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Abstract

This paper develops a dynamic general equilibrium model of the market for
attention. Digital platforms compete for the attention of consumers by invest-
ing in the quality of their services, which they provide for free. Platforms then
sell the attention, in the form of advertisements, to firms in the product market
via auctions that use consumer data for targeting. We characterize outcomes
in the product market, ad revenue, and platform investment in the unique sta-
tionary equilibrium. When data is more informative for all platforms, typically
product consumption improves but ad revenues and investment decline. When
platforms are more interoperable, investment rises but product consumption
worsens. Compared with the first best, investment can be either too high or
too low. The model predicts variation in ad prices, bid pacing, and delay in
the matching of a firm to a consumer and relates these to platform market
power. It also predicts that platforms that are data-rich relative to their rivals
typically have higher market shares, ad prices, and investment.
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1. Introduction

This paper is motivated by the ongoing debate over how to regulate digital plat-
forms that profit primarily from targeted advertising. Many argue that, while different
platforms offer distinct services, they nonetheless compete in a market for attention
(Evans, 2020; Wu, 2018; Newman, 2019).

Some key stylized features of this market are as follows.

1. Various platforms provide distinct services to consumers for free.

2. They compete for attention by investing in the quality of their services.

3. They earn revenue by selling ads to firms in the product market.

4. They sell ads via auctions that are consumer-specific and arise in real time as
consumers engage with their services.

5. Ads are targeted using individual-level consumer data.

This paper develops a general equilibrium model with a platform sector that is
consistent with these features. Because the model is in general equilibrium, it also
includes a fully endogenous product market. We can therefore calculate the welfare
impact of platforms from their roles in both features 1 and 3 within a single internally
consistent model.

The model is designed to address three points that often come up in regulatory dis-
cussion. The first point is that existing competition policy relies heavily on markups
to gauge market efficiency (Khan, 2017). For a long time, platforms, with their free
services, occupied a blind spot in policy (Wu, 2018). Regulators are in need of guiding
principles that apply to platforms. The second point is that the market is complex
and multisided: outcomes in the product market, ad revenue, and platform invest-
ment are jointly determined (Evans, 2019). It is therefore difficult to assess the net
effects of policies without a formal model. The third point is that two of the leading
policy tools concern regulating the data used for ad targeting and enforcing platform
interoperability (OECD, 2021). Interoperability refers to the extent to which users
can share information or content across platforms. When there is greater interoper-
ability, platforms are more substitutable and it is more convenient for users to shift
their attention among them.

The model in this paper allows for a formal investigation into these issues. We
characterize outcomes in the product market, ad revenue, and platform investment
in the unique stationary equilibrium. We find that when data is more informative
for all platforms, consumers discover products that they value more highly and so
product consumption improves. However, ad revenue typically declines and thus, so
does investment by platforms in the quality of their services. On the other hand, a
rise in interoperability leads platforms to invest more. However, it also comes at the
cost of worse product consumption. Thus, the net welfare impacts of policies that
regulate data or interoperability are generally ambiguous. Whether these policies are
beneficial or harmful may crucially depend on whether investment is inefficiently high
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or low to begin with. We show that either can be true in equilibrium and derive a
simple condition that can be used to discern which is the case.

A tractable general equilibrium analysis requires some degree of modeling com-
promise. We model platforms that are monopolistically competitive. Though they
have market power, they are strategically small. The reality is somewhere between
duopoly and monopolistic competition. As of 2022, Meta and Google together have
roughly a 50 percent share of the digital advertising market.1 However, the remaining
50 percent is split across a wide array of other platforms such as Twitter, TikTok,
LinkedIn, Pinterest, and others.2 Whether or not platforms are strategically large,
the basic economic mechanisms that we uncover will be there.

We consider an economy with a single productive resource: labor. Consumers
supply a fixed quantity of labor at each point in time. Firms use it to produce
and platforms use it to invest in their services. Each firm supplies a product of
a distinct variety. As in Dixit and Stiglitz (1977), a consumer derives utility from
individual products through a constant elasticity of substitution (CES) aggregate.
Each consumer has private tastes or values for the various products. These values
appear as share parameters in the CES aggregate. At any given time, a consumer is
aware of only a subset of products. This “consideration set” evolves as the consumer
discovers firms through ads displayed by the platforms and gradually forgets about
the firms that are currently in the set.

At each time, each consumer splits a unit of attention across the various platforms.
As with products, platform use enters utility through a CES aggregate. A platform’s
quality level is also its share parameter. To retain its share of attention, in equilibrium,
a platform must invest in its quality level which otherwise depreciates over time (as,
for instance, the platform’s content grows stale). The attention is valuable because
it determines the rate that the platform will display ads. Each time there is an
opportunity for a platform to display an ad to a consumer, it invites a finite number
of randomly chosen firms to bid in an auction. The platform then supplies each
invited firm with data (a Blackwell experiment) that is informative of the consumer’s
value for the firm’s product. Firms then set their bids. The winning firm displays its
ad and enters the consumer’s consideration set.

To close the model, we assume that consumers own the firms and platforms. An
unambiguous measure of social welfare is therefore consumer surplus. We analyze
stationary equilibria in which the distribution of consumers’ values for the firms in
their consideration sets remains constant over time, as do platforms’ investment rates.
For the baseline model, we assume that all platforms have the same data, though in
Section 7, we allow data to differ across them.

We show that when data is uninformative, the aggregate product consumption of a
consumer is minimal. However, ad revenue and investment by platforms are maximal.
Thus, an increase in data informativeness, in the Blackwell order, typically leads to
higher product consumption but causes ad revenue and investment to decrease. If

1See https://www.insiderintelligence.com/content/meta-google-s-hold-on-digital-

advertising-loosens-tiktok-others-gain-share.
2Platforms in the model can also be interpreted as individual content creators which are small

though they operate on large platforms. All of the analysis of the baseline model will apply.
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platforms could collude to not use data, they would be better off. The intuition is as
follows. In a standard auction setting, where bidders’ values are taken as given, more
informative data raises the expected value of the highest bidder. Though information
rents rise, this effect typically dominates, and auction revenue increases. In our
setting, there are two additional effects. First, bidders’ values for displaying an ad
are endogenous and depend on competition in the product market. When data is
more informative, a firm anticipates that any given consumer is already aware of
firms that it values highly. Displaying an ad is thus less valuable and so the firm
bids less. Second, there is an option for firms to wait to bid in future auctions for a
given consumer. When data is more informative, the option value is typically higher
because ad prices are more variable. Firms exploit this variation by strategically
reducing their bids to win only at favorable prices. In practice, this is known as
bid pacing.3 These latter two effects typically dominate and so ad revenue decreases
which in turn leads platforms to invest less.

In contrast, we find that an increase in interoperability leads to a rise in investment
but a decline in product consumption. In our analysis, we interpret an increase in
interoperability as a technological change that results in platforms that are more
substitutable. When platforms are more substitutable, consumer attention is more
sensitive to platforms’ quality levels. As a result, platforms invest more. Because
less labor is allocated to the product sector, product consumption decreases. These
effects are magnified when platforms also set the rate, per unit of attention, that they
display ads to consumers.4 Then, an increase in interoperability also causes attention
to be more sensitive to platforms’ ad frequencies. Since consumers dislike viewing
ads, platforms respond by setting lower ad frequencies. Consumers are thus exposed
to fewer products and product consumption worsens. The reduction in ad frequencies
also leads ad revenues to rise, further raising investment.

Overall, these results suggest that regulations on data or interoperability must
trade off between product consumption and investment in platform quality. Both of
these factors determine welfare. Thus, whether a policy is, in the end, beneficial may
crucially depend on whether investment is initially higher or lower than is efficient.

To address this, we compare the equilibrium to a first best benchmark in which
a social planner sets the level of investment by platforms to maximize welfare. We
assume that the planner relies on the same matching technology as do platforms (con-
sideration sets evolve as in equilibrium). We find that, compared with the planner’s
choice, equilibrium investment may be either too high or too low. Investment may be
too low because platforms do not appropriate any of the surplus that they generate
for consumers through investment since their services are free. Investment may be
too high because of business-stealing externalities: platforms invest only to steal ad
revenues from each other. Moreover, the total ad revenue that is up for grabs is itself
determined by the incentives of firms to steal profits from each other by advertising.

For the special case when consumers have Cobb-Douglas utility over aggregate
product and platform consumption, we derive a simple condition that can be used

3See https://www.facebook.com/business/help/1754368491258883?id=561906377587030.
4All results described in the Introduction hold whether or not ad frequency is endogenous.
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to distinguish whether investment is too high or too low. The condition depends on
only product markups, ad revenue, platform substitutability, and the weight in the
utility function on platform consumption relative to product consumption. Using this
condition, together with the comparative statics described earlier, we prove results
that show when the net welfare impacts of changes to data informativeness or inter-
operability can be signed analytically. For example, if investment is too high, then
banning data use will reduce welfare since it both leads to worse product consumption
and raises investment even farther from its efficient level. These results conclude the
anaysis of the baseline model.

In the last part of the paper, we extend the model to allow platforms to have
different data. This extension is especially relevant since policies may affect plat-
forms that are data-rich differently than those that are less data-rich. The extension
also allows us to explore the effects of regulations, such as forcing platforms to share
data, that are only meaningful when data are heterogeneous. We find that platforms
that have more informative data typically have higher ad prices, market shares, and
investment. Mandating that platforms share data often raises the ad revenues and
market shares of data-poor platforms at the expense of data-rich ones. While product
consumption improves, total investment declines to the extent that overall platform
consumption worsens. This is so even though consumers prefer a more even distri-
bution of platform quality and despite the fact that there are decreasing returns to
investment.

In the appendices, we consider several additional extensions of the baseline model
that may be of first-order relevance: we endogenize the ad frequency set by platforms
and allow for network effects, reserve prices, and firm and platform entry. Many of
the main results continue to hold in each of these extensions, as briefly described in
Section 8.

The rest of this paper proceeds as follows. Section 2 summarizes the related lit-
erature. Section 3 presents the baseline model. Section 4 characterizes the unique
stationary equilibrium. Section 5 analyzes the effects of changes to data informa-
tiveness and platform interoperability. Section 6 compares the equilibrium to a first
best benchmark. Section 7 extends the model to allow platforms to have different
data. It then presents a numerical example to illustrate the effects of a policy that
forces platforms to share data. Section 8 summarizes the results of further extensions.
Section 9 concludes.

2. Related Literature

This paper is related to the literature on platforms and two-sided markets. To
our knowledge, it supplies the first model that is consistent with the stylized fea-
tures described at the start of this paper. It is also the first to feature monopolistic
competition in a two-sided market.

The early seminal papers Rochet and Tirole (2003), Caillaud and Jullien (2003),
Armstrong (2006) study platforms’ pricing decisions. For a survey of subsequent work
see Jullien, Pavan, and Rysman (2021). These models are abstract so as to apply to
a wide variety of settings. As a result, they do not endogenize the surplus generated
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by the interactions between individuals on the two sides of the market. An important
result of these papers is that, due to cross-side network effects, platforms may charge
consumers on one side of the market a low price to encourage their participation. This
is so that they can then profitably charge consumers on the other side of the market
a high price. In contrast, the model in this paper is specialized to fit the market for
attention. The surplus generated by the interactions between firms and consumers
is determined endogenously in a product market. We assume, from the outset, that
platforms give their services to consumers for free and that the prices that firms pay
are set in auctions. We focus instead on platforms’ decisions to invest in the quality
of their services.

This paper is more closely related to the seminal paper Anderson and Coate
(2005) which is among the first to study traditional advertising platforms with an
endogenous product market. Many of the papers that do this use variants of their
model. In their model, there may be up to two platforms in the market. To enter,
a platform must pay a fixed cost. If both platforms enter, consumers single-home,
taking into account their idiosyncratic preferences for the content provided by the
platforms. There are a finite number of firms in the product market. Consumers
have binary values for each product: each value is either 0 or a positive number ω.
Their utilities are quasilinear in transfers and additively separable across products.
There is therefore no competition among firms, who each set a price of ω, and thus
extract all surplus from any sales. In contrast, we allow consumers to multi-home
in order to study competition among platforms in the ad market. The consumers in
our model benefit greatly from advertising since prices are not fully extractive. We
study investment on the intensive margin in the form of gradual quality improvements
as opposed to on the extensive margin in the form entry (though we later allow for
entry as well). In both of our models, investment can be too high or too low due to
business-stealing externalities and the inability of platforms to appropriate consumer
surplus.

Because Anderson and Coate (2005) study traditional advertising, consumer data
and ad targeting do not appear in their model. Ichihashi (2020) builds a model of
competing data intermediaries. The intermediary compensates consumers for their
data using transfers. It then sells the data to a single firm downstream which can
then use the data to price discriminate against the consumer. Prat and Valletti (2021)
model digital platforms that have data on users’ preferences and sell targeted ads.
Their main focus is on the anti-competitive effect of an incumbent firm that buys up
ads to prevent an entrant from doing so. They show that platforms’ market power can
magnify this effect since platforms will sell fewer ads. In both Ichihashi (2021) and
Prat and Valletti (2021), firms’ profits from sales are exogenously given.5 Motivated
by targeted advertising, Bergemann, Bonatti, and Gan (2019) study a model where
a single platform uses data to match consumers to products. The paper’s focus is
on the efficiency of data use when the data on one consumer is informative of other

5In Ichihashi (2021) the firm’s profit and consumer utility is an exogenous function of data.
In Prat and Valletti (2021) the incumbent firms’ profit is an exogenous function of whether the
consumer is aware of the entrant.
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consumers. More informative data may be harmful in that model since firms may use
it to price discriminate. In our model, this channel is not there. More informative
data may be harmful because it can lead to lower platform investment.

This paper also relates to a literature that studies data intermediaries in a macroe-
conomic context. In Jones and Tonetti (2020) and Farboodi and Veldkamp (2021)
data is a byproduct of production. It is also a nonrival good that can be bought or
sold by firms to improve production. In Jones and Tonetti (2020) these transactions
occur through a single intermediary. In Farboodi and Veldkamp (2021), they occur in
a competitive market. But, some firms may emerge endogenously as intermediaries
by offering their products at low prices to profit primarily from data sales. Neither of
these papers study targeted advertising. Rather, in Jones and Tonetti (2020), data
enters directly into firms’ production functions. In Farboodi and Veldkamp (2021),
data is used by firms to forecast an unknown state which affects the optimal choice
of production technology. In our model we show that the data used for ad targeting
leads to a better matching of firms to consumers and that this is equivalent to an
increase in the aggregate productivity of firms.

This paper relates to the literature on ad auctions (Edelman, Ostrovsky, and
Schwarz, 2007; Athey and Gans, 2010; Varian, 2007; Hummel and McAfee, 2016;
Board, 2009; Bergemann, Heumann, Morris, Sorokin, and Winter, 2021). Most ex-
isting work studies the auctions in isolation without modeling a product market.
Bidders’ values are therefore assumed to be exogenously given. An important result
in this literature is that revealing more information to bidders about their values often
leads to an increase in revenue. We show that when the product market is accounted
for, this result is reversed. The auction model we develop is also novel and introduces
significant dynamic effects. Match delay, variation in ad prices, and bid pacing are
empirically relevant features of real-world ad auctions. Future empirical work using
ad auction data may benefit from the model’s ability to capture these. There is a
growing empirical literature that uses ad auction data to analyze various policies such
as GDPR (Alcobendas, Kobayashi, and Shum, 2021; Johnson, Shriver, and Du, 2020;
Beales and Eisenach, 2014; Marotta, Abhishek, and Acquisti, 2019).6 A structural
model is needed to apply the data to counterfactual and welfare analysis.

This paper relates to the literature on competing auctions (McAfee, 1993; Wolin-
sky, 1988; Iyer, Johari, and Sundararajan, 2014; Chen and Duffie, 2021). As far as we
know, it is the first to model competing auctions with different data. Our model is
most closely related to that of Wolinsky (1988). There, a dynamic option to wait also
matters for bidding. In Wolinsky (1988), once a buyer wins an auction hosted by a
given seller, both the buyer and seller exit the market which contrasts with the model
in this paper. In practice, for real-time bidding, multiple firms may advertise to the
same consumer again and again over time. In Wolinsky (1988), the continuation value
upon losing an auction is the same for all buyers. In our model, it differs across firms
depending on their expectations of the consumer’s values for their products.

6General Data Protection Regulation is a regulation on data and privacy protection in the EU.
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3. Baseline Model

Model Overview

The model builds on the monopolistic competition framework introduced by Dixit
and Stiglitz (1977). A measure F of firms j ∈ F each produce a product of a distinct
variety. A unit measure of consumers i ∈ C each have a taste for variety.7 The new
ingredient is that firms and consumers must search to find each other. They search
through intermediaries that we call digital platforms or platforms for short.

There is a measure D of platforms k ∈ D. At any given time, each consumer
splits a unit of attention across platforms. While using platforms, they discover firms
through ads displayed there. They also derive flow utility directly from the various
services. Each platform offers a free service of a distinct variety. Services may differ in
quality. Better quality platforms yield higher flow utility for consumers who choose to
spend more attention on them. To compete for attention, platforms invest in quality.

Attention is sold as ads. An opportunity arises for a platform to display an ad to
a consumer at random times with a rate proportional to the attention the consumer
spends on the platform. At each such display time, the platform invites a finite
number of randomly chosen firms to bid in a second-price auction. The winning firm
displays its ad. To bid optimally, each firm forms an expectation of the consumer’s
idiosyncratic value for its product using data provided by the platform.

Consumers

Consumer i’s flow utility at time t is an increasing function u : R2
+ → R of CES

aggregates over product and platform consumption:

(1) Cit =

[∫
F
v

1
σ
ijc

σ−1
σ

ijt dj

] σ
σ−1

and (2) Xit =

[∫
D
(qktxikt)

ρ−1
ρ dk

] ρ
ρ−1

.

In (1), σ > 1 is the level of product substitutability, cijt is the consumption of
product j, and vij is the value for product j.8 Each vij is drawn from a CDF P on
R+ with a finite mean, independently across i and j. Values are realized at t = 0 and
fixed thereafter.

In (2), ρ > 1 is the level of platform interoperability,9 xikt is the attention spent
on platform k, and qkt is platform k’s quality. In contrast with products, consumers
all agree on a platform’s quality, which may represent the quantity of its content,
the efficacy of its recommendation algorithm, or the aesthetics of its user interface,
etcetera.

We assume that, at any time t, consumer i is aware of all platforms in D but

7Firms, consumers, and platforms are each associated with a nonatomic finite-measure space.
8We refer to vij as value but it is not the willingness to pay in units of numeraire.
9Motivated by the discussion in the Introduction, we refer to platform substitutability as platform

interoperability to emphasize its connection with policy.
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is aware of only a subset of products Ωit ⊂ F which we call the consideration set.
Positive amounts can be purchased from this set only: cijt = 0 if j /∈ Ωit.

At time t, consumer i selects product and platform consumption to maximize flow
utility. This amounts to solving two separate problems:

(3) max
{cijt}j∈Ωit

Cit

s.t.
∫
Ωit
pjtcijt dj = It

(4) max
{xikt}k∈D

Xit

s.t.
∫
D xikt dk = 1

where pjt is firm j’s price and It is the income at time t. Note that (4) is the same
for all consumers. We therefore omit the index i on xikt going forward.

