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Abstract

Evaluations once solely within the domain of human experts (e.g., medical diagnosis

by doctors) can now also be carried out by machine learning algorithms. This raises

a new conceptual question: what is the difference between being evaluated by humans

and algorithms, and when should an individual prefer one form of evaluation over the

other? We propose a theoretical framework that formalizes one key distinction between

the two forms of evaluation: Machine learning algorithms are standardized, fixing a

common set of covariates by which to assess all individuals, while human evaluators

customize which covariates are acquired to each individual. Our framework defines and

analyzes the advantage of this customization—the value of context—in environments

with very high-dimensional data. We show that unless the agent has precise knowledge

about the joint distribution of covariates, the value of more covariates typically exceeds

the value of context.

1 Introduction

“A statistical formula may be highly successful in predicting whether or not a person will go to

a movie in the next week. But someone who knows that this person is laid up with a broken leg

will beat the formula. No formula can take into account the infinite range of such exceptional

events.” — Atul Gawande, Complications: A Surgeon’s Notes on an Imperfect Science

Predictions about people are increasingly automated using black-box algorithms. How

should individuals compare evaluation by algorithms (e.g., medical diagnosis by a machine
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learning algorithm) with more traditional evaluation by human experts (e.g., medical diag-

nosis by a doctor)?

One important distinction is that black-box algorithms are standardized, fixing a com-

mon set of inputs by which to assess all individuals. Unless the inputs to the black box are

exhaustive, additional information can (in some cases) substantially modify the interpreta-

tion of those inputs that have been acquired. For example, the context that a patient is

currently fasting may change the interpretations of “dizziness” and “electrolyte imbalance,”

and the context that a job applicant is an environmental activist may change how a prior

history of arrest is perceived. If these auxiliary characteristics are not specified as inputs in

the algorithm, the individual cannot supply them.

In contrast, individuals can often explain their unusual circumstances or characteristics

to a human evaluator through conversation. Thus, even if the human evaluator considers

fewer inputs than a black box algorithm does, these inputs may be better adapted to the

individual being evaluated. Longoni et al. (2019) report that the perception that humans

are better able to take into account an individual’s unique situation contributes significantly

to patient resistance to AI in healthcare. Our objective is to understand when, and to what

extent, this difference matters.

Our contribution in this paper is twofold. First, we propose a theoretical framework

that formalizes this distinction between human and black box evaluation. Second, we ex-

plain assumptions under which it will turn out that the the agent should prefer one form

of evaluation over the other. We see our paper as a complement to a growing empirical

literature that compares human versus black box evaluation. Here our goal is to conceptual-

ize the difference between human and black box evaluators, and to clarify properties of the

informational environment that are important for choosing between the two.

In our model, an agent is described by a binary covariate vector and a real-valued type

(e.g., the severity of the agent’s medical condition). The type can be written as a function

of the covariates, which we henceforth call the type function. Covariates are separated

into standard covariates (e.g., medical history, lab tests, imaging scans) and nonstandard

covariates (e.g., religious information, genetic data, wearable device data, and financial data).

Since in principle there is no limit on the number of nonstandard covariates that can describe

a person, our results consider asymptotics as the number of nonstandard covariates grows

to infinity.

We suppose that the agent may know how the standard covariates are correlated with

the type, but cannot distinguish between the predictive roles of the nonstandard covariates.

Formally, the agent has a belief over the type function, and we impose an exchangeability

assumption that says that the agent’s prior over these functions is unchanged by permuting
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the labels and values of the nonstandard covariates. If we interpret the covariates as signals

about the agent’s type, then uncertainty about the type function corresponds to uncertainty

about the signal structure (à la model uncertainty, e.g., Acemoglu et al. (2015) and Morris

and Yildiz (2019)).

The agent’s payoff is determined by his true type and an evaluation, which may be made

either by a human evaluator or a black-box evaluator. In either case the evaluation is a

conditional expectation of the agent’s type given the agent’s standard covariates and some

fraction of the agent’s nonstandard covariates. But the sets of nonstandard covariates that

are observed by the black box evaluator and the human evaluator differ in two ways.

First, the black box evaluator observes a larger fraction of the nonstandard covariates

than the human evaluator does. Second, the nonstandard covariates observed by the black

box evaluator are a pre-specified set of algorithmic inputs, which are fixed across individuals.

For example, a designer of a medical algorithm may specify a set of inputs including (among

others) blood type, BMI, and smoking status, and train a black box algorithm to learn the

mapping from those inputs into the diagnosis. We view the human evaluator as instead

uncovering nonstandard covariates during a conversation, where the specific path of ques-

tioning may vary across agents. Thus the human evaluator may end up learning about one

individual’s sleep schedule and another’s financial situation, where the final set of observed

covariates is a function of the agent’s covariate vector.

Rather than modeling these conversations directly, we consider an upper bound on the

agent’s payoff under human evaluation, where the covariates that the human observes are

the ones that maximize the agent’s payoffs (subject to the human’s capacity constraint).

We say that the agent prefers the black box if the agent’s expected payoffs are higher under

black box evaluation even compared to these best-case conversations with the human.

This comparison essentially reduces to the question of whether the agent prefers an

evaluator who observes a larger fraction of (non-targeted) nonstandard covariates about the

agent, or an evaluator who observes a smaller but targeted fraction of nonstandard covariates.

Towards this comparison, we first introduce a benchmark, which is the expected payoff

that the agent would receive if interacting with an evaluator who observes no nonstandard

covariates. We define the value of context to be the improvement in the agent’s payoffs under

best-case human evaluation, relative to this benchmark. The value of context thus quantifies

the extent to which the agent’s payoffs can possibly be improved when the evaluator observes

nonstandard covariates suited to that agent.

Our first main result says that under our symmetry assumption on the agent’s prior, the

expected value of context vanishes to zero as the number of covariates grows large. Thus

even though there may be realizations of the type function given which the value of context
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is large, in expectation it is not. The contrapositive of this result is that if the expected

value of context is high in some application, it must be that our symmetry assumption

does not hold, i.e., the agent has some ex-ante knowledge about the predictive roles of the

nonstandard covariates.

We prove this result by studying the sensitivity of the evaluator’s expectation to the

set of covariates that are revealed. Intuitively, a large value of context requires that the

evaluator’s beliefs move sharply after observing certain nonstandard covariates. We show

that the largest feasible change in the evaluator’s beliefs can be written as the maximum over

a set of random variables, each corresponding to the movement in the evaluator’s beliefs for

a given choice of covariates to reveal. The proof proceeds by first reducing this problem to

studying the maximum of a growing sequence of (appropriately constructed) i.i.d. variables,

and then applying a result from Chernozhukov et al. (2013) to show that this expected

maximum concentrates on its expectation as the number of covariates grows large. We

conclude by bounding this expectation and demonstrating that it vanishes.

We next use this result to compare the agent’s expected payoff under human and black

box evaluation. We show that when the agent prefers a more accurate evaluation—formally,

when the agent’s payoff is convex in the evaluation—the agent should prefer an algorithmic

evaluator with access to more covariates over a human evaluator to whom the agent can

provide context. And when the agent’s payoff is concave in the evaluation, the conclusion is

reversed.

We subsequently strengthen our main results in two ways: First, we show that not

only does the expected value of context vanish for each agent, but in fact the expected

maximum value of context across agents also vanishes. Thus, the expected value of context

is eventually small for everyone in the population. Second, we show that our main results

extend when the agent and evaluator interact in a disclosure game, where the agent chooses

which nonstandard covariates to reveal, and the evaluator makes inferences about the agent

based on which covariates are revealed (given the agent’s equilibrium reporting strategy).

We conclude by examining the role of the symmetry assumption on the agent’s prior, and

the extent to which our results depend upon it. First, we study two variations of our main

model, in which the symmetry assumption is relaxed: In the first, we suppose that there

is a “low-dimensional” set of covariates that relevant for predicting the agent’s type; in the

second, we suppose that the agent knows ex-ante the predictive role of certain nonstandard

covariates. In both of these settings, our main results extend partially but can also fail: For

example, if the set of relevant covariates is sufficiently small that they can be fully disclosed

to the evaluator, then the expected value of context typically will not vanish. Finally we show

that precise symmetry is not important for our result—it is enough if the informativeness
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of each individual set of covariates vanishes as the total number of covariates grows large.

Together with our main results, these extensions clarify different categories of informational

assumptions under which the expected value of context does or does not turn out to be high.

Our model is not meant to be a complete description of the differences between human

and black box evaluation. For example, we have abstracted away from human and algo-

rithmic bias (Kleinberg et al., 2017; Gillis et al., 2021), factors such as empathy, and the

possibility that the human evaluator has access to information that is not available to the al-

gorithm (e.g., for privacy protection as in Agarwal et al. (2023)). We also suppose that both

evaluators form correct conditional expectations, thus abstracting away from the possibility

of algorithmic overfitting and of bounded human rationality (e.g., as considered in Spiegler

(2020) and Haghtalab et al. (2021)).1 We leave extensions of our model that include these

other differences to future work.

1.1 Related Literature

A large literature compares the accuracy of human evaluation with AI evaluation, finding

that machine learning algorithms outperform experts in problems including medical diag-

nosis (Rajpurkar et al., 2017; Jung et al., 2017; Agarwal et al., 2023), prediction of pretrial

misconduct (Kleinberg et al., 2017; Angelova et al., 2022), and prediction of worker produc-

tivity (Chalfin et al., 2016). These results have led some to predict or call for the replacement

of human evaluation with algorithmic evaluation (Obermeyer and Emanuel, 2016). But hu-

man evaluation and/or human oversight of algorithmic predictions remains the norm, in

part because of user distrust of algorithmic predictions (Jussupow and Heinzl, 2020; Bastani

et al., 2022; Lai et al., 2023).

In principle, human decision-making guided by algorithmic predictions should be superior

to either human or algorithmic prediction alone. In practice the evidence is more mixed, with

the provision of algorithmic recommendations sometimes leading human decision-makers to

less accurate predictions (Hoffman et al., 2017; Angelova et al., 2022; Agarwal et al., 2023).2

The question of how to aggregate human and machine evaluations is thus important but

subtle, and depends on (among other things) whether human decision-makers understand

the correlation between their information and that of the algorithm (McLaughlin and Spiess,

2022; Gillis et al., 2021; Agarwal et al., 2023). We abstract away from these complexities,

1The problem of overfitting, while practically important, is a function of how the algorithm is trained. We

are interested here in intrinsic differences between the qualitative nature of human and black box evaluation,

which are difficult to resolve by training the algorithm differently.
2Other papers instead consider algorithmic prediction tools that take human evaluation as an input, with

greater success towards improving accuracy (e.g., Raghu et al. (2019)).
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focusing instead on (one aspect of) the more basic question of why human oversight is even

necessary to begin with. We provide a tractable way of formalizing the advantage of human

evaluation, and quantify the size of this advantage.

