RAHUL SINGH

OFFICE CONTACT INFORMATION

MIT Department of Economics 77 Massachusetts Avenue, E52-480 Cambridge, MA 02139 <u>rahul.singh@mit.edu</u> economics.mit.edu/people/phd-students/rahul-singh

MIT PLACEMENT OFFICER

Professor Rob Townsend rtownsen@mit.edu 617-452-3722

HOME CONTACT INFORMATION

35 Skehan St #3 Somerville, MA 02143 Mobile: 216-213-1293

MIT PLACEMENT ADMINISTRATOR

Ms. Shannon May shmay@mit.edu 617-324-5857

DOCTORAL	Massachusetts Institute of Technology (MIT)
STUDIES	PhD, Economics & Statistics, Expected completion June 2023
	DISSERTATION: "Essays on Econometrics, Causal Inference, & Machine Learning"

DISSERTATION COMMITTEE AND REFERENCES

	Professor Whitney K. Newey MIT Department of Economics 77 Massachusetts Avenue, E52-520 Cambridge, MA 02139 617-253-6420 wnewey@mit.edu	Professor An MIT Departm 77 Massachu Cambridge, M 617-324-5459 amikushe@m	na Mikusheva nent of Economics setts Avenue, E52-526 //A 02139 nit.edu	
	Professor Alberto Abadie MIT Department of Economics and Institute for Data, Systems, & Society 77 Massachusetts Avenue, E52-546 Cambridge, MA 02139 617-253-4669 <u>abadie@mit.edu</u>	Professor Vic MIT Departm Institute for I 77 Massachus Cambridge, N 617-253-476 vchern@mit.	etor Chernozhukov nent of Economics and Data, Systems, & Society setts Avenue, E52-524 AA 02139 7 edu	
PRIOR EDUCATION	University College London MSc, Computational Statistics & Mach Distinction	ine Learning	2017	,
The London School of Economics & Political Science MSc, Econometrics & Mathematical Economics <i>Distinction</i>		2016)	
	Yale University BA, Economics & Mathematics Magna Cum Laude, Distinction in the I	Major	2015	,
CITIZENSHIP	USA	Gender	Male	

RAHUL SINGH October 2022-- Page 2

FIELDS	Primary Fields: Econometrics, Causal Inference, Machine Learning			
	Secondary Field: Labor Economics			
TEACHING	Econometrics (graduate)	2023		
EXPERIENCE	Teaching Assistant to Profs. Alberto Abadie & Whitney Newey			
	Research & Communication in Economics (undergraduate)	2023		
	Teaching Assistant to Prof. Sara Ellison			
	Intro to Stat in Economics (undergraduate; 7.0/7.0 median rating)	2021		
	Teaching Assistant to Prof. Alberto Abadie			
	Intro to Stat in Economics (undergraduate: 7.0/7.0 median rating)	2019		
	Teaching Assistant to Profs Alberto Abadie & Whitney Newey			
	Nonlinear Econometrics (graduate: 6 0/7 0 median rating)	2019		
	Teaching Assistant to Profs Alberto Abadie & Whitney Newey	2019		
	reaching Assistant to Frois. Atoento Atoatic & Whittey Rewey			
Relevant	Causality Research Fellow, Simons Institute for the Theory of	2022		
POSITIONS	Computing, UC Berkeley			
	Machine Learning Research Intern to Prof. Vasilis Syrgkanis,	2020		
	Microsoft Research New England			
	Research Assistant to Profs. Glenn Ellison & Parag Pathak, NBER	2016		
	Risk Intern, Earnest, San Francisco CA	2015		
	Summer Intern, The President's Council of Economic Advisers,	2014		
	Financial Literacy Teacher New Haven Reads New Haven CT	2013-14		
	Tobin Research Assistant to Prof. Costas Meghir. Yale	2013 11		
FELLOWSHIPS,	Simons-Berkeley Research Fellowship	2022		
HONORS, AND	MIT Prize for Open Data, Runner Up	2022		
AWARDS	ICML Outstanding Reviewer Award	2022		
	NeurIPS Outstanding Reviewer Award	2021		
	Jerry A. Hausman Graduate Fellowship	2018, 20		
	Miri Presidential Fellowship Marshall Scholarship	2017		
	Phi Beta Kanna	2013		
	Senator John Heinz Government Service Fellowship	2013		
	Henry James TenEyck Oratory Prize, 2 nd	2014		
	E. Francis Riggs Humanities Prize, 2 nd	2013		
PROFESSIONAL	Referee:			
ACTIVITIES	Econometrica, Review of Economic Studies, Review of Economics &	Statistics,		
	Journal of Econometrics; Journal of the Royal Statistical Society: Se	eries B,		
	Journal of the American Statistical Association: Theory & Methods,	o I ogginin		
	Diometrika, Journal of Nonparametric Statistics; Journal of Machin Research NeurIPS ICMI ICLR	e Learning		

