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Abstract

Consider a population of agents whose choice behaviors are partially comparable

according to given primitive orderings. The set of choice functions admissible in the

population specifies a choice model. A choice model is self-progressive if any aggregate

choice behavior consistent with the model is uniquely representable as a probabil-

ity distribution over admissible choice functions that are comparable. We establish

an equivalence between self-progressive choice models and (i) well-known alge-

braic structures called lattices; (ii) the maximizers of supermodular functions over

a specific domain of choice functions. Our results provide for a precise recipe to re-

strict or extend any choice model for unique orderly representation. We characterize

the minimal self-progressive extension of rational choice functions, which offers an

explanation for why agents might exhibit choice overload. Finally, we extend our

analysis to choice models which render unique orderly representations independent

of the primitive orderings.
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1 Introduction

Random choice models are used successfully to identify heterogeneity in the aggregate

choice behavior of a population. The success is achieved despite prominent choice mod-

els, such as the random utility model, being underidentified in the sense that the ex-

plained choice behavior renders different representations within the model. The typical

remedy to this challenging matter has been structuring the model in order to obtain a

unique representation and achieve point-identification.1 Here, instead of focusing on a

specific choice model, we follow a different route, in that we take choice models as our

primitive objects, and assume an “orderliness” in the population that allows for par-

tial comparison of agents’ choice behaviors.2 In our analysis, we present testable and

optimization based foundations of choice models that guarantee a unique orderly repre-

sentation for each aggregate choice behavior consistent with the model.

The findings of two recent studies that use the “orderliness” in the population are

precursory for our approach. Apesteguia, Ballester & Lu (2017) observe that if a ran-

dom utility model is represented as a probability distribution over a set of comparable

rational choice functions, then the representation must be unique. Filiz-Ozbay & Masatli-

oglu (2022) observe that each random choice function can be uniquely represented as a

probability distribution over a set of choice functions that are comparable to each other.

Both studies present intriguing examples in which agents’ choices are ordered according

to a single characteristic. However, parametrizing agents’ choices according to various

behavioral characteristics is critical in explaining economically relevant phenomena. A

classical example is the equity premium puzzle (Mehra & Prescott 1985) that cannot be

1See for example Gul & Pesendorfer (2006) and Dardanoni et al. (2022).
2See the discussions by Apesteguia, Ballester & Lu (2017) and Filiz-Ozbay & Masatlioglu (2022).

3



explained by maximization of CRRA or CARA utilities parameterized by the risk aver-

sion coefficient. As for an explanation, Epstein & Zin (1989) proposed utility functions

in which the coefficient of risk aversion and the elasticity of substitution are separated.

Another explanation based on agents’ choices is Benartzi & Thaler (1995)’s myopic loss

aversion that combines loss aversion–a greater sensitivity to losses than to gains–and a

tendency to evaluate outcomes more frequently. Since two parameters should be speci-

fied separately, population heterogeneity explained by these models may not be consis-

tent with a fixed set of choice functions ordered according to a single characteristic.

We formulate and analyze self-progressive choice models that contain the choice

functions used in the unique progressive representation of any aggregate choice be-

havior consistent with the model. Our findings show that self-progressive models allow

for specification of multiple behavioral characteristics. Additionally, we obtain a precise

recipe to restrict or extend any choice model as to be self-progressive. We extend our

analysis to choice models rendering unique orderly representations independent of the

primitive orderings. In what follows, we introduce our approach and findings.

Consider a population of agents who rank alternatives according to a primitive or-

dering that depends on the available alternatives, called a choice set. In addition to risk

attitudes, social preferences, or prices that may be choice set independent, primitive or-

derings can accommodate, for example, the temptation or information processing costs

that depend on the availability of more tempting or memorable alternatives. In this pop-

ulation, a pair of choice functions are comparable if the alternative chosen by one of

the choice functions is ranked higher than the alternative chosen by the other for every

choice set according to the associated primitive ordering.
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The main object of our analysis is a choice model, which is simply the set of choice

functions that may be adopted by an agent in the population. We call these choice func-

tions admissible. Next, we describe our notion of self-progressiveness. Suppose that an

analyst represents the aggregate choice behavior of a population as a probability distri-

bution over a set of admissible choice functions. We know that the same aggregate choice

behavior renders a unique representation as a probability distribution over–possibly

different–choice functions that are comparable to each other. Self-progressiveness re-

quires these comparable choice functions to be admissible as well. Put differently, a

self-progressive choice model provides a language to the analyst that allows for orderly

representing any aggregate choice behaviour that is consistent with the model.

In our analysis, we first establish an equivalence between self-progressive choice

models and well-known algebraic structures called lattices. For each pair of choice func-

tions, their join (meet) is the choice function, choosing from each choice set the higher(lower)-

ranked alternative among the ones chosen by the given pair. A choice model forms a

lattice if for each pair of admissible choice functions, their join and meet are admissi-

ble as well. In Theorem 1, by using a simple probabilistic decomposition procedure, we

show that self-progressive choice models are the ones that possess a lattice structure. It

follows that self-progressive choice models are not limited to models consisting of com-

parable choice functions. To demonstrate the relevance of this generality, we present ex-

amples of choice models in which multiple behavioral characteristics are parametrized.

Additionally, Theorem 1 provides for a precise recipe to restrict or extend any choice

model for unique orderly representation. To prove out, we characterize the minimal

self-progressive extension of rational choice functions via two choice axioms, which of-

fer an explanation for why agents might exhibit choice overload.3

3Choice overload refers to the phenomena that agents tend to deviate from their accurate preferences
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In the second part, we provide an optimization-based foundation for self-progressive

choice models. Our departure point is that a choice function can be interpreted as a com-

plete contingent plan to be implemented upon observing available alternatives. Then,

we imagine a population of agents evaluating a set of choice functions via a common

value function, which can be thought of as an indirect utility function associated with the

problem of optimally adopting a choice function. Each agent adopts a choice function

by maximizing the value function over the specific domain.4 The population is homoge-

neous in the sense that each agent evaluates same choice functions via the same value

function. The unique source of heterogeneity is the maximizers’ multiplicity. This raises

the question: What sort of choice heterogeneity allows for self-progressiveness?

To see the answer, suppose that the set of considered choice functions is a lattice,

and the value function is supermodular. Then, since the maximizers form a (sub)lattice,

by Theorem 1, the associated choice model is self-progressive. In Theorem 2, we con-

versely show that every self-progressive choice model can be obtained as the maximizers

of a supermodular value function over an intuitive domain of choice functions.

