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Abstract

This article studies how to intervene against statistical discrimination, when

it is based on beliefs generated by machine learning, rather than by humans.

Unlike beliefs formed by a human mind, machine learning-generated beliefs

are verifiable. This allows interventions to move beyond simple, belief-free de-

signs like affirmative action, to more sophisticated ones, that constrain decision

makers in ways that depend on what they are thinking. Such mind reading

interventions can perform well where affirmative action does not, even when

the beliefs being conditioned on are possibly incorrect and biased.
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1 Introduction

This article studies statistical discrimination by a decision maker (DM) who uses ma-

chine learning to compute beliefs. Unlike human beliefs, machine beliefs are verifiable.

I show how conditioning on such beliefs can make interventions against statistical dis-

crimination more effective – even if those beliefs are possibly incorrect and biased.

To fix ideas, consider the canonical statistical discrimination model of Coate and

Loury (1993). A DM makes binary accept-reject decisions on a set of subjects, each

with a group identity i, and a vector of other features x. Some x are more likely

to occur if a subject is qualified. Any subject can invest to become qualified at a

random cost that is iid across subjects. Qualification status, y, is unobserved by

the DM. Instead, for each (i, x) subject, the DM forms a belief, f(i, x), about the

probability y = qualified, and accepts them if and only if f(i, x) is sufficiently high.

It can be shown that, even though groups are ex-ante identical, an unfair equilibrium

can still emerge due to self-fulfilling negative stereotypes: Relative to the favored

group, subjects of the discriminated group face tougher acceptance standards (fewer

x are accepted), which leads to fewer of them investing to become qualified, which

rationalizes the tougher standards they face.

Coate and Loury (1993) then consider how affirmative action affects such sta-

tistical discrimination. Affirmative action requires the DM to accept subjects from

different groups at equal rates. In all unfair equilibria, affirmative action brings gains

to the discriminated group, by inducing the DM to lower the acceptance rate of the

favored group while increasing the acceptance rate of the discriminated group, shrink-

ing the acceptance rate gap. However, in the long run, these gains need not lead to

a fair equilibrium, that would allow the intervention to be lifted. Indeed, under af-

firmative action, there exist steady states where the previously discriminated group

is now patronized with extra low acceptance standards, and so continues to have less

incentive to invest in becoming qualified. Without affirmative action, such a state

is not in equilibrium. If the intervention is lifted, the patronizing lower standards

revert to higher standards, and the original discrimination can re-emerge. This begs

a natural question:

Are there ideal interventions that bring gains to the discriminated group in

all unfair equilibria and whose steady states are the set of fair equilibria?

I show that if the DM’s beliefs, f(i, x), are machine learning-generated, so that inter-

ventions can condition on them, then ideal interventions exist.
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One example is what I call mistaken identity : Fix arbitrary nonnegative group

identity weights {αi}, not all zero, and assign all subjects with the same x the same

score,
∑

i αif(i, x). The DM is then required to choose a threshold and accept/reject

a subject if their score is above/below that threshold. Loosely speaking, mistaken

identity forces the DM to act as if it thinks all subjects have the same (possibly

blended) identity. It is related to the proposals by Yang and Dobbie (2020) and Pope

and Sydnor (2011) for eliminating proxy effects of group identity in linear regressions.

Mistaken identity is color-blind, since all subjects with the same x are treated equally.

However, it is more restrictive than just requiring the DM be color-blind. “Just be

color-blind” is a belief-free intervention that still allows a clever DM to use proxies

for group identity to discriminate. In contrast, mistaken identity uses the DM’s own

race-conscious beliefs against them to prevent such proxying.

Mistaken identity works effectively even when the DM holds incorrect, biased be-

liefs. Intuitively, biases causes the DM to perceive a qualification gap between groups

that may differ from what actually exists. But this is undone by the intervention

forcing the DM to think that everyone has the same identity. In addition to mistaken

identity, I demonstrate the existence of other ideal interventions, such as what the

algorithmic fairness literature calls equal opportunity. However, I show that equal

opportunity lacks the robustness of mistaken identity to incorrect, biased beliefs.

Recently, the Supreme Court, in SFFA v. Harvard and SFFA v. UNC, ruled

that admissions programs that factor in race violate the Equal Protection Clause of

the 14th Amendment. Affected parties are now exploring how to preserve the gains

made by minorities under decades of affirmative action. One promising option is to

implement mistaken identity, since it yields attractive outcomes against statistical

discrimination, is robust to incorrect, biased beliefs, and is color-blind. Indeed, many

legal scholars have argued that color-blind interventions do “uphold the principles of

the equal protection doctrine.” (Yang and Dobbie, 2020) However, it is worth em-

phasizing, implementing the color-blind mistaken identity intervention still requires

conditioning on underlying beliefs that are not color-blind. Based on its recent opin-

ions, it is unclear what the Supreme Court thinks of such indirect race-consciousness.

And yet, I show that such race-consciousness is necessary. Specifically, if the DM only

has access to color-blind data, resulting in color-blind beliefs, then an identification

problem arises that makes it impossible for any intervention to be ideal. Thus, my

work justifies the need to create a clear space within the law for the use of color-blind

interventions that, nevertheless, condition on not color-blind beliefs.
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Related Literature. This article bridges two distinct but related literatures –

statistical discrimination and algorithmic fairness. Both address the same problem:

Unfair decision making driven by the statistical learning of some unobserved variable

of interest, y, based on observed features (i, x). Typically, when this problem occurs,

the joint distribution of (x, y) varies with i, which then causes the learning of y from x

to be sensitive to i. The statistical discrimination literature has produced a rich theory

of why the joint distribution of (x, y) can vary with i, and how sensitivity of statistical

learning to i can cause unfair decisions to be made. See Fang and Moro (2011)

and Onuchic (2022) for excellent surveys of the literature. Less progress has been

made designing effective interventions. In particular, little attention has been paid to

interventions that condition on what is statistically learned about y given (i, x) – that

is, the beliefs about y. Conversely, the algorithmic fairness literature has provided

numerous interventions to algorithms that achieve various fairness goals, including

many designed to condition on machine learning-generated beliefs.2 But much of this

work is not guided by economic theory, leading to well known problems detailed below.

My work attempts to synthesize the strengths of the two literatures, by evaluating a

broad class of belief-contingent interventions within an economic model of statistical

discrimination, in order to find robust, welfare enhancing interventions against unfair

decision making driven by statistical learning.

Statistical Discrimination. Broadly speaking, theories of statistical discrimina-

tion fall into two groups, Phelpsian and Arrovian.

In Phelpsian models (Phelps, 1972; Aigner and Cain, 1977), the variation of the

joint distribution of (x, y) with i is exogenous. As a result, it is difficult to build

a theory of intervention design within the Phelpsian framework. Instead, recent re-

search focuses on an important precursor to effective intervention – correct diagnosis

of the problem. This involves characterizing information structures and outcome

distributions consistent/inconsistent with statistical discrimination (Chambers and

Echenique, 2021; Escudé et al., 2022; Deb et al., 2022; Martin and Marx, 2022), de-

veloping empirical strategies for distinguishing statistical discrimination from taste-

2Today, algorithmic decision-making is ubiquitous (Agrawal et al., 2018). Kleinberg et al. (2018a)
demonstrates how algorithmic decision-making can substantially outperform human decision-making
in a high stakes setting. Nevertheless, there is concern that algorithmic decision-making can be
unfair, reinforcing pre-existing discriminatory behavior. For example, in a study on household
credit markets, Fuster et al. (2022) shows how certain minority groups are adversely affected by the
introduction of machine learning algorithms for predicting creditworthiness. The field of algorithmic
fairness emerged in response to such concerns. See Barocas et al. (2019) for a textbook treatment.
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based discrimination (Arnold et al., 2021; Marx, 2022), and identifying when statis-

tical discrimination is being driven by inaccurate beliefs (Bohren et al., 2019, 2023).

My result about how color-blinding data creates an identification problem, making

certain fair and unfair equilibria statistically indistinguishable, is related to this line

of research.

Arrovian models (Arrow, 1971) seek to explain the variation of (x, y)’s joint dis-

tribution with i as a possible equilibrium outcome of various things, including self-

fulfilling expectations (Coate and Loury, 1993; Moro and Norman, 2004; Onuchic and

Ray, 2023), search frictions (Rosén, 1997; Mailath et al., 2000; Jarosch and Pilossoph,

2019), rational inattention (Echenique and Li, 2022; Fosgerau et al., 2023), and learn-

ing traps (Bardhi et al., 2020; Che et al., 2020; Komiyama and Noda, 2020; Li et al.,

2020). In these models, there is scope to consider interventions that can take us out

of an unfair equilibrium, such as affirmative action, quotas, and various subsidies.

However, the results have been mixed and the analysis has been somewhat ad hoc.

In particular, belief-contingent interventions have been neglected.

In contrast, belief-contingent interventions are common in the algorithmic fairness

literature. This distinction has been previously noted by Kleinberg et al. (2018b,

2020), who argue, more generally, that a fundamental difference between regulating

human versus algorithmic decision-making is that, algorithms, unlike a human mind,

can be audited.

Algorithmic Fairness. The myriad interventions emerging from algorithmic fair-

ness can typically be categorized as targeting disparate treatment or disparate impact.