RAHUL SINGH October 2022-- Page 3

Service:

Participant, Working Session on Implications of New Data	2023
Co-coordinator. Statistical Theory for Causal Estimation Working	2022
Group, Simons Institute	
Mentor, Application Assistance and Mentoring Program, MIT	2020-22
Mentor, Undergraduate Research Opportunity Program, MIT	2020-22
Program Committee, Workshop on Machine Learning Meets Econometrics, NeurIPS	2021
Program Committee, Workshop on Causal Sequential Decisions, NeurIPS	2021
Session Chair, Econometric Society World Congress	2020
Co-coordinator, High Dimensional Probability & Statistics Reading Group, MIT	2018-19
Rossborough Fellow, Women's Center, Yale	2013-14
Peer Liaison, Asian American Cultural Center, Yale	2012
Presentations:	
ASSA Annual Meeting	2023
Online Causal Inference Seminar	2022
Conference on Computational and Methodological Statistics	2022
INFORMS Annual Meeting, Oral Presentation	2022
American Causal Inference Conference, Oral Presentation	2022
California Econometrics Conference, Oral Presentation	2022
Berkeley Econometrics Seminar	2022
Berkeley Causal Inference Research Group	2022
Berkeley Biostatistics Seminar	2022
Simons Workshop on Algorithmic Aspects of Causal Inference	2022
ASSA Annual Meeting (co-author)	2022
Wharton Statistics (Tchetgen Tchetgen Lab)	2021
ETH Zurich Causality Reading Group	2020
Microsoft Research New England	2020
Econometric Society World Congress	2020
ASSA Annual Meeting (co-author)	2020
NeurIPS Oral Presentation	2019
NeurIPS Workshop on Causal ML, Spotlight (co-author)	2019
MIT LIDS Causal Inference Tutorial	2019

PUBLICATIONS "Automatic debiased machine learning of causal and structural effects" (with Victor Chernozhukov and Whitney K. Newey) *Econometrica*, 2022.

"A simple and general debiased machine learning theorem with finite sample guarantees" (with Victor Chernozhukov and Whitney K. Newey) *Biometrika*, 2022.

RAHUL SINGH October 2022-- Page 4

"Debiased machine learning of global and local parameters using regularized Riesz representers" (with Victor Chernozhukov and Whitney K. Newey) *The Econometrics Journal*, 2022.

"Kernel instrumental variable regression" (first author; with Maneesh Sahani and Arthur Gretton) *NeurIPS*, 2019 (Oral presentation; 0.5% acceptance rate).

RESEARCH"Causal inference with corrupted data: Measurement error, missing
values, discretization, and differential privacy" (Job Market Paper)
(with Anish Agarwal)

arXiv: 2107.02780, 2021. Extended abstract in NeurIPS Workshop on Machine Learning Meets Econometrics, 2021.