Consideration Sets

Consumer i’s consideration set Ωit evolves as the consumer discovers firms via ads
and forgets about those which are already in awareness. Consumer i views ads on
platform k at the tick times of a Poisson process with intensity Axkt that is propor-
tional to the attention spent on that platform. Tick times are independent across
platforms conditional on the consumer’s choice of attention allocation. The parame-
ter A > 0 is the ad frequency, which, by the exact law of large numbers (ELLN) is the
almost-sure rate that the consumer views ads when aggregated across all platforms.10

We take A as given, but explain in Section 5 how it can be endogenized, at no cost
to tractability, as the outcome of individual optimizations by the platforms.

If, at time t, consumer i views an ad for a firm j which is not currently in the
consideration set (j /∈ Ωit−), then that firm will enter the set at “the end of the
instant” (j ∈ Ωit).

11 It will not remain there forever. Firms in the set are forgotten
at independent exponential times with rate λf . This is to ensure that frictions persist
in the long run. This property also delivers the real-world feature that the same firms
often repeatedly advertise to the same consumers.

Ad Auctions and Consumer Data

Ads are sold via a process modeled after real-time bidding which is widely used
in practice.12 We assume that each ad opportunity is auctioned off by the platform
where it arises. When firm j bids in an auction for a given consumer i, it is given
data by the platform which is informative of the consumer’s value for its product.
We assume, for the baseline model, that the data is the same for all platforms, but
later allow data to differ across platforms in Section 7. It will turn out that the firm’s
expectation v̂ij of the value vij will be a sufficient statistic for it to bid optimally.
Rather than explicitly model data and belief-updating, we assume that v̂ij is drawn
from a continuous CDF G on R+, independently across i and j. We also assume that

10Duffie, Qiao, and Sun (2020) derive an ELLN for continuous-time random matching.
11
1{j∈Ωit} is càdlàg.

12E.g. see www.facebook.com/business/help/430291176997542?id=561906377587030.
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P ⪰MPS G since this is a necessary and sufficient condition for there to exist some
data that generates G by Blackwell (1953).13 In what follows, we refer to G as data
informativeness. We say that data is more informative when G increases in ≻MPS.
Expectations are realized at t = 0 and fixed thereafter.

If, at time t, an opportunity arises for platform k to display an ad to consumer i,
then the following events happen within the instant.

1. N > 1 firms are invited,14 uniformly at random from Ωc
it, to bid on the ad.15

2. The bidders observe their expectations of the consumer’s values.

3. The bidders submit bids in a second-price auction with no reserve price.16

4. The highest bidder displays its ad to the consumer.

The parameter N is an exogenous integer. It is meant to reflect real-world la-
tency constraints that limit the number of bidders that can feasibly participate in the
auction.17 We assume that only firms from outside the consideration set are invited
(these are the only firms with positive values for the ad). This simplifies the anal-
ysis, but the mechanisms behind the main results do not hinge on this. In reality,
platforms often place tracking pixels on firms’ retail websites. These pixels tell them
when a consumer has stopped visiting which is to some extent informative of whether
the firms’ products are still in consideration.18

The Evolution of Consideration Sets

We can now give a formal mathematical description of the evolution of considera-
tion sets, depicted in Figure 1. First, some notation. LetMt = |Ωit| denote the size of
the consideration set. Let Ht and H

c
t denote the (empirical) CDFs of the expectations

v̂ij of firms j in Ωit and Ωc
it respectively. Mt, Ht, and H

c
t are not indexed by i because

they are the same for all consumers provided this is so at t = 0, which we assume.
We take M0, H0 as given and assume that firms are distributed symmetrically across
initial consideration sets (Ωi0)i∈C.

19 We also assume that M0 dH0 < F dG since the
measure of firms with a given expectation in a consideration set must be less than
that of the entire economy.20

13≻MPS denotes the mean-preserving spread order. P ⪰MPS G if P and G have the same mean
and

∫ x

0
P (s) ds ≥

∫ x

0
G(s) ds for all x ∈ R+.

14When N = 1 the same analysis goes through except there is equilibrium multiplicity since any
positive bid is optimal for a firm.

15The N firms are drawn from the uniform measure on (Ωc
it)

N .
16One can show that the results extend to all other standard auction formats in the sense of

revenue equivalence. We allow for reserve prices in Appendix G.
17In Open Market RTB, latencies in bid response times play an important role. See https:

//cloud.google.com/architecture/infrastructure-options-for-rtb-bidders and https:

//medium.com/@datapath_io/how-network-latency-affects-the-rtb-process-for-adtech-

6ecbf29d025
18See https://www.facebook.com/business/help/742478679120153?id=1205376682832142.
19Ωc

it is the relative complement of Ωit in F .
20We say M0, H0 are admissible if this condition is satisfied.
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Ωit Ωc
it

|Ωit| = Mt

v̂ij ∼ Ht v̂ij ∼ Hc
t

λfMt

A

v̂ij ∼ Ht

v̂ij ∼ (Hc
t )

N

Figure 1: The evolution of consideration sets

Starting from their initial conditions, Mt and Ht evolve deterministically. By the
ELLN,

(5) dMt = (A− λfMt) dt

whenever Mt < F . To ensure that Mt < F at all times, we assume the following
condition for the rest of this paper.

Condition 1. A/λf < F .

In equilibrium, it will turn out that the firm with the highest expected value wins
in each auction. Then, by the ELLN,

(6) d (MtHt) =
(
A (Hc

t )
N − λfMtHt

)
dt.

In (6), the distribution of the inflow is that of the maximum of N independent draws
from Hc

t . The distribution of the outflow is Ht since firms are forgotten uniformly at
random. To find Hc

t in terms of Ht, we use the accounting identity

(7) MtHt + (F −Mt)H
c
t = FG

which closes the system.

Firms

Each firm selects prices and bids to maximize the net present value of its flow
profits. The pricing problem is static. At each time t, firm j sets a price pjt to
maximize its total flow profit taking as given Mt, Ht, and the prices set by its rivals
plt, l ̸= j. Given these, in equilibrium, the demand of any consumer i is a known
function of the firm’s price pjt and value vij. To meet demand, firm j must produce
output. Each unit of output requires a unit of labor. Labor is the only productive
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resource in the economy. It is used by firms for production and, as we later describe,
by platforms for investment. There are L units of labor supplied inelastically by
consumers at each time. We set the wage as the numeraire. The marginal cost of
production is therefore 1. Given this, firm j solves

(8) max
pjt

E[cijt(pjt, vij)(pjt − 1)]

where i is arbitrary since firms are ex-ante symmetric.
While the pricing problem is static, the bidding problem is dynamic: to determine

how much to bid in an auction for consumer i, firm j must internalize the value of its
outside option to bid in future auctions for that consumer. To write down the firm’s
problem, let

πFt(v̂ij) = E [cijt(pjt, vij)(pjt − 1)|v̂ij, j ∈ Ωit]

be the expected flow profit from selling to consumer i at time t conditional on the
data supplied by the platforms. Also, let

(9) λat =
NA

F −Mt

denote the Poisson rate that firm j enters auctions for consumer i while outside Ωit.
In (9), λat equals the rate that auction invitations are sent out, normalized by the
measure of eligible firms. Let τz denote the time of zth entry into an auction for
consumer i by firm j. In equilibrium, firm j takes as given the bidding strategies of
its rivals which are of the following form. Each firm l bids according to an increasing
function Bt : R+ → R+ at time t.21 Bt maps firm l’s expectation v̂lij to a bid Bt(v̂lij)
in an auction for consumer i at time t. Given this, firm j solves

(10) ΠF =

max
{bz}z∈N

E

[∫ ∞

0

e−rsπFs(v̂ij)1{j∈Ωis} ds−
∞∑
z=1

e−rτzBτz

(
v̂(1)
z

)
1{

bz>Bτz

(
v̂
(1)
z

)}]

where v̂
(1)
z is the highest expectation of the N − 1 other bidders in the zth auction:

v̂
(1)
z ∼ (Hc

τz)
N−1 conditional on τz. In (10), the bid in the zth auction bz is measurable

with respect to the expectation v̂ij and auction time τz. As in (8) i is arbitrary since
consumers are ex-ante symmetric.

Platforms

Each platform k selects an investment strategy to maximize the net present value
of its flow profits taking as given the paths of average ad prices πDt,

22 consumers’

21It is without loss to assume a bidding function which is common to all firms and increasing: see
Lemma 8 in Appendix A.

22The average ad price πDt = E[Bt(v̂
(2))] where v̂(2) is the second highest of N independent draws

from Hc
t .
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demands for the platform xkt, and the quality levels of its rivals qlt, l ̸= k. Formally,
by the ELLN, platform k solves

(11) ΠD = max
{Lkt}t≥0

∫ ∞

0

e−rt (πDtAxkt − Lkt) dt

subject to
dqkt = (Lφ

kt − δqkt) dt, qk0 = q0.

In (11), we have suppressed the dependency of demand xkt on platforms’ quality
levels qlt, l ∈ D. The investment technology 0 < φ < 1 has decreasing returns. The
depreciation rate δ > 0 represents the platform’s content becoming stale or less
relevant over time in the absence of investment.

Income and Welfare

To close the model, we assume that consumers own the firms and platforms.
Income is equal to the sum of labor compensation and firm and platform flow profits.
Since any transfers from advertising net out, this gives

It = L+M

∫ ∞

0

πFt(v̂) dHt(v̂)︸ ︷︷ ︸
total sales profits

−
∫
D
Lkt dk︸ ︷︷ ︸

total investment

.

Social welfare is defined to be consumer surplus∫ ∞

0

e−rtu(Cit, Xit) dt.

We could instead define welfare to be a weighted sum of consumer surplus and firm
and platform profits while taking income as given and not modeling the labor market.
But, surplus and profits are measured in different units: utility is not quasilinear in
transfers.23 Not only this, but welfare analysis would be more difficult. Endogenizing
income as we do leads to the cleanest and most interpretable results.

Equilibrium

An equilibrium given initial conditionsM0, H0, q0 is a collection of processes {cijt},
{xkt}, {Mt}, {Ht}, {pjt}, {Bt}, {Lkt}, {qkt} and {It} such that at each t ≥ 0:

1. Each consumer i selects product and platform demands cijt and xikt optimally.

2. The measure of firms in Ωit is Mt and the CDF of expected values in Ωit is Ht.

3. Each firm j optimally sets price pjt and bids according to Bt.

4. Each platform k optimally invests at rate Lkt.

23A version of the model that is quasilinear in transfers is also less tractable because it leads to a
fixed point in the total amount spent on products that can not be solved explicitly.
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5. Each platform k has quality qkt.

6. Income It is the sum of labor and firms’ and platforms’ flow profits.

This completes the model setup. In the model, product market outcomes, ad revenue,
and investment by platforms are all endogenously determined in equilibrium. Such a
model is well-suited to addressing the regulatory issues described in the Introduction.
For this, we must first obtain a tractable equilibrium characterization.

4. Unique Stationary Equilibrium

The rest of this paper analyzes stationary equilibria. A stationary equilibrium is
an equilibrium with initial conditions M0, H0, q0 such that:24

1. Mt and Ht are in steady state: Mt =M0 and Ht = H0 at each t ≥ 0.

2. Each platform k’s quality is in steady state: qkt = q0 at each t ≥ 0.

We now sketch the procedure to solve for a stationary equilibrium. In the process,
we develop some results that apply to all equilibria. Namely, Lemmas 1–3 (see also
Lemmas 7 and 8 in Appendix A). All proofs are in Appendix A.

Lemma 1 reports the solutions to consumer i’s problems (3) and (4).

Lemma 1. In any equilibrium, the following hold:

1. Consumer i’s demand for product j ∈ Ωit is

(12) cijt =
Itvij∫

Ωit
vilp

1−σ
lt dl

p−σ
jt .

2. Consumer i’s demand for platform k ∈ D is

(13) xkt =
qρ−1
kt∫

D q
ρ−1
lt dl

.

The demand for product j is increasing in the consumer’s value for that product
but decreasing in the consumer’s values for the other products in the consideration set
Ωit. Similarly, the demand for platform k is increasing in the quality of that platform
but decreasing in the quality levels of all other platforms. When platforms are more
interoperable, demand is more sensitive to quality.

Lemma 2. In any equilibrium, the following hold:

24In the setup we assume initial conditions that are symmetric across consumers and platforms.
All results generalize when initial conditions are allowed to be asymmetric. However, one can show
that all stationary equilibria necessarily have symmetric initial conditions.
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1. Firm j’s flow profit from selling to consumer i is

(14)
Itvij∫

Ωit
vilp

1−σ
lt dl

p−σ
jt (pjt − 1)

if j ∈ Ωit.

2. Firm j’s profit-maximizing price is

(15) pjt =
σ

σ − 1
.

The same price in (15) maximizes the flow profit in (14) of any consumer i. It
does not depend on the firm’s beliefs about the consumer’s values or consideration
set or even the prices set by the other firms as one might have thought. These terms
only scale the flow profit by a factor that is the same for any price that the firm sets.
As a result, the optimal price is a function of only product substitutability. This is a
key property that allows a tractable general equilibrium analysis with data modeled
nonparametrically. It also implies that even if we allow firms to personalize prices,25

they would choose not to. In reality, personalized pricing is not a prevalent practice
(though perhaps for other unmodeled reasons). We shut this practice down to focus
on other issues.26

Though a firm’s choice of price will not depend on what it knows about consumers’
consideration sets, its bidding strategy will. Recall that Mt is the measure of firms
in consideration sets and Ht (H

c
t ) is the CDF of expectations inside (outside) consid-

eration sets. In Appendix A we use (5)–(7) to derive the paths of Mt, Ht, and Hc
t

which we then use to prove Lemma 3.

Lemma 3. The unique steady state solution M,H,Hc to (5)–(7) satisfies

(16) M =
A

λf
,

(17) H = (Hc)N ,

and

(18) M (Hc)N + (F −M)Hc = FG.

Moreover, starting from any admissible M0, H0, the unique solution to (5)–(7) con-
verges to the steady state as t→ ∞, in that Mt, Ht, H

c
t →M,H,Hc.

Lemma 3 asserts the stability of the steady state. It also implies that H can be
computed by solving pointwise for the unique nonnegative root of (18). Figure 2
graphs H, G, Hc and their densities for the case when G is uniform on [0, 1]. As seen

25That is, we allow pjt in (8) to be measurable with respect to v̂ij .
26This yields a clean benchmark of analysis. Bergemann, Brooks, and Morris (2015) show that

the welfare effects of personalized pricing may depend sensitively on the information structure.
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Figure 2: The steady state distributions and densities when N = 5, M/F = 1/10, and G = U [0, 1].

in the figure, the positive selection in the auctions leads to H ≻FOSD G ≻FOSD Hc.27

We are now ready to derive firms’ bidding strategies. To bid optimally in an
auction for consumer i, firm j must assess its expected flow profit from selling to
consumer i. Suppose that Mt and Ht are in steady state. Let µH denote the mean
of the CDF H which by the ELLN is the average value of firms in consideration sets.
Then, using Lemma 2, the expected flow profit is

(19) E

[
I

σ
∫
Ωit
vildl

vij

∣∣∣∣v̂ij
]
= πF v̂ij

where

πF =
I

σMµH

and I denotes the stationary equilibrium level of income. The expected flow profit
is linear in the expectation v̂ij of the consumer’s value with a coefficient πF that
is decreasing in the cumulative value MµH of the firms in the consideration set.
Changes to data informativeness G or ad frequency A will affect flow profits through
the cumulative value. Firm j will internalize this when bidding in the ad auctions.
This feature is missing from most existing models which study the ad auctions in
isolation of the product market. We show in Section 5 that more informative data or
higher ad frequency typically lead to a decline in ad revenue once this is accounted
for but the opposite is true when it is not.

In a stationary equilibrium, each firm bids according to a function B that does
not vary over time.28 Let V (v̂ij) denote firm j’s continuation value for consumer i at

27≻FOSD denotes the usual stochastic order.
28This can be shown using Lemma 8 in Appendix A where we characterize the entire path of bid

functions Bt in any equilibrium taking as given only the path of income It.
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the time of auction entry. Because the auction is second-price, firm j’s optimal bid
is its gain in continuation value from winning. Thus, it must be that

(20) B(v̂ij) =
πF

λf + r
v̂ij +

λf
λf + r

λa
λa + r

V (v̂ij)︸ ︷︷ ︸
continuation value if win

− λa
λa + r

V (v̂ij)︸ ︷︷ ︸
continuation value if lose

.

The first term is the net present value of sales to the consumer while in the considera-
tion set which the firm exits at rate λf . It then enters an auction for consumer i again
at rate λa = NA/(F −M) which corresponds to the second term (see (9)). If the
firm loses the auction, it is instantly eligible to enter another one which corresponds
to the third term.

To derive a second condition relating B and V we apply Bellman’s principle of
optimality which yields

(21) V (v̂ij) =
λa

λa + r
V (v̂ij)︸ ︷︷ ︸

continuation value if lose

+Hc(v̂ij)
N−1︸ ︷︷ ︸

win probability

B(v̂ij)− E
[
B(v̂(1))|v̂ij > v̂(1)

]︸ ︷︷ ︸
expected payment


where v̂(1) ∼ (Hc)N−1. In (21), the probability that firm j wins the auction is the
probability that the other N − 1 bidders have lower expected values. The unique
solution to (20) and (21) for the the bidding function B is reported below.

Lemma 4. In a stationary equilibrium, the following hold:

1. Firm j bids

(22) B(v̂ij) = πF

∫ v̂ij

0

1

r + λf + λe(s)
ds

in an auction for consumer i where λe = λa(H
c)N−1.

2. The Poisson rate that firm j ∈ Ωc
it enters Ωit is λe(v̂ij).

3. The average ad price is

(23) πD = πF

∫ ∞

0

1−NHc(s)N−1 + (N − 1)Hc(s)N

r + λf + λe(s)
ds.

4. The net present value of a firm’s flow profits is

(24) ΠF =
I/σ − πDA

rF
.

The bid is increasing in the coefficient of firms’ flow profits πF and decreasing in
the rates that firms match with consumers λe. The latter is because the value of a
firm’s outside option is higher when λe is higher. If λe was 0 everywhere, the bid would
equal the firm’s value for the ad disregarding the outside option. Though platforms
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have a monopoly over their ad opportunities, they are in effective competition with
each other through the outside option. Thus, 1/λe is a measure of platforms’ market
power in the ad market.

In the model, it is strictly optimal for a firm to reduce its bid due to the outside
option only because there is variation in auction competition (and thus ad prices).
This is for the following reason. Suppose that a firm bids its value and wins at
a price close to its bid, thus earning little surplus. It could instead reduce its bid
so that it would have lost the auction. It then might have been able to enter an
auction in the near future where by chance competition was less stiff and thus win at
a price significantly below its bid. For some level of reduction, this deviation would
be profitable. The strategic bid reduction in anticipation of variation in auction
competition is known as “bid pacing” in online ad auctions where it plays a prominent
role. Variation in auction competition and bid pacing are empirically significant29 and
thus may be relevant to future empirical work.30

Given the bidding function, the expected auction revenue is computed by the
formula πD = E[B(v̂(2))] where v̂(2) is the second highest of N independent draws
from Hc. This gives (23). As the ad frequency approaches its upper limit A→ λfF ,
the match rate diverges λe → ∞ leading to a frictionless product market in the limit
and vanishing auction revenue πD → 0.

Given (23), firms’ profits ΠF follow from accounting: firms extract the income
of consumers but must pay labor costs as well as advertising costs. The total flow
advertising cost is πDA when aggregated across all firms.

