$ is the threshold such that it would be efficient for the organization to have types above it take the risky task and those below take the safe task.

We say that the direct revelation mechanism is incentive compatible if reporting truthfully is a best response for every type Γ. It is feasible if it (1) is incentive compatible, (2) satisfies the resource constraint that at most β measure of promotions are allocated when employees report truthfully, and (3) satisfies $x_S(\Gamma) + x_R(\Gamma) = 1$ (so that every employee is assigned to one of the tasks).

Proposition 1. Suppose $\beta < E[\Gamma]$ and that the organization does not use bonuses to motivate task choice. Then the optimal direct revelation mechanism is equivalent to the optimal asymmetric scheme characterized in Section 6.

Proof. The organization chooses a direct revelation mechanism to maximize

$$\pi = \int_{\Gamma}^{\overline{\Gamma}} (x_S(\Gamma)(K + \sigma_0(\Gamma)R_0) + x_R(\Gamma)(\Gamma + \Gamma \sigma_G(\Gamma)R_G))dF(\Gamma).$$

subject to the feasibility constraints, one of them being the resource constraint:

$$\int_{\Gamma}^{\overline{\Gamma}} (x_S(\Gamma)\sigma_0(\Gamma) + x_R(\Gamma)\Gamma \sigma_G(\Gamma))dF(\Gamma) \leq \beta. \quad (1)$$

The plan of proof is to relax the optimization problem by focusing only on a subset of constraints, find the optimal mechanism in the relaxed problem and then show this solution to the relaxed problem satisfies all the original constraints. Finally, we show that the optimal direct revelation mechanism can be implemented as one of the asymmetric schemes introduced in Section 6.

We begin by pointing out that $\beta < E[\Gamma]$ implies that no feasible mechanism can have $x_R(\Gamma)\sigma_G(\Gamma) = 1$. Suppose that such a feasible mechanism existed. Then, every type would be able to get utility Γ by reporting type Γ. So the total utility of the agents would have to be at least $E[\Gamma]$, but that would violate the resource constraint 1. In other words, when β is small, all feasible mechanisms have “distortion on the top.”

Step 1: Consequences of incentive-compatibility

Define $y(\Gamma) \equiv x_R(\Gamma)\sigma_G(\Gamma)$. An agent with type Γ chooses her report to maximize:
\[U(\Gamma) = \max_{\tilde{\Gamma}} \left[x_S(\tilde{\Gamma})\sigma_0(\tilde{\Gamma}) + \Gamma y(\tilde{\Gamma}) \right] \]

The envelope formula implies:

\[
\begin{align*}
U(\Gamma) &= U(\Gamma) + \int_{\Gamma}^{\Gamma} y(\tilde{\Gamma}) d\tilde{\Gamma} \text{ and} \\
x_S(\Gamma)\sigma_0(\Gamma) &= U(\Gamma) + \int_{\Gamma}^{\Gamma} y(\tilde{\Gamma}) d\tilde{\Gamma} - \Gamma y(\Gamma)
\end{align*}
\] (2)

As is standard in mechanism design, a mechanism is incentive compatible if and only if it satisfies (2) and \(y(\Gamma) \) is weakly increasing.

Step 2: Using incentive compatibility to re-state resource constraint

We now combine the envelope-based formula for incentive-compatibility (2) with the resource constraint (1) to get that any feasible contract must satisfy

\[
U(\Gamma) + \int_{\Gamma}^{\Gamma} y(\tilde{\Gamma}) d\tilde{\Gamma} dF(\Gamma) \leq \beta.
\]

After integrating by parts, the resource constraint becomes

\[
U(\Gamma) + \int_{\Gamma}^{\Gamma} y(\Gamma)(1-F(\Gamma))d(\Gamma) \leq \beta.
\] (3)

Step 3: Non-negativity of the probabilities constraint

Another constraint a mechanism has to respect is that \(\sigma_0(\Gamma)x_S(\Gamma) \geq 0 \) since probabilities cannot be negative. Combining it with the envelope formula (2) we have that for every type \(\Gamma \) a feasible mechanism must satisfy:

\[
U(\Gamma) + \int_{\Gamma}^{\Gamma} y(\tilde{\Gamma}) d\tilde{\Gamma} - \Gamma y(\Gamma) \geq 0.
\]

Note that the derivative of the LHS with respect to \(\Gamma \) is \(y(\Gamma) - y(\Gamma) - \Gamma y'(\Gamma) \). For any feasible mechanism \(y'(\Gamma) \geq 0 \) so the LHS is decreasing in \(\Gamma \). Hence if this condition holds for the highest type \(\bar{\Gamma} \), it holds for all types. So in what follows we require

\[
U(\Gamma) + \int_{\Gamma}^{\bar{\Gamma}} y(\Gamma)d\Gamma - \bar{\Gamma} y(\bar{\Gamma}) \geq 0.
\] (4)