We have assumed so far that an underlying partial ordering obtained from the prim-

itive orderings allows for comparison of different choice behaviour. Existence of such an

ordering derives the unique orderly representation for any aggregate choice behavior

consistent with a model. However, one can question if there exist choice models render-

ing unique orderly representations independent of the primitive orderings. We show that

a choice model satisfies this stringent requirement–called universal self-progressiveness–if

and only if it corresponds to the maximizer set of an additively separable value function.

when they choose from complex environments. See Chernev et al. (2015) for a recent meta-analysis.
4Here, a choice function is analogous to a “worldview” as described by Bernheim et al. (2021) who

offer a dynamic model of endogenous preference formation.
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2 Self-progressive choice models

Let X be the (grand) alternative set with n elements. A choice set S is a subset of X

containing at least two alternatives. The choice domain Ω is a nonempty collection of

choice sets allowing for limited data sets. A choice function is a mapping c : Ω → X

such that for each S ∈ Ω, we have c(S) ∈ S. Let C denote the set of all choice functions.

A choice model μ ⊂ C is a set of choice functions. We consider two choice procedures

with possibly different formulations as equivalent if these procedures are observationally

indistinguishable in the revealed preference framework, that is, two choice procedures

rationalize the same set of choice functions.

A random choice function (RCF) ρ assigns each choice set S ∈ Ω a probability

measure over S. We denote by ρx(S) the probability that alternative x is chosen from

choice set S. A (deterministic) choice function can be represented by an |Ω|×|X| matrix

with rows indexed by the choice sets and columns indexed by the alternatives, and

entries in {0, 1} such that each row has exactly one 1. For each (S, x) ∈ Ω × X, having

1 in the entry corresponding to row S and column x indicates that x is chosen in S.

Similarly, a RCF can be represented by an |Ω| × |X| matrix having entries in [0, 1] such

that the sum of the entries in each row is 1. For each RCF and each pair (S, x) ∈ Ω × X,

the associated entry indicates the probability that x is chosen in S. Then, it follows

from Birkhoff-von Neumann Theorem (Birkhoff 1946, Von Neumann 1953) that each

RCF can be represented as a probability distribution over a set of deterministic choice

functions. However, this representation is not necessarily unique. For each choice model

μ, let Δ(μ) be the set of RCFs that can be represented via a probability distribution over

choice functions contained in μ.
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For each choice set S ∈ Ω, a primitive ordering >S is a complete, transitive, and

antisymmetric binary relation over S. We write ≥S for its union with the equality rela-

tion. Then, we obtain the partial order B from the primitive orderings such that for each

pair of choice functions c and c′, we have c B c′ if and only if c(S) ≥S c′(S) for each

S ∈ Ω, and there exists S ∈ Ω with c(S) 6= c′(S). We write c D c′ if c B c′ or c = c′.

Definition. Let B be the partial order over choice functions obtained from the primitive

orderings {>S}S∈Ω. Then, a choice model μ is self-progressive with respect to B if each

RCF ρ ∈ Δ(μ) can be uniquely represented as a probability distribution over a set of

choice functions {c1, . . . , ck} ⊂ μ such that c1 B c2 ∙ ∙ ∙ B ck.

If such a “progressive representation” exists, then it must be unique. To see this,

consider the B-best choice function c1 in a progressive representation. Note that c1

chooses the >S-highest-ranked alternative that is assigned positive probability by ρ in

each S ∈ Ω. Therefore, the weight of c1 must be equal to the minimum of ρc(S)(S)

over S ∈ Ω. Thus, c1 and its probability weight is uniquely determined. Iterating this

reasoning yields the uniqueness of the progressive representation.

3 Self-progressive choice models and lattices

Let {>S}S∈Ω be the primitive orderings and B be the associated partial order over choice

functions. For each pair of choice functions c and c′, their join (meet) is the choice func-

tion c ∨ c′ (c ∧ c′) that chooses from each choice set S, the >S-best(worst) alternative

among the ones chosen by c and c′ at S. Then, for each choice model μ, the pair 〈μ,B〉 is

a lattice if for each pair of choice functions c and c′ in μ, their join c ∨ c′ and meet c ∧ c′

are in μ as well.
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Theorem 1. Let μ be a choice model and B be the partial order over choice functions that

is obtained from the primitive orderings {>S}S∈Ω. Then, μ is self-progressive with respect

to B if and only if the pair 〈μ,B〉 is a lattice.

To see that the only if part holds, let c, c′ ∈ μ. Then, consider the RCF ρ such that

for each S ∈ Ω, c(S) or c′(S) is chosen evenly. Note that ρ has a unique progressive

representation in which only c ∨ c′ and c ∧ c′ receive positive probability. Since μ is

self-progressive, it follows that c ∨ c′ ∈ μ and c ∧ c′ ∈ μ.

As for the if part, suppose that 〈μ,B〉 is a lattice, and let ρ ∈ Δ(μ). Next, we present

our uniform decomposition procedure, which yields the progressive random choice

representation for ρ with respect to B. Figure 1 demonstrates the procedure.

Step 1: For each choice set S, let ρ+(S) = {x ∈ S : ρ(x, S) > 0}, and partition the (0, 1]

interval into |ρ+(S)| intervals {ISx}{x∈ρ+(S)} such that each interval ISx is half open of

the type (lSx, uSx] with length ρ(x, S), and for each x, y ∈ ρ+(S) if x >S y, then lSx is less

than lSy.

(1 − lSx)
c

S : ( ]( ]( ] ∙ ∙ ∙ ( ]
0 1ISw ISx ISy ISz

w >S x >S y >S z

...

S ′ :

uS′x′

( ]( ]( ] ∙ ∙ ∙ ( ]
0 1IS′w′ IS′x′ IS′y′ IS′z′

w′ >S′ x′ >S′ y′ >S′ z′

Figure 1
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Step 2: Pick a real number r ∈ (0, 1] according to the Uniform distribution on (0, 1].

Then, for each choice set and alternative pair (S, x), let c(S) = x if and only if r ∈ ISx.

It is clear that as a result of the procedure we obtain a unique probability distribution

over a set of choice functions {c1, . . . , ck} ⊂ μ such that c1 B c2 ∙ ∙ ∙ B ck.5 In proving the

if part of Theorem 1, we will show that {c1, . . . , ck} ⊂ μ by using Lemma 1.

Lemma 1. Let μ be a choice model such that 〈μ,B〉 is a lattice, and let c ∈ C. If for each

S, S ′ ∈ Ω, there exists c∗ ∈ μ such that c∗(S) = c(S) and c∗(S ′) = c(S ′), then c ∈ μ.