Interventions targeting disparate treatment are designed to not “factor in” group

identity. Canonical examples include fairness through awareness (Dwork et al., 2012)

and counterfactual fairness (Kusner et al., 2017; Chiappa, 2019). The regression

modifications proposed by Yang and Dobbie (2020) and Pope and Sydnor (2011) can

also be viewed as disparate treatment interventions.

Interventions targeting disparate impact are designed to ensure that the distri-

bution of decisions experienced by different groups is fair in some statistical sense.

Common statistical notions of fairness include statistical parity, equal opportunity,

equal odds, group calibration, positive and negative class balance, predictive parity,

and error rate balance. Zemel et al. (2013), Feldman et al. (2015), and Hardt et al.

(2016b) introduce ways of constraining algorithms to guarantee that the selected

decision policy satisfies statistical parity, equal opportunity, or equal odds.
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Kleinberg et al. (2016) and Chouldechova (2017) show that some of the fairness

goals disparate impact interventions are designed to achieve are mutually incompat-

ible. Others have shown that these interventions can lead to Pareto-inferior out-

comes and greater unfairness when measured in an application-appropriate way (Liu

et al., 2018; Corbett-Davies et al., 2017; Hu and Chen, 2020; Corbett-Davies et al.,

2023). Algorithmic fairness has also been slower to factor in agency problems many

economists take for granted. These include conflicts of interest between the DM and

whoever is imposing the intervention, and strategic responses of subjects to the DM

being constrained by an intervention. All of this has led to calls to bring a more

economic perspective to algorithmic fairness (Cowgill and Tucker, 2020).

The response has been a wave of new research aimed at better integrating algorith-

mic fairness and, more generally, algorithmic decision-making with economic theory.

Innovations include explicit benefit functions (Heidari et al., 2018), limited ability

to monitor or control the DM (Blattner et al., 2021; Liang et al., 2023), incentive

effects on the DM (Fu et al., 2022), incentive effects on subjects (Hardt et al., 2016a;

Eliaz and Spiegler, 2019; Hu et al., 2019; Kleinberg and Raghavan, 2020; Frankel and

Kartik, 2022; Penn and Patty, 2023), retraining and equilibrium prediction (Perdomo

et al., 2020), and long-term fairness considerations (Hu and Chen, 2018; Mouzannar

et al., 2019; D’Amour et al., 2020; Liu et al., 2020; Puranik et al., 2022), includ-

ing in the presence of biased beliefs (Williams and Kolter, 2019; Segal et al., 2023).

Already, insights into interventions have emerged from this research. The equalized

odds intervention has been shown to possess attractive equilibrium properties (Jung

et al., 2020; Shimao et al., 2023), and algorithmic audits have been used to design

interventions that can eliminate taste-based discrimination (Rambachan et al., 2020).

Human-AI Most work on human-AI interactions assume both machines and hu-

mans generate beliefs and make decisions. The focus is on if or when these two

ostensibly substitutable parties can be combined to yield decisions that outperform

any party by themselves (Athey et al., 2020; Gillis et al., 2021; Bastani et al., 2021;

Donahue et al., 2022; McLaughlin and Spiess, 2022; Agarwal et al., 2023; Angelova

et al., 2023). In contrast, machines and humans are complementary in my model:

While the human provides the preferences, the machine provides all of the beliefs.

This implies that interventions can fully condition on the beliefs of the DM, leading to

sharp predictions. Future work should consider belief-contingent intervention design

that can handle the human having private information about the distribution of y.
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2 An Economic Model with Machine Learning

I take the statistical discrimination model of Coate and Loury (1993) and make one

essential change: I replace their DM, who has rational expectations, with one who

relies on machine learning to compute possibly incorrect but verifiable beliefs, that

can then be used by a third-party.

There is a DM and a unit mass of subjects. Each subject possesses a vector of

publicly observed features (i, x) and an unobserved binary class y ∈ Y := {q, u}.
Here, i ∈ I := {w, b} is the group identity (can generalize to more than two), and

x ∈ X := X1 ×X2 × . . .×XN are the other features. Assume X is finite.

The distribution of subjects over I ×X × Y is the result of actions taken by the

subjects. Initially, each subject independently draws a group identity i and a cost

c ∈ (−∞,∞). Let λw and λb = 1−λw be the positive probabilities of drawing w and

b, respectively, and let G and g denote the CDF and PDF of c, respectively. After a

subject draws (i, c), they choose to join a class. Joining class q costs c, while joining

class u costs 0. Assume g has full support. The possibility of negative costs, however

remote, ensures that, in any equilibrium, there are subjects in both classes. Once

a subject joins a class, their other features, x, are realized according to a statistical

model of the following form:

Assumption 1. There exists a nonempty Y ⊂ {1, 2, . . . N}, such that

p(x|i, y) = p(xY |y)p(x−Y |i, xY) > 0 ∀(i, x, y) ∈ I ×X × Y.

Under Assumption 1, other features not indexed by Y can be viewed as proxies for

group identity. At this point, the distribution of subjects over I×X×Y is determined.

It can be decomposed into a distribution, µRE, over the features space I ×X, and a

conditional probability, fRE, over the features space I ×X, that a subject is of class

q. The DM obtains a possibly incorrect version, (µ, f), of (µRE, fRE). From now on, I

refer to µ as a distribution and f as a set of beliefs. Coate and Loury (1993) focus on

the rational expectations case, (µ, f) = (µRE, fRE), and consider the µRE-contingent

intervention, affirmative action, but do not consider any intervention that conditions

on fRE. Since I interpret f as the verifiable output of machine learning, I study

interventions that can condition on both µ and f .

After obtaining (µ, f), the DM makes a binary 1-0 decision (e.g., accept-reject,

lend-deny, assign to high-low skill job) on each subject, by choosing a decision policy,

defined to be a map d : I ×X → [0, 1]. Given an (i, x) subject, d selects decision 1
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with probability d(i, x). If the selected decision is 1, the DM’s payoff depends on the

subject’s class, vq > 0 or −vu < 0, while the subject’s payoff is ω > 0. If the selected

decision is 0, both parties’ payoffs are 0.

Clearly, given any d, if a group i subject with cost c is weakly better off joining

class q, then any group i subject with strictly lower cost is strictly better off joining

class q. Thus, for each group i, I imagine a representative group i subject choos-

ing a cost threshold c(i) so that a group i subject with cost c joins class q if and

only if c ≤ c(i). This allows me to treat the model as a simultaneous-move game,

(X,λw, p, G, vq, vu, ω), between three players: A pair of representative subjects choose

a pair of cost thresholds c = (c(w), c(b)) and the DM chooses a decision policy d.

Given c, (µRE, fRE) is

µRE(i, x|c(i)) := λi [G(c(i))p(x|i, q) + (1−G(c(i)))p(x|i, u)] ,

fRE(i, x|c(i)) :=
G(c(i))p(x|i, q)

G(c(i))p(x|i, q) + (1−G(c(i)))p(x|i, u)
∀(i, x) ∈ I ×X.

For simplicity, I will usually write µRE(i, x) and fRE(i, x), suppressing their depen-

dence on c. When working with a cost threshold pair, c ·, that is indexed with some

superscript · , I will write µ ·RE and f ·RE to refer to µRE and fRE given c ·. The same

convention applies for subscripts.

A decision policy d can be viewed as a pair of group policies (d(w), d(b)) defined

over X. Given c(i) and d(i), the utility of the representative group i subject is

Ui(c(i), d(i)) := ω
∑
x∈X

µRE(i, x)

λi
d(i, x)−

∫ c(i)

−∞
cg(c)dc.

To ensure Ui is well-defined, assume
∫∞
−∞ |c|g(c)dc < ∞. Given d and (µ, f), the

utility of the DM is

UDM(d, µ, f) :=
∑

(i,x)∈I×X

d(i, x)µ(i, x) [f(i, x)vq − (1− f(i, x))vu] .

2.1 Interventions

Given a set of other features X, the domain of distributions is the set of all maps

µ : I ×X → (0, 1) satisfying
∑

(i,x)∈I×X µ(i, x) = 1, and the domain of beliefs is the

set of all maps f : I ×X → (0, 1).
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Definition. An intervention k specifies, for each (X,µ, f), a nonempty compact set,

k(X,µ, f), of decision policies d : I ×X → [0, 1].

Example. Just be color-blind specifies, for each (X,µ, f), the set of all color-blind

decision policies. A decision policy, d, is color-blind if d(w, x) = d(b, x) ∀x ∈ X.

Example. Affirmative action specifies, for each (X,µ, f),

k(X,µ, f) =

{
d : I ×X → [0, 1]

∣∣∣∣ AR(w, d, µ) = AR(b, d, µ)

}
,

where AR(i, d, µ) :=
∑
x∈X d(i,x)µ(i,x)∑

x∈X µ(i,x)
is the acceptance rate of group i.

Unlike the two previous interventions, the following interventions depend on the

DM’s machine learning-generated beliefs:

Example. Equal opportunity specifies, for each (X,µ, f),

k(X,µ, f) =

{
d : I ×X → [0, 1]

∣∣∣∣ TP (w, d, µ, f) = TP (b, d, µ, f)

}
,

where TP (i, d, µ, f) :=
∑
x∈X d(i,x)µ(i,x)f(i,x)∑

x∈X µ(i,x)f(i,x)
is the true positive rate of group i.

Example. In a mistaken identity intervention, there exist group identity weights

αw, αb ≥ 0, not both zero, such that, for each (X,µ, f),

k(X,µ, f) =

{
d : I ×X → [0, 1]

∣∣∣∣ d is a threshold function of αwf(w, x) + αbf(b, x)

}
.