Step 4: Combining the resource and non-negativity constraints
Combining constraints (3) and (4) we get that any feasible mechanism must satisfy:
\[
\beta + \int_{\Gamma} y(\Gamma) F(\Gamma) d(\Gamma) \geq U(\bar{\Gamma}) + \int_{\bar{\Gamma}} y(\Gamma) d\bar{\Gamma} \geq \bar{\Gamma} y(\bar{\Gamma})
\]

Looking to relax the problem, we will only require that the mechanism satisfies:
\[
\beta + \int_{\Gamma} y(\Gamma) F(\Gamma) d(\Gamma) \geq \bar{\Gamma} y(\bar{\Gamma})
\]
and monotonicity of \(y(\Gamma)\) (and that \(y(\Gamma) \in [0, 1]\)).

Step 5: Principal’s relaxed problem.

In the relaxed problem, the principal maximizes
\[
\pi = \int_{\Gamma} x_S(\Gamma)(K + \sigma_0(\Gamma) R_0) + x_R(\Gamma)(\Gamma + \Gamma \sigma_G(\Gamma) R_G) dF(\Gamma)
\]
\[
= K + \int_{\Gamma} [x_R(\Gamma)(\Gamma - K) + x_S(\Gamma)\sigma_0(\Gamma) R_0 + x_R(\Gamma) \Gamma \sigma_G(\Gamma) R_G] dF(\Gamma)
\]
where we have used that \(x_R + x_S = 1\).

Next, note that in any optimal mechanism the resource constraint must bind \(^2\) so
\[
\int_{\Gamma} x_S(\Gamma) \sigma_0(\Gamma) dF(\Gamma) = \beta - \int_{\Gamma} x_R(\Gamma) \Gamma \sigma_G(\Gamma) dF(\Gamma).
\]
Substituting this to the the principal’s objective function we get that the principal equivalently maximizes:
\[
\int_{\Gamma} [x_R(\Gamma)(\Gamma - K) + y(\Gamma) \Gamma \Delta R] dF(\Gamma).
\]

Step 5B: Simplifying the principal objective function.

The next thing to notice is that \(x_R(\Gamma) \sigma_G(\Gamma)\) enter the agent utility and incentives only as a product \(y(\Gamma)\). They also enter the resource constraint only as a product and the non-negativity constraint as a product. They only enter separately in the principal’s objective (in the first term of (6)). Therefore, we relax the maximization problem by allowing the principal choose \(x_R(\Gamma), \sigma_G(\Gamma)\) and \(\sigma_0(\Gamma)\) subject to keeping \(y(\Gamma)\) and \(x_S(\Gamma) \sigma_0(\Gamma)\)

\(^2\)Suppose that the resource constraint did not bind. Then there would exist \(\hat{\beta} < \beta\) such that the constraint would bind at \(\hat{\beta}\). After solving for the optimal mechanism with \(\hat{\beta}\) we can trivially check that relaxing the resource constraint can be used to improve the principal payoff, a contradiction.
unchanged (so that the feasibility constraints are unchanged). This optimization yields a simple solution:

Consider any feasible mechanism \(x_R, x_S, \sigma_0, \sigma_G \). The following mechanism is also feasible and it weakly improves principal payoff upon the original mechanism:

1) For \(\Gamma > K \), \(\hat{x}_R(\Gamma) = 1 \) and \(\hat{\sigma}_G(\Gamma) = y(\Gamma) \) and \(\hat{x}_S(\Gamma) = 0 \)

2) For \(\Gamma < K \), \(\hat{\sigma}_G(\Gamma) = 1 \) and \(\hat{x}_R(\Gamma) = y(\Gamma) \), \(\hat{x}_S(\Gamma) = 1 - y(\Gamma) \) and \(\hat{x}_S(\Gamma)\hat{\sigma}_0(\Gamma) = x_S(\Gamma)\sigma_S(\Gamma) \)

In words, for high \(\Gamma > K \) the principal allocates the agent with probability 1 to the risky task; and for \(\Gamma < K \) he minimizes \(x_R(\Gamma) \) subject to achieving the same \(y(\Gamma) \). This result follows simply by inspection of (6): keeping \(y(\Gamma) \) fixed, we get that the contribution of \(x_R(\Gamma) \) to the principal’s objective is positive if and only if \(\Gamma > K \).

Step 6: Solving the relaxed problem.