Proof. The result is obtained by applying the following observation inductively. Consider

any S ⊂ Ω containing at least three choice sets. Let c1, c2, c3 ∈ μ be such that for each

i ∈ {1, 2, 3}, there exists at most one Si ∈ S with ci(Si) 6= c(Si). Suppose that for each

i, j ∈ {1, 2, 3}, if such Si and Sj exist, then Si 6= Sj. Now, for each S ∈ S, we have c(S) is

chosen by the choice function (c1∧c2)∨ (c1∧c3)∨ (c2∧c3) ∈ μ. To see this, let S ∈ S, and

note that there exist at least two i, j ∈ {1, 2, 3} such that ci(S) = cj(S) = c(S). Assume

without loss of generality that i = 1 and j = 2. Now, if c(S) ≥S c3(S), then we get

c(S) ∨ c3(S) ∨ c3(S) = c(S); if c3(S) >S c(S), then we get c(S) ∨ c(S) ∨ c(S) = c(S).

Proof of Theorem 1. We proved the only if part. For the if part, let {c1, . . . , ck} be the set

of choice functions that are assigned positive probability in the uniform decomposition

procedure. We show that {c1, . . . , ck} ⊂ μ by using Lemma 1. For this, suppose that

S, S ′ ∈ Ω, where x = ci(S) and x′ = ci(S ′) for some i ∈ {1, . . . , k}. Since ρ ∈ Δ(μ), it

must be that μ contains a choice function choosing x from S; and possibly a different

choice function choosing x′ from S ′. We show that there exists c∗ ∈ μ such that both

c∗(S) = x and c∗(S ′) = x′. Then, it will directly follow from Lemma 1 that ci ∈ μ.

5See Theorem 1 by Filiz-Ozbay & Masatlioglu (2022) for an elaborate proof of this fact. It is easy to
see that this procedure is applicable even if the choice space is infinite. In a contemporary study, Petri
(2023) independently extends Theorem 1 by Filiz-Ozbay & Masatlioglu (2022) to infinite choice spaces.
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First, as demonstrated in Figure 1, we have (1 − lSx) + uS′x′ > 1. Since ρ ∈ Δ(μ),

it follows that there exists c1 ∈ μ such that c1(S) ≥S x and c1(S
′) ≤S x′. Symmet-

rically, since (1 − lS′x′) + uSx > 1, there exists c2 ∈ μ such that c2(S) ≤S x and

c2(S
′) ≥S′ x′. Next, consider {c ∈ μ : x ≥S c(S)} and let cx be its join. Similarly, consider

{c ∈ μ : x′ ≥S′ c(S ′)} and let cx′ be its join. By construction, cx(S) = x and cx′(S ′) = x′.

Moreover, c2 is a member of the former set, while c1 is a member of the latter one. Now,

let c∗ = cx ∧ cx′ . Then, c∗(S) = x, since cx(S) = x and cx′(S) ≥S c1(S) ≥S x. Similarly,

c∗(S ′) = x′, since cx′(S ′) = x′ and cx(S
′) ≥S′ c2(S

′) ≥S′ x′.

4 Examples and discussion

4.1 Rational choice and chain lattices

To observe that the random choice model fails to be self-progressive, let X = {a, b, c}

and Ω = {X, {a, b}, {a, c}, {b, c}}. Suppose that each primitive ordering is obtained by

restricting the ordering a > b > c to a choice set. Figure 2 demonstrates the associated

choice functions lattice in which each array specifies the chosen alternatives respectively.

The rational choice functions are highlighted (in red) and clearly fail to form a lattice,

since each light-colored choice function is a join or meet of a rational choice function.

The equivalence to lattices guides us to restrict or extend rational choice model as

to be self-progressive. In this vein, a particularly simple lattice is a chain lattice, which

is a set of choice functions {ci}k
i=1 that are comparable: c1 B c2 ∙ ∙ ∙ B cn. Suppose that

each primitive ordering >S is obtained by restricting the ordering >X to the choice set

S. Additionally, suppose that the choice domain Ω contains every choice set. Then, one
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aaab

baab abab aacb aaac

caab bbab bacb baac abcb aacc abac

caac bbcb cbab bbac cacb bacc abcc

cacc cbac cbcb bbcc

cbcc

Figure 2: The choice functions lattice.

can easily observe that if 〈μ,B〉 is a lattice then it must be chain lattice.6 Moreover, there

is a one-to-one correspondence between the chain lattices of rational choice model and

the preferences with single-crossing property introduced by Apesteguia, Ballester & Lu

(2017). To see this, let μ = {ci}k
i=1 be a choice model consisting of choice functions

rationalized by preferences {�i}k
i=1. That is, for each choice set S, ci(S) maximizes the

preference relation �i over S. Then, {�i}k
i=1 is single-crossing with respect to >X means:

for each alternative pair x >X y, if x �i y, then x �j y for every i > j. It is easy to see

that 〈μ,B〉 is a chain lattice if and only if {�i}k
i=1 is single-crossing with respect to >X .7

Apesteguia, Ballester & Lu (2017) present economic examples of rational choice func-

tions that form chain lattices.8 Going beyond rational choice, Filiz-Ozbay & Masatlioglu

(2022) present examples in which the choice functions are ordered according to a single

behavioral characteristic, thus these examples also form chain lattices.

6This is not true for a general domain of choice sets. For a simple example, suppose that the choice
domain consists of disjoint binary choice sets. Then, every choice function is rational, thus every sublattice
of choice functions is a set of rational choice functions.

7See also Lemma 1 by Filiz-Ozbay & Masatlioglu (2022).
8See also Curello & Sinander (2019) who characterize when a common primitive ordering over alter-

natives allows for preferences form a lattice according to single-crossing dominance, and provide several
applications.

12



4.2 Beyond chain lattices

It follows from our Theorem 1 that self-progressive choice models are not limited to

chain lattices, and thus allow for parametrization according to multiple behavioral char-

acteristics. We will demonstrate this point via our examples. In our first example, we

propose a choice model consistent with the choice overload phenomena indicating that

agents tend to deviate from their accurate preferences more when they choose from

more complex environments, such as larger choice sets.

Example 1. (Smaller-is-better) Let P be a set of faulty preferences that are single-

crossing with respect to the accurate preference >. Then, a choice function c ∈ μ if

for each choice set S, the alternative c(S) is the �S-maximal one in S for some �S∈ P

such that �S is more aligned with > (less faulty) than (or is identical to) �S′ , whenever

S is a subset of S ′. Note that μ is self-progressive with respect to the comparison relation

obtained from >, since for each ci, cj ∈ μ, their join and meet are the choice functions

described by maximization of the preferences max({�i
S,�j

S},≥) and min({�i
S,�j

S},≥).