A decision policy d is a threshold function of αwf(w, x) + αbf(b, x) if d depends on

(i, x) only up to αwf(w, x) + αbf(b, x) – in particular, d is color-blind – and there

exists an f ≥ 0 such that αwf(w, x) + αbf(b, x) > f (< f)⇒ d(i, x) = 1 (= 0).

Definition. Given an intervention k and a game (X,λw, p, G, vq, vu, ω), a strategy

profile (c∗, d∗) is a k equilibrium supported by (µ, f) if

1. c∗(i) = arg maxc(i)∈R Ui(c(i), d
∗(i)) for all groups i,

2. d∗ ∈ D(k, µ, f) := arg maxd∈k(X,µ,f) UDM(d, µ, f).

If (µ, f) = (µ∗RE, f
∗
RE), then drop the qualifier “supported by (µ, f).” If k is the

trivial intervention that allows all decision policies, then drop the prefix k.
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2.2 Characterizing Equilibria

This part reviews Coate and Loury (1993) Section I. Results are stated without proof.

Let (c∗, d∗) be an equilibrium. (c∗, d∗) can be decomposed into a pair of group

equilibria, {(c∗(i), d∗(i)) | i ∈ I}. Let us characterize group equilibria.

Define the likelihood function l(x) := p(xY |q)
p(xY |u)

for all x ∈ X. Since p(xY |y) > 0 for

all (x, y) ∈ X × Y , l is a well-defined positive function taking finitely many values,

0 < l1 < l2 < . . . < ln for some n. Assume 1 is not a likelihood value. This is a

generic property of games. It is not a crucial assumption, but it does simplify the

analysis.

Given a group policy d(i) and a likelihood value lm, define d(i|lm) to be the

probability a group i subject receives decision 1 under d(i) conditional on having an

x satisfying l(x) = lm. d(i|lm) is independent of c(i). Given a likelihood threshold

l ∈ [0, ln], define an l-threshold group policy to be a d(i) that satisfies

d(i|lm) =


1 if lm > dle
dle−l
dle−dle− if lm = dle

0 if lm < dle,

where dle is the smallest likelihood value ≥ l and dle− is the next smallest likelihood

value (or 0, if dle = l1).

Definition. A decision policy is a threshold decision policy if both of its group policies

are threshold group policies. Two threshold decision policies are equivalent if, for each

group, their threshold group policies share the same threshold.

Given an l-threshold group policy, define WW (l) to be the unique best-response

cost threshold of a representative subject. For each likelihood value lm, WW (lm) :=

ω
∑

xY∈XY ,
p(xY|q)
p(xY|u)

>lm
(p(xY |q) − p(xY |u)), and WW (0) = 0. WW is a single-peaked

(due to 1 not being a likelihood value), piece-wise linear function. Figure 1a depicts

an example WW with n = 3.

Next, for each likelihood threshold l, define EE(l) to be the set of all cost thresh-

olds for which an l-threshold group policy is a best-response. EE is a weakly decreas-
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Figure 1

ing correspondence satisfying,

EE(l) =


[EE(l1),∞) if l = 0

[EE(lm+1), EE(lm)] if l = lm for some m ∈ {1, 2, . . . n− 1}

EE(lm) if l ∈ (lm−1, lm) for some m ∈ {1, 2, . . . n}

(−∞, EE(ln)] if l = ln,

where EE(lm) is the unique solution to G(EE(lm)) = 1
vq
vu
·lm+1

. If the representative

group i subject chooses c(i) = EE(lm), then the DM is indifferent between selecting

decision 1 and 0 for any group i subject with other features x satisfying l(x) = lm.

Figure 1b depicts an EE superimposed on aWW . Each intersection, (l∗,WW (l∗)),

of EE andWW is associated with a set of group equilibria, {(c∗(i) = WW (l∗), d∗(i))},
where d∗(i) is any l∗-threshold group policy. Conversely, each group equilibrium is an

element of one such set. The set of equilibria is the set of pairs of group equilibria,

one for each group identity. Since EE and WW intersect, the set of equilibria is

nonempty. Call two equilibria equivalent if, for each group, their group equilibria are

associated with the same intersection of EE and WW . This partitions the set of

equilibria into equivalence classes. Two equilibria are equivalent if and only if their
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threshold decision policies are equivalent.

Definition. A threshold decision policy is fair if its group thresholds are the same.

An equilibrium is fair if its decision policy, which is a threshold decision policy, is

fair. Otherwise, it is unfair.

In a fair equilibrium (c∗, d∗), c∗(w) = c∗(b) and AR(w, d∗, µ∗RE) = AR(b, d∗, µ∗RE).

3 Ideal Interventions

In this section, I focus on interventions against a rational DM who obtains (µRE, fRE).

Definition. An intervention k is ideal if, for any game (X,λw, p, G, vq, vu, ω), the

following two properties are satisfied:

1. (Gains to the Discriminated Group.) If (c∗, d∗) is an unfair equilibrium, then

for all d ∈ D(k, µ∗RE, f
∗
RE),[

min
i∈I

AR(i, d, µ∗RE),max
i∈I

AR(i, d, µ∗RE)

]
(
[
min
i∈I

AR(i, d∗, µ∗RE),max
i∈I

AR(i, d∗, µ∗RE)

]
.

2. (Steady States Are Fair Equilibria.) Every k equilibrium is a fair equilibrium,

and every equivalence class of fair equilibria contains a k equilibrium.

The definition of an ideal intervention is motivated by Coate and Loury (1993),

who write,

A key question concerning affirmative action is whether the labor-market

gains it brings to minorities can continue without it becoming a permanent

fixture in the labor market.

One way to formalize their question is by asking, is affirmative action an ideal

intervention? It turns out, the answer is no. The authors prove that affirmative

action does not satisfy the second property of being ideal, by explicitly constructing

affirmative action equilibria that are not fair equilibria. In these steady states, a less

qualified group permanently requires the patronage of affirmative action.

Theorem 1. Equal opportunity and mistaken identity are ideal interventions.

Proof. See appendix.
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The key step is to show that both interventions, unlike affirmative action, induce

the DM to choose a fair decision policy.

In the constrained optimization problem of maximizing the DM’s utility subject

to delivering fixed true positive rates to each group, the first-order conditions imply

that the DM will choose, for each group, a threshold group policy. Equal opportunity

then ensures that the thresholds are equal across groups, which means the chosen

decision policy is fair.

Fix any group i, the beliefs fRE(i, x) viewed as a function of x are co-monotonic

with the likelihood function l(x). This implies any weighted sum of the fRE(i, x)’s

across groups is also co-monotonic with l(x). Consequently, any group policy that is

a threshold function of such a weighted sum is a threshold group policy. Mistaken

identity, by requiring a common threshold function be applied across all groups,

ensures that the chosen decision policy is fair.

Once we know the DM will select a fair decision policy, the remainder of the proof

is the same for equal opportunity and mistaken identity.

In an unfair equilibrium, each group policy is still a threshold group policy, with

the favored group having a lower threshold and the discriminated group having a

higher threshold. Since the DM is now choosing a single threshold for both groups,

utility maximization causes the DM to choose one somewhere in between the low and

high thresholds. This implies gains to the discriminated group. Finally, fair decision

policies provide equal incentives to invest in becoming qualified across both groups.

This implies that steady states are fair equilibria. Theorem 1 follows.3

Let k′ be any control that is weakly more restrictive that equal opportunity,

but allows all fair decision policies when conditioned on a distribution and beliefs,

(µRE, fRE), that are rationalized by some c. Then the arguments above imply that

k′ is ideal as well. For example, the equal odds intervention, that requires both true

and false positive rates to be equalized, is ideal.

Despite both being ideal interventions, mistaken identity has some significant

advantages over equal opportunity. Mistaken identity does not depend on the distri-

bution of features. One obvious implication is that if, for whatever reason, a regulator

is unable to obtain µRE, it can still implement mistaken identity. In fact, a much

3In contrast, affirmative action’s requirement to equalize acceptance rates causes the DM to push
past the equal incentives/thresholds point. The threshold for the previously discriminated group
can become so low that the incentive it faces drops below that of the previously favored group again.
This leads to the existence of unfair steady states under affirmative action where a less qualified
group is permanently patronized.
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stronger result is true: The ideal-ness of mistaken identity is robust to the DM ob-

taining any, possibly incorrect, µ.4 In addition, the ideal-ness of mistaken identity is

also robust to the DM having incorrect, biased beliefs f . In Section 4, I will formally

state and prove these results and show that neither robustness property is satisfied by

equal opportunity. Finally, unlike equal opportunity, mistaken identity is color-blind.

This means that in certain important applications, mistaken identity might actually

be legal while equal opportunity is not.

3.1 Color-Blind Data

That mistaken identity is both color-blind and ideal makes it an attractive option

for preserving the gains to minorities, in the wake of the Supreme Court striking

down affirmative action. However, mistaken identity still conditions on race-conscious

beliefs, generated by a machine learning algorithm trained on data that has not been

made color-blind. I now show that such race-consciousness is necessary, by proving

that ideal interventions do not exist when data is made color-blind. This suggests a

need to create a clear space in the law for the use of color-blind interventions that,

nevertheless, condition on not color-blind beliefs.

