BCF mini course: Deep Learning and Macro-Finance Models

Goutham Gopalakrishna
École Polytechnique Fédérale de Lausanne (EPFL)
Swiss Finance Institute (SFI)
VSRC, Princeton University
February, 2023

Princeton University

Target audience

- Econ/ORFE grad students and researchers interested in solving macro-finance models to study the global dynamics of an economic system
- Pre-requesites

1 Basic numerical methods (Newton method, Finite differences etc.)
$\boxed{2}$ ECO529 (Princeton) or equivalent
3 Familiarity with any programming language, preferably Python 3.x or MATLAB.
4 Good to have some familiarity with Objected Oriented Programming principles and Tensorflow 2.x

Agenda

- Part-1: Introduction to neural networks
$>$ Why neural networks and deep learning
$>$ Function approximators
$>$ Comparison with existing methods
■ Part-2: Deep learning principles, high-dimensional optimization techniques in machine learning
$>$ Gradient descent and variants
$>$ Under the hood: Activation functions, Parameter initialization
$>$ Object oriented programming principles
■ Part-3: Application to solve macro-finance models with aggregate shocks

References

■ Textbooks:
1 Raul Rojas. Neural Networks: A Systematic Introduction. 1996
2 Ian Goodfellow, Yoshua Bengio and Aaron Courville. Deep Learning. An MIT Press book. 2016

■ Other sources
1 Dive into deep learning (interactive learning material)
2 Machine learning for macroeconomics (teaching slides) by Jesús Fernández-Villaverde
3 Neural networks (teaching slides) by Hugo Larochelle
4 Deep learning CS6910 (teaching slides) by Mitesh Khapra

Agenda

- Part-1: Introduction to numerical methods, challenges faced by traditional methods
$>$ Why neural networks and deep learning
$>$ Function approximators
$>$ Comparison with existing methods
- Part-2: Deep learning principles, high-dimensional optimization techniques in machine learning
$>$ Gradient descent and variants
> Under the hood: Activation functions, Parameter initialization
$>$ Object oriented programming principles
|| Part-3: Application to solve macro-finance models with aggregate shocks

Introduction

- The basic idea of machine learning goes back to Rosenblatt (1958) who introduced the idea of perceptron
- The progress halted during the 1990s

■ Forces behind the revival

- Big data
- Cheap computational power
- Advancements in algorithms
- Popularity in industry: packages in Python, Tensorflow, Pytorch etc.
- Strong community support for packages \Longrightarrow better tools in the future

■ Coding and compiling deep learning algorithms is easy thanks to the rich ecosystem provided by Pytorch, Tensorflow, Keras etc.

Deep learning introduction

- The goal is to approximate a function $y=f(\boldsymbol{x})$, where \boldsymbol{y} is some scalar and \boldsymbol{x} is a vector of inputs
- In basic econometrics, this is a regression problem. In macroeconomics, f can be a value function, policy function, pricing kernel etc.
■ y can also be a vector (vector of value functions, probability distribution etc.)

Deep learning introduction

- An artifical neural network (ANN) as an approximation to the function $f(\boldsymbol{x})$ takes the form

$$
y=f(\boldsymbol{x}) \approx \sigma\left(\sum_{i=1}^{L} w_{i} x_{i}\right)
$$

- The most fundamental unit of deep neural network is called an artificial neuron

Feed forward neural network

- The input is an n-dimensional vector
- The network contains $L-1$ hidden layers (2, in this case) having \boldsymbol{n} neurons
- The input layers is called $0^{\text {th }}$ layer and the output layer is $L^{\text {th }}$ layer
- Finally, there is one output layer containing \boldsymbol{k} neurons
■ Each neuron in the hidden layers can be separted into two parts: aggregation (a) and activation (h)
- The parameters for the hidden layers are weights $W_{i} \in \mathbb{R}^{n \times n}$ and biases $b_{i} \in \mathbb{R}^{n}$ for $0<i<L$
- The parameters for the output layers are weights $W_{L} \in \mathbb{R}^{n \times k}$ and $b_{L} \in \mathbb{R}^{k}$

Feed forward neural network

- The input is an n-dimensional vector
- The network contains $L-1$ hidden layers (2, in this case) having \boldsymbol{n} neurons
- The input layers is called $0^{\text {th }}$ layer and the output layer is $L^{\text {th }}$ layer
- Finally, there is one output layer containing \boldsymbol{k} neurons

■ Each neuron in the hidden layers can be separted into two parts: aggregation (a) and activation (h)