Firms’ advertising costs are platforms’ ad revenues. Each platform k takes total ad
revenue πDA and platform demand xkt as given when selecting its investment strategy
to solve (11). Recall from (13) that interoperability ρ determines the elasticity of
demand xkt with respect to the platform’s quality qkt. Intuitively, if ρ is too high, a
stationary equilibrium can not exist because each platform would have an incentive
to deviate by investing more aggressively to steal more of the market. To ensure the
existence of a stationary equilibrium, we assume the following condition for the rest
of this paper.

Condition 2. ρ ≤ 2

However, even when Condition 2 is violated, we will identify the unique candidate
stationary equilibrium: all of our results will apply so long as equilibrium exists.

In Appendix A we derive platforms’ investment rates as a function of ad revenue
and primitives via the Maximum Principle.

Lemma 5. In a stationary equilibrium, the following hold:

29See https://www.facebook.com/business/help/2024547657774300 which states that “the
difference between the competitive bid on this day and the average competitive bid for the pre-
vious 3 days...is considered significant if it is over 20%.” See also https://www.facebook.com/

business/help/1754368491258883?id=561906377587030 which states that “Pacing helps us
deliver your ads in a way that accounts for that variation so you can meet your cost goals...”

30See Section 2 for a discussion of the recent empirical literature that studies ad auction level
data. The structural model of this paper may be useful for counterfactual and welfare analysis.
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1. Each platforms invests at the constant rate

(25) LD =
φδπDA(ρ− 1)

D (r + δ)
.

2. The net present value of a platform’s flow profits is

(26) ΠD =
πDA−DLD

rD
.

As seen in (25), investment is increasing in ad revenue πDA and interoperability
ρ which together determine the benefit of investment to a platform: the amount of
revenue the platform can steal from its rivals by improving its quality.

All that is left is to compute income I. Let π̂D = πD/I be the average ad price
per unit of income. From (23),

(27) π̂D =
1

σMµH

∫ ∞

0

1−NHc(s)N−1 + (N − 1)Hc(s)N

r + λf + λe(s)
ds.

Then, rewriting (25), we have

(28) LD =
φδπ̂DA(ρ− 1)

D (r + δ)
I.

Investment is increasing in income because ad revenue is higher when income is higher.
Given investment, income must equal

(29) I =
σ

σ − 1
(L−DLD).

In (29), the right-hand side is the total revenue of firms: recall that σ
σ−1

is the price
of output and L − DLD is total production by labor market clearing. Income must
equal this because all costs are labor costs and platforms extract all of their revenues
from firms. Income is decreasing in investment since investment diverts resources
away from production.

The solution of the linear system (28), (29) determines the unique stationary
equilibrium levels of income and investment as represented graphically in Figure 3.
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Figure 3: Determination of the stationary equilibrium levels of investment and income.

This completes the derivation of the stationary equilibrium. Theorem 1 summa-
rizes its properties. Each subsequent part of the theorem describes objects which are
defined explicitly using only objects from earlier parts.

Theorem 1. In the unique stationary equilibrium:

1. M , the measure of firms in Ωit, and H, Hc, the CDFs of expected values in Ωit

and Ωc
it respectively are as in Lemma 3.

2. Platform investment is

(30) LD =
φδ σ

σ−1
π̂DA(ρ− 1)

r + δ + φδ σ
σ−1

π̂DA(ρ− 1)

L

D
.

where π̂D is the average ad price per unit of income defined by (27).

3. Platform quality is q = Lφ
D/δ.

4. Income I is given by (29).

5. Product demands {cijt}, platform demands {xikt}, prices {pjt}, and the bidding
function B are as in Lemmas 1, 2, and 4.

6. Welfare is u(C,X)/r where C = (L − DLD)(MµH)
1

σ−1 and X = D
1

ρ−1 q are
aggregate product and platform consumption respectively.

As seen in Part 6, welfare depends on only investment LD and the cumulative
value MµH . Given investment, it does not depend on any other moments of the
CDF H. Higher investment LD leads to higher aggregate platform consumption X
but lower aggregate product consumption C since less labor is used for production.
When the cumulative value MµH is higher, each unit of production yields higher
aggregate product consumption.
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5. Comparative Statics

Theorem 1 is a nearly explicit characterization of the stationary equilibrium. It
shows how various parameters such as data informativeness or interoperability de-
termine equilibrium outcomes. With this in hand, we are ready to begin thinking
about some important questions. What will be the long run effects of policies such
as GDPR or CCPA which degrade data informativeness by banning data tracking
without user consent? What about policies such as the DMA or ACCESS Act which
enforce platform interoperability?31 Will these policies necessarily improve welfare?
We will answer these questions, within the model, next and in the process, uncover
some compelling economic mechanisms. Our answers will come in the form of com-
parative statics with respect to data informativeness G and interoperability ρ. We
will also derive comparative statics with respect to ad frequency A. These latter
comparative statics are intrinsically interesting. However, we also use them, at the
end of the section, to argue that the main comparative statics with respect to G and
ρ persist when A is endogenous (in a manner to be described later) and in some cases,
are strengthened.

Data Informativeness

When data is more informative, firms are more likely to win auctions for con-
sumers who value their products highly. As a result, the cumulative value MµH in
consideration sets increases by Lemma 10 in Appendix B. It is difficult to prove other
global monotone comparative statics with respect to data informativeness. However,
it turns out that ad revenue is maximal when data is uninformative in that G places
all of its mass on the mean of the prior P .32 This in turn implies that investment is
maximal and aggregate product consumption is minimal when data is uninformative.

These results may seem counterintuitive. Existing results in the literature show
that more informative data typically leads to higher ad revenue (Board, 2009; Berge-
mann, Bonatti, and Gan, 2022). However, these papers take bidders’ values for the
auctioned item as given. We instead assume that bidders’ values for ads are the
endogenous outcome of competition in the product market.

For intuition, consider the equilibrium bid of firm j reproduced below:

B(v̂ij) = πF

∫ v̂ij

0

1

r + λf + λe(s)
ds.

If we ignore the effect of the outside option by setting λe = 0 then we have

(31) πF
v̂ij

r + λf
=

I

σMµH

v̂ij
r + λf

.

31GDPR: General Data Privacy Regulation; CCPA: California Consumer Privacy Act; DMA: Dig-
ital Markets Act; ACCESS Act: Augmenting Compatibility and Competition by Enabling Service
Switching Act. The ACCESS Act is in the legislative process but the others are laws.

32Strictly speaking, this does not fall within the baseline model because we assumed G was con-
tinuous to avoid ties in the auctions. But it is clear how the analysis extends if we assume ties are
broken uniformly at random. Proposition 1 can also be understood in the sense of a limit.
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This is firm j’s value for the ad if there were no future auctions. In the settings
studied in the previously referenced literature, more informative data leads to higher
revenue because it raises the available surplus which the auctioneer can extract (some
fraction of). Namely, due to convexity, the expectation of the maximum of bidders’
values is higher. But, in our setting, the expectation of the maximum of bidders’
values for the ad (31) is

I

σM(r + λf )

for any data informativeness G. This is because the winning bidder has an expected
value which is on average no higher than those of the firms already in the consideration
set. When data is more informative, the expectation of the maximum v̂ij increases,
but so does competition in the product market which causes firms’ flow profits to
decline since µH rises. Thus there is no increase in bidder surplus. Rather, an
increase in data informativeness typically leads to higher information rents and also
variation in auction competition which exacerbates bid pacing (recall that this second
effect appears in the equilibrium bid through λe). As a result, ad revenue typically
declines.

When data is uninformative, there is no information rent and there is no variation
in auction competition. Thus, ad revenue is maximal.

Proposition 1. If data G is uninformative, then among all feasible data:

1. Aggregate product consumption C is minimal.

2. Ad revenue πDA is maximal.

3. Investment LD is maximal.

A common concern for regulators is that banning data tracking without user
consent will lead to a reduction in ad revenue and thus investment by platforms.
Proposition 1 shows that this is not necessarily the case and that the opposite may
often happen.

Figure 4 plots ad revenue as a function of data informativeness for a numerically
computed example when G is uniform on [.5 − ϵ, .5 + ϵ] as ϵ ranges from 0 to .5.
Ad revenues decline monotonically over the entire interval: platforms are better off if
data is less informative. If they could collude, they would prefer to provide no data.
Yet, it is often said that data is integral to the profitability of platforms. Indeed,
in the model, more informative data is typically valuable to the individual platform.
We can compute its value.

To illustrate, continue to assume that G is uniform on [.5− ϵ, .5+ ϵ]. Now take an
individual platform k and garble its data such that firm j’s expectation given platform
k’s data is now ṽij ∼ G̃ where G̃ is uniform on [.5− ϵ̃, .5 + ϵ̃] with ϵ̃ < ϵ. The explicit
construction of ṽij from vij is in Appendix B. Since platform k is infinitessimal, the
bidding strategy B on all other platforms is unchanged. For this example, one can
show that the optimal bid on platform k is E[B(v̂ij)|ṽij, j ∈ Ωc

it]. This is the expected
gain in continuation value from winning the auction conditional on the signal ṽij and
the knowledge that the firm is outside the consideration set.
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Figure 4: The average ad price πD is plotted as against data informativenessG = Uniform[.5−ϵ, .5+ϵ]
as ϵ ranges from 0 to .5 for parameter values F = .5, A = .1, λf = 1, N = 5, σ = 3, ρ = 1.5, r = .1,
φ = .5, δ = .1, L = 1, where D can be any positive value.

Figure 5 plots platform k’s average ad price as a function of its data informative-
ness as ϵ̃ ranges from 0 to .5 when ϵ is .5.
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Figure 5: Platform k’s average ad price plotted against its data informativeness G̃ = Uniform[.5 −
ϵ̃, .5 + ϵ̃] as ϵ̃ ranges from 0 to .5 when the other platforms have data informativeness G =
Uniform[0, 1], all other parameters are as in Figure 4, and for the garbling described in Appendix B.

As data informativeness improves, platform k’s average ad price increases over the
entire interval.

Figure 6 plots platform k’s average ad price as a function of the data informative-
ness of its rivals as ϵ ranges from .25 to .5 when ϵ̃ is .25.
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Figure 6: Platform k’s average ad price is plotted against the data informativeness of the other
platforms G = Uniform[.5−ϵ, .5+ϵ] as ϵ ranges from .25 to .5 when platform k’s data informativeness
is G = Uniform[.25, .75], all other parameters are as in Figure 4, and for the garbling described in
Appendix B.

As data informativeness improves, the average ad price decreases over the entire
interval. This effect occurs because of firms’ outside options to wait to bid in an
auction with more informative data in the future. Thus, data informativeness has
competitive value.

These results suggest that the model may be able to match, at least qualitatively,
certain empirical trends. In the US, the total advertising expenditure as a fraction of
GDP has been relatively stable over time at roughly 1.5 percent with some sources
saying that it has been declining (Silk, Berndt, et al., 2021). This is despite the intro-
duction of digital platforms with data and ad targeting capabilities that traditional
media do not have (or, in light of Proposition 1, perhaps because of it). This suggests
that the rapid growth in digital advertising is because digital platforms have stolen
business away from traditional media perhaps because of these capabilities as hinted
at by Figure 6. In Section 7 we extend the model to allow for two groups of plat-
forms, each of positive measure, which differ in terms of their data. If we interpret
traditional media as platforms with less informative data, this extended model can
reproduce these trends for a wide variety of parameters.

Interoperability

When interoperability is higher, attention is more sensitive to quality and so
platforms can more easily steal it from each other. This leads them to invest more
aggressively. This implies that less labor is allocated to production which leads to a
decline in aggregate product consumption. Less production also implies that firms’
revenues are lower and so they bid less in the ad auctions leading to a decline in ad
revenue. Proposition 2 summarizes.
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Proposition 2. If interoperability ρ increases then:

1. Aggregate product consumption C decreases.

2. Ad revenue πDA decreases.

3. Investment LD increases.

Thus, consistent with intuition in regulatory discussion, mandating interoperabil-
ity can promote competition among platforms and lead to more investment (OECD,
2021). However, it may also have the unintended consequence of leading to worse
aggregate product consumption. In the baseline model, the mechanism for this op-
erates through the labor market. When we endogenize ad frequency at the end of
this section, we will see that there is a second important channel: when platforms
are more interoperable, they set lower ad frequencies which further reduces aggregate
product consumption. To show this we must first present some comparative statics
with respect to ad frequency.

Ad Frequency

When ad frequency is higher, consumers discover more firms and so the size of
their consideration sets increases M = A/λf . However, the average value µH of the
firms in the set decreases. In fact, both H and Hc decrease in ≻FOSD as shown in
Lemma 10 of Appendix B. The intuition is that firms which remain outside the set
are more likely to have participated in more auctions and lost and thus have lower
expected values. As a result, the firms inside the set are also more likely to have lower
expected values since they won auctions against competition which is on average less
stiff. Though µH declines, we show in Appendix B that overall, the growth in size
dominates in that the cumulative value MµH rises. This serves to increase aggregate

product consumption which recall is C = (L − DLD)(MµH)
1

σ−1 . Further, it turns
out that ad revenue also declines leading to a decline in investment and a rise in
production which again serves to increase aggregate product consumption.

To understand the decline in ad revenue, recall that

πDA = πFE

[∫ v(2)

0

1

r + λf + λe(s)
ds

]
A

where v(2) is the second highest of N independent draws from Hc, πF = I/(σMµH),
and λe = λa (H

c)N−1. Though a larger quantity of ads are sold, firms’ flow profits
decline since the size of consideration sets increases. If the average value µH remained
constant, these effects would cancel each other out but it decreases which serves to
increase ad revenue. However, Hc decreases in ≻FOSD which causes the distribution
of v(2) to decrease in ≻FOSD and match rates λe to increase. This serves to decrease
ad revenue. We show in Appendix B that these latter effects dominate.

Proposition 3. If ad frequency A increases then:
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1. Aggregate product consumption C increases.

2. Ad revenue πDA decreases.

3. Investment LD decreases.

In reality, one might wonder if changes to data informativeness or interoperability
will also affect platforms’ optimal choices of ad frequency, and thus whether the
comparative statics in Propositions 1 or 2 are robust to this.

What if Ad Frequency is Endogenous?

Suppose that the ad frequencyA is endogenous as follows. Suppose that consumers
dislike viewing ads so that the effective quality level of platform k is now ν(Akt)qkt
where ν : R+ → (0, 1] is a decreasing function of Akt, the ad frequency set by platform
k. Then the attention that platform k will receive is

xkt =
[ν(Akt)qkt]

ρ−1∫
D [ν(Alt)qlt]

ρ−1 dl
.

If each platform k selects Akt to maximize its flow profits, then

A = argmax
Akt≤A

πDAxkt = argmax
Akt≤A

Aktν(Akt)
ρ−1

where A is some exogenous maximal ad frequency. Thus, A is a function of just ρ
and ν. Moreover, it is weakly decreasing in ρ. Using this result, Proposition 3 implies
that Proposition 1 and comparative statics 1 and 3 of Proposition 2 continue to hold
when A is endogenous (but it is unclear whether comparative static 2 does). Thus,
regulators should take into account that while enforcing interoperability, may raise
investment, it may also lead to lower ad frequency and thus worse aggregate product
consumption.

Discussion

We wrap up this section with three important comments. First, the compara-
tive statics with respect to ad frequency and data informativeness depend on the
endogeneity of the product market. Second, they rely on the change in steady state
consideration sets which takes place over time. As a result, they should be interpreted
as comparisons of long run outcomes. Intuition suggests that these results might flip
in the short run. Third, Propositions 1–3 show that parameter changes typically cause
aggregate product consumption and investment to move in opposing directions. In
general, parameter changes will have nonmonotone effects on welfare. To understand
the impact of policies on welfare as a whole requires further analysis. In the next
section, we investigate how the equilibrium compares to a first best benchmark. As a
byproduct of the analysis, we will derive monotone comparative statics with respect
to welfare under some conditions.
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6. Stationary Equilibrium Versus First Best

This section compares the stationary equilibrium to a first best benchmark. The
analysis is done for the special case when consumers’ utilities are Cobb-Douglas. It
turns out that investment by platforms may be either too high or too low relative
to first best. We derive a simple condition that can be used to assess which is the
case. We briefly discuss how the results extend to other utility functions later in the
section.

Preliminaries

Assume that the flow utility of consumer i is

u(Cit, Xit) = C1−τ
it Xτ

it

where τ ∈ [0, 1]. We can give τ the following interpretation. Suppose that consumer
i must devote attention in order to consume the products that are purchased.33 Let
τ̃ denote the fraction of attention devoted to platform use with the residual 1 − τ̃
devoted to product consumption.34 Suppose consumption of products and platforms
occurs at a constant rate per unit of attention. If consumer i selects τ̃ to maximize
flow utility

[(1− τ̃)Cit]
1−τ [τ̃Xit]

τ ,

then we have τ̃ = τ . The resulting flow utility is just a constant scaling of u. Thus,
we can interpret τ as the fraction of attention spent on platforms. This extension
with endogenous attention reduces to the baseline model except with Aτ in place of
A (since now only τ units of attention are spent viewing ads). For the rest of this
section, we will go by this interpretation. Otherwise, one might suspect that the
result that investment can be either too high or too low hinges on the assumption
that consumers can not shift their attention away from platforms to do other things.

First Best Benchmark

The social planner has only one decision to make which is how much labor to
allocate to investment versus production. The planner can not affect the ad frequency,
data, or any other aspect of the matching technology.35 This is without loss since
first best investment will turn out to not depend on any of these properties.

33For example, suppose that one of the products is a guitar, purchased or rented at the “start of
time t”. To enjoy the guitar, consumer i must devote attention to playing it.

34Attention should be thought of as coming from leisure since we assume labor is supplied inelas-
tically. In reality, not all products require leisure attention for consumption. For instance, wearing
a pair of shoes. In Appendix C we extend the model to include two consumption sectors: one which
requires leisure attention and one which does not. This comes at no cost to tractability and may be
useful for future empirical work.

35It turns out that an equivalent interpretation is that the planner can only set the demand by
platforms for labor with all other aspects of the economy determined as in equilibrium.
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Since the planner seeks to maximize welfare, it is optimal to invest the same
amount in each platform and to produce the same amount of each product. Using
this fact, the planner’s problem is

(32) max
{LDt}t≥0

∫ ∞

0

e−rtu(Ct, Xt) dt

such that
Ct = (L−DLDt)(MtµHt)

1
σ−1 ,

Mt, Ht solve (5)–(7),

Xt = D
1

ρ−1 qt,

dqt = (Lφ
Dt − δqt) dt

given initial quality q0.
We will only analyze the steady state solution to the planner’s problem which is

a constant rate of investment Lfb
D that solves (32) when M0, H0, and q0 are at their

steady state levels.

Lemma 6. The steady state investment Lfb
D chosen by the planner is

(33) Lfb
D =

φδ τ
1−τ

r + δ + φδ τ
1−τ

L

D
.

We derive Lemma 6 via Maximum Principle in Appendix C. There, we also show,
under some mild technical conditions, that (33) is the solution to a version of the plan-
ner’s problem when u is arbitrary provided the planner takes the cumulative value
MtµHt as given. This is because the consumer equates the marginal utility for prod-
uct consumption with that of platform consumption when selecting attention. The
social planner therefore faces essentially the same trade-offs for any utility function.
However, when u is arbitrary, it is with loss to take MtµHt as given. The planner
can affect it with investment since the consumer’s choice of attention τ̃ will generally
depend on platforms’ quality levels and τ̃ affects the rate at which the consumer views
ads. We conjecture that if the planner were to internalize this, (33) would be a lower
bound on first best investment.36

Comparison of Stationary Equilibrium and First Best

Comparing equilibrium investment (30) to first best (33) yields Theorem 2.