Making data color-blind can be operationalized by modifying the original model

in the following way: All decision policies, distributions, and sets of beliefs are now

mappings from X instead of mappings from I×X. As an abuse of notation, I continue

to refer to these objects by d, µ, and f , respectively. The rational distribution and

beliefs (µRE, fRE) are defined as follows:

µRE(x) := µRE(w, x) + µRE(b, x),

fRE(x) :=
µRE(w, x)fRE(w, x) + µRE(b, x)fRE(b, x)

µRE(w, x) + µRE(b, x)
∀x ∈ X.

Note, µRE(i, x) and fRE(i, x) are still well-defined when data is made color-blind.

They are just unobserved by the DM. In particular, the acceptance rate, AR(i, d, µRE),

of the i group, defined to be
∑
x∈X d(x)µRE(i,x)∑
x∈X µRE(i,x)

, is still computed using µRE(i, x), not

4Note, just because an intervention does not depend on µ does not necessarily mean that the DM’s
expected utility maximizing decision policy will not depend on µ. For example, if an intervention
forces the DM to pick a single value f , and only allows the DM to selection decision 0 if f(i, x) = f ,
then, clearly, the DM’s choice of decision policy will depend on µ. Thus, it is not immediate that
any ideal intervention that does not depend on µ, such as mistaken identity, is robust to the DM
obtaining any µ.
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µRE(x). The same is true for the utility of the representative i subject, which, along

with the utility of the DM, is now defined as follows:

Ui(c(i), d) := ω
∑
x∈X

µRE(i, x)

λi
d(x)−

∫ c(i)

−∞
cg(c)dc,

UDM(d, µ, f) :=
∑
x∈X

d(x)µ(x) [f(x)vq − (1− f(x))vu] .

Given these changes, the definitions of intervention and k equilibrium supported by

(µ, f) are unchanged. A decision policy d is naturally identified with a color-blind

decision policy in the original model. Call d fair if the corresponding color-blind

decision policy in the original model is a threshold decision policy that is fair. Given

this identification, the set of equilibria corresponds to the set of just be color-blind

equilibria of the original model. In particular, every fair equilibrium – that is, an

equilibrium with a fair decision policy – corresponds to a fair equilibrium in the

original model. So, it remains well-defined to talk about equivalence classes of fair

equilibria. Given these definitions, the definition of an ideal intervention is unchanged.

Theorem 2. When data is made color-blind, there do not exist ideal interventions.

Proof. See appendix.

To prove Theorem 2, it suffices to find two different games, sharing the same X,

such that a fair equilibrium of the first game, (c∗1, d
∗), whose equivalence class con-

tains only itself, and an unfair equilibrium of the second game, (c∗2, d
∗), share the

same decision policy, d∗, the same distribution, µ∗RE,1 = µ∗RE,2, and the same beliefs,

f ∗RE,1 = f ∗RE,2. Such a pair of fair/unfair equilibria presents an identification problem

that puts the two properties of being ideal in conflict with each other: Let k be an ideal

intervention. Since (X, d∗, µ∗RE,1, f
∗
RE,1) arises from a fair equilibrium, whose equiva-

lence class contains only itself, the second property implies d∗ ∈ k(X,µ∗RE,1, f
∗
RE,1).

Since (X, d∗, µ∗RE,2, f
∗
RE,2) arises from an unfair equilibrium, both properties imply

d∗ /∈ k(X,µ∗RE,2, f
∗
RE,2). But k(X,µ∗RE,2, f

∗
RE,2) = k(X,µ∗RE,1, f

∗
RE,1). Contradiction.

Many such pairs of fair/unfair equilibria exist. Here, I sketch out an example.

Suppose X = X1 × X2 = {A,B,C} × {W (onderful), B(ad)}. Interpret X1 as a

letter grade and X2 as a reference letter by an evaluator. In game 1, let us assume

the statistical model captures an evaluator trying to describe intangible qualities of

the subject that are not reflected by a letter grade. Both X1 and X2 depend only on

14



a subject’s class. Since there are no proxies for group identity and decision policies

are color-blind, any equilibrium is fair. Consider the following beliefs f ∗:

W B

A 3/4 1/4

B 2/3 1/5

C 1/3 1/6

f ∗ reflects the plausible idea that, although higher letter grades are better, the evalu-

ator’s letter is still the most important signal of qualification. Now suppose vq = vu,

so that the DM strictly prefers to select decision 1 (0) on any x subject with f ∗(x) > 1
2

(< 1
2
). Then given f ∗, the unique best-response of the DM is to choose the decision

policy, d∗, that selects decision 1 if and only if x1 ∈ {A,B} and x2 = W . One can

easily imagine how game 1 could be parameterized so that, given the best-response

c∗1 to d∗, the rational beliefs are precisely f ∗: f ∗RE,1(x) = f ∗(x) for all x ∈ X. In such

a game, (c∗1, d
∗) is a fair equilibrium, and it is obvious there are no other equivalent

equilibria. Similarly, the rational beliefs for group i in the original model coincide

with f ∗, for both i: f ∗RE,1(i, x) = f ∗(x) for all (i, x) ∈ I ×X.

In game 2, let us assume the statistical model captures an evaluator who is bi-

ased against the b group, and uses “Wonderful” and “Bad” as code words for group

identities w and b, respectively. In this case, X2 is a proxy for group identity, and the

decision policy, d∗, that was fair in game 1, is now unfair, since it uses the proxy X2

to discriminate against b subjects. Now if the DM chooses d∗, the b group has low

incentive to invest and best-responds with a low c∗2(b), while the w group has high

incentive to invest and best-responds with a high c∗2(w). Given this unequal c∗2, the

DM rationally assigns, for each letter grade, a lower belief to any subject described as

bad by the evaluator, just like in f ∗. Assuming the DM’s rational beliefs are f ∗, and

vq = vu, then the best-response decision policy is d∗. Again, one can easily imagine

how game 2 could be parameterized to make this story true. In such a game, (c∗2, d
∗) is

an unfair equilibrium. Unlike in game 1, the rational beliefs for group i in the original

model do not coincide with f ∗, for either i. For the b group, f ∗RE,2(b, x) < f ∗(x) for

all x ∈ X, while the opposite is true for the w group. Also, unlike f ∗, f ∗RE,2(i, ·) is

constant over X2 for both groups i.

Games 1 and 2 share the same X, and the pair of equilibria I just constructed

share the same decision policy d∗, and the same beliefs f ∗. A technical lemma shows

that there are enough degrees of freedom to parameterize the two games so that
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the two equilibria’s distributions, µ∗RE,1 and µ∗RE,2, are the same as well. Theorem 2

follows.

4 Incorrect Distributions and Beliefs

In the previous section, I focused on when the DM is rational and obtains (µRE, fRE).

In this section, I explore the performance of ideal interventions when the DM might

have an incorrect (µ, f). To motivate this exploration, let us begin by constructing a

new ideal intervention that highlights the pitfalls of assuming the DM has perfectly

rational expectations.

Given X and beliefs f defined over I×X, a subset, Ŷ ⊂ {1, 2, . . . N}, of the other

features indices has the property that f depends on I ×X only up to I ×XŶ if

xŶ = x′Ŷ ⇒ f(i, x) = f(i, x′) ∀x, x′ ∈ X, i ∈ I.

Let Ŷ1 and Ŷ2 be two such subsets, then Ŷ1 ∩ Ŷ2 also has the property: Let x, x′

satisfy xŶ1∩Ŷ2 = x′Ŷ1∩Ŷ2
. Let x′′ satisfy x′′Ŷ1

= xŶ1 and x′′Ŷ2
= x′Ŷ2

. Then f(i, x) =

f(i, x′′) = f(i, x′). Thus, there exists a unique, possibly empty, minimal subset, Ŷ(f),

with the property.

Example. The no proxies intervention k specifies, for each (X,µ, f),

k(X,µ, f) =
{
d : I ×X → [0, 1]

∣∣ d depends on I ×X only up to XŶ(f)

}
.

No proxies tries to identify and exclude all other features that are proxies for

group identity. Like mistaken identity, it is color-blind, does not depend on µ, and

is ideal. However, it is intuitive that arbitrarily small deviations from rationality can

cause no proxies to fail to exclude any other features for being a group identity proxy.

I now make precise in what sense the ideal-ness of no proxies is not robust to small

deviations from rationality.

Definition. Given an intervention k, a game (X,λw, p, G, vq, vu, ω), and an ε > 0,

a strategy profile (ck,ε, dk,ε) is a k ε-equilibrium if it is a k equilibrium supported by

some (µk,ε, fk,ε) satisfying ‖(µk,ε, fk,ε)− (µRE,k,ε, fRE,k,ε)‖2 ≤ ε.

Definition. An ideal intervention k is robust to small deviations from rationality if,

for any game (X,λw, p, G, vq, vu, ω) and any δ > 0, there exists an ε > 0 such that

the following two properties are satisfied:
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1. If (c∗, d∗) is an unfair equilibrium and ‖(µ∗, f ∗) − (µ∗RE, f
∗
RE)‖2 ≤ ε, then for

every d ∈ D(k, µ∗, f ∗), there exists a d̂ ∈ D(k, µ∗RE, f
∗
RE) satisfying ‖d− d̂‖2 ≤ δ.

2. If (ck,ε, dk,ε) is a k ε-equilibrium, then there exists a k equilibrium (ck, dk) sat-

isfying ‖(ck,ε, dk,ε)− (ck, dk)‖2 ≤ δ.