The analysis so far allows us to state the relaxed problem as choosing \(y(\Gamma) \in [0, 1] \) to maximize

\[
\max_{y(\Gamma)} \int_{\Gamma}^{K} [y(\Gamma)(\Gamma - K + \Gamma R)] dF(\Gamma) + \int_{K}^{\Gamma} [(\Gamma - K) + y(\Gamma)\Gamma R] dF(\Gamma) \quad (7)
\]

subject to the constraints that \(y(\Gamma) \) is weakly increasing and the constraint from Step 4:

\[
\beta + \int_{\Gamma}^{\Gamma} y(\Gamma)F(\Gamma)d(\Gamma) \geq \hat{\Gamma} y(\hat{\Gamma}). \quad (8)
\]

We claim that the solution to this problem is bang-bang: set \(y(\Gamma) = 0 \) below some threshold \(\Gamma^* \) and then set it equal to some constant \(y^* \) above the threshold.

To show this, fix \(y(\hat{\Gamma}) \) at any level \(y^* \) that is smaller than the solution to \(^3 \)

\[
\beta + Y \int_{\Gamma}^{\Gamma} F(\Gamma)d(\Gamma) = \hat{\Gamma} Y.
\]

Next, recall that \(\hat{\Gamma} \) is the threshold such that \((\Gamma - K + \Gamma \Delta_R) = 0 \). Hence for all \(\Gamma > \hat{\Gamma} \) setting \(y(\Gamma) = y^* \) increases the objective function (7) and relaxes the constraint (8). If \(y(\Gamma) = 0 \) for \(\Gamma < \hat{\Gamma} \) and \(y(\Gamma) = y^* \) for \(\Gamma \geq \hat{\Gamma} \) satisfies the constraint (8) then this is the solution of the relaxed problem for the given \(y^* \).

\[^3\text{For any higher } y^* \text{ there is no monotone } y(\Gamma) \text{ that would satisfy (8). Our assumption that } E[\Gamma] > \beta \text{ guarantees that this } Y \text{ is less than 1.} \]
Note that if at this solution the constraint is slack, this \(y^* \) is not optimal because then by increasing \(y^* \) to the point that the constraint binds would improve the objective function. Hence, without loss of optimality, we can assume that this constraint binds in the optimal mechanism.

Next, consider any \(y^* \) such that the constraint is violated by \(y(\Gamma) = 0 \) for \(\Gamma < \hat{\Gamma} \). In that case, clearly the optimal mechanism still has \(y(\Gamma) = y^* \) for \(\Gamma \geq \hat{\Gamma} \) since as we noted above, this helps both the objective function and relaxes the constraint.

How about \(y(\Gamma) \) for smaller \(\Gamma \)? Since \(F(\Gamma) \) and \((\Gamma - K + \Gamma R) \) are increasing in \(\Gamma \), the optimal solution is greedy. Namely, we need to find \(\Gamma^* \) such that:

\[
\beta + y^* \int_{\Gamma^*}^{\Gamma} y(\Gamma)F(\Gamma)d(\Gamma) \geq \bar{\Gamma} y^*,
\]

and then let:

\[
y(\Gamma) = \begin{cases}
y^*: & \text{for } \Gamma \geq \Gamma^* \\
0: & \text{otherwise}
\end{cases}
\]

The optimal mechanism can then be found by maximizing over \(\Gamma^* \in [0, \hat{\Gamma}] \) (and setting \(y^* \) so that (9) binds).

Step 7: Full feasibility of the solution to the relaxed problem

In Step 6, we have found that the solution to the relaxed problem is

\[
y(\Gamma) = \begin{cases}
y^*: & \text{for } \Gamma \geq \Gamma^* \\
0: & \text{otherwise}
\end{cases}
\]

for some \(\Gamma^* \leq \hat{\Gamma} \) and where \(y^* \) satisfies

\[
\beta + y^* \int_{\Gamma^*}^{\Gamma} F(\Gamma)d(\Gamma) = \bar{\Gamma} y^*.
\]

This allows us to construct the following mechanism:

\[
\begin{align*}
x_S(\Gamma) &= 1, \quad \sigma_0(\Gamma) = \Gamma^* y^*, \text{ for } \Gamma < \Gamma^* \\
x_S(\Gamma) &= 1 - y^*, \quad \sigma_0(\Gamma) = 0, \quad x_R(\Gamma) = y^*, \quad \sigma_G(\Gamma) = 1 \text{ for } \Gamma \in [\Gamma^*, K] \\
x_S(\Gamma) &= 0, \quad x_R(\Gamma) = 1, \quad \sigma_G(\Gamma) = y^* \text{ for } \Gamma > K.
\end{align*}
\]