Theorem 2. If, in a stationary equilibrium,

(34)
σ

σ − 1
π̂DAτ(ρ− 1)− τ

1− τ


< 0, then investment is too low.
= 0, then investment is efficient.
> 0, then investment is too high.

Given τ , the deviation LD − Lfb
D is increasing in σ

σ−1
π̂DAτ(ρ− 1)− τ

1−τ
.

36This conjecture assumes u is submodular so that the total attention spent on platforms is
increasing in platform quality.
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Equilibrium investment is generally inefficient because platforms’ investment in-
centives are based on how much ad revenue they can steal from rivals and not on the
surplus that they generate for consumers. They do not appropriate any of this surplus
since their services are free. By Theorem 3, it suffices to use only the expression in
(34) to assess whether policies that affect data informativeness, interoperability, or
ad frequency will bring investment closer to or farther from first best.

The first term in (34) is σ
σ−1

π̂DAτ(ρ−1) which comes from equilibrium investment.
σ

σ−1
is the markup. When it is higher, firms earn higher revenues and so income is

higher which raises ad revenue. π̂DAτ is the ad revenue per unit of income. It is
related to the strength of firms’ business-stealing incentives. Interestingly, platforms
appropriate ad revenues from firms even though they do not generate any surplus
for them: advertising only shifts demand among firms. Firms individually value
advertising because it allows them to steal business from their rivals. These business-
stealing incentives are actually lower when τ is higher. This is because the higher ad
frequency Aτ leads firms outside consideration sets to have lower expected values but
increases the cumulative value of firms inside them. Thus the fraction of flow profits
that a firm can steal when enters a consideration set decreases. In fact, recall from
Proposition 3 that ad revenue is decreasing in ad frequency Aτ (as is the ad revenue
per unit of income π̂DAτ). Thus, when τ is higher and consumers value platform
quality more, equilibrium investment is actually lower which contrasts sharply with
first best. The parameter ρ− 1 appears because it is the elasticity of attention with
respect to quality. When it is higher, platforms can steal attention from each other
more easily. To sum up, equilibrium investment depends on the extent of firms’ market
power and the business-stealing externalities among firms and among platforms.

These are irrelevant to the planner who seeks to maximize welfare. The second
term in (34) is τ

1−τ
which comes from first best investment. τ

1−τ
determines the ratio,

for consumers, of the marginal benefit of investment resulting from higher quality
platforms to the marginal cost resulting from lower product consumption.

One might wonder if equilibrium investment is always too high or always too low.

Corollary 2.1. Equilibrium investment may be either too high or too low relative
to first best depending on model parameters.

Corollary 2.1 can be proven by inspecting condition (34) in Theorem 2. As τ tends
to 1, τ

1−τ
tends to ∞ while π̂DAτ converges to a finite number. Thus, investment is

too low. On the other hand, when τ tends to 0, τ
1−τ

tends to 0 while π̂DAτ increases.
Thus, investment is too high.

In either case, a tax or subsidy on auction revenues can bring equilibrium invest-
ment to first best.

Corollary 2.2. A proportional tax or subsidy on auction revenues that is financed
by or redistributed to consumers and is equal to

1

1− τ

σ − 1

σ

1

π̂DA

1

ρ− 1

achieves first best.
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In the absence of a tax or subsidy, there are other policies that can bring invest-
ment closer to first best.

Corollary 2.3. The following comparative statics hold in stationary equilibrium:

1. An increase in interoperability ρ causes investment to be farther from (closer
to) first best when it is too high (too low).

2. An increase in ad frequency A causes investment to be closer to (farther from)
first best when it is too high (too low).

3. An increase in data informativeness G can cause investment to be closer to
(farther from) first best when it is too high (too low).

We prove Corollary 2.3 by combining Theorem 2 with the earlier Propositions
1–3. Since changes to ρ, A, or G will also affect either the cumulative value MµH

or the gains to variety D
1

ρ−1 , the above comparative statics are not equivalent to
comparative statics on welfare. However, there are cases when a parameter change
both leads investment to be closer to first best and increases match value or gains to
variety. In these cases we can infer the impact on welfare.

Corollary 2.4. Suppose that welfare under the social planner exceeds that of sta-
tionary equilibrium. Then the following comparative statics hold in stationary equlib-
rium:

1. If investment is too high, banning all data so that G is uninformative reduces
welfare.

2. If investment is too high, an increase in ad frequency A raises welfare.

3. If investment is too low and D < 1, an increase in interoperability ρ raises
welfare.

Corollary 2.4 is almost immediate since welfare is a single-peaked function of in-
vestment LD. Note that it is necessary to assume that welfare under the social planner
is higher than in stationary equilibrium. This is because the social planner’s economy
starts with different initial conditions than those of stationary equilibrium. In terms
of primitives, welfare under the planner is always higher provided the discount rate r
is sufficiently low. Corollary 2.4 concludes the analysis of the baseline model. It pro-
vides some conditions when the welfare impacts of various policy-relevant parameter
changes can be signed analytically. These results account for the welfare impact of
platforms from both matching firms with consumers and providing quality services.
The rest of this paper explores several important extensions of the baseline model.

7. Platforms with Different Data

So far, we have assumed that all platforms have the same data, except for possibly
a measure zero set. This section extends the model to allow for two groups of plat-
forms, each of positive measure, which have distinct data. This extension is especially
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relevant because policies that affect data informativeness will impact platforms which
are inherently data-rich differently from those which are not. For instance, in 2024,
Google will voluntarily remove third-party cookies on its Chrome web browser, an
event referred to as “Chrome-ageddon” by many in the digital advertising industry.
Some argue that this is in Google’s own interests because it is less reliant on cookies
for its ad business than other platforms such as Facebook. We will give a formal basis
for these concerns.

The main prediction of this section is that platforms with more informative data
will have larger market shares, higher ad prices, and also invest more. This is not very
surprising. The contribution is to show that it can be captured by a formal model.
Doing so opens the door to some interesting questions: How much of a competitive
advantage does a platform with better data have? What will happen if platforms
are forced to share their data? Because of the model’s generality, though it may
be possible, with difficulty, to obtain analytical results, it seems sensible to explore
these questions numerically. As a result, the qualitative results of this section are
illustrated by a numerical example.

Setup

There are now two groups of platforms l ∈ {1, 2}. The measure of platforms in
group l is ml. As before, vij denotes consumer i’s value for firm j’s product. Firm j
receives a signal ζlij which may be informative of vij when it bids on a platform in
group l. We assume that (vij, ζ1ij, ζ2ij) ∼ P on R+ × R2 independently across i and
j and that vij has a finite mean. Let G denote the joint CDF of the signals ζ1ij, ζ2ij,
derived from P . We assume that G has a continuous density g.

To ensure that stationary equilibrium bidding strategies are monotone in signal
realizations, we assume the following stochastic monotonicity condition.

Condition 3. P is such that37

1. the conditional distribution of ζ−lij given ζlij increases in ≻FOSD when ζlij in-
creases for each l ∈ {1, 2}.

2. the conditional expectation E [vij|ζ1ij, ζ2ij] is nondecreasing in both ζ1ij and ζ2ij
and increasing in at least one of ζ1ij or ζ2ij.

Thus, a high realization of either signal is always good news to a firm. The rest of
the setup is as in the baseline model of Section 3. We continue to assume Conditions
1 and 2 throughout.

Computing a Stationary Equilibrium

We now give an informal sketch of the procedure to compute a stationary equi-
librium. Formal statements of results and omitted proofs are in Appendix D. We
start by observing that consumers’ demands as well as firms’ prices and flow profits

37With abuse of notation, we use the same symbols for both the signals and their realizations.
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remain as in Lemmas 1 and 2 of the baseline model. The evolution of the size of
consideration sets Mt also remains as in (5) with a steady state level M = A/λf .

Let ht denote the PDF of signals in consideration sets. Also, let Hc
t denote the

CDF and hct the PDF of signals outside of consideration sets. Since the bidder with
the highest group l signal wins in each group l auction, it follows that

(35)

d
[
Mtht(ζ)

]
= A

[
x1tNH

c
t (ζ1,∞)N−1hct(ζ) + x2tNH

c
t (∞, ζ2)

N−1hct(ζ) − ht(ζ)

]
dt

at each ζ = (ζ1, ζ2) ∈ R2, by the ELLN. Above, with abuse of notation, xlt denotes
the total attention share of group l platforms. The first two terms in brackets sum
to equal the distribution of the inflowing signals. A fraction xlt of this inflow is from
the winners in the group l auctions. The last term in brackets is the distribution
of the outflowing firms which are forgotten uniformly at random. To derive the
steady state h, first fix an initial guess of x1, the stationary equilibrium level of
x1t. Then set x1t = x1, x2t = 1 − x1, Mt = M and use the accounting identing
Mtht + (F −Mt)h

c
t = Fg to iterate (35) forward to convergence at each point ζ in a

fine grid on a region that contains almost all of G’s mass.
With M and h in hand, we next compute the bidding strategies. First, some

notation. As in the baseline model, let

µH =

∫
R2

E[vij|ζ]h(ζ) dζ

be the average value of firms in consideration sets and let

πF =
I

σMµH

be the coefficient on firms’ flow profits. Note that we have not yet computed income
I. Finally, let

O1(·) = Hc(·,∞)N−1

and
O2(·) = Hc(∞, ·)N−1

be the probabilities that firm j wins an auction if it takes place on a platform in
group 1 and in group 2, respectively.

In a stationary equilibrium, bidding strategies are determined by a pair of func-
tions B = (B1, B2). Bl : R ⇒ R+ maps firm j’s group l signal ζlij to its bid Bl(ζlij)
in a group l auction for consumer i. To derive B, let ζij = (ζ1ij, ζ2ij) and let V (ζij)
be firm j’s continuation value for consumer i at the time of auction entry if it knows
ζij but does not know which platform hosts the auction. Then, analogous to (20),

(36) Bl(ζlij) = E
[

πF
λf + r

vij −
r

λf + r

λa
λa + r

V (ζij)
∣∣∣ζlij, j ∈ Ωc

it

]
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which is the gain in continuation value from winning the group l auction. As before,
λa = NA/(F −M) is the rate of auction entry. The expectation is conditional on
only the group l signal and the fact that the firm is outside the consideration set since
this is all that the firm knows when it bids.

Given B, V must satisfy,

(37) V (ζij) =
2∑

l=1

xlOl(ζlij)

[
πF

λf + r
E[vij|ζij] +

λf
λf + r

λa
λa + r

V ∗(ζij)

]
− xl

[∫ ζlij

−∞
Bl(s) dOl(s) +

(
1−Ol(ζlij)

) λa
λa + r

V (ζij)

]
The first term in brackets is the discounted expected flow profit that firm j earns from
entering Ωit. It exits at rate λf and subsequently enters another auction at rate λa
which corresponds to the second term. On the second line, the first term in brackets
is the expected payment in a group l auction. The last term is the continuation
value in the event that firm j loses the auction, weighted by the probability that this
happens.

Using (36) and (37), we can show that B is the fixed point of an operator Λ :=
(Λ1,Λ2). Λl : C

+ (R)2 ⇒ C+ (R) takes in a pair of functions f = (f1, f2) and outputs

(38) Λl(f)(·) = E

[
πFvij + λa

∑2
z=1 xz

∫ ζzij
−∞ fz(s) dOz(s)

λf + r + λa
∑2

z=1 xzOz(ζzij)

∣∣∣∣ζlij = ·, j ∈ Ωc
it

]
.38

In Appendix D, we show that Λ is a contraction with modulus λa/(λa + λf + r).
If we knew income I (which appears in πF), we could iterate Λ starting from some
initial guess to deriveB. By Lemma 13 in Appendix D, the resulting bidding functions
would be increasing as needed for (35) to apply. Though we do not know income, the
model is homothetic in it. We therefore proceed by first computing the bid functions
per unit of income by iterating Λ with I = 1. From these, we obtain the platforms’
average ad prices per-unit of income π̂Dl, l ∈ {1, 2}. Later, we compute the actual
income I in terms of π̂Dl, l ∈ {1, 2} and from there, the average ad prices πDl = Iπ̂Dl,
l ∈ {1, 2}.

Given πDl, each platform in group l solves the analog of (11) (with πDl in place of
πD) by investing at a constant rate LDl. In Appendix D, we derive that

(39) LDl =
φδπDlA (ρ− 1)

r + δ

1

ml +m−l

(
πD−l

πDl

) φ(ρ−1)
1−φ(ρ−1)

using the Maximum Principle. Together with the condition that income equals the
total of firms’ revenues I = σ

σ−1
(L−

∑2
l=1mlLDl), (39) implies

(40) I = L

1 + φδA (ρ− 1)

r + δ

mlπ̂Dl +m−l

(
π̂D−l

π̂Dl

) φ(ρ−1)
1−φ(ρ−1)

π̂D−l

ml +m−l

(
π̂D−l

π̂Dl

) φ(ρ−1)
1−φ(ρ−1)


−1

.

38C+ (R) denotes the set of nonnegative continuous functions on R.
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From (39) we also have the quality level

ql =
Lφ
Dl

δ

and attention share

(41) xl =
mlq

ρ−1
l

mlq
ρ−1
l +m−lq

ρ−1
−l

=
ml

(
π̂Dl

π̂D−l

) φ(ρ−1)
1−φ(ρ−1)

ml

(
π̂Dl

π̂D−l

) φ(ρ−1)
1−φ(ρ−1)

+m−l

of group l platforms. (41) gives x1 as a function of π̂D1/π̂D2. Recall that the latter is
itself a function of the initial guess of x1. To finish the equilibrium computation, we
adjust the initial guess until (41) is satisfied. While we have not proven the uniqueness
of an x1 such that this holds, it is simple to check numerically. If platforms in group 1
have more informative data, then π̂D1/π̂D2 is typically decreasing in the initial guess
of x1 and so the stationary equilibrium is unique as in the numerical example we
consider later.

From here, it is immediate to compute welfare u(C,X)/r using

C =

(
L−

2∑
l=1

mlLDl

)
(MµH)

1
σ−1

and

X =

(
2∑

l=1

mlq
ρ−1
ρ

l

) ρ
ρ−1

.

In summary, the computational procedure is as follows:

1. Guess a value of x1.

2. Iterate (35) forward to compute h.

3. Iterate (38) to compute per-unit income bid functions and average ad prices.

4. Check whether the guess of x1 aligns with (41).

5. If yes, done. If not, repeat with a revised guess.

All other equilibrium quantities are characterized in closed form in terms of the output
of this algorithm and primitives. Though inefficient, one can simply run steps 2-4 for
each guess of x1 in a fine grid on [0, 1]. This is relatively fast and allows one to solve
for all stationary equilibria and in particular, check uniqueness.

Remark. In Appendix D, we analyze an especially tractable special case where
group 2 platforms have uninformative data and may therefore better represent tra-
ditional media than digital media.39 As in the baseline model, H can be computed

39Strictly speaking, G does not have a density in this case but essentially the same analysis goes
through. The only difference is that firms may tie in an auction with positive probability. We assume
uniform tie breaking.
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pointwise by solving for the unique nonnegative root of a polynomial. We are also
able to compute B1 and B2 as explicit functions of H and x1.

Numerical Example

In this example, values are log-normal: each vij = eZij where Zij ∼ N(0, .5). The
signal in group 1 is perfectly informative: ζ1ij = Zij. The signal in group 2 is noisy:
ζ2ij = Zij + ϵij where ϵij ∼ N(0, 2). This implicitly defines the distribution P . All
other parameters are as in Table 1.

Table 1: Parameter Values

Description Parameter Value

measure of group 1 platforms m1 .05
measure of group 2 platforms m2 .05
ad frequency A .01
forget rate λf 1
measure of firms F .1
number of bidders N 20
investment technology φ .75
quality depreciation rate δ .1
product substitutability σ 3
platform interoperability ρ 1.6
labor supply L 1

We now describe the numerically computed stationary equilibrium for these pa-
rameters. Figure 7 plots the relationships that determine group 1’s attention share
x1 and the ratio of the ad prices πD1/πD2 in equilibrium.

The red curve plots (41) which expresses x1 explicitly as a function of πD1/πD2.
The black curve plots the computed value of πD1/πD2 as a function of the initial guess
of x1. Since these curves intersect only once, the stationary equilibrium is unique.

For the black curve, πD1/πD2 declines from around 1.51 to around 1.43 as x1
increases from 0 to 1. This is for the most part because the distribution of group 1
signals outside of consideration sets worsens because of the greater positive selection
into consideration sets. As a result, bidders in group 1 auctions are more likely to
have lower group 1 signals. On the flip side, since x2 is lower, there is less positive
selection of group 2 signals into consideration sets. As a result, bidders in group 2
are more likely to have higher signals. Overall, πD1/πD2 decreases.

The red curve is increasing because group 1’s investment is higher relative to group
2’s investment when πD1/πD2 is higher. From the intersection of the two curves we
see that, in stationary equilibrium, group 1 platforms have around 57.5 percent of the
attention and an average ad price that is around 1.44 times as high as that of group
2 platforms.
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Figure 7: Determination of the unique stationary equilibrium

By inspecting (41), we see that the red curve increases at a slower rate when the
investment technology φ or interoperability ρ is higher. The black line, however, does
not depend on either φ or ρ. This yields the following comparative static: an increase
in φ or ρ leads to to a decrease in x1 and an increase in πD1/πD2. Thus, having better
data is more advantageous when it comes to ad prices but less advantageous when it
comes to attention share when interoperability is higher or the investment technology
is better.

Below, Figure 8 plots the bidding functions of the two groups. We plot them
for the interval −2 to 2. This is around 2.8 standard deviations above and below
the mean for group 1 signals and around 1.3 standard deviations above and below
the mean for group 2 signals.40 As one might expect, for low signal realizations, the
group 1 bids are below the group 2 bids while for the high realizations the opposite
is true. This is because group 1 signals are more informative and so bids should be
more sensitive to group 1 signals.

Table 2 reports the remaining equilibrium properties of interest in column 3. Col-
umn 4 reports their counterparts in the case when all platforms have fully informative
data (which fits into the baseline model setting). Going from column 3 to column
4 captures the effects of a policy that forces platforms to share data. Alternatively,
if we start in the regime when all platforms have fully informative data, going from
column 4 to column 3 captures the effects of a policy that degrades the data of only
some platforms.

When platforms are forced to share data, product consumption improves from
around .157 to around .168.41 This is both because the average value in consideration

40We numerically computed the bidding functions for signal realizations out to 5 standard devia-
tions from the mean.

41The expectation of the value vij under the prior is approximately 1.284.
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Table 2: Separate Data Versus Shared Data

Description Variable Separate Data Shared Data

agg. product consumption C .157 .168
agg. platform consumption X .0115 .0112
avg. value in consideration sets µH 2.687 3.084
group 1 investment LD1 .600 .422
group 2 investment LD2 .310 .422
group 1 avg. ad price πD1 23.129 18.783
group 2 avg. ad price πD2 16.050 18.783

sets increases and because total investment declines. Though group 1 investment de-
clines, group 2 investment increases. Overall, platform consumption decreases from
around .0115 to .0112, a small amount. This is so even though consumers prefer a
more even distribution of platform quality and the investment technology has de-
creasing returns. Lastly, we see that the group 1 ad price declines while that of group
2 increases. Thus, data informativeness has competitive value, which the model can
quantify, as we had highlighted already in Section 5.