The US Census Bureau will deliberately corrupt data sets derived from the 2020 US Census in an effort to maintain privacy, suggesting a painful trade-off between the privacy of respondents and the precision of economic analysis. To investigate whether this trade-off is inevitable, we formulate a semiparametric model of causal inference with high dimensional corrupted data. We propose a procedure for data cleaning, estimation, and inference with data cleaningadjusted confidence intervals. We prove consistency, Gaussian approximation, and semiparametric efficiency by finite sample arguments, with a rate of $n^{-1/2}$ for semiparametric estimands that degrades gracefully for nonparametric estimands. Our key assumption is that the true covariates are approximately low rank, which we interpret as approximate repeated measurements and validate in the Census. In our analysis, we provide nonasymptotic theoretical contributions to matrix completion, statistical learning, and semiparametric statistics. Calibrated simulations verify the coverage of our data cleaning-adjusted confidence intervals and demonstrate the relevance of our results for 2020 Census data.

"Kernel methods for unobserved confounding: Negative controls, proxies, and instruments"

arXiv: 2012.10315, 2020. Revised & resubmitted to *Journal of the American Statistical Association: Theory & Methods.*

Negative control is a strategy for learning the causal relationship between treatment and outcome in the presence of unmeasured confounding. The treatment effect can nonetheless be identified if two auxiliary variables are available: a negative control treatment (which has no effect on the actual outcome), and a negative control outcome (which is not affected by the actual treatment). These auxiliary variables can also be viewed as proxies for a traditional set of control variables, and they bear resemblance to instrumental variables. I propose a family of algorithms based on kernel ridge regression for learning nonparametric treatment effects with negative controls. Examples include dose response curves, dose response curves with distribution shift, and heterogeneous treatment effects. Data may be discrete or continuous, and low, high, or infinite dimensional. I prove uniform consistency and provide finite

RAHUL SINGH October 2022-- Page 5

sample rates of convergence. I estimate the dose response curve of cigarette smoking on infant birth weight adjusting for unobserved confounding due to household income, using a data set of singleton births in the state of Pennsylvania between 1989 and 1991.

"Double robustness for complier parameters and a semiparametric test for complier characteristics"

(with Liyang Sun)

arXiv: 1909.05244, 2019. Extended abstract in *NeurIPS Workshop on Causal Machine Learning*, 2019 (Spotlight presentation). Submitted.

We propose a semiparametric test to evaluate (i) whether different instruments induce subpopulations of compliers with the same observable characteristics on average, and (ii) whether compliers have observable characteristics that are the same as the full population on average. The test is a flexible robustness check for the external validity of instruments. We use it to reinterpret the difference in LATE estimates that Angrist and Evans (1998) obtain when using different instrumental variables. To justify the test, we characterize the doubly robust moment for Abadie (2003)'s class of complier parameters, and we analyze a machine learning update to κ weighting.

"Kernel methods for causal functions: Dose, heterogeneous, and incremental response curves"

(first author; with Liyuan Xu and Arthur Gretton) *arXiv: 2010.04855*, 2020. Extended abstract in *NeurIPS Workshop on Machine Learning for Economic Policy*, 2020. Submitted.

We propose estimators based on kernel ridge regression for nonparametric causal functions such as dose, heterogeneous, and incremental response curves. Treatment and covariates may be discrete or continuous in general spaces. Due to a decomposition property specific to the RKHS, our estimators have simple closed form solutions. We prove uniform consistency with improved finite sample rates, via original analysis of generalized kernel ridge regression. We extend our main results to counterfactual distributions and to causal functions identified by front and back door criteria. In nonlinear simulations with many covariates, we achieve state-of-the-art performance.

"Kernel methods for multistage causal inference: Mediation analysis and dynamic treatment effects"

(first author; with Liyuan Xu and Arthur Gretton) *arXiv: 2111.03950*, 2021. Extended abstract in *NeurIPS Workshop on Causal Sequential Decisions*, 2021. Submitted.