Our formal results are related to the literature on asymptotic learning and agreement

across Bayesian agents (Blackwell and Dubins, 1962; Cripps et al., 2008; Acemoglu et al.,

2015). Specifically, one can view our main result as bounding (in expectation) the differences

in beliefs across Bayesian agents who are given different information. But the asymptotics

that we look at are of a different nature from those studied previously. Among other distinc-

tions, we consider asymptotics with respect to a sequence of varying information structures,

rather than studying asymptotic beliefs as the total amount of information accumulates.

The agent in our framework has model uncertainty (Acemoglu et al., 2015; Morris and

Yildiz, 2019), and the central Assumption 1 constrains the agent’s model uncertainty to take

a particular (and new) form motivated by the applications we have in mind. The presence

of model uncertainty distinguishes our problem from the related and very interesting work

of Di Tillio et al. (2021), which compares the informativeness of an unbiased signal to the

informativeness of a “selected” signal whose realization is the maximum realization across

i.i.d. unbiased signals. In Di Tillio et al. (2021), the signal structures that are being compared

are deterministic and known, while in ours they are random and compared in expectation.3

Finally, our work builds on the literature on persuasion via strategic information disclo-

sure (e.g., Glazer and Rubinstein (2004), Kamenica and Gentzkow (2011)). The model that

we study—in which the sender has private information about his type vector, and selectively

chooses which elements to disclose to a naive receiver—is closest to models of disclosure of

hard information (Dye, 1985; Grossman and Hart, 1980), in particular Milgrom (1981).4 Dif-

ferent from this literature, our sender has uncertainty about how his reports are interpreted,

and our focus is not on examining which incentive-compatible reporting strategy is optimal.

(Indeed, in our main model we do not require choice of an incentive-compatible reporting

strategy, since the receiver updates to the sender’s disclosure as if it were exogenous infor-

mation. This is primarily for convenience—we show in Section 4.2 that our results extend in

a disclosure game.) Our focus is instead on asymptotic limits of belief manipulability as the

number of components in the type vector grows large, which is special to our motivation.

Our model also has important differences from the other main strands of the persuasion

literature. Unlike models of cheap talk (Crawford and Sobel, 1982), our agent chooses

3This distinction is important: If, similar to Di Tillio et al. (2021), we modeled covariates as IID signals

about the agent’s type, then the expected value of context would not vanish as the number of covariates

grew large. See Section 3.2 for more detail.
4A similar model of information is considered in Glazer and Rubinstein (2004) and Antic and Chakraborty

(2023).
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between messages whose meanings are fixed exogenously (through the realization of the

joint distribution relating covariates to the type) rather than in an equilibrium. Unlike

the literature on Bayesian persuasion (Kamenica and Gentzkow (2011)), our sender chooses

which signal realization to share ex-post from a finite set of signal realizations, rather than

committing to a flexibly chosen information structure ex-ante.5 Indeed, our model gives the

sender substantial power to influence the receiver’s beliefs relative to this previous literature.

It is perhaps surprising, then, that despite the lack of constraints imposed on the sender, we

find that the sender is extremely limited in his influence. In our model, this emerges because

the sender has a limited choice from a set of information structures, whose informativeness

(we show) is vanishing in the total number of covariates.6

2 Model

2.1 Setup

Agents are each described by a binary covariate vector xn = (x1, x2, . . . , xn) and a type

y ∈ [−y, y] (where 0 ≤ y < ∞), which are structurally related by the function

y = f(x1, . . . , xn).

We refer to f henceforth as the type function. The distribution over covariate vectors is

uniform in the population.7

We refer to the covariates indexed to S = {1, . . . , s} as standard covariates and the

covariates indexed to N = {s+1, . . . , n} as nonstandard covariates. Since in principle there

is no limit on the number of covariates that can describe a person, we view the case of infinite

covariates as the relevant one, and our results focus on asymptotics as n grows large.8

Example 1 (Job Interview). Standard covariates describing a job applicant may include their

work history, education level, college GPA, and the coding languages they know. Nonstan-

dard covariates may include their social media activity (e.g., number of followers, posts,

5Thus, for example, Bayes plausibility is not satisfied in our setting—the sender’s expectation of the

receiver’s expectation of the state (following disclosure) is generally not the prior expectation of the state.
6The covariates in our model play a similar role to attributes, although the literature on attributes has

focused on choice of which attributes to learn about (e.g., Klabjan et al. (2014) and Liang et al. (2022)),

rather than which attributes to disclose for the purpose of persuasion. An exception is Bardhi (2023), who

studies a principal-agent problem in which a principal selectively samples attributes to influence an agent

decision.
7All of our results extend for arbitrary finite-valued covariates.
8We consider a generalization of our model in Section 5.1 in which a “low-dimensional” subset of these

covariates are sufficient for predicting the agent’s type.
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likes), wearable device data (e.g., sleep patterns, physical activity level), and hobbies (e.g.,

whether they are active readers, whether they enjoy extreme sports).

Example 2 (Medical Prediction). Standard covariates describing a patient may include symp-

toms, prior diagnoses, family medical history, lab tests and imaging results. Nonstandard

covariates may include the patient’s religious practices, genetic data, wearable device data,

and financial data.9

An evaluation of the agent, ŷ ∈ [−y, y], is described in the following section. The agent

has a Lipschitz continuous utility function u : [−y, y]2 → R, which maps the evaluation ŷ

and the agent’s true type y into a payoff.

Example 3 (Higher Evaluations are Better). The agent’s payoff is

u(ŷ, y) = ϕ(ŷ)

for some increasing ϕ. This corresponds, for example, to an agent receiving a desired outcome

(e.g., a loan or a promotion) with probability increasing in the evaluation.

Example 4 (More Accurate Evaluations are Better). The agent’s payoff is

u(ŷ, y) = −(ŷ − y)2.

This corresponds to harms that are decreasing in the accuracy of the evaluation, e.g., medical

prediction problems where more accurate evaluations are desired.

2.2 Evaluation of the agent

There are two evaluators: a black box evaluator, henceforth Black Box (it), and a human

evaluator, henceforth Human (she). Both evaluators form an evaluation as an expectation

of the agent’s type y given observed covariates, so we will introduce notation for these con-

ditional expectations. For any covariate vector xn = (x1, . . . , xn) and subset of nonstandard

covariates A ⊆ N , let

CA(xn) = {x̃ ∈ {0, 1}n : x̃i = xi ∀i ∈ S ∪ A} (1)

be the set of all covariate vectors that agree with xn on the covariates with indices in S ∪A.

Further define

ŷfxn
(A) =

1

|CA(xn)|
∑

x∈CA(xn)

f(x) (2)

9See Acosta et al. (2022) for further examples of nonstandard patient covariates that may be predictive,

but which are not currently used by clinicians for medical evaluations.
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to be the conditional expectation of the agent’s type given their standard covariates and

their nonstandard covariates with indices in A. We use

U f
xn
(A) = u

(
ŷfxn

(A), y
)

to denote the agent’s payoff given this evaluation.

Both the human and black box evaluation take the form (2), but the observed sets

of nonstandard covariates A are different across the evaluators. Black Box observes the

nonstandard covariates in the set B = {s+1, . . . , s+ bn} where bn = ⌊αb ·n⌋.10 Importantly,

this set is held fixed across agents. So an individual with covariate vector xn receives the

evaluation ŷfxn
(B) and payoff U f

xn
(B) when evaluated by the Black Box.11

Human differs from Black Box in two ways. First, Human has a capacity of hn = ⌊αh ·n⌋
nonstandard covariates per agent, where αh < αb (i.e., Human cannot process as many

inputs as Black Box). Second, Human does not pre-specify which nonstandard covariates to

observe, but rather learns these through conversation, and thus potentially observes different

nonstandard covariates for each agent. For example, a doctor (evaluator) may pose different

questions to different patients (agents) depending on their answers to previous questions.

Or a job candidate (agent) might choose to disclose to an interviewer (evaluator) certain

nonstandard covariates that put him in a good light.

Rather than modeling the complex process of a conversation, we study the quantity

max
H⊆N ,|H|≤αh·n

U f
xn
(H) (3)

which is the agent’s payoff when the posterior expectation about his type is based on those

αh · n or fewer covariates that are best for him.

We can interpret this quantity as an upper bound for the agent’s payoffs under certain

assumptions. First, if the evaluator selects which covariates to observe, then (3) is an upper

bound on the agent’s possible payoffs across all possible evaluator selection rules. Second, if

covariates are disclosed by the agent, but the evaluator updates to the disclosed covariates

as if they had been chosen exogenously, then again (3) represents an upper bound on the

agent’s possible payoffs.12

10One can instead assume that these nonstandard covariates are selected uniformly at random. This will

not affect the results of this paper.
11It is not important for our results that B is common across individuals; what we require is that any

randomness in B is independent of the agent’s covariates and type. For example, if the set B were drawn

uniformly at random for each agent, our results would hold.
12Jin et al. (2021) and Farina et al. (2023) report that the beliefs of experimental subjects falls somewhere

in between this naive benchmark and equilibrium beliefs, since subjects do not completely account for the

strategic nature of disclosure.
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If however the covariates are disclosed by the agent in a disclosure game, and the evaluator

accounts for the strategic nature of this disclosure, then whether (3) represents an upper

bound will depend on what we assume that the agent knows at the time of disclosure.13 We

show in Section 4.2 that if the agent knows his entire covariate vector, then (3) need not

upper bound every agent’s payoffs. Nevertheless, we present a different quantity that does

upper bound the maximum payoff that any agent can obtain in this disclosure game, and

show that our main results extend when we replace (3) with this quantity. To streamline the

exposition we focus on the prior two interpretations (in which the human evaluator either

selects the covariates herself or updates to the agent’s disclosures naively), and postpone the

discussion of disclosure games to Section 4.2.

2.3 Value of context

A key input towards understanding the comparison between Human and Black Box is quan-

tifying the extent to which individualized context improves the agent’s payoffs.

Definition 1 (Value of Context). The value of context for an agent with covariate vector

xn and type y = f(xn) is

v(f,xn) = max
H⊆N ,|H|≤αhn

U f
xn
(H)− U f

xn
(∅)

i.e., the best possible improvement in the agent’s utility when the evaluator additionally

observes up to αh · n covariates for the agent.