Example 2. (Limited attention meets satisficing)9 Consider a population with primitive

orderings {>S}S∈Ω in which each agent i has the same preference relation �∗, but a

possibly different threshold alternative xi
S for each choice set S. Then, for given choice

set S, agent i chooses the �∗-best alternative in the consideration set {x ∈ S : x ≥S xi
S}.

Let μ be the set of associated choice functions. Then, 〈μ,B〉–where B is obtained from

�∗–is a lattice, since for each ci, cj ∈ μ, their join and meet are the choice functions

described by threshold alternatives max({xi
S, xj

S},≥S) and min({xi
S, xj

S},≥S).10

9See Simon (1955), Tyson (2008), Rubinstein & Salant (2008), and Masatlioglu et al. (2012).
10As a special case, consider agents who faces temptation with limited willpower formulated as by

Masatlioglu et al. (2020). Each agent i chooses the alternative that maximizes the common commitment
ranking u from the set of alternatives where agent i overcomes temptation, represented by vi, with his

13



Example 3. (Similarity-based choice) Let (m, p) denote a lottery giving a monetary prize

m ∈ (0, 1] with probability p ∈ (0, 1] and the prize 0 with the remaining probability.

Consider a population consisting of agents choosing from binary lottery sets11 such that

each agent i has a perception of similarity described by (εi, δi) with δi ≥ εi as follows:

for each t1, t2 ∈ (0, 1], “t1 is similar to t2” if |t1 − t2| < εi and “t1 is different from t2” if

|t1 − t2| > δi. Then, in the vein of Rubinstein (1988), to choose between two lotteries

(m1, p1) and (m2, p2), agent i first checks if “m1 is similar to m2 and p1 is different from

p2”, or vice versa.12 If one of these two statements is true, for instance, m1 is similar to m2

and p1 is different from p2, then the probability dimension becomes the decisive factor,

and i chooses the lottery with the higher probability. Otherwise, each agent chooses

the higher-ranked lottery according to a given primitive ordering >∗. Let μ be the set

of associated choice functions. Then, 〈μ,B〉–where B is generated from >∗–is a lattice,

since for each ci, cj ∈ μ, their join and meet are the choice functions whose perceptions

of similarity are described by (min(εi, εj),max(δi, δj)) and (max(εi, εj),min(δi, δj)).13

Example 4. (Maximization of set contingent utilities) For each S ∈ Ω and x ∈ S, let

U(x, S) be the set contingent utility of choosing x. In addition to the intrinsic utility of

alternative x that may be menu independent, U(x, S) can accommodate the search cost

of spotting x in S, the likelihood of S being available, self-perception considerations, or

the temptation cost due to choosing x in the presence of more tempting alternatives.14

willpower stock wi. Suppose that the primitive orderings are aligned with the commitment ranking u. Then,
for each choice set S, let the threshold alternative xi

S be the >S-worst one such that vi(x)−maxz∈Svi(z) ≤
wi. As demonstrated by Filiz-Ozbay & Masatlioglu (2022) if we only allow agents’ willpower stock to
differ, then we obtain a choice model forming a chain lattice.

11One can assume that the monetary prizes and probability values have a finite domain.
12Rubinstein (1988) additionally requires one of these two statements be true. The slight difference is

that our “t1 is different from t2” statement implies the negation of “t1 is similar to t2”, while the converse
does not necessarily hold. Both versions of the procedure provide explanations to the Allais paradox.

13Note that 〈μ,B〉 may not be a chain lattice since we can have εi > εj , while δi < δj .
14For example, in the vein of Gul & Pesendorfer (2001), one can set U(x, S) = u(x)+v(x)−maxz∈Sv(z),

where u represents the commitment ranking and v represents the temptation ranking.
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Let μ be the set of choice functions maximizing the sum of these set contingent utilities,

that is μ = argmaxc∈C

∑
S∈Ω U(c(S), S). Note that if c∗ is obtained as a “mixture” of some

c, c′ ∈ μ in the sense that c∗(S) ∈ {c(S), c′(S)} for every choice set S ∈ Ω, then c∗ ∈ μ as

well. Since meet and join are special mixtures, 〈μ,B〉 is a lattice. Thus, by Theorem 1, μ

is self-progressive. Notably, this is true for any specification of primitive orderings, since

the set contingent utility functions are not necessarily linked to the primitive orderings.

5 Minimal self-progressive extension of rational choice

We will follow the guide provided by Theorem 1 to discover the “minimal” self-progressive

extension of the rational choice functions assuming a single primitive ordering > rank-

ings of which reflect alternatives’ “accurate values” and Ω contains every choice set. Let

B be the comparison relation over choice functions obtained from > as usual. An exten-

sion is minimal if we are parsimonious in adding nonrational choice functions so that

each choice model containing rational choice functions and is contained in the minimal

extension fails to be self-progressive with respect to B. In Figure 3, we demonstrate–by

using Theorem 1–that the minimal self-progressive extension of a model is unique. Next,

we characterize the minimal self-progressive extension of the rational choice model in

terms of two choice axioms.

Proposition 1. Let μθ be the minimal self-progressive extension of the rational choice model

with respect to B. Then, a choice function c ∈ μθ if and only if for each S ∈ Ω and x ∈ S,

θ1. if c(S) > x then c(S \ x) ≥ c(S), and

θ2. if x > c(S) then c(S) ≥ c(S \ x).15

15Independence from preferred alternative formulated by Masatlioglu et al. (2020) similarly require
choice remain unchanged whenever unchosen better options are removed.
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Axioms θ1 and θ2 require a more valuable (or the same) alternative be chosen

whenever we remove alternatives that are less valuable than the chosen one, or add

alternatives that are more valuable than the chosen one. Along these lines–in an attempt

to unravel the choice overload phenomena–Chernev & Hamilton (2009) experimentally

demonstrate that consumers’ selection among choice sets is driven by the value of the

alternatives constituting the choice sets, in that the smaller choice set is more likely to be

selected when the value of the alternatives is high than when it is low. Next, we present

the proof of Proposition 1, which demonstrates that Theorem 1 and Lemma 1 may prove

useful in obtaining similar results.

aaab

baab aaac

bacb baacbbab

bbcbbacc bbac

cacc bbcc

cbcc

Figure 3: A demonstration of 〈μθ,B〉, where X = {a, b, c}, Ω = {X, {a, b}, {a, c}, {b, c}}, and each array specifies the respective
choices. The rational choice functions are colored in red, their joins and meets are colored in green, and the additional ones–obtained
as a join or meet of the previous ones–are colored in orange.
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Proof of Proposition 1. Since μθ is self-progressive, it follows from Theorem 1 that 〈μθ,B〉

is a lattice such that there is no μ ( μθ that contains every rational choice function and

〈μ,B〉 is a lattice. Let μ∗ be the choice model comprising choice functions that satisfy θ1

and θ2.