- The parameters for the hidden layers are weights $W_{i} \in \mathbb{R}^{n \times n}$ and biases $b_{i} \in \mathbb{R}^{n}$ for $0<i<L$
- The parameters for the output layers are weights $W_{L} \in \mathbb{R}^{n \times k}$ and $b_{L} \in \mathbb{R}^{k}$

Feed forward neural network

$$
h_{L}=\hat{y}=f(x)
$$

- The input is an n-dimensional vector
- The network contains $L-1$ hidden layers (2, in

$$
a_{3}
$$ this case) having \boldsymbol{n} neurons

- The input layers is called $0^{\text {th }}$ layer and the output layer is $L^{\text {th }}$ layer
- Finally, there is one output layer containing \boldsymbol{k} neurons
- Each neuron in the hidden layers can be separted into two parts: aggregation (a) and activation (h)
- The parameters for the hidden layers are weights $W_{i} \in \mathbb{R}^{n \times n}$ and biases $b_{i} \in \mathbb{R}^{n}$ for $0<i<L$
- The parameters for the output layers are weights $W_{L} \in \mathbb{R}^{n \times k}$ and $b_{L} \in \mathbb{R}^{k}$

Feed forward neural network

$$
h_{L}=\hat{y}=f(x)
$$

a_{3}

- The input is an n-dimensional vector
- The network contains $L-1$ hidden layers (2, in this case) having \boldsymbol{n} neurons
- The input layers is called $0^{\text {th }}$ layer and the output layer is $L^{\text {th }}$ layer
- Finally, there is one output layer containing \boldsymbol{k} neurons

■ Each neuron in the hidden layers can be separted into two parts: aggregation (a) and activation (h)

- The parameters for the hidden layers are weights $W_{i} \in \mathbb{R}^{n \times n}$ and biases $b_{i} \in \mathbb{R}^{n}$ for $0<i<L$
- The parameters for the output layers are weights $W_{L} \in \mathbb{R}^{n \times k}$ and $b_{L} \in \mathbb{R}^{k}$

Feed forward neural network

$$
h_{L}=\hat{y}=f(x)
$$

$$
a_{3}
$$

- The input is an n-dimensional vector
- The network contains $L-1$ hidden layers (2, in this case) having \boldsymbol{n} neurons
- The input layers is called $0^{\text {th }}$ layer and the output layer is $L^{\text {th }}$ layer
- Finally, there is one output layer containing \boldsymbol{k} neurons
- Each neuron in the hidden layers can be separted into two parts: aggregation (a) and activation (h)
- The parameters for the hidden layers are weights $W_{i} \in \mathbb{R}^{n \times n}$ and biases $b_{i} \in \mathbb{R}^{n}$ for $0<i<L$
- The parameters for the output layers are weights $W_{L} \in \mathbb{R}^{n \times k}$ and $b_{L} \in \mathbb{R}^{k}$

Feed forward neural network

$$
h_{L}=\hat{y}=f(x)
$$

- The input is an n-dimensional vector
- The network contains $L-1$ hidden layers (2 , in this case) having \boldsymbol{n} neurons
- The input layers is called $0^{\text {th }}$ layer and the output layer is $L^{\text {th }}$ layer
- Finally, there is one output layer containing \boldsymbol{k} neurons

■ Each neuron in the hidden layers can be separted into two parts: aggregation (a) and activation (h)

- The parameters for the hidden layers are weights $W_{i} \in \mathbb{R}^{n \times n}$ and biases $b_{i} \in \mathbb{R}^{n}$ for $0<i<L$
- The parameters for the output layers are weights $W_{L} \in \mathbb{R}^{n \times k}$ and $b_{L} \in \mathbb{R}^{k}$

Feed forward neural network: Mathematical representation

$$
h_{L}=\hat{y}=f(x)
$$

- The aggregation in layer i is given by

$$
a_{i}(x)=b_{i}+W_{i} h_{i-1}(x)
$$

- The activation in layer i is given by

$$
h_{i}(x)=\sigma\left(a_{i}(x)\right)
$$

where g is called as the activation function

- The activation at the final layer is given by

$$
\hat{y}(x)=O\left(a_{L}(x)\right)
$$

where O is the activation function on the final layer

- For simplicity, we will denote a_{i} and h_{i}

Feed forward neural network: Mathematical representation

$$
h_{L}=\hat{y}=f(x)
$$

- The aggregation in layer i is given by

$$
a_{i}=b_{i}+W_{i} h_{i-1}
$$

- The activation in layer i is given by

$$
h_{i}=\sigma\left(a_{i}\right)
$$

where g is called as the activation function on hidden layers

- The activation at the final layer is given by

$$
\hat{y}=O\left(a_{L}\right)
$$

where O is the activation function on the final layer

- For simplicity, we will denote a_{i} and h_{i}

Typical problem

$$
h_{L}=\hat{y}=f(x)
$$

- Data: $\left\{x_{i}, y_{i}\right\}$

■ Model:

$$
\begin{aligned}
\hat{y}_{i} & =f^{D N N}\left(x_{i}\right) \\
& =O\left(W_{3} \sigma\left(W 2 \sigma\left(W_{1} x+b_{1}\right)+b_{2}\right)+b_{3}\right)
\end{aligned}
$$

- The type of neural network, number of layers, number of neurons in each layer, and activation function consistitute architecture of a particular neural network
- Parameters: $\theta=\left(W_{1}, \ldots, W_{L} ; b_{1}, \ldots, b_{L}\right)$ where $L=3$

■ Goal is to learn the optimal parameters θ using an efficient algorithm

Why deep learning works?

1 Finds representations of data that is informationally efficient
2 Convenient representation of geometry in high-dimensional manifold

- Deep neural networks are chains of affine transformations- makes affine transformation followed by non-linear transformations sequentially
- The chains of affine transformations ends up transforming the geometry of the state space
- Optimizing in transformed geometry is often simpler

Why deep learning works?

■ Deep neural network is represented mathematically as

$$
\hat{y}=f^{D N N}(\boldsymbol{x})=O\left(W_{3} \sigma\left(W 2 \sigma\left(W_{1} \boldsymbol{x}+b_{1}\right)+b_{2}\right)+b_{3}\right)
$$

where the parameter vector is $\theta=\left(W_{1}, \ldots, W_{L} ; b_{1}, . ., b_{L}\right)$ and O and σ are activation functions

- Comparing this with a standard projection method

$$
\hat{y}=f^{\text {Proj }}(\boldsymbol{x})=\sum_{i=1}^{L} b_{i} \phi_{i}(\boldsymbol{x})
$$

where the parameter vector is $\left(b_{1} .,, b_{L}\right)$ and ϕ_{i} is a Chebychev polynomial
■ Deep neural networks contain lots of parameters but with simple basis functions. Why is this useful? Because the sequence of affine and non-linear transformations ends up changing the geometry of the state space
■ Finding convenient geometric representations of the data is more important than finding the right basis functions for approximation problems. This is where deep learning shines!

Geometric transformation

Source: Jesus Fernandez-Villaverde

Typical problem

- The problem at hand is to find the approximation $\hat{y}=f^{\text {ANN }}(\boldsymbol{x} ; \theta)$
- Assume that $f^{\text {ANN }}$ is a simple single layer network with activation $\sigma(\cdot)=\frac{1}{\exp (-(w x+b))}$

■ Consider a simple one dimensional problem. That is, the goal is to fit $(x, y)=(0.5,0.2)$ and $(x, y)=(2.5,0.9)$

- That is, the at the end of training the network, we would like to find θ^{*} such that $f^{A N N}(0.5)=0.2$ and $f^{A N N}(2.5)=0.9$
- The parameter vector $\theta=[w, b]$ contain the weight and bias of the neuron activated σ
- The loss function is given by $\mathcal{L}(w, b)=\sum_{i=1}^{2}\left(y_{i}-f^{\text {ANN }}\left(x_{i}\right)\right)$

Learning by trial and error

■ Can we try to find w^{*}, b^{*} manually?

Learning by trial and error

■ Can we try to find w^{*}, b^{*} manually?
■ Let us use a random guess ($w=0.5, b=0$)

Learning by trial and error

■ Can we try to find w^{*}, b^{*} manually?
■ Let us use a random guess ($w=0.5, b=0$)
■ Does not seem a great fit. How can we quantify how terrible ($w=0.5, b=0$) is?

Learning by trial and error

- Can we try to find w^{*}, b^{*} manually?

■ Let us use a random guess ($w=0.5, b=0$)
■ Does not seem a great fit. How can we quantify how terrible ($w=0.5, b=0$) is?
\square Compute the loss using the loss function $\mathcal{L}(w, b)=\sum_{i=1}^{2}\left(y_{i}-f^{A N N}\left(x_{i}\right)\right)$

$$
\sigma(x)=\frac{1}{1+e^{-(w x+b)}}
$$

Learning by trial and error

- Can we try to find w^{*}, b^{*} manually?