In general, the value of context depends on the type function f as well as on the agent’s

own covariate vector xn.
14

Example 5 (High Value of Context). Let u(ŷ, y) = ŷ, i.e., the agent’s payoff is the evalua-

tion. Suppose x1 is a standard covariate (observed no matter what), while x2, . . . , x100 are

nonstandard covariates. The type y is related to these covariates via the type function

y = f(x1, . . . , x100) =

{
c if x1 = x2

−c if x1 ̸= x2

For an agent who can reveal (up to) one covariate and whose covariate vector is (1, 1, . . . , 1),

the value of context is c, since revealing x2 = 1 moves the expectation of his type from 0

13This is roughly because the agent can potentially “sneak in” information about the other covariates via

the covariates that are revealed.
14The value of context given a specific function f is spiritually related to the communication complexity

of f (Kushilevitz and Nisan, 1996).
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to c. This example corresponds to settings in which some nonstandard covariate substan-

tially moderates the interpretation of a standard covariate. For such type functions f , it is

important for the evaluator to observe the right nonstandard covariates, and so the value of

context can be large.

Example 6 (Low Value of Context). Suppose the type function in the previous example is

instead y = f(x1) = x1 (leaving all other details of the example unchanged). Then the value

of context is 0 for every agent. In this example, nonstandard covariates are irrelevant for

predicting the type, so there is no value to the evaluator discovering the “right” covariates.

We are interested in settings where the agent does not know the type function, and

hence cannot compute the value of context. We give the agent uncertainty about f and

characterize the agent’s expected value of context and expected payoffs, integrating over the

agent’s belief about f .15

We do this for two reasons. First, in many applications it is not realistic to suppose that

the agent knows f . For example, a patient who anticipates that a diagnosis will be based on

an image scan of his kidney may recognize that there are properties of the image that are

indicative of whether he has the condition or not, but likely does not know what the relevant

properties are, or how they determine the diagnosis.16

Second, it turns out that the case with uncertainty about f yields a more elegant analysis.

Although the value of context can be computed for specific f , it typically depends on details

of that function, as well as on the agent’s own covariate vector. In contrast, under a condition

on the prior belief (defined in the following section) it is possible to draw strong detail-free

conclusions.

2.4 Model Uncertainty

Our leading assumption is that the agent may know how standard covariates impact the

type, but has no ex-ante knowledge about the different roles of the nonstandard covariates.

Formally, we impose the following.

Definition 2 (Finite Exchangeability). The sequence of random variables W1,W2, . . . ,Wn

is finitely exchangeable if for every permutation π : {1, . . . , n} → {1, . . . , n}, the sequences

(W1, . . . ,Wn) and (Wπ(1), . . . ,Wπ(n)) have the same joint distribution.

15If we interpret the covariates in our model as signals about the type, then the function relating covariates

to type corresponds to the signal structure.
16In the case of a job interview, the function f may reflect particular subjective preferences of the firm,

which are initially unknown to the agent.
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Definition 3 (Infinite Exchangeability). The sequence of random variables W1,W2, . . .

is infinitely exchangeable if for every n ∈ N and set of indices i1, . . . , in, the sequence

(Wi1 , . . . ,Win) is finitely exchangeable.

In what follows, for each covariate vector x we define the random variable Yx = f(x)

(where the randomness is through the type function f).

Assumption 1. Fix any realization of the standard covariates xS = (x1, . . . , xs) ∈ {0, 1}s.
There is an infinitely exchangeable sequence of [−y, y]-valued random variables (Ỹ1, Ỹ2, . . . )

such that for every n ∈ N, the sequence

(YxS ,x−S : x−S ∈ {0, 1}n−s)

has the same distribution as (Ỹ1, . . . , Ỹ2n−s).

The sequence (YxS ,x−S : x−S ∈ {0, 1}n−s) includes all types associated with the covariate

vectors that “complete” xS by filling in values for the nonstandard covariates. Assumption

1 says that the joint distribution of these types is ex-ante invariant to permutations of the

covariate vectors within the set {(xS ,x−S) : x−S ∈ {0, 1}n−s}. An agent whose prior is given

by this joint distribution is thus agnostic about how the labels and values of the nonstandard

covariates impact the type.

Besides imposing ex-ante symmetry of the nonstandard covariates, the main content

of the assumption is that the unconditional distribution of y in the population of agents

is constant across n.17 If we interpret each covariate as a bit of information, then under

Assumption 1, the number of covariates n can be interpreted as moderating the richness of

the informational environment and the potential complexity of the mapping f , but not as a

measure of the quantity of information.18 In other words, as n grows large, the agent has a

more extensive set of words to describe a fixed unknown y.

Some simple examples of priors satisfying this assumption are given below. These ex-

amples clarify that symmetry of the nonstandard covariates is imposed only on the agent’s

prior belief, and not on the realized f .19

Example 7. Let y ∈ {0, 1}, in which case the space of possible functions f : X → Y can be

identified with {0, 1}2n . Suppose that for each n, the agent has a uniform prior on the set

of all functions {0, 1}2n . Then Assumption 1 is satisfied.
17This contrasts, for example, with a model in which x1, x2, . . . were drawn i.i.d. from a type-dependent

distribution Fy. The total quantity of information about y would then be increasing in the number of

covariates. In our model it is not.
18As we show in Appendix A.1, it is possible to extend our framework so that the type is random conditional

on the covariate vector xn; what is crucial is that the size of residual uncertainty does not depend on n.
19That is, we do not restrict the agent’s prior belief to have support on functions f where f(x1, . . . , xn) =

f(xπ(1), . . . , xπ(n)) for permutations π : {1, . . . , n} → {1, . . . , n}.
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Example 8. Suppose there is a distribution F on [−y, y] such that for each n,(
f(xS ,x−S) : x−S ∈ {0, 1}n−s

)
∼i.i.d. F.

Then Assumption 1 is satisfied.

Assumption 1 describes settings in which many different structural relationships between

the covariates and the type are plausible (including both ones where the value of context

will turn out to be high and low), but ex-ante those relationships are not known. It thus

rules out prior knowledge about asymmetries across covariates or covariate values, such as

in the following examples.

Example 9 (Only One Covariate is Relevant). The type is equal to the value of nonstandard

covariate xI , where the index I is drawn uniformly at random from N .

Example 10 (Higher Values are Better). The value of f(xn) is (independently) drawn from

a uniform distribution on [1, 2] if xs+1 = 1, and (independently) drawn from a uniform

distribution on [0, 1] if xs+1 = 0.

We view Assumption 1 as a useful conceptual benchmark, and later explore how far our

main results generalize under various relaxations of this assumption (Section 5). While our

assumption of no prior knowledge about the role of nonstandard covariates is strong, by

definition the nonstandard covariates are precisely the covariates for which there is little

historical data. For example, while it may be well understood that a higher GPA correlates

with higher on-the-job ability, a large number of social media followers could potentially be

a positive or negative signal. Indeed, if it were understood that some nonstandard covariate

was very predictive—for example, that having many social media followers was a strong

indication of on-the-job success—we would expect this nonstandard covariate to become a

standard covariate, and thus queried both by the human and black box evaluator.

We now define the expected value of context from the point of view of an agent who

knows his covariate vector xn but does not know the function f (and hence also does not

know his type y = f(xn)). As we show in Section 4.1, the assumption that the agent knows

xn is immaterial for the results.

Definition 4 (Expected Value of Context). For every n ∈ Z+ and covariate vector xn ∈
{0, 1}n, the expected value of context is

V (n,xn) = E [v(f,xn)] .

This quantity tells us the extent to which context improves the agent’s payoffs in expectation.

We similarly compare evaluators based on the expected payoff that the agent receives.

13



Definition 5. Consider any agent with covariate vector xn. If

E
[

max
H⊆N ,|H|≤αh·n

U f
xn
(H)

]
< E

[
U f
xn
(B)
]

(4)

then say that the agent prefers the black box evaluator. And if

E
[

min
H⊆N ,|H|≤αh·n

U f
xn
(H)

]
> E

[
U f
xn
(B)
]

(5)

then say that the agent prefers the human evaluator.

These definitions correspond to a thought experiment in which (for example) a patient

has a choice between being seen by a doctor or assessed by an algorithm. If the patient

chooses the algorithm, his standard covariates and αb · n arbitrarily chosen nonstandard

covariates will be sent to the algorithm. If the patient chooses the doctor, he will engage in a

conversation with the doctor, where his standard covariates and αh · n selected nonstandard

covariates will be revealed. Which should the patient choose?

The first part of Definition 5 compares the agent’s expected payoff under black box

evaluation with the best-case expected payoff under human evaluation, namely when the

human evaluator observes those (up to) αh · n covariates that maximize the agent’s payoffs.

If the agent’s expected payoff is nevertheless higher under black box evaluation even after

biasing the agent towards the human in this way, we say that the agent prefers to be evaluated

by the black box. The second part of the definition compares the agent’s expected payoff under

black box evaluation with the worst-case expected payoff under human evaluation, namely

when the human evaluator observes those (up to) αh ·n covariates that minimize the agent’s

payoffs. If the agent’s expected payoff is lower under black box evaluation even after biasing

the agent against the human in this way, then we say that the agent prefers to be evaluated

by the human.20

These are clearly very conservative criteria for what it means to prefer the human or

the black box. In practice, we would expect that the set of revealed covariates H to be

intermediate to the two cases considered in Definition 5, i.e., that H neither maximizes nor

minimizes the agent’s payoffs.21 But if we can conclude either that the agent prefers the black

box evaluator or the human evaluator according to Definition 5, then the same conclusion

would hold for these more realistic models of H.

20In Section 4.2 we further discuss the extent to which these interpretations are valid when the evaluator

also updates her beliefs to the selection of covariates.
21Angelova et al. (2022) provide evidence that some judges condition on irrelevant defendant covariates

when predicting misconduct rates.
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3 Main Results

Section 3.1 characterizes the expected value of context in a simple example. Section 3.2

presents our first main result, which says that the expected value of context vanishes to

zero as the number of covariates grows large. Section 3.3 compares human and black box

evaluators.

3.1 Example

Suppose there are two covariates x1 and x2, both nonstandard. For each covariate vector

x ∈ {0, 1}2, define the random variable Yx = f(x), where the randomness is in the realization

of f .

X1 X2 Yx

0 0 Y00

0 1 Y01

1 0 Y10

1 1 Y11

Table 1: The four possible covariate vectors and their associated types.

The agent has utility function u(ŷ, y) = ŷ and covariate vector (1, 1). Suppose Human

observes up to one nonstandard covariate; then, there are three possibilities for what the

evaluator observes. If Human observes x1 = 1, her evaluation is

Z1 ≡
Y10 + Y11

2
.

If Human observes x2 = 1, her evaluation is

Z2 ≡
Y01 + Y11

2
.