Let k be the no proxies intervention and let us reconsider game 2 described in

Section 3.1. Recall, when data is made color-blind, (c∗2, d
∗) is an unfair equilibrium

of the game. This implies (c∗2, d
∗), viewed as a strategy profile in the original model,

is a just be color-blind equilibrium featuring a color-blind decision policy d∗ that is

not fair. Consequently, just be color-blind is not ideal. Note, (c∗2, d
∗) is not a no

proxies equilibrium because d∗ /∈ k(X,µ∗RE,2, f
∗
RE,2), which follows from the fact that

d∗ depends on X2 but f ∗RE,2(i, ·) is constant over X2 for all i. However, for any ε > 0,

it is possible to perturb f ∗RE,2 to some f ∗2 so that

1. ‖(µ∗RE,2, f ∗2 )− (µ∗RE,2, f
∗
RE,2)‖2 ≤ ε,

2. d∗ remains the best-response color-blind decision policy,

3. f ∗2 is injective.

Property 3 implies that, under beliefs f ∗2 , no feature except group identity is excluded

by no proxies, in which case k(X,µ∗RE,2, f
∗
2 ) is the set of all color-blind decision policies

and d∗ ∈ k(X,µ∗RE,2, f
∗
2 ). Properties 1 and 2 then imply that (c∗2, d

∗) is a no proxies

ε-equilibrium. Since (c∗2, d
∗) is not a fair equilibrium, this implies

Proposition 1. No proxies is not robust to small deviations from rationality.

One may try to remedy the fragility of no proxies by strengthening the definition

of Ŷ(f) to exclude any other features over which f is “almost constant,” rather than

just “constant.” The problem with such an approach is that, without knowing the

parameters of the model, it is impossible to know what constitutes almost constant.

Unlike no proxies, equal opportunity – viewed as a correspondence from (µ, f) to

decision policies holding X fixed – is continuous. Berge’s Maximum Theorem implies

Theorem 3. Continuous ideal interventions are robust to small deviations from ra-

tionality.

Proof. See appendix.
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Mistaken identity is not continuous, an artifact of the discreteness of the space

X. Recall, at a rational set of beliefs, any allowed decision policy under mistaken

identity is fair, meaning both group policies are threshold group policies with the

same threshold. However, at a small perturbation of rational beliefs, the most one

can guarantee about any allowed decision policy is that, each group policy has a

threshold li, and if lw 6= lb, then there is still some likelihood value lm, such that

lw, lb ∈ (lm−1, lm). Thus, even though mistaken identity is not continuous, when

rational beliefs are perturbed, the set of allowed decision policies increases by, at

worst, a qualitatively small amount. Consequently, there is a slightly weaker sense in

which mistaken identity is robust to small deviations from rationality:

Define two threshold group policies to be almost equal if there exists a likelihood

value lm such that both thresholds are elements of [lm−1, lm]. Define two threshold

decision policies, d and d̂, to be almost equal – denoted by d ≈ d̂ – if, for each group

identity, their threshold group policies are almost equal. One can show that, under

mistaken identity, for any game (X,λw, p, G, vq, vu, ω), there exists an ε > 0 such that

1. If (c∗, d∗) is an unfair equilibrium and ‖(µ∗, f ∗) − (µ∗RE, f
∗
RE)‖2 ≤ ε, then for

every d ∈ D(k, µ∗, f ∗), there exists a d̂ ∈ D(k, µ∗RE, f
∗
RE) satisfying d ≈ d̂.

2. If (ck,ε, dk,ε) is a k ε-equilibrium, then there exists a k equilibrium (ck, dk) sat-

isfying dk,ε ≈ dk.

When two threshold decision policies d and d̂ are almost equal, it means that, at

worst, they differ, for each group i, only on subjects associated with a single likelihood

value. Depending on the application, it can be reasonable to interpret this as a minor

difference. For example, suppose X is the set of credit scores between 300 and 850,

and higher scores mean higher likelihood values. Differing only on group i subjects

associated with a single likelihood value – say, l(750) – means the only difference

between d and d̂ is in the probability of decision 1 for the tiny fraction of group i

subjects that score exactly 750. Moreover, even if we are in a game where each piece

of data is binary (i.e. |Xn| = 2 for all n ∈ {1, 2, . . . N}), as long as there are many

pieces of class related data (i.e. |Y| is large), there will typically be many likelihood

values, and, again, the difference between d and d̂ can be interpreted as minor.

4.1 Any Distribution µ and Biased Beliefs f

Recent work has highlighted the prevalence of statistical discrimination driven by

incorrect, biased beliefs (Bohren et al., 2019, 2023). Motivated by these findings,
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I now move beyond small deviations from rationality in two ways. I impose no

restriction on what kind of distribution, µ, the DM obtains, and I allow the DM’s

beliefs, f , to exhibit a wide array of biases toward the discriminated group and/or

the favored group.

A bias B = (Bw, Bb) : R2 → R2 is a continuous function satisfying B(c, c) = (c, c)

for all c ∈ R. Given c, the biased beliefs fB are defined to be,

fB(i, x|c) := fRE(i, x|Bi(c)) ∀(i, x) ∈ I ×X.

For example, let β be some weakly increasing continuous function with β(0) = 0.

Then under a bias of the form B(c) := (c(w) + β(c(w)− c(b)), c(b) + β(c(b)− c(w)))

for all c ∈ R2, the DM weakly overestimates the qualification of the favored group and

weakly underestimates the qualification of the discriminated group. As β becomes

steep, such an fB represents significant potential for bias by the DM. From now on call

such an fB a polarizing bias with parameter β. Note, the condition B(c, c) = (c, c)

implies that when both groups are equally qualified, biased beliefs coincide with

rational beliefs. This is needed to ensure that fair equilibria exist.

Let (c∗, d∗) be a fair equilibrium. Then it is also an equilibrium supported by

(µ, f ∗B) for any µ and B. Let (c∗, d∗) be an equilibrium supported by (µ, f ∗B) for some

µ and B. Call (c∗, d∗) unfair if it is not a fair equilibrium. See Figure 2 for two

examples of unfair equilibria (c∗, d∗) supported by some (µ, f ∗B).

Definition. An ideal intervention k is robust to any distribution and biased beliefs

if, for any game (X,λw, p, G, vq, vu, ω), distribution µ, and bias B, the following two

properties are satisfied:

1. (Gains to the Discriminated Group.) If (c∗, d∗) is an unfair equilibrium sup-

ported by (µ, f ∗B), then for all d ∈ D(k, µ, f ∗B),[
min
i∈I

AR(i, d, µ∗RE),max
i∈I

AR(i, d, µ∗RE)

]
(
[
min
i∈I

AR(i, d∗, µ∗RE),max
i∈I

AR(i, d∗, µ∗RE)

]
.

2. (Steady States Are Fair Equilibria.) Every k equilibrium (c∗, d∗) supported by

(µ, f ∗B) is a fair equilibrium, and every equivalence class of fair equilibria con-

tains a k equilibrium (c∗, d∗) supported by (µ, f ∗B).

Notice, the Gains to the Discriminated Group property is defined using µ∗RE, not

µ. This means when an ideal intervention that is robust to any distribution and
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EE

WW

(WW−1(c∗(b)), c∗(b))

(EE−1(c∗(w) + β(c∗(w)− c∗(b))), c∗(w) + β(c∗(w)− c∗(b)))

(WW−1(c∗(w)), c∗(w))

(EE−1(c∗(b) + β(c∗(b)− c∗(w))), c∗(b) + β(c∗(b)− c∗(w)))

EE

WW

(WW−1(c∗(b)), c∗(b))

(EE−1(c∗(w) + β(c∗(w)− c∗(b))), c∗(w) + β(c∗(w)− c∗(b)))

(WW−1(c∗(w)), c∗(w))

(EE−1(c∗(b) + β(c∗(b)− c∗(w))), c∗(b) + β(c∗(b)− c∗(w)))

Figure 2: Two examples of unfair equilibria (c∗, d∗) supported by some (µ, f∗B) where B is
a polarizing bias with parameter β. For both i, we have EE−1(c∗(i) + β(c∗(i)− c∗(−i))) =
WW−1(c∗(i)), and d∗(i) is a WW−1(c∗(i))-threshold group policy. For conceptual clarity,
EE has been drawn as a strictly decreasing function.

biased beliefs is imposed, even though the DM thinks the distribution is µ, one can

still be confident that real gains will be made by the discriminated group.

If we weaken the definition above, by deleting the term “, distribution µ,” and

replacing all other instances of µ with µ∗RE, then we have a natural definition of an

ideal intervention being robust to biased beliefs, but not necessarily to any distribu-

tion. Similarly, there is a natural definition of an ideal intervention being robust to

any distribution, but not necessarily to biased beliefs.

Theorem 4. Mistaken identity is robust to any distribution and biased beliefs, while

equal opportunity is neither robust to any distribution nor robust to biased beliefs.

Proof. See appendix.

Fix any group i. Even with a bias B, the DM’s beliefs, fB(i, x), viewed as a func-

tion of x, are still co-monotonic with the likelihood function l(x), just like fRE(i, x).

As a result, the argument for why mistaken identity forces the DM to choose a fair

decision policy under fRE extends to the case of biased beliefs of the form fB. The

remainder of the proof that mistaken identity is ideal extends to a proof that mistaken

identity is robust to any distribution and biased beliefs.

