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Roadmap

Part-1: Introduction to numerical methods, challenges faced by traditional methods

➢ Why neural networks and deep learning
➢ Function approximators
➢ Comparison with existing methods

Part-2: Deep learning principles, high-dimensional optimization techniques in machine
learning

➢ Gradient descent and variants
➢ Under the hood: Activation functions, Parameter initialization
➢ Object oriented programming principles

Part-3: Application to solve macro-finance models with aggregate shocks
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ALIENs: What is it about?

AL: Actively learn about state space with stark non-linearity/large prediction error

I: Encode economic information as regularizer

ENs: Use neural network to solve general equilibrium continuous time finance models to
capture global dynamics (portfolio choice, macro-finance, monetary policy)

1 Portfolio Choice: Merton (1971), Cochrane et al (2008), Martin (2013)
2 Macro-Finance: He and Krishnamurthy (2013), Brunnermeier and Sannikov (2014), Di

Tella (2017)
3 Monetary Theory: Silva (2020), Brunnermeier and Sannikov (2016)
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General setup

Ut “ Et

“

ż 8

t

f pcs ,Usqds
‰

(1)

Exogenous dividend process of risky asset

dyt
yt

“ gdt ` σ dZt
ljhn

Brownian shock

(2)

There is also a risk free debt market (pays return r). Risky asset has price of risk ζt , and
volatility σR

t

Problem of the agent is

sup
ĉ,θ

Ut (3)

s.t
dwt

wt
“ pr ` θt

ljhn

port. choice

ζt
ljhn

price of risk

´ĉtqdt ` θt σR
t

ljhn

ret. volatility

dZt (4)

If g , σ, r are time varying, then we have a multi-dimensional problem
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HJB
HJB is

sup
ĉt ,θt

f pct ,Utq ` EtpdUtq “ 0

Conjecturing U “ Jw1´γ

1´γ , where J is the stochastic opportunity process and γ is the risk
aversion, the HJB equation reduces to

µJpx , JqJ “

d
ÿ

i“1

µxi px , Jq
BJ

Bxi
`

d
ÿ

i,j“1

bi,jpx , Jq
B2J

BxiBxj
(5)

1 State variables are x . Could be high-dimensional (large d)
2 µJ , µx , and bi,j are linear, advection, and diffusion coefficients

PDE (5) can be highly non-linear elliptical PDE depending on the problem

Past literature: Convert it into quasi-linear parabolic PDE and use finite difference Ñ

slowly introduce non-linearity through

µJpx , JoldqJ “
BJ

Bt
`

d
ÿ

i“1

µxi px , Joldq
BJ

Bxi
`

d
ÿ

i,j“1

bi,jpx , Joldq
B2J

BxiBxj
(6)

Works well in low dimensions, but breaks down in high dimensions (d’Adrien and
Vandeweyer, 2019)
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Methodology overview

Focus of this part is to introduce a technique to solve macro models involving PDEs of
type (5) in high dimensions

1 Benchmark model (BS2016 with recursive preference)
2 Capital misallocation model with productivity shock (Gopalakrishna 2021)

Figure: Overview of methodology.
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Neural network solution method

f :“
BĴ

Bt
`

d
ÿ

i

µi pxq
BĴ

Bxi
`

d
ÿ

i,j“1

bi,jpxq
B2Ĵ

BxiBxj
´ µJ Ĵ “ 0;

@pt, xq P rT ´ k∆t,T ´ pk ´ 1q∆ts ˆ Ω

Ĵ “ J̃0 @pt, xq P pT ´ pk ´ 1q∆tq ˆ Ω;

where Ĵ is a neural network object with parameters Θ, and f is the PDE residual.
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BĴ

Bxi
`

d
ÿ

i,j“1

bi,jpxq
B2Ĵ
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where Ĵ is a neural network object with parameters Θ, and f is the PDE residual. Can be
seen as a classical constrained optimization problem

Optimization

Θ˚ “ argmin
Θ

Ĵ ´ J̃0

s.t. f “ 0
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Neural network solution method

f :“
BĴ

Bt
`

d
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i

µi pxq
BĴ

Bxi
`

d
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´ µJ Ĵ “ 0;
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Ĵ “ J̃0 @pt, xq P pT ´ pk ´ 1q∆tq ˆ Ω;

BĴ

Bx
“ J0 @pt, xq P pT ´ pk ´ 1q∆tq ˆ BΩ;

Mesh free since we can randomly sample from the state space (t, xq to train the neural
network

Sparse training points in region of importance leads to instability in future iterations.
Solution: Track subdomain Ωc and sample more points from there

f “ 0 @pt, xq P rT ´ k∆t,T ´ pk ´ 1q∆ts ˆ Ωc ;

Ĵ “ J̃0 @px , tq P pT ´ pk ´ 1q∆tq ˆ Ωc ;