And if Human observes no nonstandard covariates, then her evaluation remains the uncon-

ditional average

Z∅ ≡ Y00 + Y01 + Y10 + Y11

4
.

So the expected value of context for this agent is

E [max {Z∅, Z1, Z2} − Z∅] . (6)

Suppose n grows large with up to hn = ⌊n
2
⌋ covariates observed. There are two opposing

forces affecting the value of context. First, when n is larger there are more distinct sets
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of covariates that can be revealed to Human, and hence the max in (6) is taken over a

larger number of posterior expectations. This increases the value of context. On the other

hand, each Zk is a sample average, and the number of elements in this sample average also

grows in n.22 By the law of large numbers, each Zk thus concentrates on its expectation

(which is common across k) as n grows large, so the difference between any Zk and Zk′ grows

small. What we have to determine is whether the growth rate in the number of subsets of

nonstandard covariates (of size ≤ hn) is sufficiently large such that the maximum difference

in evaluations across these sets is nevertheless asymptotically bounded away from zero. The

answer turns out to be no.

3.2 The Expected Value of Context

Our main result says that for every agent, the expected value of context vanishes as n grows

large.

Theorem 1. Suppose Assumption 1 holds. Then for every covariate vector x ∈ {0, 1}∞,

V (n,xn) = O

( √
n

2(1−αh)n

)
(7)

Hence for any αh < 1, the expected value of context vanishes to zero as n grows large, i.e.,

lim
n→∞

V (n,xn) = 0.

Thus although the value of context may be substantial for certain type functions (such

as in Example 5), it does not matter on average across these functions when the agent’s

prior satisfies Assumption 1. This also implies that provision of context does not “typically”

matter; that is, the probability that the agent gains substantially from targeted information

acquisition is small.

The core of the proof of Theorem 1 is an argument that the extent to which context

can change the evaluator’s posterior expectation vanishes in the number of covariates. We

outline that argument here. For each n, there are Kn =
∑⌊αhn⌋

j=0

(
n−s
j

)
sets of αhn (or fewer)

nonstandard covariates that can be disclosed. We can enumerate and index these sets to

k = 1, . . . , Kn. Each set k induces a posterior expectation Zk which is a sample average of

random variables Yx ≡ f(x). The expected value of context (for this utility function) is

E
[

max
1≤k≤Kn

Zk

]
− E[Z∅]

22For example, observing X1 = 1 with n = 2 gives the evaluator a posterior expectation of (Y10 + Y11)/2,

while the same observation gives the evaluator a posterior expectation of (Y100 + Y101 + Y110 + Y111)/2 if

n = 3.
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where Z∅ is Human’s posterior expectation given observation of standard covariates only.

NormalizingE[Z∅] = 0, it remains to study properties of the first-order statistic max1≤k≤Kn Zk.

There are two challenges to analyzing this quantity. First, the correlation structure of

Z1, . . . , ZKn can be complex: The variables Zk are neither independent (because the same

posterior expectation Yx can appear as an element in different sample averages Zk, Zk′) nor

identically distributed (because the sample averages are of different sizes depending on how

many nonstandard covariates are revealed). The second challenge is that the length of the

sequence (Z1, . . . , ZKn) grows exponentially in n. Thus even though each term within the

maximum eventually converges to a normally distributed random variable (with shrinking

variance), the errors of each term may in principle accumulate in a way that the maximum

grows large.

Our approach is to first construct new i.i.d. variables Ziid
k , with the property that

E [max{Z1, . . . , ZKn}] ≤ E
[
max{Ziid

1 , . . . , Ziid
Kn

}
]

(8)

Applying a result from Chernozhukov et al. (2013), we show that max1≤k≤Kn Z
iid
k (properly

normalized) converges to max1≤k≤Kn Z
Normal
k in distribution, where (due to properties of

our problem) ZNormal
k ∼iid N

(
0, 1

2n(1−αh)−s

)
. Having reduced the analysis to studying the

expected maximum of i.i.d. Gaussian variables, classic bounds apply to show that this

quantity is no more than
1

2n(1−αh)−s

√
log(Kn). (9)

This display quantifies the importance of each of the two forces discussed in Section 3.1.

First, as n grows larger, the number of posterior expectations Kn =
∑⌊αhn⌋

j=0

(
n−s
j

)
≤ 2n−s

grows exponentially in n, increasing the expected value of context. But second, as n grows

larger, each Zk concentrates on its expectation, where its variance, 1
2n(1−αh)−s , decreases

exponentially in n. What the bound in display (9) tells us is that the exponential growth in

the number of variables is eventually dominated by the exponential reduction in the variance

of each variable, yielding the result.

This proof sketch also clarifies the role of Assumption 1. As we show in Section 5.3,

the statement of the theorem extends so long as the evaluator’s posterior expectation Zk

concentrates on its expectation sufficiently quickly as n grows large. Roughly speaking, this

means that the informativeness of any specific set of covariates is decreasing in the total

number of covariates. Thus neither the precise symmetry imposed by Assumption 1, nor

even the use of Bayesian updating, is critical for a result like Theorem 1 to hold.

On the other hand, the conclusion of Theorem 1 can fail if the agent has substantial prior

knowledge about how y is related to the covariates.
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Example 11. Let s = 0, so that there are no standard covariates. Suppose that for each n,

y = f(x1, . . . , xn) =
1

n

n∑
i=1

xi · U

where U is a uniform random variable on [0, 1]. This model violates Assumption 1, since it

is known that higher realizations of the agent’s covariates are good news about the agent’s

type. The conclusion of Theorem 1 also does not hold: For any n, the evaluator’s prior

expectation is E[f(xn)] = 1/4. But if ⌊α · n⌋ covariates are revealed to be 1, the evaluator’s

posterior expectation is equal to 1
4
+ 1

4
⌊αn⌋
n

. So the expected value of context for an agent

with xn = (1, ..., 1) is asymptotically bounded away from zero.

In Section 5 we explore several relaxations of Assumption 1: The first of these relaxations

supposes that there is a “low-dimensional” set of covariates that predictive of the agent’s

type, while the remaining covariates are irrelevant. The second relaxation supposes that

there is a subset of nonstandard covariates whose effects are known. We formalize these

extensions of our main model and examine the extent to which Theorem 1 extends.

3.3 Human versus Black Box

We now turn to the question of when the agent should prefer the human evaluator and when

the agent should prefer the black box evaluator.

Assumption 2. The agent’s expected utility can be written as E[ϕ(ŷ)] for some twice con-

tinuously differentiable function ϕ.23

Theorem 2. Suppose Assumptions 1 and 2 hold.

(a) If ϕ is strictly convex, then there exists N sufficiently large that the agent prefers the

black box evaluator for all n ≥ N .

(b) If ϕ is strictly concave, then there exists N sufficiently large that the agent prefers the

human evaluator for all n ≥ N .

Consider first the case of convex ϕ (Part (a)), corresponding to a preference for more

accurate evaluations.24 Such an agent prefers for the evaluation to be based on more infor-

23Restricting to utility functions that depend on a posterior mean is a common assumption in the literature

on information design, see e.g., Kamenica and Gentzkow (2011), Frankel (2014) and Dworczak and Martini

(2019).
24Consider any two sets of covariates A ⊂ A′ and let ŷA, ŷA′ be the corresponding posterior expectations.

The distribution of ŷA′ (i.e., the posterior expectation that conditions on more information) is a mean-

preserving spread of the distribution of ŷA. When ϕ is convex, the former leads to a higher expected utility.

Such an agent “prefers more accurate evaluations” in the sense that giving the evaluator better information

(in the standard Blackwell sense) leads to an improvement in the agent’s expected utility.
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mation (advantaging Black Box), but also prefers for the evaluation to be based on more

relevant covariates (advantaging Human). We use the rate of convergence demonstrated in

Theorem 1 (see (7)) to show that what eventually dominates is how many covariates the

evaluators observe, not how they are selected; for an agent who prefers accuracy, this favors

the Black Box.

Part (b) of Theorem 2 says that if instead ϕ is concave (corresponding to an agent who

prefers inaccurate evaluations) then the agent should eventually prefer the human evalua-

tor. We conclude this section with example decision problems that induce utility functions

satisfying the conditions of either part of the theorem.

Example 12. Suppose the agent receives a dollar wage equal to the evaluation, and is risk

averse in money. Then his utility function is u(ŷ, y) = ϕ(ŷ) for some increasing and concave

ϕ, and Part (a) of Theorem 2 says that the agent prefers to be evaluated by the human.

Example 13. Suppose the agent’s type is y ∈ {0, 1}, and the evaluator chooses an action

a based on the observed covariates. The evaluator and agent share the utility function

−E[(a− y)2]. The evaluator’s optimal action is a = ŷ, and the agent’s expected payoff given

this action is E [ŷ2 − ŷ]. So Part (b) of Theorem 2 says that the agent eventually prefers

evaluation by the black box evaluator.25

4 Extensions

We now show that we are able to strengthen our main results (Theorems 1 and 2) in the

following ways. In Section 4.1, we show that not only does the expected value of context

vanish for each individual agent, but in fact the expected maximum value of context across

agents also vanishes. That is, in expectation the most that context can benefit any agent

in the population is small. From this, it is immediate that our main results also extend in a

generalization of our model in which the agent has uncertainty over his covariate vector. In

Section 4.2, we show that our main results extend when the agent and evaluator interact in

a disclosure game, wherein the evaluator updates his beliefs to the agent’s strategic choice

of what to disclose.

25Although the conditions of Theorem 2 are no longer met when y is not binary, we show in Appendix

A.6 that the conclusion of Part (b) of Theorem 2 generalizes for arbitrary y given the mean-squared error

payoff function described in this example.
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4.1 Max value of context across agents

So far we have studied the the expected value of context for a single agent. If we instead

ask whether the firm should use human or algorithmic evaluation—for example, whether a

hospital should automate diagnoses or rely on doctor evaluations—various other statistics

may also be relevant. For example, it may matter whether the value of context is large

for any agent in the population (e.g., because a lawsuit regarding algorithmic error may be

brought on the basis of harm to any specific individual (Jha, 2020)). We thus study the

expected maximum value of context, as defined below.

Definition 6. For any n ∈ Z+, the expected maximum value of context is

V max(n) = E
[

max
xn∈{0,1}n

v(f,xn)

]
.

The following corollary says that this quantity also vanishes as n grows large.

Corollary 1. Suppose Assumption 1 holds. Then the expected maximum value of context

vanishes to zero as n grows large, i.e., limn→∞ V
max

(n) = 0.