To see that this mechanism is incentive compatible note that because \(y(\Gamma) \) takes only two values, it is sufficient to check the incentives of the the cutoff type \(\Gamma^* \). That type
is indifferent between getting the safe payoff Γ^*y^* by reporting any lower type and reporting any higher type. So if that type is indifferent, all lower types strictly prefer to report truthfully and so do all higher types. This mechanism clearly satisfies all the constraints that x's and σ's are probabilities. So we just need to check the overall feasibility constraint:

\[
\int_{\Gamma}^{\Gamma} [x_S(\Gamma)\sigma_0(\Gamma) + x_R(\Gamma)\Gamma\sigma_G(\Gamma)] dF(\Gamma)
\]

\[
= y^*\Gamma - y^* \int_{\Gamma^*}^{\Gamma} F(\Gamma) d(\Gamma),
\]

where we used integration by parts

\[
\int_{\Gamma^*}^{\Gamma} \Gamma dF(\Gamma) = \Gamma - \Gamma^* F(\Gamma^*) - \int_{\Gamma^*}^{\Gamma} F(\Gamma) d(\Gamma).
\]

Using that (10) holds at the optimal solution (of the relaxed problem) we get

\[
\int_{\Gamma}^{\Gamma} [x_S(\Gamma)\sigma_0(\Gamma) + x_R(\Gamma)\Gamma\sigma_G(\Gamma)] dF(\Gamma) = \beta.
\]

so indeed the solution to the relaxed problem satisfies all constraints, including the resource constraint.

Step 8: Optimality of the asymmetric incentive scheme

In Section 6 we have found an optimal asymmetric incentive scheme. We now claim that it is equivalent to the optimal direct revelation mechanism. To prove it, we claim that for any $\Gamma^* < \hat{\Gamma}$ there exists an asymmetric scheme that replicates our direct revelation mechanism with that Γ^*. And since we have optimized over asymmetric schemes that include a scheme that is equivalent to the optimal mechanism, the best asymmetric scheme has to be equivalent to the optimal direct revelation mechanism.

To see that our set of asymmetric schemes includes any mechanism from our family, fix any $\Gamma^* < \hat{\Gamma}$ and the corresponding y^* that satisfies

\[
\beta + y^* \int_{\Gamma^*}^{\Gamma} F(\Gamma) d(\Gamma) = \hat{\Gamma}\Gamma^*.
\]

Now, create two groups. A fraction y^* is allocated to group 2 and the rest to group 1. In group 1 there are no promotions and agents are recommended to take the risky task if and only if $\Gamma > K$. In group 2 all agents choose on their own which task to take, and the
threshold will be Γ^*. Those who succeed get promoted for sure. Those who fail do not get promoted. Moreover, those that take the safe action get promoted with probability that allocates the rest of the promotions. There are y^* agents in that group and those above Γ^* receive in total $\int_{\Gamma^*}^{\Gamma} \Gamma dF(\Gamma)$ promotions. So the probability of being promoted in group 2 after taking the safe task is

$$\frac{\beta - y^* \int_{\Gamma^*}^{\Gamma} \Gamma dF(\Gamma)}{y^* F(\Gamma^*)} = \Gamma^*$$

so indeed type Γ^* in group 2 is indifferent between the two tasks (to show the equality we used (10)). In summary, this subset of asymmetric schemes can replicate all direct revelation mechanisms in the family that we have found solving for the optimal mechanism. Hence the optimal asymmetric scheme cannot be improved upon by more complex mechanisms.

This result shows optimality of our asymmetric schemes within a larger class of direct revelation mechanisms. An important difference is that the asymmetric schemes we proposed tell agents which task to take after they are informed to which group they belong. In contrast, the direct revelation mechanism tells the agents to report their values before they know in which group they are placed. In general, one should expect that the direct revelation mechanism should do better since it requires that truthful reporting constraints apply only on the interim stage - in other words, it allows for pooling some IC constraints that have to be satisfied separately in the asymmetric schemes.

The reason this pooling of incentives does not help is that the optimal asymmetric scheme for small β has two groups and in one of them there are no promotions and hence no incentives to misreport. Hence, thinking about such asymmetric scheme through the lens of the equivalent direct revelation mechanism, agent’s incentives to report truthfully are solely driven by the chance that they will be allocated to the group with promotions. As a result, the pooling of constraints does not help.

Finally, we have presented here the result for small β. Our preliminary analysis makes us conjecture that the result can be extended to all β when there are no monetary transfers. That is, even for large β, our optimal asymmetric scheme is equivalent to the optimal direct revelation mechanism. The intuition is that for large β, our scheme calls for two groups, and in one of them the employees are always promoted. As a result, in that group agents are indifferent over all reports, so only the truth-telling constraints in the other set matter.
In fact, in the case without money we conjecture that the result can be extended to all β. It is more of an open question what happens when the principal could use both bonuses and promotions in the direct revelation mechanism. We conjecture that the optimal mechanism will also either use bonuses and keep the promotion policy ex-post efficient, or will use distortions in promotion and not use money at all. It is even possible that our optimal asymmetric schemes in the case with money are still equivalent to the optimal direct revelation mechanism, but that would require additional arguments to deal with the multidimensionality of instruments available to the principal.