We first show that μθ ⊂ μ∗. To see this, first note that each rational choice function

c ∈ μ∗, since for each S ∈ Ω and x ∈ S, rationality of c implies that c(S) 6= c(S \ x) only

if x = c(S). Next, we show that 〈μ∗,B〉 is a lattice. Let c1, c2 ∈ μ∗ and c = c1 ∨ c2. Then,

to see that c satisfies μ1 and μ2, assume w.l.o.g. that c(S) = c1(S). Now, if c1(S) > x

then, since c1 satisfies μ1, we have c1(S \ x) ≥ c1(S). It follows that c(S \ x) ≥ c(S). If

x > c1(S), then x > c2(S). Since c1 and c2 satisfy μ2, we have c(S) ≥ c(S \ x). Thus, we

conclude that c1 ∨ c2 ∈ μ∗. Symmetric arguments show that c1 ∧ c2 ∈ μ∗ as well.

Next, we show that μ∗ ⊂ μθ. To see this, let c ∈ μ∗. Since 〈μθ,B〉 is a lattice,

by Lemma 1, it suffices to show that for each S, S ′ ∈ Ω, there exists c∗ ∈ μθ such that

c∗(S) = c(S) and c∗(S ′) = c(S ′). Let S, S ′ ∈ Ω such that c(S) = a and c(S ′) = a′. If a = a′,

then c(S) and c(S ′) are obtained by maximizing a preference relation that top-ranks a.

If a 6= a′, then assume w.l.o.g. that a > a′. Now, there are two cases.

Case 1: Suppose that {a, a′} 6⊂ S ∩ S ′. Then, let c1 be a choice function maximizing a

preference relation that top-ranks first a then a′, and c2 be a choice function maximizing

a preference relation that top-ranks first a′ then a. Next, if a /∈ S ′ then let c∗ = c1 ∨ c2, if

a′ /∈ S then let c∗ = c1 ∧ c2. For both cases, c∗(S) = a and c∗(S ′) = a′, and c∗ ∈ μθ since

〈μθ,B〉 is a lattice containing every rational choice function.

Case 2: Suppose that {a, a′} ⊂ S∩S ′. First, we show that either (i) there exists x ∈ S \S ′

with x > a or (ii) there exists y ∈ S ′ \ S with a′ > y. If not, then consider S ∩ S ′. Since

c ∈ μθ, by applying θ1 for each x ∈ S \ S ′, we conclude that c(S ∩ S ′) ≥ c(S). Next, by
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applying θ2 for each y ∈ S ′ \ S, we conclude that c(S ′) ≥ c(S ∩ S ′). Therefore, we must

have a′ ≥ a, a contradiction. Thus, we conclude that (i) or (ii) holds.

Suppose that (i) holds. Then, let c∗ = c1 ∧ c2, where c1 maximizes a preference

relation that top-ranks first x then a′, and c2 maximizes a preference relation that top-

ranks a. Suppose that (ii) holds. Then, let c∗ = c1 ∨ c2, where c1 maximizes a preference

relation that top-ranks first y then a, and c2 maximizes a preference relation that top-

ranks a′. For both cases, c∗(S) = a and c∗(S ′) = a′, and c∗ ∈ μθ since 〈μθ,B〉 is a lattice

containing every rational choice function.

6 Self-progressiveness and supermodular optimization

We provide an optimization-based foundation of self-progressive choice models. In the

vein of Example 4, a choice function can be interpreted as the specification of a complete

contingent plan that is to be implemented upon observing the set of available alterna-

tives. More generally, imagine that agents in a population consider a lattice of choice

functions L and evaluate these choice functions via a common value function V , which

can be thought of as the indirect utility function associated to the problem of optimally

selecting a choice function. Then, each agent adopts a choice function by maximizing

V over L. The population is homogeneous in the sense that to adopt a choice function,

each agent pays attention to same choice functions and maximizes the same value func-

tion. The only source of heterogeneity in the population comes from the presence of

multiple maximizers.
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Next, to establish a connection to self-progressive choice models, suppose that the

value function V : L → R is supermodular, that is for each c, c′ ∈ L, we have

V (c ∨ c′) + V (c ∧ c′) ≥ V (c) + V (c′). (1)

The maximizers of V form a lattice, and thus, by Theorem 1, the choice model consisting

of the maximizers of V over L is a self-progressive choice model. In Example 4, L is the

set of all choice functions and V is the sum of set contingent utilities, a modular (addi-

tive) value function. In our Theorem 2, we provide a converse result showing that every

self-progressive choice model μ can be obtained as the maximizer set of a supermodular

value function defined over a specific but fairly large domain of choice functions. As

for the interpretation of a value function being supermodular, first, note that (1) can

be rewritten as V (c ∨ c′) − V (c′) ≥ V (c) − V (c ∧ c′). Then, the simple intuition behind

supermodularity is as follows: The change from c ∧ c′ to c corresponds to >S-better al-

ternatives chosen from a family of choice sets; the effect of this change should amplify if

the change was made while in another family of choice sets, the chosen alternatives (by

c′) are >S-better than the ones chosen by c ∧ c′.

Next, we describe the special domain of choice functions used in our Theorem 2.

We first introduce the notion of consecutiveness. A pair of choice functions c, c′ ∈ μ are

consecutive if c B c′ and there is no c′′ ∈ μ that lies in between, that is c B c′′ B c′. Now,

if two consecutive choice functions are considered via the agents in a population, then

it seems reasonable for every choice function that lies in between be considered as well.

To formalize this intuition, let Cons(μ) be the consecutive hull of μ that contains each

choice function (by definition outside of the model) that lies between two consecutive

choice functions in μ. Since Cons(μ) may not be a lattice in general, let L(μ) be the
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smallest lattice that contains Cons(μ), i.e. μ ⊂ L(μ) and there is no other lattice of

choice functions L′ such that Cons(μ) ⊂ L′ ⊂ L(μ). Next, we state our result and prove

it by referring to three lemmas relegated to the appendix.

Theorem 2. Let μ be a self-progressive choice model. Then, there exists a supermodular

function V : L(μ) → R such that μ is the set of choice functions that maximize V , that is

μ = argmaxc∈L(μ) V (c).

Proof. We will construct the desired supermodular function V . Since, by Theorem 1,

μ is a lattice, let c̄(c) be the B-best(worst) choice functions in μ. For each c ∈ L(μ),

consider the associated better-than set Bc = {Sx : c̄(S) >S x ≥S c(S)}. For each pair of

consecutive choice functions c, c′ ∈ μ, define the associated difference set λ = Bc′ \Bc. Let

Λ be the collection of all such difference sets associated with each consecutive c, c′ ∈ μ.