On the other hand, it is obvious equal opportunity is not robust to any distribu-

tion. The intuition for why equal opportunity is not robust to biased beliefs does not
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depend on the possibility of the DM having a strange bias. It suffices to restrict atten-

tion only to polarizing biases, where the DM weakly overestimates the qualification

of the favored group and weakly underestimates the qualification of the discriminated

group.

Consider an unfair equilibrium (c∗, d∗) with c∗(w) > c∗(b). Then the rational true

positive rate of the w group is higher: TP (w, d∗, µ∗RE, f
∗
RE) > TP (b, d∗, µ∗RE, f

∗
RE).

Let us now examine the expression for the rational true positive rate of the w group,∑
x∈X d

∗(w, x)µ∗RE(w, x)f ∗RE(w, x)∑
x∈X µ

∗
RE(w, x)f ∗RE(w, x)

,

and see how it is affected by the introduction of a polarizing bias B. Introducing

such a bias weakly increases the beliefs about the w group: f ∗B(w, x) ≥ f ∗RE(w, x)

for all x ∈ X. If all of these beliefs increase by the same percentage, then replacing

f ∗RE(w, x) with f ∗B(w, x) in the fraction above causes the true positive rate to remain

unchanged. However, in general, different beliefs will increase by different percent-

ages, and, depending on which ones increase the most, the true positive rate of the w

group can increase or decrease. The same is true for the b group. In particular, it is

possible for a polarizing bias to simultaneously decrease the true positive rate of the

w group and increase the true positive rate of the b group, reducing the true positive

rate gap – possibly down to zero. Using this insight, it is possible to construct equal

opportunity equilibria supported by polarizing biased beliefs, in which the decision

policy is a threshold decision policy that is not fair, thereby violating the second

property of being robust to biased beliefs.

5 Conclusion

This article studies how to intervene against statistical discrimination by a DM, whose

beliefs are generated by machine learning, rather than by humans. Unlike beliefs

formed by a human mind, machine learning-generated beliefs are verifiable. This

allows interventions to condition on the DM’s beliefs. Such belief-contingent inter-

ventions can perform well where affirmative action does not. Specifically, I look for

ideal interventions that bring gains to the discriminated group in all unfair equi-

libria and whose steady states are fair equilibria. The belief-free affirmative action

intervention is not ideal because it has unfair steady states. However, I find two

belief-contingent interventions – equal opportunity and mistaken identity – that are
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ideal.

In addition, mistaken identity is color-blind and robust to incorrect, biased beliefs.

This makes mistaken identity an attractive option for preserving the gains to minori-

ties, in the wake of the Supreme Court striking down affirmative action. However,

mistaken identity does condition on race-conscious beliefs, generated by a machine

learning algorithm trained on data that has not been made color-blind. I show that

such race-consciousness is necessary, by proving that ideal interventions do not exist

when data is made color-blind. This suggests a need to create a clear space in the law

for the use of color-blind interventions that, nevertheless, condition on not color-blind

beliefs.

6 Appendix

6.1 Proof of Theorem 1

Let F denote the set of fair decision policies.

Lemma 1. Let k be equal opportunity. Given any cost threshold pair c, D(k, µRE, fRE) ⊂
F ⊂ k(X,µRE, fRE).

Proof. I first prove D(k, µRE, fRE) ⊂ F . Let d ∈ D(k, µRE, fRE). Define

TP (d) := TP (w, d, µRE, fRE) = TP (b, d, µRE, fRE).

That d ∈ D(k, µRE, fRE) means that the DM cannot be made strictly better off by

swapping out d(i) with a different d̂(i) with the same true positive rate. Thus, for

each i ∈ I, {d(i, x)}x∈X is an element of

arg max
{dx}x∈X s.t.

∑
x∈X dxµRE(i,x)fRE(i,x)∑
x∈X µRE(i,x)fRE(i,x)

=TP (d)

∑
x∈X

dxµRE(i, x) [fRE(i, x)vq − (1− fRE(i, x))vu]

s.t. dx ≥ 0 ∀x ∈ X
dx ≤ 1 ∀x ∈ X.
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The Kuhn-Tucker conditions imply there exists a γ∗i ≥ 0 such that, for each x ∈ X,

d(i, x) =


0 if µRE(i,x)[fRE(i,x)vq−(1−fRE(i,x))vu]

µRE(i,x)fRE(i,x)∑
x′∈X µRE(i,x′)fRE(i,x′)

< γ∗i

1 if µRE(i,x)[fRE(i,x)vq−(1−fRE(i,x))vu]
µRE(i,x)fRE(i,x)∑

x′∈X µRE(i,x′)fRE(i,x′)

> γ∗i .

Simplifying the fraction appearing in the first order condition yields

µRE(i, x) [fRE(i, x)vq − (1− fRE(i, x))vu]
µRE(i,x)fRE(i,x)∑

x′∈X µRE(i,x′)fRE(i,x′)

=
∑
x′∈X

µRE(i, x′)fRE(i, x′)

[
vq −

1− fRE(i, x)

fRE(i, x)
vu

]
=
∑
x′∈X

µRE(i, x′)fRE(i, x′)

[
vq −

(1−G(c(i)))

G(c(i))l(x)
vu

]
.

This means there exists a likelihood value lmi such that

d(i, x) =

0 if l(x) < lmi

1 if l(x) > lmi .

This implies that d(i) is an l-threshold group policy where l = d(i|lmi)lmi−1 + (1 −
d(i|lmi))lmi , where l0 := 0. lmi can be chosen so that either l = 0 or d(i|lmi) ∈ [0, 1).

With this characterization of d(i), we can express the shared true positive rate as

TP (d) =

∑
x∈X d(i, x)µRE(i, x)fRE(i, x)∑

x∈X µRE(i, x)fRE(i, x)

=

∑
x∈X,l(x)=lmi

d̂(i, x)µRE(i, x)fRE(i, x)∑
x∈X µRE(i, x)fRE(i, x)

+

∑
x∈X,l(x)>lmi

µRE(i, x)fRE(i, x)∑
x∈X µRE(i, x)fRE(i, x)

=
∑

x∈X,l(x)=lmi

d(i, x)p(x|i, q) +
∑

x∈X,l(x)>lmi

p(x|i, q)

= d(i|lmi)
∑

x∈X,l(x)=lmi

p(x|i, q) +
∑

m∈{mi+1,mi+2,...n}

∑
x∈X,l(x)=lm

p(x|i, q)
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= d(i|lmi)
∑

x∈X, p(xY|q)
p(xY|u)

=lmi

p(xY |q)p(x−Y |i, xY)+

∑
m∈{mi+1,mi+2,...n}

∑
x∈X, p(xY|q)

p(xY|u)
=lm

p(xY |q)p(x−Y |i, xY)

= d(i|lmi)
∑

xY∈XY ,
p(xY|q)
p(xY|u)

=lmi

∑
x−Y∈X−Y

p(xY |q)p(x−Y |i, xY)+

∑
m∈{mi+1,mi+2,...n}

∑
xY∈XY ,

p(xY|q)
p(xY|u)

=lm

∑
x−Y∈X−Y

p(xY |q)p(x−Y |i, xY)

= d(i|lmi)
∑

xY∈XY ,
p(xY|q)
p(xY|u)

=lmi

p(xY |q) +
∑

m∈{mi+1,mi+2,...n}

∑
xY∈XY ,

p(xY|q)
p(xY|u)

=lm

p(xY |q).

If mw ≶ mb, then clearly the true positive rate of group w ≷ b the true positive rate

of group b. So mw = mb. Now equality of true positive rates implies

d̂(w|lmw)
∑

xY∈XY ,
p(xY|q)
p(xY|u)

=lmw

p(xY |q) = d̂(b|lmb)
∑

xY∈XY ,
p(xY|q)
p(xY|u)

=lmb

p(xY |q),

which implies d(w|lmw) = d(b|lmb), which implies d ∈ F .

Next, let d ∈ F with some threshold l. Previous calculations imply, for each i,

TP (i, d, µRE, fRE) =
dle − l
dle − dle−

∑
xY∈XY ,

p(xY|q)
p(xY|u)

=dle

p(xY |q) +
∑

xY∈XY ,
p(xY|q)
p(xY|u)

>dle

p(xY |q),

which does not depend on i. So F ⊂ k(X,µRE, fRE).

Given c, fRE(i, x) is co-monotonic with l(x), meaning

fRE(i, x) > fRE(i, x′)⇔ l(x) > l(x′) ∀x, x′ ∈ X.

This means that αwf(w, x) + αbf(b, x) is co-monotonic with l(x) for arbitrary group

identity weights αw, αb ≥ 0, not both zero. Letting k be mistaken identity, we may

now conclude that k(X,µRE, fRE) ⊂ F , and, for any d ∈ F , there is an equivalent

d′ ∈ k(X,µRE, fRE).

I have now shown that any best-response of a rational DM given any c, subject

to equal opportunity or mistaken identity, must be fair. I am now ready to prove, at
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once, that equal opportunity and mistaken identity are ideal. So, let k denote equal

opportunity or mistaken identity.

First, consider an unfair equilibrium (c∗, d∗). Let l∗i be the likelihood thresh-

old associated with d∗(i). Without loss of generality, assume l∗w < l∗b . Let d ∈
D(k, µ∗RE, f

∗
RE). Since d is fair, both group policies are associated with the same

likelihood threshold – call it l.