8. Discussion of Model Extensions

This section summarizes the results of some further extensions of the baseline
model of Section 3. The model is able to tractably accommodate several additional
actors that may be of first-order relevance. As described below, many of the main
results continue to hold in each of these extensions.
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Ad Frequency

In the first extension, described already at the end of Section 5, each platform sets
its own ad frequency in light of nuisance costs that consumers incur from viewing ads.
In the stationary equilibrium, each platform sets the same ad frequency. In Appendix
E, we show that the ad frequency may be either too high or too low relative to what
is socially efficient as in Anderson and Coate (2005). Inefficiency may arise for two
reasons. First, platforms do not internalize the beneficial impact of ads on consumers’
consideration sets. This is a force that may lead ad frequency to be too low. Second,
they only internalize consumers’ nuisance costs to the extent that they can steal
business from each other by reducing ad frequency. This is a force that may lead ad
frequency to be too low when interoperability is low or too high when interoperability
is high. All of the results of the baseline model continue to hold in this setting with the
exception of Part 2 of Proposition 2 which states that an increase in interoperability
leads to a decline in ad revenues. The effect of interoperability on ad revenues is now
ambiguous.

Network Effects

In a second extension, found in Appendix F, a consumer’s utility from using a
platform may depend on the amount of attention spent by the other consumers on
that platform. The effective quality of platform k is now η(xkt)qkt where xkt =

∫
C xiktdi

and η : [0, 1] ⇒ R+ is increasing. Then, analogous to (13), the attention that platform
k recieves must satisfy

xkt =
[η(xkt)qkt]

ρ−1∫
D [η(xlt)qlt]

ρ−1 dl
.

Suppose that η(x) = xζ where ζ > 0 parameterizes the strength of the network effects.
Under this assumption, we can solve explicitly for xkt, k ∈ D. There is a continuum
of solutions. For each Et ⊂ D of positive measure, there is a solution that sets

xkt =
q

ρ−1
1−ζ(ρ−1)

kt∫
Et q

ρ−1
1−ζ(ρ−1)

lt dl

if k ∈ Et and otherwise sets xkt = 0. This expression is the same as in (13) of the
baseline model except for a change in the exponent. Compared with (13), attention
is more elastic when there are network effects. Thus platforms’ business-stealing
incentives are greater.

Under the refinement that all platforms in D receive a positive share of attention
at all points in time (that is, Et = D at each t ), there is a unique stationary equi-
librium provided that ζ is not too high. Here, D should be interpreted as the set of
platforms that remain active with stable market shares in the long run. D is taken as
a primitive—the model has no predictions for which set of platforms will prevail. If ζ
is sufficiently small, one can apply an analogous analysis to that of Section 6 to solve
the planner’s problem and derive an alternative condition to the one in Theorem 2.
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Reserve Prices

In a third extension, found in Appendix G, we allow platforms to set reserve prices.
In stationary equilibrium, though there is a continuum of platforms, reserve prices are
generally positive because ad opportunities are only partially substitutable since they
occur at different points in time. Reserve prices can be inefficient since they reduce
the effective rate that consumers see ads leading to worse product consumption. The
comparative statics in Section 5 with respect to data informativeness continue to hold
as does Theorem 2 in Section 6 which compares equilibrium investment to first best.
The comparative statics with respect to interoperability also hold as long as there is
a unique equilibrium.

Entry

In a final extension, found in Appendix H, we endogenize entry of platforms and
firms. Entry incurs fixed labor costs. In the unique stationary equilibrium, the
measures of platforms and firms are such that they earn zero profits. A decrease in
the entry cost for firms can drive entry of both firms and platforms. An improvement
in data informativeness typically leads to entry of firms and exit of platforms. While
the welfare analysis of Section 6 does not apply, all of the comparative statics of
Section 5 continue to hold except for Parts 1 and 2 of Proposition 2 which states
that an increase in interoperability leads to a decline in product consumption and ad
revenue. However, if the ad frequency is also endogenous as in the first extension,
then Part 1 is restored while Part 2 is reversed: an increase in interoperability leads
to a decline in product consumption but an increase in ad revenue.

9. Conclusions

The goal of this paper is to contribute to our understanding of the complex market
for attention. We approach this goal by tackling the complexity head-on in a general
equilibrium model that can capture the different sides of the market at once. We are
therefore able to analyze the welfare impact of platforms from both the matching of
firms to consumers in the product market and the provision of quality services. The
rationale for this is that a model that studies one or the other in isolation can not
address some of the fundamental tradeoffs that regulators must contend with. Let us
review some of our findings. We have shown that an increase in data informativeness
or a decline in platform interoperability typically leads to an improvement in product
consumption but at the expense of lower investment and thus worse platform con-
sumption. Equilibrium investment may be either too high or too low depending on
the extent of firms’ market power and business-stealing externalities among firms and
among platforms. We have shown how empirically relevant phenomena such as varia-
tion in ad prices, bid pacing, and delay in the matching of a firm to a consumer arise
in equilibrium and relate to platforms’ market power. These phenomena figure into
real-world bidding algorithms in ad auctions and may be relevant to future empirical
work. We have also shown that platforms with more informative data typically have
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higher market shares, ad prices, and investment. Forcing platforms to share their data
can improve product consumption but may come at the expense of worse platform
consumption.
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A. Proofs for Section 4

Proof of Lemma 1. Part 1 of Lemma 1 is derived by formulating the Lagrangian and
taking a first order condition as in Dixit and Stiglitz (1977). We omit the details.
Part 2 is a special case of Part 1.

Proof of Lemma 2. Part 1 follows from Part 1 of Lemma 1. Given this, Part 2 is
immediate.

Proof of Lemma 3. The solution to (5) has

Mt =
A

λf
−
(
A

λf
−M0

)
e−λf t

and thus Mt →M as t→ ∞. Using (7), we rewrite (6) in terms of only Hc
t , Mt:

(F −Mt) dH
c
t = λf

[
Mt(H

c
t )

N + (F −Mt)H
c
t − FG

]
dt.

If Hc
0 ̸= Hc, then∫ Hc

t

Hc
0

du

λf [FG−MuuN − (F −Mu)u]
=

∫ t

0

du

F −Mu

.

The LHS is strictly monotone in Hc
t which must lie between Hc

0 and Hc. It follows
that there is a unique Hc

t satisfying the above equation. Since the RHS is increasing
in t, Hc

t is either increasing or decreasing in t and thus converges as t → ∞. Since
Mt → M < F , the RHS grows without bound. The only way for equality to hold is
if Hc

t → H.

Note that in the proof of Lemma 3 we have characterized the paths of Mt, Ht,
and Hc

t analytically. For this characterization to apply to equilibrium, the bidding
function Bt must be increasing at all times t. This will follow from Lemmas 7 and 8
which we now prove. We will in fact analytically compute the entire path of bidding
functions taking as given the path of income.

Lemma 7. In an equilibrium, the expected flow profit of a firm j ∈ Ωit from
selling to consumer i at time t is

πFtv̂ij

where

πFt =
It

σMtµHt

.

Proof. By Lemma 2, the flow profit is

Itvij
σ
∫
Ωit
vij dj

.

By the ELLN, the integral in the denominator is equal to MtµHt since firms’ expec-
tations are unbiased.
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Lemma 8. In an equilibrium, the bidding function Bt is increasing at all times
t. Moreover, Bt satisfies

B′
t(v̂) =

∫ ∞

t

πFse
−

∫ s
t [r+λf+λaHc

z(v̂)
N−1] dz ds, v̂ ∈ R+

where the coefficients (πFs)
∞
s=0 are as in Lemma 7.

Proof. Let τa, τf , and τ̂a denote independent exponentially distributed random vari-
ables with rates λa, λf , and λa respectively. Suppose that a firm enters an auction
for a consumer at time t whose value for its product is in expectation v̂. Let V W

t (v̂)
denote the firm’s continuation value conditional on winning the auction (gross of the
expected payment). Let V L

t (v̂) denote the firm’s continuation value conditional on
losing the auction. Let Vt(v̂) denote the firm’s continuation value at the time of
auction entry but prior to knowing whether it has won or lost the auction.

It follows that

(42) V W
t (v̂) = E

[∫ t+τa

t

e−rsπFsv̂ ds+ e−r(t+τa)V W
t+τa

∣∣∣∣τf > τa

]
P{τf > τa}

+ E
[∫ t+τf

t

e−rsπFsv̂ ds+ e−r(t+τf+τ̂a)Vt+τf+τ̂a

∣∣∣∣τf < τa

]
P{τf < τa}.

Similarly,

(43) V L
t (v̂) = E

[
e−r(t+τa)Vt+τa(v̂)

∣∣τf > τa
]
P{τf > τa}

+ E
[
e−r(t+τa)Vt+τa(v̂)

∣∣τf < τa
]
P{τf < τa}.

It will become apparent later as to why we decompose the value functions in this way.
Moving on, let Wt denote the distribution of the highest among the N − 1 other

bids in an auction at time t. That is, Wt(Bt(v̂)) is the probability that a firm with
expectation v̂ wins an auction at time t. To ease notation, let W̃t(v̂) = Wt(Bt(v̂)).

Also, let B
(1)
t ∼ Wt. Then we can rewrite (43) as follows

V L
t (v̂) = E

[
e−r(t+τa)W̃t+τa(v̂)V

W
t+τa(v̂)|τf > τa

]
P{τf > τa}

(44)

− E
[
e−r(t+τa)W̃t+τa(v̂)E

[
B

(1)
t+τa

∣∣τa, Bt+τa(v̂) > B
(1)
t+τa

] ∣∣τf > τa

]
P{τf > τa}

+ E
[
e−r(t+τa)

(
1− W̃t+τa(v̂)

)
V L
t+τa(v̂)

∣∣τf > τa

]
P{τf > τa}

+ E
[
e−r(t+τf+τ̂a)Vt+τf+τ̂a(v̂)

∣∣τf < τa
]
P{τf < τa}.

The second term on the RHS is the expected payment in the auction. Together, the
first three terms on the RHS in (44) correspond to the first term in (43). The last term
on the RHS in (44) corresponds to the second term in (43) by the memorylessness of
the exponential distribution.
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Since firms bid optimally in equilibrium, Bt = V W
t −V L

t at all t. Subtracting (44)
from (42) yields

Bt(v̂) = E
[∫ t+τa

t

e−rsπFsv̂ ds

∣∣∣∣τf > τa

]
P{τf > τa}

(45)

+ E
[
e−r(t+τa)W̃t+τa(v̂)E

[
B

(1)
t+τa

∣∣τa, Bt+τa(v̂) > B
(1)
t+τa

] ∣∣τf > τa

]
P{τf > τa}

+ E
[
e−r(t+τa)

(
1− W̃t+τa(v̂)

)
Bt+τa(v̂)

∣∣∣∣τf > τa

]
P{τf > τa}

+ E
[∫ t+τf

t

e−rsπFsv̂ ds

∣∣∣∣τf < τa

]
P{τf < τa}.

Writing out the expectations, differentiating both sides with respect to v̂, and com-
bining some like terms yields

(46) e−(r+λa+λf )tB′
t(v̂) = (λa + λf )

∫ ∞

t

∫ y

t

e−rsπFs ds e
−(λa+λf )ydy

+ λa

∫ ∞

t

B′
y(v̂)(1− W̃y

(
v̂)
)
e−(r+λa+λf )y dy.

Note that, after differentiating, only the derivatives of the bidding functions remain
(though recall that W̃t implicitly depends on Bt). Using this convenient property, we
will simplify the derivation of bidding strategies down to a single differential equation.

First, we simplify the double integral in (46) using integration by parts:

(λa + λf )

∫ ∞

t

∫ y

t

e−rsπFs ds e
−(λa+λf )y dy =

∫ ∞

t

e−rsπFse
−(r+λa+λf )s ds.

Then

e−(r+λa+λf )tB′
t(v̂) =

∫ ∞

t

πFse
−(r+λa+λf )s ds

+ λa

∫ ∞

t

B′
y(v̂)(1− W̃y(v̂))e

−(r+λa+λf )y dy.

Let ft(v̂) = e−(r+λa+λf )tB′
t(v̂). Differentiating both sides of the above equation with

respect to time yields

ḟt(v̂) + λaft(v̂)(1− W̃t

(
v̂)
)
= −πFte

−(r+λa+λf )t

This is a first order linear differential equation and thus has an explicit solution:

ft(v̂) = e−
∫ t
0 λa(1−W̃s(v̂)) ds

(
f0(v̂)−

∫ t

0

πFse
−(r+λf )s−

∫ s
0 λaW̃z(v̂)) dz ds

)
.

Equivalently,

B′
t(v̂) = e

∫ t
0 (r+λf+λaW̃s(v̂)) ds

(
B′

0(v̂)−
∫ t

0

πFse
−(r+λf )s−

∫ s
0 λaW̃z(v̂)) dz ds

)
.
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As t → ∞ the integral in the parenthesis converges to a positive constant. If this
constant is not B′

0(v̂) then B′
t(v̂) diverges. However, a bidding strategy with this

property is never optimal. We omit the formal proof of this claim but it is trivial to
see that the continuation value functions are uniformly Lipschitz in v̂ and thus so are
bidding functions. Using this fact, we arrive at

B′
t(v̂) =

∫ ∞

t

πFse
−

∫ z
t [r+λf+λaW̃z(v̂)] dz ds.

Since B′
t(v̂) is always positive, it follows that W̃t(v̂) = Hc

t (v̂)
N−1 at all t. This

completes the proof.

Proof of Lemma 4. Part 1 is a special case of Lemma 8. To prove Part 2, recall that
the Poisson rate that a firm enters an auction for consumer i is λa and the probability
that it wins an auction is Hc(v̂ij)

N−1. Part 3 follows from Part 1 and integration by
parts. Part 4 follows from accounting.

Proof of Lemma 5. To prove Part 1, suppose that LD is a stationary equilibrium level
of investment. The (present-value) Hamiltonian associated with platform k’s problem
(11) is

H(qkt, λt, Lkt) = πDA
qρ−1
kt

Dqρ−1
− Lkt + λt (L

φ
kt − δqkt)

where the costate variable λt satisfies

rλt − λ̇t = πDA (ρ− 1)
qρ−2
kt

Dqρ−1
− λtδ.

By the Maximum Principle, Lkt = LD must maximize the Hamiltonian along the
equilibrium trajectory. This yields:

λtφL
φ−1
D = 1.

Then λt is a constant and by the costate evolution satisfies

λt =
πDA (ρ− 1)

D(r + δ)

1

q
.

Substituting gives
πDA (ρ− 1)

qD(r + δ)
φLφ−1

D = 1.

Since q = Lφ
D/δ, we have

LD =
φδπDA(ρ− 1)

D (r + δ)
.

This is a necessary condition for LD to be a stationary equilibrium level of investment.

To finish the proof of Theorem 1, we use the following lemma.
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Lemma 9. Let LD and q be as in Lemma 5. Platform k solves its problem (11)
when q0 = q, xkt is as in Lemma 1, and qlt = q for all l ̸= k and all t by setting
Lkt = LD at each t.

Proof. Let

H∗(qkt, λ) = max
Lkt

H(qkt, λ, Lkt) = πDA
qρ−1
kt

Dqρ−1
− (λφ)

1
1−φ + λ

(
(λφ)

φ
1−φ − δqkt

)
where H is the Hamiltonian defined in the proof of Lemma 5. Consider a deviation to
an arbitrary strategy (L̂kt) with associated quality path (q̂kt). Recall from Condition
2 that ρ ≤ 2. Since H∗ is concave in the state,∫ s

0

e−rtH∗(q̂kt, λ)dt ≤
∫ s

0

e−rtH∗(q, λ)dt+

∫ s

0

e−rtH∗
1(q, λ) (q̂kt − q) dt

which implies∫ s

0

e−rtH∗(q̂kt, λ)dt ≤
∫ s

0

e−rtH∗(q, λ)dt+

∫ s

0

e−rtrλ (q − q̂kt) dt.

By integration by parts, the second integral on the RHS is

λ

[
e−rs (q − q̂ks) +

∫ s

0

e−rt ˙̂qktdt

]
.

We therefore have∫ s

0

e−rtH∗(q̂kt, λ)dt ≤
∫ s

0

e−rtH∗(q, λ)dt+ λ

∫ s

0

e−rt ˙̂qktdt+ λe−rtq.

Rearranging,∫ s

0

e−rtH∗(q̂kt, λ)dt+ λ

∫ s

0

e−rt ˙̂qktdt ≤
∫ s

0

e−rtH∗(q, λ)dt+ λe−rtq.

Using the definition of H∗, we have∫ s

0

e−rt
[
H(q̂kt, λ, L̂kt) + λ ˙̂qkt

]
dt ≤

∫ s

0

e−rtH∗(q, λ) + λe−rtq.

This implies∫ s

0

e−rt

[
πDA

q̂ρ−1
kt

Dqρ−1
− L̂kt

]
dt ≤

∫ s

0

e−rt

[
πDA

D
− LD

]
+ λe−rtq.

By taking limits as s → ∞ we see that the deviation is not profitable. This proves
Part 1. Part 2 follows from accounting.

Proof Theorem 1. Parts 1-5 follow from Lemmas 1-5 and 7-9 or were proven in the
main text with one caveat: we have not done a formal verification that the bidding
strategy in Lemma 4, which solves the Bellman, does in fact solve the firm’s prob-
lem. This proof is standard, since the value function clearly satisfies a transversality
condition since flow profits are bounded. We therefore omit it. Part 6 follows by
substituting the equilibrium demands and platform quality levels (using Parts 1-5 of
Theorem 1) into equations (1) and (2) for the CES aggregates.
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B. Proofs for Section 5

The following Lemma 10 is used to prove Propositions 1 and 3.

Lemma 10. The following hold:

1. An increase in data informativeness G leads the cumulative value MµH of firms
in Ωit to increase and the CDF Hc to decrease in ≻SOSD.

2. An increase in ad frequency A leads the CDFs H and Hc to decrease in ≻FOSD

but the cumulative value MµH of firms in Ωit to increase.

Proof. To prove Part 1, suppose that G increases in ≻MPS to Ĝ. Let Ĥc denote the
steady state distribution under Ĝ. Define γ : R+ → [−1, 1] and ν : R+ → [−1, 1] such
that

Ĝ(y) = G(y) + γ(y) and Ĥc(y) = Hc(y) + ν(y)

for all y ∈ R+. Then by Lemma 3, it follows that

F (G(y) + γ(y)) =M (Hc(y) + ν(y))N + (F −M) (Hc(y) + ν(y))

and
FG(y) =MHc(y)N + (F −M)Hc(y).

Substracting the bottom equation from the top equation gives

γ(y) = ν(y)

(
F −M

F
+
M

F
(Hc(y) + ν(y))N−1

)
.

This holds for each for each y ∈ R+. Integrating both sides from 0 to s ∈ R+ we
derive

(47)

∫ s

0

ν(y) dy

(
F −M

F
+
M

F
Ĥc(s)N−1

)
− M

F

∫ s

0

∫ y

0

ν(l) dl dĤc(y)N−1 ≥ 0.