Let S ∈ Ω and x ∈ S such that c̄(S) ≥S x ≥S c(S). Then, it follows from Lemma 3 that

there exists unique λSx ∈ Λ that contains Sx. Note that λSx = ∅ for every Sx ∈ c̄.

Next, let λ, λ′ ∈ Λ. Then, λ precedes λ′, denoted by λ → λ′, if for each c ∈ μ, λ′ ⊂ Bc

implies that λ ⊂ Bc. We define the predecessor set λ↑
Sx of λSx as the union of λSx and all

λ ∈ Λ that precede λSx, i.e. λ↑
Sx = λSx ∪ {λ ∈ Λ : λ → λSx}. Finally, for each c ∈ L(μ)

we can define V (c) as the number of pairs Sx in c such that the predecessor set λ↑
Sx of

λSx is contained in the better-than set of c, i.e.

V (c) = |{Sx ∈ c : λ↑
Sx ⊂ Bc}|.

Note that V (c) =
∑

Sx∈c 1c(Sx), where for each Sx ∈ c, 1c(Sx) = 1 if λ↑
Sx ⊂ Bc, and 0

otherwise. Then, for each c ∈ L, we have V (c) ≤ |Ω|, and it directly follows from Lemma

4 that V (c) = |Ω| if and only if c ∈ μ.
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To see that V is supermodular over L(μ), let c, c′ ∈ L(μ), and let Sx ∈ c ∪ c′. Then,

it is sufficient to show that whenever Sx receives a value of 1 by either of 1c or 1c′ , then

Sx receives a corresponding value of 1 by 1c∨c′ or 1c∧c′ .

Case 1: Suppose that 1c(Sx) = 1 and 1c′(Sx) = 1. Then, since λ↑
Sx ⊂ Bc ∩ Bc′ , we have

1c∨c′(Sx) = 1 and 1c∧c′(Sx) = 1.

Case 2: Suppose that 1c(Sx) = 1 and Sx ∈ c′, but 1c′(Sx) = 0. Then, since Sx ∈ c ∧ c′

and λ↑
Sx ⊂ Bc ⊂ Bc∧c′ , we have 1c∧c′(Sx) = 1.

Case 3: Suppose that 1c(Sx) = 1 and Sx 6∈ c′. Let c′(S) = y. If y >S x, then Sx ∈ c ∧ c′,

and since λ↑
Sx ⊂ Bc∧c′ , we have 1c∧c′(Sx) = 1. Next, suppose that x >S y. Then, we have

Sx ∈ c ∨ c′, and to conclude that 1c∨c′(Sx) = 1, we show that λ↑
Sx ⊂ Bc′ . First, we show

that there exists c∗ ∈ μ that contains Sx. To see this, let c1, c2 ∈ μ be consecutive choice

functions such that λSx = Bc2 \ Bc1 . Since λSx ⊂ Bc and Sx ∈ c, for each Sz ∈ λSx, by

definition of Bc, we must have z ≥S x. Therefore, λSx = Bc2 \Bc1 implies that Sx ∈ c2 as

well. Thus, we have Sx ∈ c∗ for some c∗ ∈ μ. Then, since x >S c′(S), it directly follows

from Lemma 5 that λ↑
Sx ⊂ Bc′ .

7 Universally self-progressive choice models

We have assumed so far that a partial ordering B derived from the primitive orderings

{>S}S∈Ω allows for comparison of different choice behaviour, thus derives the unique

orderly representation for any aggregate choice behavior consistent with a model. How-

ever, one can question if there exist choice models rendering unique orderly represen-

tations independent of the primitive orderings. We first formalize this rather stringent

requirement, then provide a characterization of the choice models that satisfy it.
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Definition. A choice model μ is universally self-progressive if μ is self-progressive with

respect to every partial order B obtained from a set of primitive orderings {>S}S∈Ω.

In our Example 4, we have seen that if a choice model μ can be represented as the

set of choice functions maximizing the sum of set contingent utilities, then μ is univer-

sally self-progressive. In our next result, we simply observe that the converse is true as

well. Then, we present Example 5, demonstrating that this result facilitates identifying

universally self-progressive choice models.

Proposition 2. A choice model μ is universally self-progressive if and only if for each S ∈ Ω,

there exist a set contingent utility function U(∙, S) such that μ is the set of choice functions

that maximize their sum, that is μ = argmaxc∈C

∑
S∈Ω U(c(S), S).

Proof. As for the only if part, let μ be a universally–self-progressive choice model. Then,

we first show that μ is convex: for each c1, c2 ∈ μ, if c(S) ∈ {c1(S), c2(S)} for every

S ∈ Ω, then c ∈ μ. By contradiction, suppose that c /∈ μ. Then, for each S ∈ Ω, define

the primitive ordering >S such that c(S) is highest-ranked. Thus, we have c = c1 ∨ c2,

and 〈μ,B〉 is a not a lattice. By Theorem 1, this contradicts that μ is universally self-

progressive. We define the set contingent utilities as follows: for each S ∈ Ω, U(x, S) = 1

if there exists c ∈ μ with c(S) = x, and U(x, S) = 0 otherwise. Since μ is convex, a choice

function c ∈ μ if and only if for each S ∈ Ω, there exists c′ ∈ μ with c′(S) = c(S). It

follows that μ is the set of choice functions that maximize
∑

S∈Ω U(c(S), S).

Example 5. Kalai, Rubinstein & Spiegler (2002) Let {�k}K
k=1 be a K-tuple of strict pref-

erence relations on X. Then, a choice function c ∈ μ if for each S ∈ Ω, the alternative

c(S) is the �k-maximal one in S for some k. To see that μ is universally self-progressive,

define U(x, S) = 1 if x is the �k-maximal alternative in S for some k; and U(x, S) = 0
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otherwise. It follows that μ is the set of choice functions that maximize
∑

S∈Ω U(c(S), S).

However, every universally self-progressive choice model is not representable in this way.

To see this, suppose that U(x, S) = 1 and U(x, T ) = 0 for a pair of choice sets S and T

such that x ∈ T ⊂ S. Then, there exists a strict preference relation �k such that x is the

�k-maximal alternative in S. Therefore, there exists c ∈ μ with c(T ) = x contradicting

that c maximizes
∑

S∈Ω U(c(S), S).

Theorem 2 provides for a recipe to restrict or extend a choice model for universal

self-progression, while reflecting its demanding nature. To see this, consider a choice

model μ consisting of two choice functions rationalized by maximizing preference rela-

tions �1 and �2. For given primitive orderings, we can extend μ into a self-progressive

model by adding at most two choice functions. In contrast, to extend μ to be universally

self-progressive we must add every choice function choosing the �1- or �2-maximal

alternative in each choice set. More generally–assuming that the choice domain con-

tains every choice set–in order to extend rational choice model into a universally self-

progressive one, we must add every choice function.