■ Let us use a random guess ($w=0.5, b=0$)
\square Does not seem a great fit. How can we quantify how terrible ($w=0.5, b=0$) is?
\square Compute the loss using the loss function $\mathcal{L}(w, b)=\sum_{i=1}^{2}\left(y_{i}-f^{A N N}\left(x_{i}\right)\right)$
■ $\mathcal{L}(0.5,0)=0.073$

- The goal is to make $\mathcal{L}(w, b)$ as close to zero as possible

$$
\sigma(x)=\frac{1}{1+e^{-(w x+b)}}
$$

Learning by trial and error

Let us try some other values of w, b

w	b	$\mathscr{L}(w, b)$
0.50	0.00	0.0730

Learning by trial and error

Let us try some other values of w, b

w	b	$\mathscr{L}(w, b)$
0.50	0.00	0.0730
-0.10	0.00	0.1481

It has made things worse. Perhaps it would help to push w and b in the other direction.

Learning by trial and error

Let us try some other values of w, b

w	b	$\mathscr{L}(w, b)$
0.50	0.00	0.0730
-0.10	0.00	0.1481
0.94	-0.94	0.0214

Much better. Let us keep going in this direction (i.e., increase w and decrease b)

Learning by trial and error

Let us try some other values of w, b

w	b	$\mathscr{L}(w, b)$
0.50	0.00	0.0730
-0.10	0.00	0.1481
0.94	-0.94	0.0214
1.42	-1.73	0.0028

Much better. Let us keep going in this direction (i.e., increase w and decrease b)

Learning by trial and error

Let us try some other values of w, b

w	b	$\mathscr{L}(w, b)$
0.50	0.00	0.0730
-0.10	0.00	0.1481
0.94	-0.94	0.0214
1.42	-1.73	0.0028
1.65	-2.08	0.0003

Much better. Let us keep going in this direction (i.e., increase w and decrease b)

Learning by trial and error

Let us try some other values of w, b

w	b	$\mathscr{L}(w, b)$
0.50	0.00	0.0730
-0.10	0.00	0.1481
0.94	-0.94	0.0214
1.42	-1.73	0.0028
1.65	-2.08	0.0003
1.78	-2.27	0.0000

More principled way of doing this guesswork is what learning is all about!

Learning by trial and error

Random search on error surface

Learning by trial and error

Random search on error surface

Learning by trial and error

Random search on error surface

Learning by trial and error

Random search on error surface

Learning by trial and error

Random search on error surface

Learning by trial and error

Random search on error surface

Why deep neural networks?

- It seems like a single layer is enough to approximate the function well. Why do we need hidden layers?
- Complex problems require deep neural networks

Functional approximation

■ Universal approximation theorem (Hornik, Stinchcombe, and White (1989)): A neural network with at least one hidden layer can approximate any Borel measureable function to any degree of accuracy

- However, having non-linear activation function in the hidden layers is important
$>$ Question: what happens when the activation functions are linear in a deep neural network?
- Once activation function is $\sigma(x)=\frac{1}{1+\exp (-(w x+b))}$
- Another popular activation function is the Rectified Linear Unit (ReLU) $\sigma(x)=\max \{0, x\}$

Function approximation example

Let's try to approximate a one-dimensional function $f(x)=x^{3}+x^{2}-x-1$ using a deep neural network with the following architecture

■ Feed-forward neural network

- Six layers with one neuron in each layer
- ReLU activation function

Source: Jesus Fernandez-Villaverde

Function approximation example

A six ReLUs approximation

Comparison to other methods

Note that other methods can also approximate $f(x)=x^{3}+x^{2}-x-1$ well but DNNs

- can also approximate functions with discontinuities. No assumptions about continuity or differentiability required
- can approximate high dimensional functions with better accuracy

	High dimensions	Non-convex state space	Big data	Discontinuous functions	Global dynamics
Projection method	\checkmark	x	\checkmark	x	\checkmark
Gaussian processes	\checkmark	\checkmark	x	x	\checkmark
Adaptive sparse grid	\checkmark	x	\checkmark	\checkmark	\checkmark
Deep learning: simulation	\checkmark	\checkmark	\checkmark	\checkmark	x
Deep learning: active learning	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

Limitations

Obviously, there are some limitations

- Deep neural networks require lots of data to work with
$>$ Not a problem for the task at our hand since we will use simulated data
- No theoretical guidance for choosing the right architecture

■ Learning can be slow without access to a high performance cluster

Software

- Install Python 3.x

■ Install Tensorflow 2.x and Keras latest version

- Open a google colab account (free)
- Access to high performance computing cluster?