We propose simple estimators for mediation analysis and dynamic treatment effects over short horizons based on kernel ridge regression. We study both nonparametric response curves and semiparametric treatment effects, allowing treatments, mediators, and covariates to be continuous or discrete in general spaces. Our key innovation is a new RKHS technique called sequential mean

RAHUL SINGH October 2022-- Page 6

embedding, which facilitates the construction of simple estimators for complex causal estimands, including new estimands without existing alternatives. In particular, we propose machine learning estimators of dynamic dose response curves and dynamic counterfactual distributions without restrictive linearity, Markov, or no-effect-modification assumptions. Our simple estimators preserve the generality of classic identification while also achieving nonasymptotic uniform rates for causal functions and semiparametric efficiency for causal scalars. In nonlinear simulations with many covariates, we demonstrate state-of-the-art performance. We estimate mediated and dynamic response curves of the US Job Corps program for disadvantaged youth, and share a data set that may serve as a benchmark in future work.

"A finite sample theorem for longitudinal causal inference with machine learning: Long term, dynamic, and mediated effects" *arXiv: 2112.14249*, 2021.

I construct and justify confidence intervals for longitudinal causal parameters estimated with machine learning. Longitudinal parameters include long term, dynamic, and mediated effects. I provide a nonasymptotic theorem for any longitudinal causal parameter in a general class, estimated with any machine learning algorithm that satisfies a few simple conditions. The main result encompasses local parameters defined for specific demographics as well as proximal parameters defined in the presence of unobserved confounding. I prove consistency, Gaussian approximation, and semiparametric efficiency. The rate of Gaussian approximation is n^{-1/2} for global parameters, and it degrades gracefully for local parameters. I articulate a simple set of conditions to translate mean square rates into statistical inference, and verify that they hold for adversarial estimators over generic function spaces. A key feature of the main result is a new multiple robustness to ill posedness for proximal causal inference in longitudinal settings. Of independent interest, I provide what appears to be the first mean square rate for nested nonparametric instrumental variable regression.

"Adversarial estimation of Riesz representers"

(with Victor Chernozhukov, Whitney K. Newey, and Vasilis Syrgkanis) *arXiv: 2101.00009*, 2020. Extended abstract in *ICML Workshop on New Frontiers in Adversarial Machine Learning*, 2022.

We provide an adversarial approach to estimating Riesz representers of linear functionals within arbitrary function spaces. We prove oracle inequalities based on the localized Rademacher complexity of the function space used to approximate the Riesz representer and the approximation error. These inequalities imply fast finite sample mean square error rates for many function spaces of interest, such as high dimensional sparse linear functions, neural networks and reproducing kernel Hilbert spaces. Our approach offers a new way of estimating Riesz representers with a plethora of recently introduced machine learning techniques. We show how our estimator can be used in the context of debiasing structural and causal parameters in semiparametric models, for

RAHUL SINGH October 2022-- Page 7

automated orthogonalization of moment equations, and for estimating the stochastic discount factor in the context of asset pricing.

"Automatic debiased machine learning for dynamic treatment effects and general nested functionals"

(with Victor Chernozhukov, Whitney K. Newey, and Vasilis Syrgkanis) *arXiv: 2203.13887*, 2022.

We extend the idea of automated debiased machine learning to the dynamic treatment regime and more generally to nested functionals. We show that the multiply robust formula for the dynamic treatment regime with discrete treatments can be restated in terms of a recursive Riesz representer characterization of nested mean regressions. We then apply a recursive Riesz representer estimation learning algorithm that estimates debiasing corrections without the need to characterize how the correction terms look—such as for instance, products of inverse probability weighting terms, as is done in prior work on doubly robust estimation in the dynamic regime. Our approach defines a sequence of loss minimization problems, whose minimizers are the multipliers of the debiasing correction, hence circumventing the need for solving auxiliary propensity models and directly optimizing for the mean square error of the target debiasing correction. We provide further applications of our approach to estimation of dynamic discrete choice models and estimation of long term effects with surrogates.

RESEARCH IN"Debiased kernel methods" arXiv: 2102.11076, 2021.**PROGRESS**"Kernel methods for attrition bias" arXiv: 2111.05277, 2021.

"Kernel methods for long term causal inference" arXiv: 2201.05139, 2022.