8 Final comments

We have dealt with a different approach to analyze heterogeneity in the aggregate choice

behavior of a population. We take choice models as our primitive objects, thus leav-

ing the details of the agents’ choices unspecified. Our analysis presents testable and

optimization-based foundations of choice models that guarantee a unique orderly rep-

resentation for each aggregate choice behavior consistent with the model. We are mo-

tivated by the conjecture that using the so-called self-progressive choice models would
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facilitate organization and analysis of random choice data. In this vein, we observe that

they are in a one-to-one correspondence with familiar algebraic structures called lattices,

indicating that self-progressive models are not limited to comparable choice functions,

but allow for a generality that is economically significant. As an advantage of our model-

free approach, our results provide guides to restrict or extend any choice model as to

be (universally) self-progressive. We demonstrated this by characterizing the minimal

self-progressive extension of the rational choice model.
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Chernev, A., Böckenholt, U. & Goodman, J. (2015), ‘Choice overload: A conceptual

review and meta-analysis’, Journal of Consumer Psychology 25(2), 333–358. 6

Chernev, A. & Hamilton, R. (2009), ‘Assortment size and option attractiveness in con-

sumer choice among retailers’, Journal of Marketing Research 46(3), 410–420. 16

24



Curello, G. & Sinander, L. (2019), ‘The preference lattice’, arXiv preprint

arXiv:1902.07260 . 12

Dardanoni, V., Manzini, P., Mariotti, M., Petri, H. & Tyson, C. (2022), ‘Mixture choice

data: Revealing preferences and cognition’, Journal of Political Economy . 3

Epstein, L. G. & Zin, S. E. (1989), ‘Substitution, risk aversion, and the temporal behavior

of consumption’, Econometrica 57(4), 937–969. 4

Filiz-Ozbay, E. & Masatlioglu, Y. (2022), ‘Progressive random choice’, Journal of Political

Economy . 3, 10, 12, 14

Gul, F. & Pesendorfer, W. (2001), ‘Temptation and self-control’, Econometrica

69(6), 1403–1435. 14

Gul, F. & Pesendorfer, W. (2006), ‘Random expected utility’, Econometrica 74(1), 121–

146. 3

Kalai, G., Rubinstein, A. & Spiegler, R. (2002), ‘Rationalizing choice functions by multi-

ple rationales’, Econometrica 70(6), 2481–2488. 22

Masatlioglu, Y., Nakajima, D. & Ozbay, E. Y. (2012), ‘Revealed attention’, American Eco-

nomic Review 102(5), 2183–2205. 13

Masatlioglu, Y., Nakajima, D. & Ozdenoren, E. (2020), ‘Willpower and compromise ef-

fect’, Theoretical Economics 15(1), 279–317. 13, 15

Mehra, R. & Prescott, E. C. (1985), ‘The equity premium: A puzzle’, Journal of Monetary

Economics 15(2), 145–161. 3

25



Petri, H. (2023), ‘Characterizing ordered models of behavioral heterogeneity’, mimeo .

10

Rubinstein, A. (1988), ‘Similarity and decision-making under risk (is there a utility the-

ory resolution to the Allais paradox?)’, Journal of Economic Theory 46(1), 145–153.

14

Rubinstein, A. & Salant, Y. (2008), The Foundations of Positive and Normative Economics,

chapter “Some thoughts on the principle of revealed preference”, pp. 116–124. 13

Simon, H. A. (1955), ‘A behavioral model of rational choice’, Quarterly Journal of Eco-

nomics pp. 99–118. 13

Tyson, C. J. (2008), ‘Cognitive constraints, contraction consistency, and the satisficing

criterion’, Journal of Economic Theory 127(1), 51–70. 13

Von Neumann, J. (1953), ‘A certain zero-sum two-person game equivalent to the optimal

assignment problem’, Contributions to the Theory of Games 2(0), 5–12. 7

26



9 Appendix: Lemmas

We present and prove the three lemmas used in proving Theorem 2. We first prove an

auxiliary result that we will use in proving these lemmas. For brevity, from now on, we

denote L(μ) by L.

Lemma 2. Let c, c′ ∈ μ be a pair of consecutive choice functions and let λ = Bc′ \ Bc.

Then, for each c′′ ∈ μ, (i) if there exists Sx ∈ Bc′′ ∩ λ, then c′ D c ∧ c′′; (ii) if there exists

Sx ∈ λ \ Bc′′ , then c′ ∨ c′′ D c.

Proof. (i) Let c′′ ∈ μ such that Sx ∈ Bc′′ ∩ λ. Then, let c∗ = c ∧ (c′ ∨ c′′). Since μ is a

lattice, c∗ ∈ μ, and by definition, c D c∗ D c′. Since c and c′ are consecutive, it follows

that c∗ ∈ {c, c′}. Moreover, since Sx ∈ Bc′′ ∩ λ, we have c(S) >S x ≥S (c′ ∨ c′′)(S). Since

c′ ∨ c′′ D c∗, we conclude that c∗ = c′. Then,by distributivity, c′ = c′ ∨ (c ∧ c′′), which

implies that c′ D c ∧ c′′.

(ii) Let c′′ ∈ μ such that there exists Sx ∈ λ \ Bc′′ . Then, let c∗ = c′ ∨ (c ∧ c′′). Since μ is

a lattice, c∗ ∈ μ, and by definition, c D c∗ D c′. Since c and c′ are consecutive, it follows

that c∗ ∈ {c, c′}. Since Sx ∈ λ\Bc′′ , we have (c∧ c′′)(S) >S x ≥S c′(S). Since c∗ D c′∧ c′′,

we conclude that c∗ = c. Then, by distributivity, we have c = c ∧ (c′ ∨ c′′), which implies

that c′ ∨ c′′ D c.

Lemma 3. For each λ1, λ2 ∈ Λ, if λ1 ∩ λ2 6= ∅, then λ1 = λ2.

Proof. Suppose that Sx ∈ λ1 ∩λ2, and let c1, c
′
1 ∈ μ and c2, c

′
2 ∈ μ be pairs of consecutive

choice functions associated with λ1 and λ2. We conclude that λ1 = λ2 in two steps.