There exist integers mw ∈ {0, 1, . . . n − 1} and mb ∈ {1, 2, . . . n} such that l∗w ∈
[lmw , lmw+1), l

∗
b ∈ (lmb−1, lmb ], and mw < mb. Recall the convention, l0 := 0. If l > lmb ,

then the DM is strictly better off deviating to a fair decision policy with threshold lmb .

By Lemma 1 and the characterization of the allowed decision policies under mistaken

identity, such a deviation is feasible. It makes the DM strictly better off: All subjects

that previously received decision 1 still receive decision 1, the additional w-subjects

that receive decision 1 give the DM positive expected utility, and the additional b-

subjects that receive decision 1 give the DM nonnegative expected utility. Thus,

l ≤ lmb .

If l∗b < lmb , then l∗w ≤ lmb−1. This is because when 1 is not a likelihood value, it

is impossible for l∗w, l
∗
b ∈ (lmb−1, lmb). It is the only place where the minor assumption

that 1 is not a likelihood value is needed. In this case, if l ∈ (lmb−1, lmb ], then the DM

is strictly better off deviating to the fair decision policy with threshold lmb−1. Under

this deviation, all subjects that previously received decision 1 still receive decision

1, the additional w-subjects that receive decision 1 give the DM positive expected

utility, and the additional b-subjects that receive decision 1 give the DM zero expected

utility. Together, the results of this paragraph and the previous one imply l ≤ l∗b and

AR(b, d∗, µ∗RE) ≤ AR(b, d, µ∗RE).

By a symmetric argument l ≥ l∗w and AR(w, d, µ∗RE) ≤ AR(w, d∗, µ∗RE). Since l∗w <

l∗b , so c∗(w) ≥ c∗(b). And now, since d is fair, we have AR(b, d, µ∗RE) ≤ AR(w, d, µ∗RE).

Finally, since l∗w < l∗b , it must be the case that l < l∗b – in which case, AR(b, d∗, µ∗RE) <

AR(b, d, µ∗RE), or l > l∗w – in which case, AR(w, d, µ∗RE) < AR(w, d∗, µ∗RE). This

proves the Gains to the Discriminated Group property.

Next, let (c∗, d∗) be a k equilibrium. Then d∗ is fair, and so c∗(w) = c∗(b). Since

c∗(w) = c∗(b), the set

D(µ∗RE, f
∗
RE) := arg max

d∈[0,1]|I×X|
UDM(d, µ∗RE, f

∗
RE)

contains fair threshold decision policies. Let d ∈ D(µ∗RE, f
∗
RE) ∩ F . By Lemma

25



1 and the characterization of the allowed decision policies under mistaken iden-

tity, there exists a d̂ ∈ D(k, µ∗RE, f
∗
RE) equivalent to d. Since d∗ ∈ D(k, µ∗RE, f

∗
RE),

UDM(d∗, µ∗RE, f
∗
RE) = UDM(d̂, µ∗RE, f

∗
RE). Since d̂ and d are equivalent, UDM(d̂, µ∗RE, f

∗
RE) =

UDM(d, µ∗RE, f
∗
RE). This implies d∗ ∈ D(µ∗RE, f

∗
RE), which then implies (c∗, d∗) is a

fair equilibrium. Clearly, every fair equilibrium is equivalent to a k equilibrium. This

proves the Steady States are Fair Equilibria property.

6.2 Proof of Theorem 2

The proof is by example. Following the argument outlined in Section 3.1, I will find

two different games, sharing the same X, such that a fair equilibrium of the first

game, (c∗1, d
∗), whose equivalence class contains only itself, and an unfair equilibrium

of the second game, (c∗2, d
∗), share the same decision policy d∗, the same distribution

µ∗RE,1 = µ∗RE,2, and the same beliefs f ∗RE,1 = f ∗RE,2.

Fix a cost distribution with G and g satisfying G(0) = 1 − G(2
3
) = 1

6
and g(c) =

1 for all c ∈ [0, 2
3
], and consider the following family of games parameterized by

constants γ ∈ (0, 1
6
) and δ ∈ (0, 1):

• X = X1 ×X2 = {A,B,C} × {W,B},

• λw = 1
2
,

• p(x|i, y) = p(x1|y)p(x2|i) where

– p(x1|q) = 1
3

for all x1 ∈ X1,

– p(C|u) = 2
3
, p(B|u) = 1

6
+ γ, p(A|u) = 1

6
− γ,

– p(W |w) = p(B|b) = 1− δ,

• vq = vu = ω = 1.

For any game in this family, EE and WW intersect five times as in Figure 3.

To begin, consider the limit “game” where γ = δ = 0. Technically speaking, this

is not a game because δ = 0 implies the full support condition of Assumption 1 is

violated.

Let c∗(w) = 1
3

and c∗(b) = 0. The table for (µ∗RE, f
∗
RE) is:
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EE(l1) = G−1(2
3
)

EE(l2) = G−1(1+6γ
3+6γ

)

EE(l3) = G−1(1−6γ
3−6γ )

EE

WW

Eq1

Eq5

l1 = 1
2

l2 = 2
1+6γ

l3 = 2
1−6γ

1
3

= G−1(1
2
)

1
6

+ γ = G−1(1
3

+ γ)

Figure 3

W B

A 1/8 2/3 7/72 2/7

B 1/8 2/3 7/72 2/7

C 1/4 1/3 22/72 1/11

In particular, f ∗RE(x) > vu
vq+vu

= 1
2

for x ∈ {(A,W ), (B,W )} and f ∗RE(x) < 1
2

oth-

erwise. Define the decision policy d∗ where d∗(x) = 1 if x ∈ {(A,W ), (B,W )} and

d∗(x) = 0 otherwise. Figure 3 implies c∗ is the best response to d∗.

Continuity now implies, for all sufficiently small γ, δ > 0, the best-response c∗γ,δ
to d∗ in the (γ, δ)-game is sufficiently close to c∗ so that f ∗RE,γ,δ(x) > 1

2
for x ∈

{(A,W ), (B,W )} and f ∗RE,γ,δ(x) < 1
2

otherwise. This implies that in these (γ, δ)-

games, (c∗γ,δ, d
∗) is an equilibrium.

Clearly, (c∗γ,δ, d
∗) is unfair. In fact, holding γ fixed, as δ goes to zero, (c∗γ,δ, d

∗)

converges in payoff to one of the two most unfair equilibria in the original model,

where the w group equilibrium is associated with Eq1 and the b group equilibrium is
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associated with Eq5 in Figure 3.

The existence of a game with the same X, featuring a fair equilibrium, whose

equivalence class contains only itself, with the same decision policy, distribution, and

beliefs as (c∗γ,δ, d
∗) follows from the following lemma.

Lemma 2. Given an X, a distribution µ : X → (0, 1), a set of beliefs f : X → (0, 1),

and a non-random decision policy d : X → {0, 1} that is a threshold function of f ,

there exists a game (X,λw, p, G, vq, vu, ω) with the property that, (µ, f) is the rational

distribution and beliefs supporting a fair equilibrium with decision policy d, whose

equivalence class contains only itself.

Proof. The proof is constructive. Fix X and (d, µ, f) as in the lemma.

Let {G}∪{(qx, ux)}x∈X be a collection of variables satisfying the following system

of equations:

µ(x) = Gqx + (1− G)ux ∀x ∈ X,

f(x) =
Gqx

Gqx + (1− G)ux
∀x ∈ X,∑

x∈X

qx =
∑
x∈X

ux = 1.

There exists a unique solution:

G =
∑
x∈X

µ(x)f(x) ∈ (0, 1),

qx =
µ(x)f(x)

G
∈ (0, 1) ∀x ∈ X,

ux =
µ(x)(1− f(x))

1− G
∈ (0, 1) ∀x ∈ X.

Define the following game:

• λw can be any value,

• G satisfies G(c(w)) = G(c(b)) = G, where c(w) = c(b) =
∑

x∈X d(x)(qx − ux),

• p(x|i, q) = qx and p(x|i, u) = ux for all (i, x) ∈ I ×X,

• vq, vu satisfy d(x) = 1⇔ f(x) > vu
vq+vu

,

• ω = 1.
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It is straightforward to check that (c, d) is a fair equilibrium with (µRE, fRE) = (µ, f),

whose equivalence class contains only itself.

6.3 Proof of Theorem 3

Lemma 3. Define cmax := maxx∈XWW (l(x)). If c∗(i) = arg maxc(i)∈R Ui(c(i), d(i))

for some d(i), then c∗(i) ∈ [−cmax, cmax].

Proof. By definition, c∗(i) = ω
∑

x∈X [p(x|i, q)− p(x|i, u)]d(i, x). The right hand side

of the equation achieves its highest value, cmax, when d(i) is a d1e−-threshold group

policy. Likewise, it is achieves its lowest value, −cmax, when 1−d(i) is a d1e−-threshold

group policy.

Let k be a continuous ideal intervention. Fix a game (X,λw, p, G, vq, vu, ω).

Let (c∗, d∗) be an unfair equilibrium. Suppose there exists a δ > 0 and a sequence

(dt, (µ
∗
t , f

∗
t ), εt > 0)t∈Z+ such that limt→∞ εt = 0 and, for all t, dt ∈ D(k, µ∗t , f

∗
t ),

‖dt − d̂‖ ≥ δ for all d̂ ∈ D(k, µ∗RE, f
∗
RE), and ‖(µ∗t , f ∗t ) − (µ∗RE, f

∗
RE)‖ ≤ εt. Since

[0, 1]|I×X| is compact, (dt)t∈Z+ has a convergent subsequence. By picking such a

subsequence and relabelling, it is without loss of generality to assume there exists a

decision policy d such that limt→∞ dt = d. Since ‖d−d̂‖ ≥ δ for all d̂ ∈ D(k, µ∗RE, f
∗
RE),

so d /∈ D(k, µ∗RE, f
∗
RE).