Thus, the expected value of context vanishes uniformly across agents in the population. This

result immediately implies that Theorems 1 and 2 extend in any generalization of our model

in which the agent has uncertainty not only over f but also over his own covariate vector

xn.

4.2 Strategic Disclosure

So far we’ve remained agnostic as to whether the agent or evaluator chooses which non-

standard covariates are revealed, assuming that in either case the evaluator updates as if

the covariates were revealed exogenously. We now consider a more traditional disclosure

game, in which the agent chooses which nonstandard covariates are revealed, and the human

evaluator updates her beliefs about the agent’s type in part based on which covariates are

chosen.

For any fixed function f , call the following an f -context disclosure game: There are two

players, the agent and the evaluator. The function f is common knowledge.26 The set of

possible disclosures D is the set of all pairs (H, (xi)i∈H) consisting of a set of nonstandard

covariates H ⊆ N and values for those covariates. A disclosure d = (H, (x′
i)i∈H) is feasible

26We do not interpret this assumption literally. At the other extreme where f is unknown to the agent,

there is no informational content in which covariates the agent chooses to reveal, as they are all symmetric

from the agent’s point of view.
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for an agent with covariate vector (x1, . . . , xn) if the disclosed covariate values are truthful,

i.e., xi = x′
i for every i ∈ H.

The agent chooses a disclosure strategy, which is a map

σ : {0, 1}n → D

from covariate vectors to feasible disclosures. The agent then privately observes his covariate

vector xn and discloses σ(xn). The evaluator observes this disclosure and chooses an action

ŷ. That is, the evaluator’s strategy is a function σE : D → [−y, y]. The evaluator’s payoff is

−(ŷ − y)2 and the agent’s payoff is some function u(ŷ).

In this section we focus on pure strategy Perfect Bayesian Nash equilibria (PBE) of this

game, henceforth simply equilibria. (A similar result holds for mixed strategy equilibria,

which is demonstrated in the appendix.)

Definition 7. Let vD(f,xn) denote the highest payoff that an agent with covariate vector

xn receives in any pure-strategy equilibrium of the f -context disclosure game. The expected

maximum value of context disclosure is

V D(n) = E
[

max
xn∈{0,1}n

vD(f,xn)

]
.

We show that the best payoff that an agent can receive in any pure strategy f -context

equilibrium is bounded above by the maximum value of context across agents.

Proposition 1. Suppose Assumption 1 holds. Then for all n,

V D(n) ≤ V max(n).

Thus, applying Proposition 1 and Corollary 1, our previous results extend.

5 Relaxing the Symmetry Assumption

As shown in Example 11, our main results can fail if the assumption of symmetric uncertainty

over the role of the nonstandard covariate values (Assumption 1) is broken. We now propose

three particular variations on Assumption 1 and explore the extent to which our main result

extends. In Section 5.1, we suppose that it is known ex-ante that some rn covariates are

relevant, while the remaining n− rn are not, so that even as n grows to infinity, the effective

number of covariates potentially grows more slowly. In Section 5.2 we allow the agent to

have prior knowledge about the role of certain nonstandard covariates. Finally, Section 5.3

provides an abstract condition on the learning environment under which our main results

hold, which requires the evaluator’s uncertainty about the agent’s type to grow sufficiently

fast in n.
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5.1 Irrelevant covariates

Under Assumption 1, it cannot be known ex-ante that some covariates are irrelevant for

predicting the type. The assumption thus rules out settings such as the following.

Example 14. The evaluator is a job interviewer. Although in principle there is an infinite

number of covariates that can describe a job candidate, it is understood that not all of them

are actually relevant to the job candidate’s ability. That is, there is some potentially large

(but not exhaustive) set of covariates that contain all of the predictive content about the

candidate’s ability, and the remaining covariates are either irrelevant for predicting ability,

or are predictive only because they correlate with other intrinsically predictive covariates.

If irrelevant covariates cannot be disclosed to the evaluator, then we return to our main

model with a smaller n and our previous results extend directly. The more novel case is the

one in which it is known that n− rn covariates are irrelevant, but those covariates can still

be disclosed to the evaluator (for example, because it is not commonly understood that they

are irrelevant).27

To model this, we suppose there is a sequence of sets of relevant covariates (R1, R2, . . . )

such that each Rn includes the standard covariates in S and is of size s+rn, where rn = ⌊αr·n⌋
is the (known) number of relevant nonstandard covariates. The irrelevance of the remaining

covariates is reflected in the following assumption, which says that, holding fixed the values

of the relevant covariates, the values of the irrelevant covariates do not change the type.

Assumption 3 (Irrelevance). For every xRn ∈ {0, 1}s+rn and x−Rn , x
′
−Rn

∈ {0, 1}n−s−rn,

f(xRn , x−Rn) = f(xRn , x
′
−Rn

)

We then modify Assumption 1 to impose symmetry only over realizations of the relevant

covariates.

Assumption 4. Fix any realization of the standard covariates xS ∈ {0, 1}s. There is an

infinitely exchangeable sequence (Ỹ1, Ỹ2, . . . ) such that for every n ∈ N, the sequence

(YxRn ,x−Rn
: (xi)i∈Rn\S ∈ {0, 1}rn−s)

has the same distribution as (Ỹ1, . . . , Ỹ2rn ).

Our main model is otherwise unchanged—in particular, we allow the agent to disclose

any of the n− s nonstandard covariates, including those which are irrelevant. We show that

our previous results extend so long as αh < αr.

27To see the difference, consider the case in which the agent simply wants the evaluator to hold a higher

posterior expectation. The irrelevant covariates create noise, and for some realizations of f it may be that

disclosing an irrelevant covariate leads to a higher evaluation.
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Proposition 2. Suppose Assumption 1 holds and αh < αr. Then for every covariate vector

x ∈ {0, 1}∞ the expected value of context vanishes to zero as n grows large.

The case where αr < αh (violating the assumption of the result) corresponds to a setting

in which the number of relevant covariates is so small that the agent can disclose all of them.

For example, if a job candidate is convinced that only 10 nonstandard covariates are actually

relevant for predicting his on-the-job ability, and all of these nonstandard covariates can be

shared during a job interview, then our main results do not extend and we should think of

the value of context as being potentially large. On the other hand, if the set of relevant

covariates are low-dimensional relative to the total number of covariates, but are still too

numerous to be fully revealed, then our main results do extend.

This result suggests that whether human or black box evaluation is more appropriate

should be determined in part based on whether the available signal is concentrated in a small

number of covariates (favoring the human evaluator) or spread out across a large number of

covariates (favoring the black box evaluator). The same application may transition between

these regimes over time. For example, in a medical setting where black box diagnosis is highly

accurate based on non-interpretable features of an image scan, it may not be possible to

communicate sufficient information via any small number of covariates. But if the predictive

features of the image are subsequently better understood and defined, then it may be that

a small set of (newly defined) features does eventually capture all of the signal content, and

can be fully disclosed in a coversation.

5.2 Known effect of certain covariates

Another possibility is that the agent knows how certain nonstandard covariates are correlated

with the type.

Example 15. The agent is a patient who resided around Chernobyl at the time of the Cher-

nobyl nuclear disaster of 1986. The agent is being evaluated for potential thyroid conditions,

and knows that this particular part of his history increases the probability of a thyroid

condition.

Specifically suppose there is a set K ⊆ {1, . . . , n} of covariate indices whose effects

are known. The set K includes the standard covariates, but possibly also includes some

nonstandard covariates. We weaken Assumption 1 to the following:

Assumption 5. Fix any realization of the covariates xK = (xi)i∈K. Then there is an

infinitely exchangeable sequence (Ỹ1, Ỹ2, . . . ) such that for every n ∈ N, the sequence(
YxK ,x−K

: x−K ∈ {0, 1}n−|K|)
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has the same distribution as (Ỹ1, Ỹ2, . . . ).

This assumption imposes exchangeability only over the nonstandard covariates whose

effects are not ex-ante known. Clearly if K is a strict superset of S, then the expected value

of context need not vanish. A simple example is the following.

Example 16. Suppose there are no standard covariates, and K = {1}, i.e., the first nonstan-
dard covariate has a known effect, where f(xn) ∼ U [−1, 0] if x1 = 0 and f(xn) ∼ U [0, 1] if

x1 = 1. Suppose further that the agent’s covariate vector satisfies x1 = 1. Then the prior

expectation of the agent’s type is 0, but revealing x1 = 1 moves the posterior expectation to

1/2. So the expected value of context does not vanish.

But if we modify the definition in (2) to

ŷfxn
(A) = E[Y | Xi = xi ∀i ∈ K ∪ A]

with K replacing S, and again let U f
xn
(A) = u

(
ŷfxn

(A), y
)
, then the modified expected value

of context

v(f,xn) = max
H⊆N\K
|H|≤αhn

U f
xn
(H)− U f

xn
(∅)

evaluates the value of context beyond those covariates with known effects. The same proof

shows that this expected value of context vanishes to zero as n grows large. That is, beyond

the value of context that is already clear to the agent based on private knowledge about

his nonstandard covariates, the agent does not expect substantial additional gain from the

remaining covariates.

5.3 Sufficient residual uncertainty

In this final section, we provide an abstract condition on the evaluator’s learning environ-

ment, under which Theorem 1 extends.

For each n, let Dn denote the set of all disclosures respecting the human evaluator’s

capacity constraint, i.e., all pairs (H, (xi)i∈H) consisting of a set H ⊆ {s + 1, . . . , n} with

⌊αh · n⌋ or fewer nonstandard covariates, and values (xi)i∈H for those covariates. Further

define D = ∪n≥1Dn to be the set of all disclosures. Similarly, for each n let Fn be the set of

all type functions f : {0, 1}n → [−y, y], and define F = ∪n≥1Fn. An evaluation rule is any

family ρ = (ρf )f∈F where each ρf : D → [−y, y] maps disclosures into evaluations for the

given function f . Finally, fixing any update rule ρ, number of covariates n, and disclosure

d ∈ Dn, let

Zn
d = ρf (d)
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be the random evaluation when f is drawn from Fn according to the agent’s prior.

We impose two assumptions below on the evaluation rule. The first says that the expected

evaluation Zn
d is equal to the prior expected type µ ≡ E[Y ]; the second says that the

distribution of the evaluation concentrates on µ sufficiently fast as the number of hidden

covariates n grows large. Intuitively, the assumption requires that as the number of residual

unknowns—i.e., the covariates which are predictive of the type, but are not revealed to the

evaluator—grows large, the informativeness of any fixed disclosure becomes small.28

Assumption 6 (Unbiased). E[Zn
d ] = µ for every disclosure d.