Above, we have used integration by parts and the fact that Ĝ ≻MPS G implies that∫ s

0
γ(y) dy ≥ 0 for each s ∈ R+. We now argue that

∫ s

0
ν(y) dy ≥ 0 for all s ∈ R+

with strict inequality at some point s ∈ R+. This implies both that Hc ≻SOSD Ĥc

and µĤ > µH . Suppose for contradiction that there exists a point s ∈ R+ such that∫ s

0
ν(y)dy < 0. Let

l∗ := inf

{
l|
∫ l

0

ν(y) dy < 0, l > 0

}
.

If l∗ > 0, then (47) is violated at l∗ which is a contradiction. Then it must be that
l∗ = 0. But by inspecting (47), we see that

∫ s

0
ν(y) dy must be increasing in s when it

fist departs from 0 as otherwise (47) is violated for s close to the point of departure.
Thus l∗ ̸= 0, a contradiction. It follows that

∫ s

0
ν(y) dy ≤ 0 for each s ∈ R+. Strict

inequality must occur at a some point since Ĝ ≻MPS G.
To prove Part 2, recall from Lemma 3 that an increase in A leads to an increase

in M . By inspecting the equation for Hc in Lemma 3, it follows that Hc must
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decrease in ≻FOSD (which implies that H also decreases in ≻FOSD). This implies
that (F −M)µHc must decrease. Since MµH +(F −M)µHc = FµG, then MµH must
increase.

Proof of Proposition 2. By Part 2 of Theorem 1, an increase in interoperability leads
to an increase in investment LD which proves Part 3 of Proposition 2. By Part 4 of
Theorem 1 the rise in investment LD leads income I to decrease which in turn leads
to a decrease in ad revenue πDA. By Part 6 of Theorem 1 the rise in investment LD
also leads aggregate product consumption C to decline.

Proof of Proposition 3. We first prove Part 2. Recall that by definition πDA = Iπ̂DA.
We will prove that an increase in A leads to a decrease in π̂DA. Later, we argue that
the general equilibrium feedback through income I can not overturn the sign of the
direct effect on πDA from a decrease in π̂DA.

By Propositions 3 and 4,

π̂DA =
λf

σ
∫∞
0

1−Hc(s)N ds

∫ ∞

0

1−NHc(s)N−1 + (N − 1)Hc(s)N

r + λf + λe(s)
ds

where λe(s) = λaH
c(s)N−1 for each s ∈ R+. By Part 2 of Lemma 10, an increase in A

leads to a decrease in Hc in ≻FOSD. Since λe increases pointwise, to show that π̂DA
decreases as A increases, it suffices to prove that

1−NHc(s)N−1 + (N − 1)Hc(s)N

1−Hc(s)N
= N

1−Hc(s)N−1

1−Hc(s)
− (N − 1)

is decreasing in Hc(s). This can be verified by taking a derivative. We omit this
step. To see that the general equilibrium feedback through income can not offset the
decrease in π̂DA and that ad revenue πDA declines we observe the following. If πDA
were to increase, then LD would increase by Proposition 5. But this contradicts Part
2 of Theorem 1 where we see that a decrease in π̂DA leads to a decrease in LD.

Since ad revenue declines, Part 3 follows from Part 1 of Lemma 5. Part 1 follows
from Part 3, Lemma 10, and Part 6 of Theorem 1.

Proof of Proposition 1. By inspecting (27) and based on the discussion in the main
text, π̂D is bounded above by

1

σM(r + λf )
.

This upper bound is obtained when data is uninformative since each firm bids this
amount in each auction. Ad revenue πDA is maximal across all data when π̂D is
maximal across all data as general equilibrium feedback effects through income are
never strong enough to overturn the direct effect on ad revenues as described in the
proof of Proposition 3. We therefore have Part 2 of Theorem 1. Part 3 follows from
Part 2 of Theorem 1. Part 1 then follows from Lemma 10 and Part 6 of 1.
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Construction of Figures 5 and 6. We explain the garbling used to construct Figures
5 and 6 and depicted graphically below in Figure 9.

.5 10
ṽ

U [.5 + ϵ̃, .5 + ϵ]U [.5− ϵ, .5− ϵ̃]

(
1− ϵ̃

ϵ

)
Prṽ

(
1− ϵ̃

ϵ

)
(1− Prṽ)

Figure 9: Construction of the conditional distribution over v̂ given ṽ.

We construct the less informative signal with realizations denoted by ṽij by gar-
bling v̂ij as follows. Fix ṽ in the blue region. If v̂ij = ṽ then set ṽij = ṽ. If v̂ij is in
the red region above the blue region, then P{ṽij ∈ dṽ|v̂ij} = Prṽ

1
ϵ̃
. If v̂ is in the red

region below the blue region, then P{ṽij ∈ dṽ|v̂ij} = (1− Prṽ)
1
ϵ̃
where Prṽ is chosen

so that

(48) ṽ = Prṽ
.5 + ϵ+ .5 + ϵ̃

2︸ ︷︷ ︸
mean of upper red region

+(1− Prṽ)
.5− ϵ+ .5− ϵ̃

2︸ ︷︷ ︸
mean of lower red region

.

Then E[vij|ṽij = ṽ] = ṽ. Moreover ṽij ∼ U [.5 − ϵ̃, .5 + ϵ̃]. From this, we compute
the joint distribution of v̂, ṽ conditional on j ∈ Ωc

it. We then use that to numerically
compute the optimal bid on the platform with the garbled data using the formula
E[B(v̂ij)|ṽij, j ∈ Ωc

it].
We now compute the joint distribution of v̂, ṽ conditional on j ∈ Ωc

it. Based on
the construction described above, each point v̂ij in [.5−ϵ, .5+ϵ] stays with probability
ϵ̃/ϵ. Otherwise, it jumps. Conditional on jumping, the probability it jumps up is Prṽ
which solves (48):

Prṽ =
2ṽ − 1 + ϵ+ ϵ̃

2ϵ̃+ 2ϵ
.

Conditional on jumping, the probability that it jumps down is 1 − Prṽ. Let χ(v̂|ṽ)
denote P{v̂ij ∈ dv̂|ṽij = ṽ}. Then if v̂ is in the upper red region [.5 + ϵ̃, .5 + ϵ],

χ(v̂|ṽ) =
(
1− ϵ̃

ϵ

)
2ṽ − 1 + ϵ+ ϵ̃

2ϵ̃+ 2ϵ

1

ϵ− ϵ̃
=

2ṽ − 1 + ϵ+ ϵ̃

(2ϵ̃+ 2ϵ)ϵ
.

If v̂ is in the lower red region [.5− ϵ, .5− ϵ̃],

χ(v̂|ṽ) =
(
1− ϵ̃

ϵ

)(
1− 2ṽ − 1 + ϵ+ ϵ̃

2ϵ̃+ 2ϵ

)
1

ϵ− ϵ̃
=

(
1− 2ṽ − 1 + ϵ+ ϵ̃

2ϵ̃+ 2ϵ

)
1

ϵ
.

The residual mass ϵ̃/ϵ is concentrated on the event v̂ = ṽ. With abuse of notation let
χ(ṽ|v̂) denote P{ṽij ∈ dṽ|v̂ij = v̂}. Then, if v̂ is in one of the red regions [.5− ϵ, .5−
ϵ̃] ∪ [.5 + ϵ̃, .5 + ϵ],

χ(ṽ|v̂) = χ(v̂|ṽ)ϵ
ϵ̃
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for each ṽ. Otherwise, if v̂ is in the blue region [.5− ϵ̃, .5+ ϵ̃] all of the mass is placed
on ṽ = v̂. Then

H̃c(ṽ)′ =

∫
[.5−ϵ,.5−ϵ̃]∪[.5+ϵ̃,.5+ϵ]

χ(ṽ|v̂)dHc(v̂) +Hc(ṽ)′

where H̃c(ṽ) is the distribution over ṽ outside the consideration set. Thus, if v̂ is in
one of the red regions, it is

P{v̂ij ∈ dv̂|j ∈ Ωc
it, ṽij = ṽ} =

χ(ṽ|v̂)Hc(v̂)′

H̃c(ṽ)′
.

If v̂ = ṽ, then

P{v̂ij ∈ dv̂|j ∈ Ωc
it, ṽij = ṽ} =

Hc(ṽ)′

H̃c(ṽ)′
.

No density is placed on any other point in the blue region.

Additional Comparative Statics

We present additional comparative statics results with respect to the measure of
firms F , the measure of platforms, D, and product substitutability σ.

Proposition 4. An increase in the measure of firms F leads to

1. an increase in ad revenue πDA.

2. an increase in investment LD.

Proof. An increase in F leads H and Hc to increase in ≻FOSD by an analogous
argument used to show Part 2 of Lemma 10. This in turn leads πDA to increase
by analogous argument to that of Part 2 of Proposition 3. That then leads LD to
increase.

Proposition 5. If the measure of platforms D increases then:

1. Aggregate platform consumption X increases if 1/(ρ − 1) > φ and decreases if
1/(ρ− 1) < φ.

2. Aggregate product consumption C does not change.

3. Ad revenue πDA does not change.

Proof. By Part 2 of Theorem 1, the total investment by platforms is invariant to the
measure of platforms D. This immediately implies Parts 2 and 3 of Proposition 5.
To prove Part 1, by Theorem 1 it follows that

X = D
1

ρ−1
Lφ
D
δ

=
1

δ
D

1
ρ−1

−φ

(
φδ σ

σ−1
π̂DA(ρ− 1)

r + δ + φδ σ
σ−1

π̂DA(ρ− 1)
L

)φ

.

Part 1 follows by inspection.
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Proposition 6. If product substitutability σ increases then:

1. Ad revenue πDA decreases.

2. Investment LD decreases.

Proof. To prove Part 1, we see that π̂D in (27) is decreasing in σ. As argued in the
proof of Part 2 of Proposition 3, the general equilibrium effect through a change in
income I can not offset this direct effect of a decrease in π̂D so that πD decreases.
Part 2 follows from Part 1.

C. Proofs for Section 6

We prove results for a more general formulation of the model which we next
describe. Lemma 6 and Theorem 2 will follow as special cases of Lemma 11 and
Theorem 3 proven below.

Setup

We extend the baseline model as follows. There are now two sectors of the product
market. One sector is a leisure sector which requires attention as well as income
to consume. All attention comes from leisure and is freely substitutable between
platform use and leisure products. The second sector consists of all other products
which do not require attention to consume. Both sectors have a CES structure with
the same substitutability parameter σ. The total measure of products in the market
is F as in the baseline model. We continue to denote the set of all firms by F and
index individual firms by j. We assume that a fraction β of products are leisure
products. As before, vij ∼ P on R+ and is drawn independently across i and j.
Similarly, v̂ij ∼ G where P ≻MPS G independently across i and j.

We assume that a consumer’s flow utility is

(49) ũ(CNt, τCLt, (1− τ)Xt) =
[
C1−β

Nt ((1− τ)CLt)
β
]1−γ

[τXt]
γ

where τ is the fraction of attention devoted to leisure products, CNt is the CES
aggregate over nonleisure products, CLt is the CES aggregate over leisure products,
and Xt is the CES aggregate over platform use. Note that β is not only the fraction
of products which are leisure products but also a parameter of the utility function.
We will explain the logic behind this assumption shortly.

We assume that the consumer chooses attention τ myopically to maximize flow
utility: the consumer does not allocate attention to platforms to purposefully see
ads. Because the utility is Cobb-Douglas, it is immediate that the consumer spends
a fraction τ = γ/[γ + (1 − γ)β] of attention on platforms. Moreover, the consumer
spends a fraction β of income on leisure products. With this, let us define

Ct = C1−β
Nt C

β
Lt.
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Then, up to a constant scaling factor, the consumer’s flow utility is

(50) u(Ct, Xt) = C1−γ
t Xγ

t .

Given the utility function in (49), since β is the fraction of income spent on leisure
products, if we endogenize the choice by firms concerning which type of product
to produce at ex-ante, then a fraction β would choose to produce leisure products.
Rather than explicitly microfounding this we simply assume it from the outset.

Since it is efficient for 1. any labor allocated to investment to be split evenly among
the platforms and 2. production labor to be split the same way as in equilibrium (a
fraction β of production labor is used for leisure products) the social planner’s problem
is (32).

Analysis

It is easy to verify that the stationary equilibrium is characterized by the same
equations as in the baseline model. Namely C, X, M , H, and πD are as in Theorem
1 except with Aτ in place of A, since now only τ units of attention are spent on
platforms. In equilibrium, the fraction of leisure products in the consideration set is
equal to the fraction in the population: β. Consequently, a firm’s flow profit from
selling to a consumer depends on the match value but not on the product type. To
see this the flow profit accruing to firm j from selling a leisure product to consumer
i is

βI
v̂ij

σβMµH

= I
v̂ij

σMµH

.

Thus β fraction of income cancels out with the β fraction of firms in the consideration
set. Analogous logic applies to the flow profit of nonleisure products. Moreover, H
in Proposition 3 is the (empirical) CDF of firms’ expectations for both product types
within the consideration set of any consumer. To see this, note that by the same
logic as in the baseline model, the distribution of expectations in the consideration
set corresponding to leisure products must satisfy

βM(Hc)N + (βF − βM)Hc = βFG.

Since β cancels out from both sides we have the same condition as in the baseline
model. The same also holds for non-leisure products. Thus, the same bidding function
applies for both products in the equilibrium of the extended model. Moreover, all of
the comparative statics results of the previous section continue to hold.

The following Lemma 11 reports the steady state solution to the planner’s prob-
lem.

Lemma 11. The steady state level of investment by any given platform under the
social planner is

(51) Lfb
D =

φδ 1−τ
τ
β

r + δ + φδ 1−τ
τ
β

L

D
.
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Proof. Let Ĉ = (MµH)
1

σ−1 . The (present-value) Hamiltonian for the social planner’s
problem is

H(qt, λt, LDt) = u

(
(1− τ)β

σ

σ − 1
(L−DLDt) Ĉ, τD

1
ρ−1 qt

)
+ λt (L

φ
Dt − δqt)

where λt is the costate variable which evolves according to

rλt − λ̇t = −D
1

ρ−1 (1− τ)u2 − δλt

Note that we are implicitly assuming that M and H are in steady state since we are
only interested in the steady state solution. By the Maximum Principle, investment
must maximize the Hamiltonian along the optimal trajectory. Since τ is an interior
solution for the optimal choice of attention it follows that

(52) u1([1− τ ]βC, τX)βτβ−1C = u2([1− τ ]βC, τX)X.

Using (52), the first-order condition at the steady state q is

(53)
σ

σ − 1
ĈD[1− τ ]β

1

φ
(δq)

1−φ
φ u1 = λtq

α.

Above, we have used the fact that δq = Lφ
D in steady state. This condition implies

that λt is a constant λ in steady state. By the costate evolution equation,

λ =
D

1
ρ−1 τu2
r + δ

.

Substituting into the first order condition gives

(54)
σ

σ − 1
ĈD[1− τ ]β

1

φ
(δq)

1−φ
φ
u1
u2

=
D

1
ρ−1 τ

r + δ
qα.

From (52), we have
u1
u2

=
X

β[1− τ ]β−1C
.

Substituting into (54), we have

σ

σ − 1
D
1

β

1− τ

τ

1
σ

σ−1
(L−DLD)

LD
1

φδ
=

1

r + δ

which rearranges to

LD =
φδ 1−τ

τ
β

D(r + δ)
.

Using this relationship, we find that

LD =
φδ 1−τ

τ
β

r + δ + φ1−τ
τ
β

L

D
.

This is a necessary condition for LD to be a steady state solution to the planner’s
problem. Since the Hamiltonian is concave in the state and control, an analogous
verification to that of Lemma 9 can be used to prove sufficiency.
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Note that in the proof of Lemma 11, we did not use any properties of the Cobb-
Douglass utility function beyond the interiority of the optimal choice of attention and
concavity. Namely (53) would continue to hold by the envelope theorem even though
τ will depend on LDt for other utility functions. However, in the formulation of the
planner’s problem, we assumed that the planner takes as given the law of motion of
Mt and Ht. Though this is without loss for Cobb-Douglas utility, it is not generally
so.

Theorem 3. If, in a stationary equilibrium,

σ

σ − 1
π̂DAτ(ρ− 1)− τ

1− τ
β


< 0, then investment is too low.
= 0, then investment is efficient.
> 0, then investment is too high.

Given τ and β, the deviation LD − Lfb
D is increasing in σ

σ−1
π̂DAτ(ρ− 1)− τ

1−τ
β.

Proof. Theorem 3 follows from Lemma 11 and Part 2 of Theorem 1.

D. Proofs for Section 7

We prove that Λ is a contraction with respect to the sup norm when values
are bounded above by some constant v. That is, all of the mass of the prior P is
contained in [0, v]. This result can be generalized, using a different norm, to allow for
cases when values are unbounded. However, for practical purposes of computation,
the following Lemma 12 suffices and requires less effort to prove. Note also that Λ
is increasing. Thus, even without the bounded support assumption, starting from an
initial B such that Bl > Λl(B) for each l ∈ {1, 2} it follows that {Λn(B)}∞n=1 is a
decreasing sequence which converges to the fixed point.

Lemma 12. Suppose that each value vij is supported on [0, v]. The operator Λ
defined in (38) is a contraction map with modulus λa/(λa + λf + r) with respect to
the sup norm when restricted to the domain consisting of functions in C+ (R)2 which
are bounded above by πF

λf+r
v.

Proof. Let || · || denote the sup norm. We have

||Λ(f)−Λ(f̂)|| = max
l

∣∣∣∣∣
∣∣∣∣∣E
λa∑2

z=1 xz
∫ ζzij
−∞

(
fz(s)− f̂z(s)

)
dOz(s)

λf + r + λa
∑2

z=1 xzOz(ζzij)

∣∣∣∣ζlij = ·, j ∈ Ωc
it

 ∣∣∣∣∣
∣∣∣∣∣

≤

∣∣∣∣∣
∣∣∣∣∣E
[
||f − f̂ ||λa

∑2
z=1 xzOz(ζzij)

λf + r + λa
∑2

z=1 xzOz(ζzij)

∣∣∣∣ζlij = ·, j ∈ Ωc
it

] ∣∣∣∣∣
∣∣∣∣∣

≤ λa
r + λa + λf

||f − f̂ ||.
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Note that in Lemma 12 restricting the domain to functions in C+ (R)2 which are
bounded above by πF

λf+r
v does not entail any loss of generality since it is never optimal

for a firm to bid more than its perceived value for being in the consideration set.
We next prove that the fixed point is in increasing bidding functions. For this,

we will use the following generalization of the Arzelà-Ascoli Theorem, which follows
from Theorems 3.4.20 and 8.2.10 of Engelking (1977).

Theorem 4. A ⊂ C(R+) is relatively compact in the topology of uniform conver-
gence on compact subsets of R+ if and only if A is equicontinuous at each x ∈ R+

and {f(x)|f ∈ A} ⊂ R is bounded for each x ∈ R+.

Lemma 13. The fixed point of the operator Λ defined in (38) is a pair of increas-
ing functions.

Proof. Let B1, B2 be arbitrary bidding functions. Let τk be the time that firm j is
invited to its kth auction for consumer i. Let lk be the platform group that hosts the
kth auction. If all firms other than j bid according to B1, B2, then firm j’s solves

(55) V (ζij) = max
(bk)

∞
k=1

E

[∫ ∞

0

πFvij1{j∈Ωit} ds−
∞∑
k=1

e−rτkB
(1)
lk
1{bk>B

(1)
lk

}

∣∣∣∣ζij

]

such that bk is σ(ζlkij, τk, lk)-measurable. Above, B
(1)
lk

denotes the highest bid of the
N − 1 other bidders in the kth auction. We argue that if it is also optimal for firm j
to bid according to B1, B2, then B1, B2 must be increasing and therefore must satisfy
(36), (37) and thus must be the fixed point of the contraction (38). This guarantees
that the fixed point of (38) is necessarily increasing provided there exists such a pair
of bidding functions B1, B2.