The subdomain Ωc is found by inspecting the PDE coefficients which are determined
using previous value J̃
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Neural network solution method

f :“
BĴpx |Θq

Bt
`

d
ÿ

i

µi
pxq

BĴpx |Θq

Bxi
`

d
ÿ

i,j“1

bi,j
pxq

B
2Ĵpx |Θq

BxiBxj

´ µJ Ĵpx |Θq “ 0; @pt, xq P rT ´ k∆t,T ´ pk ´ 1q∆ts ˆ Ω

Ĵpx |Θq “ J̃0; @pt, xq P pT ´ pk ´ 1q∆tq ˆ Ω;

pf “ 0; @pt, xq P rT ´ k∆t,T ´ pk ´ 1q∆tsxΩc ;

Ĵpx |Θq “ J̃0; @pt, xq P pT ´ pk ´ 1q∆tqΩcq;Ñ Active learning

BĴpx |Θq

Bx
“ J0; @pt, xq P pT ´ pk ´ 1q∆tq ˆ BΩ;
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Active learning
Example from Gopalakrishna (2021): Macro-finance model with 2 state variables
(productivity, wealth share)
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Solution technique: ALIENs

Figure: Methodology.
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ALIENs

L “ λfLf ` λjLj ` λbLb ` λ1
cL1

c ` λ2
cL2

c (7)

where

PDE loss Lf “
1

Nf

Nf
ÿ

i“1

|f px i
f , t

i
f q|

2

Bounding loss-1 Lj
“

1

Nj

Nj
ÿ

i“1

|Ĵpx i
j , t

i
j q ´ J̃ i

0|
2

Active loss-1 L2
c “

1

Nc

Nc
ÿ

i“1

|f px i
c , t

i
cq|

2

Active loss-2 L1
c “

1

Nc

Nc
ÿ

i“1

|Ĵpx i
c , t

i
cq ´ J̃ i

0|
2
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Active Learning vs Simulation method
ALIENs actively learn the region of sharp transition and samples more points Ñ faster
convergence
Sampling procedure is complementary to simulation based methods (Azinovic et al
(2018), Villaverde et al (2020)), but also works for models with rare events and financial
constraints that bind far away from the steady state
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Automatic differentiation in practice

Approximating J using a neural network

def J(z,t):
J = neural_net(tf.concat ([z,t],1),weights ,biases)
return J

Constructing regularizer: 1D model

def f(z,t):
J = J(z,t)
J_t = tf.gradients(J,t)[0]
J_z = tf.gradients(J,z)[0]
J_zz = tf.gradients(J_z ,z)[0]
f = J_t + advection * J_z + diffusion * J_zz - linearTerm * J
return f

def f(z,a,t):
J = J(z,a,t)
J_t = tf.gradients(J,t)[0]
J_z = tf.gradients(J,z)[0]
J_a = tf.gradients(J,a)[0]
J_zz = tf.gradients(J_z ,z)[0]
J_aa = tf.gradients(J_a ,a)[0]
J_az = tf.gradients(J_a ,z)[0]
f = J_t + advection_z * J_z + advection_a * J_a + diffusion_z * J_zz +

diffusion_a * J_aa + crossTerm * J_az - linearTerm * J
return f
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Horovod

Data parallelism as opposed to Model parallelism

Horovod uses ringAllReduce operation to average gradients (improves efficiency)

Figure: Source: https://eng.uber.com/horovod/
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Horovod

def J():
...

def f():
...

hvd.init() #initialize Horovod
config = tf.ConfigProto () #pin GPUs to processes
config.gpu_options.visible_device_list = str(hvd.local_rank ()) #assign chief worker
config.gpu_options.allow_growth = True #enable GPU
sess= tf.Session(config=config) #Configure tensorflow
if hvd.rank()==0:

... #assign a piece of data to chief worker
else:

while hvd.rank() < hvd.size():
... #assign a piece of data to each worker

def build_model ():
#initialize parameters using Xavier initialization
#parametrize the function J using J()
#buld loss function using net_f ()
#set up tensorflow optimizer in the variable name opt
optimizer = hvd.DistributedOptimizer(opt)
#minimize loss
#initialize Tensorflow session
bcast = hvd.broadcast_global_variables (0) #Broadcast parameters to all workers
sess.run(bcast)
#train the deep learning model
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HPC

Interactive mode
Sinteract -q gpu -p gpu -g gpu -m 12G -t 10:00:00
virtualenv –system-site-packages venv-for-tf
source ./venv-for-tf/bin/activate
pip install –user –no-cache-dir tensorflow-gpu==2.7.0

ipythonCores: 1
Tasks: 1
Time: 10:00:00
Memory: 128G
Partition: gpu
Account: sfi-pcd
Jobname: interact
Resource: gpu
QOS: gpu
salloc: job 124415 allocated
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