Assumption 7 (Fast Concentration). For any sequence of feasible disclosures (dn)n≥1,

V ar(Zn
dn) = o

(
1

Kn

)
where Kn =

∑⌊αhn⌋
j=0

(
n−s
j

)
is the number of unique sets H ⊆ {s+1, . . . , n} with αhn or fewer

elements.

These assumptions do not in general represent a weakening of our main model. Previously

we studied the evaluation rule ρ mapping each disclosure into the conditional expectation of

the agent’s type, and imposed Assumption 1 on the agent’s prior about f . In this model,

the evaluation Zn
d for any disclosure d = (H, (xi)i∈H) could be represented as a sample

average consisting of 2n−s−|H| elements. Assumption 6 is clearly satisfied (because the update

rule is Bayesian), but one can select a sequence of disclosures (dn) such that V ar(Zn
dn
) =

1
2n(1−αh)−s (see the proof of Theorem 1 for details). Thus the speed of convergence demanded

in Assumption 7 is not met when αh is sufficiently large.

Nevertheless, Assumption 7 identifies the qualitative property of our main setting that

gave us Theorem 1: residual uncertainty must have the power to overwhelm any information

revealed through disclosure. Under these assumptions, our main result extends.

Proposition 3. Suppose Assumptions 6 and 7 hold. Then for every covariate vector x ∈
{0, 1}∞, the expected value of context vanishes to zero as n grows large, i.e.,

lim
n→∞

V (n,xn) = 0.

This result also clarifies that neither the precise symmetry imposed by Assumption 1,

nor the assumption of Bayesian updating in our main model, are crucial for our main result.

28In the limit with an uninformative disclosure, the distribution of the evaluation is degenerate at the

prior expectation µ for any Bayesian updating rule.
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6 Conclusion

One argument against replacing human experts with algorithmic predictions is that no matter

how many covariates are taken as input by the algorithm, the number of potentially relevant

circumstances and characteristics is still more numerous. In cases where some important

fact is missed by a human evaluator, it is often possible to correct this oversight. There is

no such safety net with a black box algorithm.

This is a compelling narrative, yet our results suggest that it may be less important than

it initially seems. When there is a large number of nonstandard covariates that may matter

for the prediction problem, but the agent does not know how these nonstandard covariates

impact the type, then the expected value of disclosing additional information is small—even

when we assume that the agent can identify the most useful covariates to disclose, and that

the claims about these covariates are taken at face value.

In contrast, if the agent has substantial prior knowledge about the predictive roles of the

nonstandard covariates, then our conclusion will not be appropriate. In particular, if there

is a “low-dimensional” set of covariates that predict the type and can be fully disclosed (as

in Example 9), or if there is a known structural relationship between covariates and the type

(as in Example 11), then the expected value to disclosing additional information may be

large. We thus view our results as revealing a link betwen the value of targeting information

acquisition (beyond simply conditioning on large quantities of information) and the extent

of prior “structural information” about the numerous covariates that can be brought up as

explanations.

We conclude with two alternative interpretations of our model and results.

Online versus offline learning. In our model, a key distinction between human and

black box evaluation is that the human can adapt which covariates are acquired based on

other properties of the agent, while the black box cannot. This is an appropriate comparison

of human and black box evaluators as they currently stand: The black box algorithms used

to make predictions about humans are usually supervised machine learning algorithms which

are pre-trained on a large data set. But new black box algorithms, such as LLMs, blur this

distinction, and future evaluations (e.g., medical diagnoses) may be conducted by black box

systems with which the agent can communicate.

From this more forward-looking perspective, our results can be understood as comparing

the merits of online versus offline learning. That is, how valuable is it to have the evaluator

dynamically acquire information given feedback from the agent? Our result suggests that

this is not important in expectation. For example, Part (a) of Theorem 2 implies that

an agent who cares about accuracy should prefer a supervised machine learning algorithm

26



trained on a large number of covariates over a conversation with ChatGPT that reveals a

smaller number of covariates.

Value of human supervision of algorithms. While we have interpreted the s stan-

dard covariates as a small set of covariates acquired by the human evaluator, an alternative

interpretation is that they are the initial inputs to an algorithm. In this case, the expected

value of context quantifies the sensitivity of the algorithm’s predictions to the addition of

further relevant inputs, e.g., as identified by a human manager. This interpretation is par-

ticularly relevant when we consider accuracy as the objective, in which case the value of

context tells us how wrong the algorithm is compared to if the algorithm could be retrained

on additional relevant inputs. Theorem 1 says that while in certain cases additional inputs

would lead to a substantially more accurate prediction, under our symmetry assumption on

the agent’s prior this will not typically be the case.
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A Proof of Generalization of Theorem 1

In a change of notation relative to the main text, we subsequently use Xn to denote the

agent’s covariate vector and Y to denote the agent’s type (leaving xn and y to denote

realizations of these random variables). Moreover, rather than supposing that Y is deter-

ministically related to Xn via a function f , let (Xn, Y ) ∼ P n where P n is unknown. We

replace Assumption 1 with the following.

Assumption 8. Fix any realization of the standard covariates xS ∈ {0, 1}s. There is an

infinitely exchangeable sequence (Ỹ1, Ỹ2, . . . ) such that for every n ∈ N, the sequence

(E[Y | (X1, . . . , Xn) = (xS ,x−S)])x−S∈{0,1}n−s

has the same distribution as (Ỹ1, . . . , Ỹ2n).

That is, permuting the labels and/or values of the nonstandard covariates does not change

the joint distribution of the conditional expectations of y. When y is degenerate conditional

on xn, Assumption 8 reduces to our previous Assumption 1. We will prove the following

generalization of Theorem 1.

Theorem A.1. Suppose Assumption 8 holds. Then for every covariate vector x ∈ {0, 1}∞,

the expected value of context vanishes to zero as n grows large, i.e., limn→∞ V (n,xn) = 0.

Towards this, we will first prove the conclusion under a strengthening of Assumption 8,

where exchangeability is replaced by an assumption that conditional expectations are i.i.d.

across the different possible completions of the agent’s covariate vector.

Assumption 9. Fix any realization of the standard covariates xS ∈ {0, 1}s. Then there is

a distribution F such that for every n ∈ N, the conditional expectations

E[Y | (X1, . . . , Xn) = (xS ,x−S)] ∼iid F

across all vectors x−S ∈ {0, 1}n.

Theorem A.2. Suppose Assumption 9 holds. Then for every covariate vector x ∈ {0, 1}∞,

the expected value of context vanishes to zero as n grows large, i.e., limn→∞ V (n,xn) = 0.

Sections A.1-A.4 prove Theorem A.2, and Section A.5 shows that Theorem A.2 implies

Theorem A.1.
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A.1 Outline for Proof of Theorem A.2

Fix any realization (x1, . . . , xs) of the agent’s standard covariates. After observing (x1, . . . , xs),

the evaluator assigns positive probability to the 2n−s covariate vectors whose first s entries

are equal to (x1, . . . , xs). Let these covariate vectors be indexed by xj where j = 1, . . . , 2n−s,

and define

Yj ≡ EPn

[
Y | (X1, . . . , Xn) = xj

]
to be the (random) expected type given covariate vector xj. By assumption that the marginal

distribution over covariate vectors is uniform, the evaluator’s posterior expectation of the

agent’s type after observing the agent’s standard covariates is

Ŷ (∅,xn) =
1

2n−s

2n−s∑
i=1

Yj ≡ Zn
∅.

There are Kn =
∑hn

k=0

(
n−s
k

)
subsets of {s + 1, . . . , n} that contain hn or fewer elements.

Enumerate these sets as H1, . . . , HKn . For each Hk, let

Sk =
{
j : xj ∈ CHk

(xn)
}

be the set of indices for those covariate vectors xj that agree with the agent’s covariate vector

xn in entries (1, . . . , s)∪Hk (where CHk
(xn) is as defined in (1)). After observing the agent’s

nonstandard covariates in the set Hk, the evaluator’s posterior expectation about the agent’s

type is

Ŷ (Hk,xn) =

∑
j∈Sk

Yj

|Sk|
≡ Zk.

Although the distributions of the random variables Zk vary across n, we suppress this de-

pendence in what follows to save on notation. The remainder of the proof proceeds by first

showing that in expectation the possible increase in the evaluator’s posterior expectation

over the prior expectation µ ≡ E[Y ] is vanishing.

Proposition A.1. limn→∞ E[max1≤k≤Kn Zk − µ] = 0.

This is subsequently strengthened to the statement that the expected maximum absolute

difference between Zk and µ converges to zero.

Proposition A.2. limn→∞ E[max1≤k≤Kn |Zk − µ|] = 0.

And finally we apply the above proposition to demonstrate the conclusion of the theorem,

i.e., that

lim
n→∞

V (n) = lim
n→∞

E
[

max
1≤k≤Kn

u(Zk, Y )

]
− E [u (Zn

∅, Y )] = 0

Thus in expectation the possible increase in the agent’s payoff also vanishes. We suppress

dependence of V on the covariate vector xn in what follows, writing simply V (n).
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A.2 Proof of Proposition A.1

Statement of the proposition: limn→∞ E[max1≤k≤Kn Zk − µ] = 0.

The quantity E[max1≤k≤Kn Zk] is the expected first-order statistic of a sequence of non-i.i.d.

variables Z1, . . . , ZKn . The proof is organized as follows. In Sections A.2.1 and A.2.2, we

define i.i.d. variables Ziid
k with the property that

E [max{Z1, . . . , ZKn}] ≤ E
[
max{Ziid

1 , . . . , Ziid
Kn

}
]
. (A.1)

In Sections A.2.3 and A.2.4, we show that the RHS of the above display converges to µ as n

grows large.

A.2.1 Replacing Zk’s with independent variables Zind
k

In general, disclosures k and k′ may lead to posterior expectations Zk and Zk′ that are

correlated due to the presence of the same Yi’s across the different sample averages. We first

show that replacing these Zk’s with properly defined independent random variables weakly

increases the value of context.

Definition A.1. For each 1 ≤ k ≤ Kn define

Zind
k =

∑|Sk|
j=1 Y

k
j

|Sk|
(A.2)

where Y k
j ∼iid F , so that each Zind

k has the same distribution as Zk, but the vector (Z
ind
1 , . . . , Zind

K )

is mutually independent.

Lemma A.1. Let

Vn ≡ E[max{Z1, ..., ZKn}]

and

V ind
n ≡ E[max{Zind

1 , ..., Zind
Kn

}].

Then Vn ≤ V ind
n for all n ∈ Z+.

Proof. Throughout we use X ⪰ Y to mean that the distribution of X first-order stochasti-

cally dominates the distribution of Y .