We will prove that

(56)
πF

λf + r
E
[
vij|ζij

]
− r

λf + r

λa
λa + r

V (ζij)

is nondecreasing in both of its arguments and increasing in one of them. This will
ensure that bidding strategies which satisfy (36) are increasing using Condition 3.
Without loss of generality suppose that E[vij|ζ1ij, ζ2ij] is increasing in its first argu-
ment.

Suppose for contradiction that there exists ζ1 and ζ
2
with ζ1 > ζ

1
such that

πF
λf + r

E[vij|ζ1ij = ζ1, ζ2ij]−
r

λf + r

λa
λa + r

V (ζ1, ζ2ij)

<
πF

λf + r
E[vij|ζ1ij = ζ

1
, ζ2ij]−

r

λf + r

λa
λa + r

V (ζ
1
, ζ2ij).

Rearranging yields

(57)
πF

λf + r
E[vij|ζ1ij = ζ1, ζ2ij]−

πF
λf + r

E[vij|ζ1ij = ζ
1
, ζ2ij]

<
r

λf + r

λa
λa + r

V (ζ1, ζ2ij)−
r

λf + r

λa
λa + r

V (ζ
1
, ζ2ij).
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We will show that the above inequality can not hold.
As seen in (55), the value function can be decomposed into two parts: one which

arises from flow profits from sales (the expectation of the first sum in (55)) and one
which arises from costs of advertising (the expectation of the second sum (55)). Let
us write the value function of a firm j with signals ζ1, ζ−lij to reflect this:

V (ζ lij, ζ−lij) = Πsales − Cad cost.

Now suppose a firm j with signal ζ
lij

deviates and bids as though its signal was

ζ lij. Then its payoff is

E
[
vij

∣∣∣ζlij = ζ
l
, ζ−lij

]
E
[
vij

∣∣∣ζlij = ζ l, ζ−lij

]Πsales − Cad cost ≤ V (ζ
lij
, ζ−lij).

Substituting into (57), we therefore have,

πF
λf + r

E[vij|ζ1ij = ζ1, ζ2ij]−
πF

λf + r
E[vij|ζ1ij = ζ

1
, ζ2ij]

<
r

λf + r

1−
E
[
vij

∣∣∣ζlij = ζ
l
, ζ−lij

]
E
[
vij

∣∣∣ζlij = ζ l, ζ−lij

]
Πsales.

Since there are times when the firm is not in the consideration set,

Πsales ≤
πF
r
E
[
vij

∣∣∣ζlij = ζ l, ζ−lij

]
.

Substituting into the RHS above, we obtain a contradiction. The proof that (56) is
also nondecreasing in its second argument is analogous. Now we have completed the
first step of the proof. The second step is to prove that there in fact exists a pair of
bidding functions B1, B2 such that each firm optimally bids according to them if its
rivals do (that is, firm j solves (55)).

Let Lip(R+) denote the set of πF
λf+r

-Lipschitz functions f such that f(y) ≤ πF
λf+r

y

at each y ∈ R+. By Theorem 4 and Tychonoff’s Theorem, Lip(R+)
2 is compact in the

product topology. To ensure bidding strategies B1, B2 live in Lip(R+)
2 we redefine

signals so that, with abuse of notation

ζlij = E[vij|ζlij, j ∈ Ωc
it].

Thus ζlij ∈ R+. Condition 3 ensures that there is a one to one mapping between old
signals and new signals. Moreover, now

(58) Bl(ζlij) =
πF

λf + r
ζlij − E

[
r

λf + r

λa
λa + r

V (ζij)
∣∣ζlij, j ∈ Ωc

it

]
which is πF

λf+r
-Lipschitz since V is nondecreasing in both signals.
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Let us take as given some input bidding functions Binput ∈ Lip(R+)
2. Let V be

the value function bidding optimally given this: set V equal to the RHS of (55) when
B1, B2 are given by Binput. Next, define Boutput using (58). This map from Binput to
Boutput is continuous. Moreover it maps from Lip(R+)

2 into itself. Lip(R+)
2 is closed,

convex, and compact. Thus by Schauder’s fixed point theorem there exists a fixed
point. Any such fixed point is in increasing bidding stragies and therefore, must be
the fixed point of (38).

Lemma 14. In any stationary equilibrium, the following hold:

1. A platform in group l invests at constant rate

LDl =
φδπDlA (ρ− 1)

r + δ

1

ml +m−l

(
πD−l

πDl

) φ(ρ−1)
1−φ(ρ−1)

2. A platform in group l has constant quality level

ql =
Lφ
Dl

δ
.

3. The total share of attention held by platforms in group l is

xl =
mlq

ρ−1
l

mlq
ρ−1
l +m−lq

ρ−1
−l

.

Proof. In a stationary equilibrium, a platform in group l ∈ {1, 2} invests a constant
level LDl to mantain quality level ql = Lφ

Dl/δ.
Let platform k belong to group l. Letml denote the measure of platforms in group

l. The (present-value) Hamiltonian for platform k’s optimization problem is

H(qkt, λt, Lkt) = πDlA
qρ−1
kt

mlq
ρ−1
l +m−lq

ρ−1
−l

− Lkt + λt (L
φ
kt − δqkt)

where λt, the costate variable, evolves according to

rλt − λ̇t = πDlA (ρ− 1)
qρ−2
kt

mlq
ρ−1
l +m−lq

ρ−1
−l

− λtδ.

By the Maximum Principle, a necessary condition for optimality is that the control
Lkt maximizes the Hamiltonian along the optimal trajectory:

λtφL
φ−1
kt = 1.

Under the conjectured stationary strategy then

λtφL
φ−1
Dl = 1.
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This implies that λt must be a constant λ. By the costate evolution equation,

λ =
πDlA (ρ− 1)

r + δ

qρ−2
l

mlq
ρ−1
l +m−lq

ρ−1
−l

.

Substituting, we have

πDlA (ρ− 1)

r + δ
φLφ−1

Dl = mlql +m−l

(
q−l

ql

)ρ−2

q−l.

This implies that

πDlA (ρ− 1)

r + δ
φLφ−1

Dl = ml
Lφ
Dl

δ
+m−l

(
LD−l

LDl

)φ(ρ−2) Lφ
D−l

δ
.

Dividing both sides by Lφ
Dl/δ we arrive at

δπDlA (ρ− 1)

r + δ
φL−1

Dl = ml +m−l

(
LD−l

LDl

)φ(ρ−1)

.

By symmetry by considering the problem of a platform k in group −l,

δπD−lA (ρ− 1)

r + δ
φL−1

D−l = m−l +ml

(
LDl

LD−l

)φ(ρ−1)

.

Let y := LDl/LD−l. Using the above two equations, we derive

πDl

πD−l

1

y
=
ml +m−ly

−φ(ρ−1)

m−l +mlyφ(ρ−1)
.

Equivalently,

y =

(
πDl

πD−l

) 1
1−φ(ρ−1)

.

Thus,

LDl =
φδπDlA (ρ− 1)

r + δ

1

ml +m−l

(
πD−l

πDl

) φ(ρ−1)
1−φ(ρ−1)

.

Note that Condition 2 implies that the Hamiltonian is jointly concave in the state and
control so that LDl does indeed solve a platform in group l’s problem by an analogous
verification argument to that of Lemma 9.

The following theorem summarizes the analysis.

Theorem 5. In any stationary equilibrium, the following hold:

1. Demands and prices are as in Lemmas 1 and 2.
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2. Income is

(59) I = L

1 +
φδA (ρ− 1)

r + δ

mlπ̂Dl +m−l

(
π̂D−l

π̂Dl

) φ(ρ−1)
1−φ(ρ−1)

π̂D−l

ml +m−l

(
π̂D−l

π̂Dl

) φ(ρ−1)
1−φ(ρ−1)


−1

.

3. The (empirical) PDF over signals within consideration sets solves

h(ζ) = x1NH
c(ζ1,∞)N−1hc(ζ) + x2NH

c(∞, ζ2)
N−1hc(ζ)

and the accounting identity

Mtht + (F −Mt)h
c
t = Fg.

4. Platforms’ choices of investment are as in Lemma 14.

5. The bidding function used by a firm in an auction on a platform in group l ∈
{1, 2} is the unique fixed point of the contraction map (38).

6. The total attention held by platforms in group l ∈ {1, 2} satisfies

xl =
mlq

ρ−1
l

mlq
ρ−1
l +m−lq

ρ−1
−l

=
ml

(
π̂Dl

π̂D−l

) φ(ρ−1)
1−φ(ρ−1)

ml

(
π̂Dl

π̂D−l

) φ(ρ−1)
1−φ(ρ−1)

+m−l

where π̂Dl, l ∈ {1, 2} are the average ad prices per unit of income derived from
the bidding functions in Part 5.

Proof. It suffices to prove only Parts 2 and 6 since all other parts follow from earlier
results. To prove Part 2, recall that market clearing implies income is equal to the
revenue of product firms so that

I =
σ

σ − 1
(L−mlLDl −m−lLD−l)

where σ/(σ − 1) is the markup. This implies

LDl =
φδIπ̂DlA (ρ− 1)

r + δ

1

ml +m−l

(
π̂D−l

π̂Dl

) φ(ρ−1)
1−φ(ρ−1)

.

must hold for l = 1, 2. We derive the equations in Part 2 by solving this linear system
of equations. We observe that the system implies

I = L− φδIπ̂DlA (ρ− 1)

r + δ

ml

ml +m−l

(
π̂D−l

π̂Dl

) φ(ρ−1)
1−φ(ρ−1)

− φδIπ̂D−lA (ρ− 1)

r + δ

m−l

m−l +ml

(
π̂Dl

π̂D−l

) φ(ρ−1)
1−φ(ρ−1)
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which is equivalent to

I = L− φδIA (ρ− 1)

r + δ

mlπ̂Dl +m−l

(
π̂D−l

π̂Dl

) φ(ρ−1)
1−φ(ρ−1)

π̂D−l

ml +m−l

(
π̂D−l

π̂Dl

) φ(ρ−1)
1−φ(ρ−1)

which implies (40). To prove Part 6 we observe that

xl =
mlq

ρ−1
l

mlq
ρ−1
l +m−lq

ρ−1
−l

=
ml

(
ql
q−l

)ρ−1

ml

(
ql
q−l

)ρ−1

+m−l

=
ml

(
π̂Dl

π̂D−l

) φ(ρ−1)
1−φ(ρ−1)

ml

(
π̂Dl

π̂D−l

) φ(ρ−1)
1−φ(ρ−1)

+m−l

.

Special Case

Here we study an especially tractable special case of the model. Platforms in
group 1 have data while platforms in group 2 have uninformative data. Let v̂ij denote
the posterior expectation of vij given the data on a platform in group 1 which was
assume is distributed according to G supported on R+ such that P ≻MPS G. Each
vij is drawn from G independently across consumers i and firms j.

Proposition 7. In a stationary equilibrium, the CDF H of expectations condi-
tional on group 1’s signal inside the consideration set Ωit solves

MH(v̂) + (F −M)Hc(v̂) = FG(v̂)

where

x1H
c(v̂)N +

(
F

M
− x1

)
Hc(v̂) =

F

M
G(v̂)

for each v̂ ∈ R+ and

M =
A

λf
.

Proof. The distribution must match inflows and outflows:

x1H
c(v̂)N + x2H

c(v̂) = H(v̂).

By the ELLN, we have the accounting identity

MH(v̂) + (F −M)Hc(v̂) = FG(v̂).

Together with the previous equation we therefore have

x1H
c(v̂)N + x2H

c(v̂) =
F

M
G(v̂)− F −M

M
Hc(v̂).

Simplifying gives

x1H
c(v̂)N +

(
F

M
− x1

)
Hc(v̂) =

F

M
G(v̂).
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Thus, computing the stationary distribution is as tractable as in the baseline model
under this extension. From here, we can derive the equilibrium bidding functions. On
the platform without data, the bid is the same for all bidders and equal to a constant
B2.

Proposition 8. In a stationary equilibrium, B1 and B2 are characterized explic-
itly given x1, x2, H, and Hc by the equations:

B1(v̂ij) =
πF

λf + r
v̂ij−

r

λf + r

λa
λa + r

x2 1
N

(
πF

λf+r
v̂ij −B2

)
+
(
x1 − r

λf+r

x2
1λa

λa+r

)
V1(v̂ij)

1 + r
λf+r

x2λa

λa+r

 .

and

B2 =
πFµHc

λf + r
− r

λf + r

λa
λa + r

x1 + 2x2x1
λa

λa+r

1 + x2
λa

λa+r

E[V1(v̂ij), j ∈ Ωc
it].

Above,

V1(v̂ij) =

∫ v̂ij

0

ψ(s)ds+ a+
b

1− b

(
a+ E

[∫ v̂j

0

ψ(s)ds

])
where

ψ(v̂ij) =

πF
λf+r

(
Hc(v̂ij)

N−1 + 1
N

x2λa
λa+r

1+ r
λf+r

x2λa
λa+r

(
1−Hc(v̂ij)

N−1 r
λf+r

))
1 + x1λa

λa+r
+Hc(v̂ij)N−1 r

λf+r
x1λa

λa+r
+ x2x1

(
λa

λa+r

)2 r
λf+r

1+ r
λf+r

x2λa
λa+r

(
1−Hc(v̂ij)N−1 r

λf+r

) ,

a =

− 1
N

x2λa
λa+r

1+ r
λf+r

x2λa
λa+r

πFµHc

λf+r

1 + x1λa

λa+r
+

x2λa
λa+r

r
λf+r

x1λa
λa+r

1+ r
λf+r

x2λa
λa+r

,

and

b =

1
N

x2λa
λa+r

1+ r
λf+r

x2λa
λa+r

r
λf+r

λa

λa+r

x1+2x2x1
λa

λa+r

1+x2
λa

λa+r

1 + x1λa

λa+r
+

x2λa
λa+r

r
λf+r

x1λa
λa+r

1+ r
λf+r

x2λa
λa+r

.

Proof. To ease notation, let O(v̂) = Hc(v̂)N−1 for each v̂ ∈ [0, v]. This is the prob-
ability of a firm j winning an ad auction on a platform in group 1 if v̂ij = v̂. The
stationary equilibrium bid by firm j on platform 1 must satisfy

(60) B1(v̂ij) =
πF

λf + r
v̂ij −

r

λf + r

λa
λa + r

(x1V1(v̂ij) + x2V12(v̂ij)) .

where

πF :=
I

σMµH

.
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Above, V1 denotes the expected NPV of flow profits from the consumer’s purchases
of firm j’s product at the time when firm j is about to submit a bid in an auction on
Platform 1. V12 is the expected NPV of flow profits when firm j is about to submit
a bid in an auction on platform 2, but where the expectation is taken given the data
on platform 1. Above, V1 satisfies the equation

(61) V1(v̂ij)

(
1 +

λa
(λa + r)

x1

)
= O(v̂ij)

(
B1(v̂ij)− E[B1(v̂

(1))|v̂ij ≥ v̂(1)]
)
+

λa
λa + r

x2V12(v̂ij).

Above v̂(1) is distributed according to the maximum of N − 1 random draws from
outside the consideration set. Next, let V2 denote the expected NPV of flow profits
when the expectation is taken without conditioning on data from platform 1, but
conditioning on firm j knowing that it is not in the consideration set Ωit. Then

V2

(
1 + x2

λa
(λa + r)

)
=

λa
λa + r

x1E[V1(v̂ij), j ∈ Ωc
it]

and so rearranging,

(62) V2 =
x1

λa

λa+r

1 + x2
λa

λa+r

E[V1(v̂ij), j ∈ Ωc
it].

Thus the optimal bid on platform 2 is

(63) B2 = πFµHc − r

λf + r

λa
λa + r

(x2V2 + x1E[V1(v̂ij), j ∈ Ωc
it])

where µHc is the mean of the distribution Hc. Similarly, V12 solves

V12(v̂ij) =
1

N

(
πF

λf + r
v̂ij −B2

)
− r

λf + r

λa
λa + r

(x2V12(v̂ij) + x1V1(v̂ij)) .

Rearranging, we have

(64) V12(v̂ij)

(
1 +

r

λf + r

x2λa
λa + r

)
=

1

N

(
πF

λf + r
v̂ij −B2

)
− r

λf + r

x1λa
λa + r

V1(v̂ij).

Substituting (60) into (61), I derive

V1(v̂ij)

(
1 +

x1λa
λa + r

)
=

O(v̂ij)
πF

λf + r
v̂ij −O(v̂ij)

r

λf + r

λa
λa + r

(x1V1(v̂ij) + x2V12(v̂ij)) +
λa

λa + r
x2V12(v̂ij)

−
∫ v̂ij

0

(
πFs

λf + r
− r

λf + r

λa
λa + r

(x1V1(v̂ij) + x2V12(v̂ij))

)
O′(s)ds
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Combining like terms gives,

V1(v̂ij)

(
1 +

x1λa
λa + r

)
= O(v̂ij)

πF v̂ij
λf + r

−O(v̂ij)
r

λf + r

λa
λa + r

x1V1(v̂ij)

−
∫ v̂ij

0

(
πFs

λf + r
− r

λf + r

λa
λa + r

(x1V1(s) + x2V12(s))

)
O′(s)ds

+
λa

λa + r
x2V12(v̂ij)

(
1−O(v̂ij)

r

λf + r

)
.

Taking a derivative of both sides we derive,

V1(v̂ij)
′
(
1 + x1

λa
λa + r

)
= O(v̂ij)

′ πF v̂ij
λf + r

+O(v̂ij)
πF

λf + r

−O′(v̂ij)
r

λf + r

λa
λa + r

x1V1(v̂ij)−O(v̂ij)
r

λf + r

λa
λa + r

x1V1(v̂ij)
′

−
(
πF v̂ij
λf + r

− r

λf + r

λa
λa + r

(x1V1(v̂ij) + x2V12(v̂ij))

)
O′(v̂ij)

− λa
λa + r

x2V12(v̂ij)O
′(v̂ij)

r

λf + r
+

λa
λa + r

x2V12(v̂ij)
′
(
1−O(v̂ij)

r

λf + r

)
.

Simplifying,

(65) V1(v̂ij)
′
(
1 +

x1λa
λa + r

)
=

O(v̂ij)
πF

λf + r
−O(v̂ij)

r

λf + r

λa
λa + r

x1V1(v̂ij)
′

+
λa

λa + r
x2V12(v̂ij)

′
(
1−O(v̂ij)

r

λf + r

)
.

Using (64), we find that

V12(v̂ij)
′
(
1 +

r

λf + r

x2λa
λa + r

)
=

1

N

πF
λf + r

− r

λf + r

x1λa
λa + r

V1(v̂ij)
′.

Rearranging

V12(v̂ij)
′ =

1
N

1

σMµH(λf+r)
− r

λf+r
x1λa

λa+r
V1(v̂ij)

′

1 + r
λf+r

x2λa

λa+r

.