Step 1: We show that λ2 \ Bc1 = λ1 \ Bc2 . First, to see that c1 ∧ c′2 = c′1 ∧ c2, consider

c1, c
′
1 and c′2. Since Sx ∈ λ1 ∩ λ2, we have Sx ∈ Bc′2

∩ λ1. Then, it follows from Lemma

27



2 (i) that c′1 D c1 ∧ c′2. Now, if we take the meet of both sides with c2, then we obtain

that c′1 ∧ c2 D c1 ∧ c′2 ∧ c2. Since c2 D c′2, it follows that c′1 ∧ c2 D c1 ∧ c′2. Symmetrically,

when we start with c2, c
′
2 and c′1, then we obtain that c1 ∧ c′2 D c′1 ∧ c2. Thus, we conclude

that c1 ∧ c′2 = c′1 ∧ c2. It follows that Bc1 ∪ Bc′2
= Bc′1

∪ Bc2 . Finally, if we exclude the set

Bc1 ∪ Bc2 from both sides of this equality, then we obtain λ2 \ Bc1 = λ1 \ Bc2 .

Step 2: We show that λ2∩Bc1 = λ1∩Bc2 = ∅. First, to see that c′1 ∨ c2 = c1 ∨ c′2, consider

c1, c
′
1 and c2. Since Sx ∈ λ1 ∩ λ2, we have Sx ∈ λ1 \ Bc2 . Then, it follows from Lemma

2 (ii) that c′1 ∨ c2 D c1. Now, if we take the join of both sides with c′2, then we obtain

that c′1 ∨ c2 ∨ c′2 D c1 ∨ c′2. Since c2 D c′2, it follows that c′1 ∨ c2 D c1 ∨ c′2. Symmetrically,

when we start with c2, c
′
2 and c1, we obtain that c1 ∨ c′2 D c′1 ∨ c2. Thus, we conclude that

c′1 ∨ c2 = c1 ∨ c′2.

Since c′1 ∨ c2 = c1 ∨ c′2, we have Bc′1
∩ Bc2 = Bc1 ∩ Bc′2

. Next, when we exclude Bc1

from both sides of this equality, we obtain that λ1 ∩ (Bc2 \ Bc1) = ∅. Since λ1 = Bc′1
\ Bc1 ,

we also have λ1 ∩Bc1 = ∅. It follows that λ1 ∩Bc2 = ∅. Symmetrically, when we start by

excluding Bc2 from both sides of Bc′1
∩Bc2 = Bc1∩Bc′2

, we conclude that λ2 ∩ Bc1 = ∅.

Let λ, λ′ ∈ Λ. Then, λ precedes λ′, denoted by λ → λ′, if for each c ∈ μ, λ′ ⊂ Bc

implies that λ ⊂ Bc. Let S ∈ Ω and x ∈ X such that c̄(S) ≥S x ≥S c(S). Then, we define

λ↑
Sx as the set of λ ∈ Λ that precede λSx, i.e. λ↑

Sx = λSx ∪ {λ ∈ Λ : λ → λSx}. We assume

that λ↑
Sx = ∅ for each Sx ∈ c̄.

Lemma 4. Let c ∈ L. Then, c ∈ μ if and only if λ↑
Sx ⊂ Bc for each Sx ∈ c.

Proof. (If part) First, note that Bc =
⋃

Sx∈c λ↑
Sx, since for each Sz ∈ Bc, λSz → λSx for

x = c(S) implies that λSz ⊂ λ↑
Sx, which is contained in Bc. Next, let Sx ∈ c and cSx be

the B-best choice function in μ such that x is chosen in S. Then, by definition of λ↑
Sx, we
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have BcSx = λ↑
Sx. Next, let c∗ =

∧
Sx∈c cSx. Since μ is a lattice, c∗ ∈ μ. Moreover, we have

Bc∗ =
⋃

Sx∈c λ↑
Sx, which implies that c∗ = c, and thus c ∈ μ.

(Only if part) We first show that λSx ⊂ Bc. To see this, let Sx ∈ c and c1, c2 ∈ μ be

consecutive choice functions such that λSx = Bc2 \ Bc1 . Then, consider c1, c2 and c. Since

c ∈ μ and Sx ∈ Bc ∩ λSx, it follows from Lemma 2 (i) that c2 D c1 ∧ c. Therefore,

Bc2 ⊂ Bc1 ∪ Bc. Since Bc1 ⊂ Bc2 , it directly follows that Bc2 \ Bc1 ⊂ Bc. Thus, we

conclude that λSx ⊂ Bc. Next, since Sx ∈ c and c ∈ μ, it follows from the definition of

λ↑
Sx, that λ↑

Sx ⊂ Bc.

Lemma 5. Let c ∈ L and Sx ∈ c∗ for some c∗ ∈ μ. If x >S c(S), then λ↑
Sx ⊂ Bc.

Proof. Step 1: We show that the assertion holds for each c ∈ Cons(μ). To see this,

suppose that c1 D c D c2 for consecutive choice functions c1, c2 ∈ μ. Then, we show that

x ≥S c1(S). By contradiction, suppose that c1(S) >S x. Then, let λ = Bc2 \ Bc1 , and

consider c1, c2 and c∗. Since Sx ∈ Bc∗ ∩ λ, it follows from Lemma 2 (i) that c2 D c1 ∧ c∗.

However, this implies that c2(S) ≥S x >S c(S), contradicting that c D c2. Thus, we

conclude that x ≥S c1(S). Therefore, (c∗ ∨ c1)(S) = x. Moreover, c∗ ∨ c1 ∈ μ, since μ is a

lattice. Then, it follows from Lemma 4 that λ↑
Sx ⊂ Bc∗∨c1 . Finally, c∗ ∨ c1 B c implies that

Bc∗∨c1 ⊂ Bc, and thus we conclude that λ↑
Sx ⊂ Bc.

Step 2: Let J ⊂ L so that the assertion holds for each c ∈ J . Then, we show that the

assertion holds for c∨c′ and c∧c′ where c, c′ ∈ J . First, consider c∨c′. If x >S (c∨c′)(S),

then x >S c(S) and x >S c′(S). Since the assertion holds for c and c′, it follows that

λ↑
Sx ⊂ Bc ∩ Bc′ = Bc∨c′ . Next, consider c ∧ c′. If x >S (c ∧ c′)(S), then x >S c(S) or

x >S c′(S). Since the assertion holds for c and c′, it follows that λ↑
Sx ⊂ Bc ∪ Bc′ = Bc∧c′ .

Step 3: By Step 1, the assertion holds for each c ∈ Cons(μ). Then, by Step 2, the

assertion holds for each c ∈ L that is obtained as a join or meet of the choice functions
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in Cons(μ). By proceeding recursively to add the joins and meets, we obtain a finite

sequence of sets that satisfy the assertion. This set sequence converges to L, since L is

the smallest sublattice of C that contains Cons(μ). Thus, we conclude that the assertion

holds for each choice function in L.
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