Sublemma 1. Let X1,..., XQ,W be a sequence of real-valued random variables (not neces-

sarily i.i.d.). Let a1 > a2 > ... > aQ−1 > aQ > 0 be a sequence of positive constants. Further,

let Y1, ..., YQ be i.i.d. random variables, independent of (X1, . . . , XQ,W ). Define

MC = max
i∈{1,...,Q}

{Xi + aiY1}
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MI = max
i∈{1,...,Q}

{Xi + aiYi}

Then MI ⪰ MC and max{MI ,W} ⪰ max{MC ,W}.

Proof. For q ∈ {1, ..., Q} define:

M q
C = max

{
max

i∈{1,...,q−1}
{Xi + aiY1}, Xq + aqY1

}
M̃ q

C = max

{
max

i∈{1,...,q−1}
{Xi + aiY1}, Xq + aqYq

}
so that M q

C is the maximum of the first q terms in MC , and M̃ q
C replaces Y1 in the q-th term

of M q
C with Yq. We first demonstrate an analogue of the desired conclusions for M q

C and M̃ q
C .

Sublemma 2. M̃ q
C ⪰ M q

C and max{M̃ q
C ,W} ⪰ max{M q

C ,W}.

Proof. Without loss of generality set aq = 1. We’ll first show that M̃ q
C ⪰ M q

C . To establish

first-order stochastic dominance, we need to show that for all t ∈ R it holds that

P(M q
C ≤ t)− P(M̃ q

C ≤ t) ≥ 0

For each i ∈ {1, ..., q − 1} define the event

Bi := {Xq + Y1 > Xi + aiY1} ≡
{
Y1 <

1

ai − 1
(Xq −Xi)

}
.

Further let

B =

q⋂
i=1

Bi =

{
Y1 < min

i∈{1,...,q−1}

1

ai − 1
(Xq −Xi)

}
be the event that Xq + Y1 achieves the maximum among {Xi + aiY1}qi=1. We’ll show that

the FOSD rankings in Sublemma 2 hold both on event B and also on its complement Bc.

Define

B̃ :=

(
Yq < min

i∈{1,...,q−1}

{
1

ai − 1
(Xq −Xi)

})
to be the event that Xq + Yq achieves the maximum among {Xi + aiYq}qi=1. Then

M̃ q
C |B ⪰ (Xq + Yq)|B

d
= Xq|B + Yq since Yq ⊥⊥ (X1, . . . , Xq, Y1)

⪰ Xq|B + Yq|B̃ since Yq ⪰ Yq | B̃
d
= Xq|B + Y1|B since Y1 | B

d
= Yq | B̃

d
= (Xq + Y1)|B

d
= M q

C |B
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Thus M̃ q
C |B ⪰ M q

C |B.

Now consider the event Bc, on which Xq + Y1 does not achieve the maximum among

{Xi + aiY1}qi=1. Then either X1 + Yq ≤ max{Xi + aiY1}q−1
i=1 , in which case M̃ q

C = M q
C , or

X1 + Yq > max{Xi + aiY1}q−1
i=1 , in which case M̃ q

C > M q
C . So

M̃ q
C |B

c ⪰ max{X1 + a1Y1, ..., Xq−1 + aq−1Y1}|Bc d
= M q

C |B
c.

and hence M̃ q
C |Bc ⪰ M q

C |Bc.

Now we show that max{M̃ q
C ,W} ⪰ max{M q

C ,W}. For any realization w of W , let

Xw
i denote the conditional random variable Xi|W = w. Define M q,w

C and M̃ q,w
C identically

to M q
C and M̃ q

C , replacing each Xi by Xw
i . Then by independence of W and (Y1, . . . , Yq),

the distribution of max{M q,w
C , w} is identical to that of max{M q

C ,W}|W = w, and the

distribution of max{M̃ q,w
C , w} is identical to that of max{M̃ q

C ,W}|(W = w).

Applying the first part of this sublemma to M q,w
C and M̃ q,w

C , we conclude that M q,w
I ⪰

M q,w
C . Since max{., w} is an increasing convex function, it preserves the first-order stochastic

dominance relation and hence max{M̃ q
C ,W}|(W = w) ⪰ max{M q

C ,W}|(W = w). This

argument holds pointwise for all w so max{M̃ q
C ,W} ⪰ max{M q

C ,W} as desired.

We now complete the proof that max{MC ,W} ⪰ max{MI ,W}. From similar (omitted)

arguments it follows that MI ⪰ MC . For each q ∈ {1, . . . , Q− 1} define

M̂ q
C = max

{
max{Xi + aiY1}qi=1,max{Xi + aiYi}Qi=q+1,W

}
observing that max{MI ,W} = M̂1

C and that M̂Q
C ⪰ max{MC ,W} (by Sublemma 2). More-

over, for each q ∈ {1, . . . , Q− 1},

M̂ q
C = max {M q

C ,W
q}

M̂ q−1
C = max{M̃ q

C ,W
q}

where W q = max
{
max{Xi + aiYi}Qi=q,W

}
is independent of (Y1, . . . , Yq−1). So applying

Sublemma 2, M̂ q−1
C ⪰ M̂ q

C as desired.

Finally, we use Sublemma 1 to establish Lemma A.1, i.e., the expected value of context

weakly increases if we make the Y ’s within different disclosures independent. We will prove

this iteratively. For arbitrary n ∈ N, define the random variable

M = max{Z1, . . . , ZKn} = max

{∑
j∈S1

Yj

|S1|
, . . . ,

∑
j∈SKn

Yj

|SKn|

}
.

Fix any Yi. We will show that replacing Yi across different sample averages with independent

copies of this random variable leads to a FOSD increase in the distribution of M .
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Let I = {k : i ∈ Sk} be the set of indices of sample averages which contain Yi. Then we

can rewrite the previous display as

max

{
max
k∈I

∑
j∈Sk

Yk

|Sk|
, max

k/∈I

∑
j∈Sk

Yk

|Sk|

}
or

max

{
max
k∈I

{
Xk +

1

|Sk|
Yi

}
,W

}
(A.3)

whereXk ≡ 1
|Sk|
∑

j∈Sk,j ̸=i Yj for each k ∈ I, andW ≡ maxk/∈I

∑
j∈Sk

Yk

|Sk|
. Because (Y1, . . . , YKn)

are mutually independent, Yi is independent of each Xk and W . So applying Lemma 1, the

random variable in (A.3) has a distribution that is first-order stochastically dominated by

the distribution of

max

{
max
k∈I

{
Xk +

1

|Sk|
Y k
i

}
,W

}
as desired. Since Yi is arbitrary, this concludes the proof.

A.2.2 Replacing Zind
k with i.i.d. Variables Ziid

k

The variables Zind
1 , . . . , Zind

Kn
are sample averages of unequal sizes ranging between 2n−s−hn

and 2n−s elements. We next show that replacing each of these variables with a sample

average of 2n−s−hn elements (the smallest size) weakly increases the value of context.

Definition A.2. For each 1 ≤ k ≤ Kn define

Ziid
k =

∑2n−s−hn

j=1 Y k
j

2n−s−hn
(A.4)

to be the analogue of Zind
k with 2n−s−hn elements instead of |Sk| ≥ 2n−s−hn, so that the

variables Ziid
1 , . . . , Ziid

Kn
are iid.

Lemma A.2. Let

V iid
n ≡ E

[
max{Ziid

1 , . . . , Ziid
Kn

}
]
.

Then V ind
n ≤ V iid

n for all n ∈ Z+.

Proof. We use the following result.

Sublemma 3. Suppose Y1, Y2, . . . , Yn are independent and identically distributed random

variables, and define Y n = 1
n

∑n
i=1 Yi to be their sample average. Let n′ < n and define

Y n′ = 1
n′

∑n′

i=1 Yi. Then the distribution of Y n′ is a mean preserving spread of the distribution

of Y n.
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Proof. First observe that E[Yj | Y n] = Y n for any j = 1, . . . , n, since

Y n = E[Y n | Y n] =
1

n

n∑
i=1

E[Yi | Y n] = E[Yj | Y n]

where the final equality follows by assumption that the Yi’s are iid. Then

E[Y n′ | Y n] =
1

n′

n′∑
i=1

E[Yi | Y n] =
1

n′

n′∑
i=1

Y n = Y n

and the distribution of Y n′ is a mean-preserving spread of the distribution of Y n as desired.

This lemma implies that each Ziid
k second-order stochastically dominates Zind

k (since

|Sk| ≥ 2n−s−hn for all k). The desired result then follows by Jensen’s inequality, since the

entries of (Zind
1 , . . . , Zind

K ) are (by construction) independent and the maximum is a convex

function.

A.2.3 Asymptotic Normality

Lemma A.3. Let

V N
n ≡ E

[
max{ZN

1 , . . . , ZN
Kn

}
]

where ZN
k ∼ N

(
µ, 1

2n−s−hn

)
. Then limn→∞ |V iid

n − V N
n | = 0.

Proof. Without loss of generality, let V ar(Y k
j ) = 1.29 First observe that

√
2n−s−hn · V iid

n = E
[
max{Z̃iid

1 , . . . , Z̃iid
Kn

}
]

where each

Z̃iid
k =

1√
2n−s−hn

2n−s−hn∑
i=1

Y k
i .

Similarly we can write

√
2n−s−hn · V N

n = E
[
max{Z̃N

1 , . . . , Z̃N
Kn

}
]

where each

Z̃N ∼iid N (µ, 1) .

29If V ar(Y k
j ) = 0, the statement of Theorem 1 holds trivially.
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When the assumptions for Corollary 2.1 from Chernozhukov et al. (2013) are met (to be

verified momentarily), we can conclude that

ρ
(
max{Z̃iid

1 , . . . , Z̃iid
Kn

},max{Z̃N
1 , . . . , Z̃N

Kn
}
)
→ 0

where ρ denotes Kolmogorov distance. Thus also

ρ(M iid
n ,MN

n ) → 0 (A.5)

where

M iid
n =

1√
2n−s−hn

max{Z̃iid
1 , . . . , Z̃iid

Kn
}

MN
n =

1√
2n−s−hn

max{Z̃N
1 , . . . , Z̃N

Kn
}

By assumption, each Y k
i is supported on [−y, y] for some finite y. This implies |M iid

n | ≤ y

for all n, so the sequence (M iid
n )n is uniformly integrable. The convergence in (A.5) thus

implies

lim
n→∞

∣∣E [M iid
n

]
− E

[
MN

n

]∣∣ = lim
n→∞

|V iid
n − V N

n | = 0

as desired.