Since UDM(d, µ, f) is continuous and k(X,µ, f) is compact-valued and continuous

in (µ, f), by Berge’s Maximum Theorem, D(k, µ, f) is upper hemicontinuous. So

d ∈ D(k, µ∗RE, f
∗
RE). Contradiction. This implies, for every δ > 0, there exists an

ε > 0 such that, if ‖(µ∗, f ∗)− (µ∗RE, f
∗
RE)‖2 ≤ ε, then for every d ∈ D(k, µ∗, f ∗), there

exists a d̂ ∈ D(k, µ∗RE, f
∗
RE) such that ‖d − d̂‖ ≤ δ. Right now, the ε depends on

(c∗, d∗). However, since the number of equivalence classes of equilibria is finite, ε can

be chosen independently of (c∗, d∗). This proves that k satisfies the first property of

being robust to small deviations from rationality.

Now, suppose there exists a δ > 0 and a sequence
(
(c∗εt , d

∗
εt), (µ

∗
εt , f

∗
εt), εt > 0

)
t∈Z+

such that limt→∞ εt = 0 and, for all t, (c∗εt , d
∗
εt) is a k εt-equilibrium supported by

(µ∗εt , f
∗
εt) and ‖(c∗εt , d

∗
εt)−(c∗

′
, d∗

′
)‖ ≥ δ for all k equilibria (c∗

′
, d∗

′
). By Lemma 3, c∗εt ∈

[−cmax, cmax]2 for all t. So, just like before,
(
(c∗εt , d

∗
εt), (µ

∗
εt , f

∗
εt)
)
t∈Z+ has a convergent

subsequence, and it is without loss of generality to assume there exists a (c∗, d∗) such

that limt→∞
(
(c∗εt , d

∗
εt), (µ

∗
εt , f

∗
εt)
)

= ((c∗, d∗), (µ∗RE, f
∗
RE)). Since ‖(c∗, d∗)−(c∗

′
, d∗

′
)‖ ≥

δ for all k equilibria (c∗
′
, d∗

′
), so (c∗, d∗) is not a k equilibrium. Berge’s Maximum

Theorem now implies d∗ ∈ D(k, µ∗RE, f
∗
RE) and c∗ is a best response to d∗. Thus,
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(c∗, d∗) is a k equilibrium. Contradiction. This proves that k satisfies the second

property of being robust to small deviations from rationality.

6.4 Proof of Theorem 4

To prove that mistaken identity is robust to any distribution and biased beliefs, it

suffices to follow along the proof that mistaken identity is ideal and verify that all

the arguments remain valid when (µRE, fRE) is generalized to (µ, fB) for some µ and

B. Here, I highlight a few waypoints.

Let k be mistaken identity. Given any c ∈ R, it is the case that fRE(i, x|c) is

co-monotonic with l(x). In particular, given c, fB(i, x|c) = fRE(i, x|Bi(c(w), c(b))) is

co-monotonic with l(x). So, for any µ and B, k(X,µ, fB) ⊂ F , and, for any d ∈ F
there is an equivalent d′ ∈ k(X,µ, fB).

Let (c∗, d∗) be an unfair equilibrium supported by (µ, f ∗B) for some µ and B. Then

d∗ is a threshold decision policy that is not fair. Without loss of generality, we can

assume l∗w < l∗b . Let d ∈ D(k, µ, f ∗B). Then d is fair with some likelihood threshold l.

And now the exact same argument as before shows that k satisfies the Gains to the

Discriminated Group property.

Next, let (c∗, d∗) be a k equilibrium supported by (µ, f ∗B) for some µ and B.

Since d∗ is fair, c∗(w) = c∗(b). When the cost-thresholds of representative sub-

jects are equal, the bias B has no affect on beliefs. So f ∗B = f ∗RE. This implies

D(µ, f ∗B) = D(µ, f ∗RE) = D(µ∗RE, f
∗
RE). Now the rest of the proof that k satisfies the

Steady States are Fair Equilibria property goes through exactly like before, except

replace D(µ∗RE, f
∗
RE) with D(µ, f ∗B), D(k, µ∗RE, f

∗
RE) with D(k, µ, f ∗RE), and k equilib-

rium with k equilibrium supported by (µ, f ∗B) for any µ and B.

Now, let k be equal opportunity. To show that k is not robust to biased beliefs,

it suffices to find an unfair equilibrium (c∗, d∗) and a bias B, such that (c∗, d∗) is also

an unfair equilibrium supported by (µ∗RE, f
∗
B), and, under (µ∗RE, f

∗
B), d∗ equalizes true

positive rates across groups. This makes (c∗, d∗) an equal opportunity equilibrium

supported by (µ∗RE, f
∗
B) that is not a fair equilibrium. From now on, I restrict atten-

tion only to B of the form B(c) := (c(w) + β(c(w)− c(b)), c(b) + β(c(b)− c(w))) for

all c ∈ R2, where β is some weakly increasing continuous function with β(0) = 0.

To find such an equilibrium, consider the simplified version of the family of models

in the proof of Theorem 2, where X2 is removed. In the analysis below, when the

letter B appears, it will be clear from context if B denotes a bias or a letter grade
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taken by x. The group equilibria are still represented by Figure 3. Let (c∗, d∗) be the

unfair equilibrium where the w group equilibrium is associated with Eq1 and the b

group equilibrium is associated with the second intersection of WW and EE from the

left. Based on Figure 3 and the characterization of true positive rates under threshold

group policies in the proof of Theorem 1, we know the rational true positive rate of

the w group is 2
3
, and the rational true positive rate of the b group is less than 2

3
and

converges to 2
3

as γ converges to 1
6
.

Now, consider a bias B̂ with β̂ satisfying β̂(c∗(w) − c∗(b)) = EE(l1) − 1
3

and

β̂(c) = 0 for all c ≤ 0. (c∗, d∗) is also an unfair equilibrium supported by (µ∗RE, f
∗
B̂

).

Given c∗(w), as γ converges to 1
6
, (µ∗RE(w,A), µ∗RE(w,B), µ∗RE(w,C)) converges to(

1

2
·
(

1

2
· 1

3
+

1

2
· 0
)
,
1

2
·
(

1

2
· 1

3
+

1

2
· 1

3

)
,
1

2
·
(

1

2
· 1

3
+

1

2
· 2

3

))
=

(
1

12
,
1

6
,
1

4

)
,

and (f ∗
B̂

(w,A), f ∗
B̂

(w,B), f ∗
B̂

(w,C)) converges to( 2
3
· 1
3

2
3
· 1
3

+ 1
3
· 0
,

2
3
· 1
3

2
3
· 1
3

+ 1
3
· 1
3

,
2
3
· 1
3

2
3
· 1
3

+ 1
3
· 2
3

)
=

(
1,

2

3
,

1

2

)
.

Together, they imply that TP (w, d∗, µ∗RE, f
∗
B̂

) converges to

1
12
· 1 + 1

6
· 2
3

1
12
· 1 + 1

6
· 2
3

+ 1
4
· 1
2

=
14

23
<

2

3
.

Continuity of TP then implies there exist a γ sufficiently close to 1
6

and a bias B

with an β satisfying β(c∗(w) − c∗(b)) ∈ (0, EE(l1) − 1
3
) and β(c) = 0 for all c ≤ 0,

such that, under (µ∗RE, f
∗
B), d∗ equalizes true positive rates across groups. Moreover, β

satisfying β(c∗(w)−c∗(b)) ∈ (0, EE(l1)−1
3
) implies (c∗, d∗) is also an unfair equilibrium

supported by (µ∗RE, f
∗
B).
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Rosén, Åsa (1997) “An equilibrium search-matching model of discrimination,” Euro-

pean Economic Review, 41 (8), 1589–1613.

Segal, Meirav, Anne-Marie George, and Christos Dimitrakakis (2023) “Policy Fair-

ness and Unknown Bias Dynamics in Sequential Allocations,” in Proceedings of

37



the 3rd ACM Conference on Equity and Access in Algorithms, Mechanisms, and

Optimization, 1–10.

Shimao, Hajime, Warut Khern-am nuai, Karthik Natarajan Kannan, and Maxime C

Cohen (2023) “Addressing fairness in machine learning predictions: Strategic best-

response fair discriminant removed algorithm,” Available at SSRN 3389631.

Williams, Joshua and J Zico Kolter (2019) “Dynamic modeling and equilibria in fair

decision making,” arXiv preprint arXiv:1911.06837.

Yang, Crystal S and Will Dobbie (2020) “Equal protection under algorithms: A new

statistical and legal framework,” Mich. L. Rev., 119, 291.

Zemel, Rich, Yu Wu, Kevin Swersky, Toni Pitassi, and Cynthia Dwork (2013) “Learn-

ing fair representations,” in International conference on machine learning, 325–333,

PMLR.

38


	Introduction
	An Economic Model with Machine Learning
	Interventions
	Characterizing Equilibria

	Ideal Interventions
	Color-Blind Data

	Incorrect Distributions and Beliefs
	Any Distribution  and Biased Beliefs f

	Conclusion
	Appendix
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3
	Proof of Theorem 4