Substituting into (65) gives

V1(v̂ij)
′
(
1 +

x1λa
λa + r

)
= O(v̂ij)

πF
λf + r

−O(v̂ij)
r

λf + r

λa
λa + r

x1V1(v̂ij)
′

+ x2
λa

λa + r

1
N

1

σMµH(λf+r)
− r

λf+r
x1λa

λa+r
V1(v̂ij)

′

1 + r
λf+r

x2λa

λa+r

(
1−O(v̂ij)

r

λf + r

)
.
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We next rearrange the equation so that V1(v̂ij)
′ appears on the left hand side and all

remaining terms appear on the RHS. We find that the coefficient on V1(v̂ij)
′ is

1 +
x1λa
λa + r

+O(v̂ij)
r

λf + r

λa
λa + r

x1

+ x2x1
λa

λa + r

r

λf + r

λa
λa + r

1

1 + r
λf+r

x2λa

λa+r

(
1−O(v̂ij)

r

λf + r

)
.

Simplifying we have

1+
x1λa
λa + r

+O(v̂ij)
r

λf + r

x1λa
λa + r

+x2x1

(
λa

λa + r

)2 r
λf+r

1 + r
λf+r

x2λa

λa+r

(
1−O(v̂ij)

r

λf + r

)
.

The term on the RHS is

πF
λf + r

(
O(v̂ij) +

1

N

x2λa

λa+r

1 + r
λf+r

x2λa

λa+r

(
1−O(v̂ij)

r

λf + r

))
.

Define ψ(v̂ij) by

ψ(v̂ij) =

πF
λf+r

(
O(v̂ij) +

1
N

x2λa
λa+r

1+ r
λf+r

x2λa
λa+r

(
1−O(v̂ij)

r
λf+r

))
1 + x1λa

λa+r
+O(v̂ij)

r
λf+r

x1λa

λa+r
+ x2x1

(
λa

λa+r

)2 r
λf+r

1+ r
λf+r

x2λa
λa+r

(
1−O(v̂j)

r
λf+r

) .
Then we have

V1(v̂ij) =

∫ v̂ij

0

ψ(s) ds+ constant.

What remains is to derive constant. By (61) and (64), we see that

V1(0)

(
1 +

x1λa
λa + r

)
=

x2λa
λa + r

V12(0)

and

V12(0)

(
1 +

r

λf + r

x2λa
λa + r

)
= − 1

N
B2 −

r

λf + r

x1λa
λa + r

V1(0).

Rearranging this second equation gives

V12(0) =
− 1

N
B2 − r

λf+r
x1λa

λa+r
V1(0)

1 + r
λf+r

x2λa

λa+r

.

Substituting into the first equation gives

V1(0)

(
1 +

x1λa
λa + r

)
=

x2λa
λa + r

− 1
N
B2 − r

λf+r
x1λa

λa+r
V1(0)

1 + r
λf+r

x2λa

λa+r

.
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Therefore,

V1(0)

(
1 +

x1λa
λa + r

+

x2λa

λa+r
r

λf+r
x1λa

λa+r

1 + r
λf+r

x2λa

λa+r

)
= − 1

N

x2λa

λa+r

1 + r
λf+r

x2λa

λa+r

B2.

Next, using (63) with (62) we find that

B2 =
πFµHc

λf + r
− r

λf + r

λa
λa + r

x1 + 2x2x1
λa

λa+r

1 + x2
λa

λa+r

E[V1(v̂ij), j ∈ Ωc
it].

Therefore,

V1(0)

(
1 +

x1λa
λa + r

+

x2λa

λa+r
r

λf+r
x1λa

λa+r

1 + r
λf+r

x2λa

λa+r

)
=

− 1

N

x2λa

λa+r

1 + r
λf+r

x2λa

λa+r

(
πFµHc

λf + r
− r

λf + r

λa
λa + r

x1 + 2x2x1
λa

λa+r

1 + x2
λa

λa+r

E[V1(v̂ij), j ∈ Ωc
it]

)

Define V1(0) = a+bE[V1(v̂ij)] where the coefficients are defined by the above equation.
That is,

a =

− 1
N

x2λa
λa+r

1+ r
λf+r

x2λa
λa+r

πFµHc

λf+r

1 + x1λa

λa+r
+

x2λa
λa+r

r
λf+r

x1λa
λa+r

1+ r
λf+r

x2λa
λa+r

and

b =

1
N

x2λa
λa+r

1+ r
λf+r

x2λa
λa+r

r
λf+r

λa

λa+r

x1+2x2x1
λa

λa+r

1+x2
λa

λa+r

1 + x1λa

λa+r
+

x2λa
λa+r

r
λf+r

x1λa
λa+r

1+ r
λf+r

x2λa
λa+r

.

Then

E[V1(v̂ij)] =
1

1− b

(
a+ E

[∫ v̂j

0

ψ(s)ds

])
.

To conclude,

V1(v̂ij) =

∫ v̂ij

0

ψ(s)ds+ a+
b

1− b

(
a+ E

[∫ v̂j

0

ψ(s)ds

])
.

E. Extension: Ad Frequency

This Appendix extends the baseline model to allow platforms to select their ad
frequencies.
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Setup

We assume now that the CES aggregate over platform consumption is instead

Xit =

[∫
i∈D

(qktν(Akt)xikt)
ρ−1
ρ dk

] ρ
ρ−1

where ν : R+ → [0, 1] is decreasing. Each platform selects its ad frequency to maxi-
mize its flow profits at each point in time:

A = argmax
Akt≤A

πDAxkt

where A > 0 is some exogenous maximal ad frequency. All other aspects of the model
are as in the baseline model.

Analysis

Theorem 6. In the unique stationary equilibrium:

1. Consumer i’s demand for platform k is

xkt =
[ν(Akt)qkt]

ρ−1∫
D [ν(Alt)qlt]

ρ−1 dl
.

2. Each platform sets ad frequency

A = argmax
Akt≤A

Aktν(Akt)
ρ−1.

3. Welfare is u(C,X)/r where C is as in Theorem 1 but X = ν(A)D
1

ρ−1 q where q
is as in Theorem 1.

All other equilibrium properties are as in Theorem 1 of the baseline model.

Proof. We have already shown this in the main text in Section 5.

Proposition 9. Ad frequency A can be either too high or too low relative to what
is socially optimal depending on parameters.

Proof. Suppose that the discount rate is near zero. Then the social planner essentially
sets the ad frequency on each platform to maximize consumers’ flow utilities. Suppose
that the flow utility is Cobb-Douglas with parameter τ . The planner chooses A to
maximize

(AµH)
1−τ
σ−1 ν(A)τ .

Recall that µH is decreasing in A by Lemma 10. Suppose that σ and ρ both equal
3/2. Then, if τ = 1/2, equilibrium advertising is too high. On the other hand, for τ
near 0, equilibrium advertising is too low as then the planner’s choice of ad frequency
diverges.
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Proposition 10. Proposition 1 and Parts 1 and 3 of Proposition 2 hold in this
setting with endogenous ad frequency.

Proof. Note that

A = argmax
Akt≤A

{ln(Akt) + (ρ− 1)ln(ν(Akt))}.

Taking a cross partial it is clear that the objective is submodular in ρ and Akt.
Therefore A is nondecreasing in ρ. The result then follows from Propositions 1–3.

F. Extension: Network Effects

This Appendix extends the baseline model to allow for network effects.

Setup

We redefine the CES aggregate as

Xit =

(∫
i∈D

(qktη(xkt)xikt)
ρ−1
ρ dk

) ρ
ρ−1

where η(x) = xζ where ζ > 0. All other aspects of the model are as in the baseline
model.

Analysis

We assume the following throughout Appendix F.

Condition 4. ρ−1
1−ζ(ρ−1)

≤ 2.

Theorem 7. In the unique stationary equilibrium with the property that each
platform k ∈ D has xkt > 0 at each t:

1. Consumer i’s demand for platform k is

xkt =
q

ρ−1
1−ζ(ρ−1)

kt∫
D q

ρ−1
1−ζ(ρ−1)

kt dk

.

2. All other equilibrium properties except for q and welfare are as in Theorem 1 of
the baseline model except with ρ−1

1−ζ(ρ−1)
in place of ρ.

3. Welfare is u(C,X)/r where C is as in Theorem 1 but X = ν(A)D
1

ρ−1 q
1

1−ζ(ρ−1)

where q is as in Theorem 1.
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Proof. In Section 8, we showed that

xζkt =
x
ζ(ρ−1)
kt qρ−1

kt

Y

where

Y =

∫
D
x
ζ(ρ−1)
kt qρ−1

kt dk.

This implies

xkt =
q

ρ−1
1−ζ(ρ−1)

kt

Y
1

1−ζ(ρ−1)

or xkt = 0. Since each platform receives xkt > 0, integrating both sides over k ∈ D
yields

Y
1

1−ζ(ρ−1) =

∫
D
q

ρ−1
1−ζ(ρ−1)

kt dk.

This implies that

xkt =
q

ρ−1
1−ζ(ρ−1)

kt∫
D q

ρ−1
1−ζ(ρ−1)

kt dk

.

The remaining parts of Theorem 1 are straightforward.

G. Extension: Reserve Prices

This Appendix extends the baseline model with endogenous ad frequency as de-
scribed in Section 8 by allowing each platform to set reserve prices.

Setup

Each platform k sets a reserve price to maximize the expected revenue in each
auction taking as given the reserve prices chosen by its rivals. All other aspects of
the model are as in the baseline.

Analysis

The proposition below provides a characterization of the candidate equilibrium
reserve price R and stationary distribution H. When there is a reserve of price, the
effective rate at which individuals see ads per unit of attention is no longer simply A
since sometimes there may not be a winner in an ad auction. Let Y denote the cutoff
expectation such that any firm with expectation below Y in an auction will not bid
above the reserve price.

Proposition 11. In a stationary equilibrium with reserve prices the following
hold:
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1. The measure of firms below the cutoff Y solves the quadratic equation

Hc(Y )

[
F − A

λf
(1−Hc(Y ))

]
= FG(Y ).

2. The measure of firms in Ωit is

M =
A

λf
(1−Hc(Y )).

3. The cutoff Y solves

Y =

(
1− F

F −M
G(Y )

) ( F
F−M

)N−1
G(Y )N−1 + F−M

M

(
1−

(
F

F−M

)N
G(Y )N

)
F
M
g(Y )(1−

(
F

F−M

)N
G(Y )N)

which, given Parts 1 and 2, is an equation where Y is the only unknown.

4. The stationary distribution Hc solves

Hc(s)N −
(

F

F −M

)N

G(Y )N

=

(
F

M
G(s)− F −M

M
Hc(s)

)(
1−

(
F

F −M

)N

G(Y )N

)

for s ≥ Y . For s ≤ Y ,

Hc(s) =
F

F −M
G(s).

5. Given H and income I, the coefficient of flow profits πF is as in the baseline
model.

6. The reserve price is

R =
πFY

λf + r
.

7. The auction entry rate is

λa =
NA(1−Hc(Y ))

F −M
.

8. The bidding function is

B(v̂ij) =

∫ v̂ij

R

πF
1

λf + r + λaHc(s)N−1
ds+R

for v̂ij ≥ Y .
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All other equilibrium properties are as in Theorem 1 of the baseline model except with
A(1−Hc(Y )) in place of A.

Proof. Firm j’s optimal bid must satisfy

B(v̂ij) =
πF

λf + r
v̂ij +

λf
λf + r

λa
λa + r

V (v̂ij)−
λa

λa + r
V (v̂ij).

Let Y = R
λf+r

πF
. Above,

V (v̂ij) =
(
1−H(v̂ij)

N−1
) λa
λa + r

V (v̂ij)+

Hc(v̂ij)
N−1

(
πF

λf + r
v̂ij +

λf
λf + r

λa
λa + r

V (v̂ij)− E
[
max{B(v̂(1)), R}|v̂ij > v̂(1)

])
when v̂ij ≥ Y . Here, v̂(1) is distributed according to the highest of N − 1 draws from
the distribution outside the consideration set. Letting O(v̂ij) = Hc(v̂ij)

N−1, we have

O(v̂ij)E
[
max{B(v̂(1)), R}|v̂ij > v̂(1)

]
= RO(R) +

∫ v̂ij

Y

B(s)O′(s)ds.

Then

V (v̂ij)

(
1− λa

λa + r

)
= O(v̂ij)B(v̂ij)−RO(R)−

∫ v̂ij

Y

B(s)O′(s)ds

for v̂ij ≥ Y . Then

B(v̂ij) =
πF

λf + r
v̂ij −

r

λf + r

λa
r

(
O(v̂ij)B(v̂ij)−RO(R)−

∫ v̂ij

Y

B(s)O′(s)ds

)
.

Differentiating with respect to v̂ij, we solve explicitly for B′(v̂ij). Using the boundary
condition B(Y ) = R, we find that

B(v̂ij) =
πF

λf + r

∫ v̂ij

Y

1

1 + λa

λf+r
Hc(s)N−1

ds+R

for v̂ij ≥ Y . There is a multiplicity of equilibrium bids for v̂ij < Y .
Next, we derive the stationary distribution over expected values H. Matching

inflows with outflows gives,

Hc(s)N−1hc(s) = h(s)
(
1−Hc (Y )N

)
.

for all s ≥ Y . Then we have

Hc(s)N −Hc(Y )N = H(s)
(
1−Hc(Y )N

)
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for s ≥ Y . Recall the accounting identity MH + (F −M)Hc = FG. Then

Hc(s)N −Hc(Y )N =

(
F

M
G(s)− F −M

M
Hc(s)

)(
1−Hc(Y )N

)
for s ≥ Y . Using the fact that H(Y ) = 0, the accounting identity gives

Hc(Y ) =
F

F −M
G(Y ).

Substituting into the above equation, we find that

Hc(s)N−
(

F

F −M

)N

G(Y )N =

(
F

M
G(s)− F −M

M
Hc(s)

)(
1−

(
F

F −M

)N

G(Y )N

)

for s ≥ Y . This is a polynomial equation in Hc(s). Next, we derive the first order
condition for optimality of the cutoff Y . First, we derive hc(Y ) by observing that

Hc(Y )N−1hc(Y ) = h(Y )
(
1−Hc (Y )N

)
which implies

Hc(Y )N−1hc(Y ) =

(
F

M
g(Y )− F −M

M
hc(Y )

)(
1− (Hc(Y )N

)
which rearranges to

hc(Y ) =
F
M
g(Y )(1−Hc(Y )N)

Hc(Y )N−1 + F−M
M

(1−Hc(Y )N)
.

Now we derive the first order condition. Consider the equation for profit:∫ v

Y

B(s)[N(N−1)Hc(s)N−2(1−Hc(s))hc(s)]ds+Y
1− σ

MµH(λf + r)
N(1−Hc(Y ))Hc(Y )N−1.

Note that implicitly µH depends on the reserve price chosen by the other platforms.
Optimizing the above expression with respect to Y is effectively equivalent to opti-
mizing with respect to the reserve price. Taking a first order condition we obtain,

−B(Y )[N(N − 1)Hc(Y )N−2(1−Hc(Y ))hc(Y )]

+ Y
1

σMµH(λf + r)
N
(
(N − 1)Hc(Y )N−2 −NHc(Y )N−1

)
hc(Y )

+
1

σMµH(λf + r)
N(1−Hc(Y ))Hc(Y )N−1 = 0.

Simplifying, we arrive at the familiar equation

Y =
1−Hc(Y )

hc(Y )
.
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Y is the solution to this simple equation but recall that Hc itself is a function of Y .
We write the equation for Y in terms of primitives:

Y =

(
1− F

F −M
G(Y )

) ( F
F−M

)N−1
G(Y )N−1 + F−M

M

(
1−

(
F

F−M

)N
G(Y )N

)
F
M
g(Y )(1−

(
F

F−M

)N
G(Y )N)

.

Corollary 7.1. In the limit as F tends to infinity, the candidate stationary equi-
librium cutoff converges to the solution to

Y =
1−G(Y )

g(Y )
.

We can show the following comparative statics.

Proposition 12. Parts 2 and 3 of Proposition 1 and Theorem 2 continue to
hold in this setting. If ad frequency is endogenous as in Appendix E, then Part 1 of
Proposition 1 also holds.

We omit the proof of the above claim which follows using analogous arguments to
those of the baseline model. We have not proven equilibrium uniquenes. However, the
comparative statics in Proposition 1 will continue to hold across all stationary equi-
libria. Namely, there is a unique stationary equilibrium when data is uninformative.
Ad revenue and investment will be maximal, across all data and all equilibria when G
is uninformative. Part 1 of Proposition 1 will hold when ad frequency is endogenous
since each platform will adjust is ad frequency to offset the effects of the reserve price.
The following analog of Proposition 2 will also hold as long as stationary equilibrium
is unique.

Proposition 13. As long as stationary equilibrium exists and is unique, if inter-
operability ρ increases then:

1. Aggregate product consumption C decreases.

2. Ad revenue πDA decreases.

3. Investment LD increases.

Proof. The reserve price and cutoff do not depend on ρ. Thus the same argument as
in Proposition 2 of the baseline model applies.

We have not proven existence of stationary equilibrium but one can derive suf-
ficient conditions. We omit a formal argument. As long as F is sufficiently large
relative to A and G is strictly regular (in that the derivative of its virtual value is
bounded below by a positive constant), one can show existence.
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H. Extension: Entry

This Appendix extends the baseline model to allow for entry of firms and plat-
forms.

Setup

Suppose that entry by a firm requires eF units of labor and entry by a platform
requires eD units of labor. We retain all other aspects of the baseline model except
that now the measure of firms F and the measure of platforms D are such that both
firms and platforms earn zero profits from entry.

Analysis

The following Theorem 8 characterizes the stationary equilibrium with entry.

Theorem 8. In the unique stationary equilibrium, the following hold:

1. The measure of firms in Ωit is M and the CDFs of values inside Ωit and Ωc
it are

H and Hc respectively where M , H, and Hc are as in Lemma 3.

2. Income is I = L.

3. Demands, prices, bidding, ad revenue, and platforms’ investments and quality
levels are as in Lemmas 1-5.

4. The measure of platforms satisfies

D =
πDA

eD

(
1− φδ(ρ− 1)

r + (1− α)δ

)
.

5. The measure of firms satisfies

F =
L
σ
− πDA

eF
.

6. Welfare is u(C,X)/r where C = σ−1
σ
L(MµH)

1
σ−1 and X = D

1
ρ−1 q.

Proof. Note that I = L since firms’ and platforms’ profits are driven to zero by
entry. All other equilibrium properties besides D and F are determined as before
in the baseline model. This proves Parts 1-3. Parts 4 and 5 follow from zero profit
conditions. The stationary equilibrium is unique because there is a unique solution
for F to the equation in Part 5. This is because πDA is an increasing function of
F as shown in Proposition 4. Part 6 follows straightforwardly using earlier parts of
Theorem 8.

Using Theorem 8 together with previous results we can derive the following com-
parative statics. The proofs are straightforward so we omit them.
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Proposition 14. If interoperability ρ increases then:

1. There is no change in aggregate product consumption C.

2. Investment LD increases.

3. There is no change in ad revenue πDA.

Proposition 15. If ad frequency A increases then:

1. Aggregate product consumption C increases.

2. Ad revenue πDA decreases.

3. Investment LD decreases.

Proposition 16. When data G is uninformative:

1. Aggregate product consumption C is minimal.

2. Ad revenue πDA is maximal.

3. Investment is LD maximal.

Proposition 17. If the entry cost of firms increases ϵF then:

1. The measure of firms F decreases.

2. The measure of platforms D decreases.
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