It remains to verify that the conditions of Corollary 2.1 from Chernozhukov et al. (2013)

are met. This follows from the assumption that Y k
j ’s are uniformly bounded, and the obser-

vation that
log(Kn · 2n−s−hn)7

2(1−c)(n−s−hn)

n→∞−−−→ 0

for any c ∈ (0, 1), since Kn =
∑hn

j=0

(
n−s
j

)
≤ 2n−s by the Binomial Theorem and αh < 1.

A.2.4 Upper Bound for Expected Maximum of Gaussians

Finally by Berman (1964), which provides an upper bound for the expected maximum of

independent Gaussian random variables, there exists a positive constant C such that

V N
n ≤ 1

2n−s−hn
C
√

log(Kn) ≤
1

2n(1−αh)−s
C
√
n

where the final expression converges to zero as n → ∞ by assumption that αh < 1. Since

clearly also limn→∞ E[max1≤k≤Kn Zk − µ] ≥ 0, this concludes the proof of Proposition A.1.
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A.3 Proof of Proposition A.2

Statement of the proposition: limn→∞ E[max1≤k≤Kn |Zk − µ|] = 0.

In an abuse of notation, let Zk ≡ Zk−µ denote de-meaned sample average. By rewriting

the max within the expectation we obtain

E
[

max
1≤k≤Kn

|Zk|
]
= E

[
max

{
max

1≤k≤Kn

Zk,− min
1≤k≤Kn

Zk

}]
≤ E

[
max

{
max

1≤k≤Kn

{Zk} , 0
}]

+ E
[
max

{
− min

1≤k≤Kn

{Zk} , 0
}]

We will show that each term of this final expression converges to zero. Observe that

E
[
max

{
max

1≤k≤Kn

{Zk} , 0
}]

= P
(

max
1≤k≤Kn

Zk ≥ 0

)
· E
[

max
1≤k≤Kn

Zk | max
1≤k≤Kn

Zk ≥ 0

]
(A.6)

Moreover,

E
[

max
1≤k≤Kn

Zk

]
= P

(
max

1≤k≤Kn

Zk ≥ 0

)
· E
[

max
1≤k≤Kn

Zk | max
1≤k≤Kn

Zk ≥ 0

]
+ P

(
max

1≤k≤Kn

Zk < 0

)
· E
[

max
1≤k≤Kn

Zk | max
1≤k≤Kn

Zk < 0

]
so

P
(

max
1≤k≤Kn

Zk ≥ 0

)
· E
[

max
1≤k≤Kn

Zk | max
1≤k≤Kn

Zk ≥ 0

]
=

= E
[

max
1≤k≤Kn

Zk

]
− P

(
max

1≤k≤Kn

Zk < 0

)
· E
[

max
1≤k≤Kn

Zk | max
1≤k≤Kn

Zk < 0

]
(A.7)

From Lemma A.1,

lim
n→∞

E
[

max
1≤k≤Kn

Zk

]
= 0. (A.8)

Moreover, we showed in Section A.2.1 that the distribution of (Zind
1 , . . . , Zind

Kn
) first-order-

stochastically-dominates that of (Z1, . . . , ZKn), so

P
(

max
1≤k≤Kn

Zk < 0

)
≤ P

(
max

1≤k≤Kn

Zind
k < 0

)
≤

∏
1≤k≤Kn

P(Zind
k < 0)

which converges to zero as n grows large since each P(Zind
k < 0) < 1. Finally,

E
[

max
1≤k≤Kn

Zk | max
1≤k≤Kn

Zk < 0

]
∈
[
−Y , Y

]
(A.9)
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uniformly across n. Putting together (A.6) - (A.9) we have that

lim
n→∞

E
[
max

{
max

1≤k≤Kn

{Zk} , 0
}]

= 0

as desired. The argument that

lim
n→∞

E
[
max

{
− min

1≤k≤Kn

{Zk} , 0
}]

= 0

follows identically, observing that Proposition A.1 is satisfied for Ỹ ≡ −Y , and that

− min
1≤k≤Kn

Zk = max
1≤k≤Kn

−
∑

j∈Sk
Yj

|Sk|
= max

1≤k≤Kn

∑
j∈Sk

Ỹj

|Sk|
.

A.4 Concluding the proof of Theorem A.2

Recall that Zn
∅ ≡ 1

2n−s

∑2n−s

j=1 Yj denotes the (random) posterior expectation when the agent

chooses not to disclose any nonstandard covariates. Clearly V (n) ≥ 0 (since the agent can

always choose to disclose nothing). Also

V (n) = E
[

max
1≤k≤Kn

u(Zk, Y )

]
− E [u(Zn

∅, Y )]

≤ E
[

max
1≤k≤Kn

|u(Zk, Y )− u(Zn
∅, Y )|

]
(A.10)

Each absolute difference |u(Zk, Y )−u(Zn
∅, Y )| can be bounded from above using the triangle

inequality

|u(Zk, Y )− u(Zn
∅, Y )| ≤ |u(Zk, Y )− u(µ, Y )|+ |u(µ, Y )− u(Zn

∅, Y )| (A.11)

Since u is by assumption Lipschitz continuous in the first argument, there is a constant

B such that

|u(zk, y)− u(µ, y)| ≤ B|zk − µ| (A.12)

and

|u(µ, y)− u(z∅, y)| ≤ B|z∅ − µ| (A.13)

for any realizations zk and z∅ of Zk and Zn
∅. Combining equations A.10-A.13 we get

V (n) ≤ B

(
E
[

max
1≤k≤Kn

|Zk − µ|
]
+ E [|Zn

∅ − µ|]
)

Clearly E[Zn
∅] = µ. Moreover, by assumption that each Y is uniformly bounded above

and below, the sequence (Zn
∅) is uniformly integrable. It follows from the Law of Large

Numbers that

lim
n→∞

E[|Zn
∅ − µ|] = 0
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Finally, limn→∞ E [max1≤k≤Kn |Zk − µ|] = 0 follows directly from Lemma A.2. So the RHS

of A.11 converges to zero, implying V (n) → 0 as desired.

A.5 Theorem A.2 implies Theorem A.1

In an abuse of notation, let P n ∼ F mean that Yxn ∼iid F across all covariate vectors xn.

We have already shown in Theorem 1 that limn→∞ EPn∼F (vn(P )) = 0 for any distribution F .

Now suppose instead that Assumption 1 is satisfied. By de Finetti’s theorem, there exists a

set Θ, family of conditional measures (πθ)θ∈Θ, and measure ν ∈ ∆(Θ) such that

V (n,x) =

∫
Θ

EPn∼Fθ
(vn(P,xn))dν(θ)

where the inner expectation converges to zero for every θ by Theorem A.2. By assumption

that u is Lipschitz continuous on a compact domain, there exist u and u such that u(ŷ, y) ∈
[u, u] for all (ŷ, y). So EPn∼Fθ

(vn(P,xn)) is pointwise bounded above by u − u, and we can

apply the Dominated Convergence Theorem to conclude that limn→∞ V (n,x) = 0 as desired.

A.6 Proof of Theorem 2

Throughout the proof we set s = 0, µ = 0 and σ2 = E(Y 2
i ) = 1 without loss of generality.

We’ll start by demonstrating Part (a). As before let Bn ⊆ {1, . . . , 2n} index those 2n−bn

covariate vectors that agree with the agent’s covariate vector for all covariates in B. Then

the black box evaluator’s posterior expectation is the sample average

Zn
B =

1

2n−bn

∑
j∈Bn

Yj.

We will show that

∆(n) ≡ E[ϕ(Zn
B)]− E

[
max

1≤k≤Kn

ϕ(Zk)

]
= E[ϕ(Zn

B)− ϕ(0)]− E
[

max
1≤k≤Kn

ϕ(Zk)− ϕ(0)

]
> 0

for large enough n.

We start by analyzing the first difference E[ϕ(Zn
B)− ϕ(0)]. Using Taylor’s expansion we

get

E[ϕ(Zn
B)− ϕ(0)] = E[ϕ′(0)Zn

B] + E

[
ϕ′′(Z̃)

2
(Zn

B)
2

]
for some Z̃ ∈ [0, Zn

B]. Note that E[Zn
B] = E[Y ] = 0. Moreover, ϕ′′(Z̃) ≥ c1 > 0 for some c1,

since ϕ is strictly convex. Thus
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E[ϕ(Zn
B)− ϕ(0)] ≥ c1E[(Zn

B)
2] =

c1
2(1−αb)n

Next turn to E[max1≤k≤Kn ϕ(Zk) − ϕ(0)]. For each term inside the maximum we have

that

ϕ(Zk)− ϕ(0) ≤ c2|Zk|

where the latter inequality follows from the fact that ϕ′ is continuous on a compact set, and

hence bounded by some c2 ≥ 0. Thus

E
[

max
1≤k≤Kn

ϕ(Zk)− ϕ(0)] ≤ c2E[max{|Zk|}
]

As a corollary of Lemma A.2 it follows that there exist c3, c4 > 0 such that

E[max{|Zk|}] ≤ c3
1

2(1−αh)n

√
log(c4Kn)

And, thus

E
[

max
1≤k≤Kn

ϕ(Zk)− ϕ(0)

]
≤ c2c3

1

2(1−αh)n

√
log(c4Kn)

Combining the bounds from steps 1 and 2 we get

∆(n) ≥ c1
1

2(1−αb)n
− c2c3

1

2(1−αh)n

√
log(c4Kn)

The RHS is asymptotically positive if and only if

2(1−αh)n

2(1−αb)n

n→∞−−−→ ∞

since
√

log(c4Kn) has sub-exponential but non-constant asymptotics. This condition is sat-

isfied if and only if αb > αh.

Part (b) follows by identical arguments: Since −ϕ is convex, the above arguments apply

to show that

E[ϕ(Zn
B)− ϕ(0)] ≤ − c1

2(1−αb)n

for some c1 > 0, while

E
[

min
1≤k≤Kn

ϕ(Zk)− ϕ(0)

]
= −E

[
max

1≤k≤Kn

−ϕ(Zk)− (−ϕ(0))

]
≥ −c2c3

1

2(1−αh)n

√
log(c4Kn)

for some c2, c3, c4 > 0. The desired conclusion follows.
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A.7 Result Extending Theorem 2 Part (a)

Consider a model in which the evaluator chooses an action a given the realization of the

agent’s covariates, and the evaluator and agent share the payoff function −(a − y)2. The

following result shows that the conclusion of Part (a) of Theorem 2 extends for non-binary

types y.

Proposition A.3. There exists an N sufficiently large such that the agent prefers the black

box evaluator for all n ≥ N .

Proof. Throughout the proof set s = 0, E[Y ] = 0 and σ2 = E(Y 2
i ) = 1 without loss. We will

show that

E[u(Zn
B, y)]− E

[
max

1≤k≤Kn

u(Zk, y)

]
= E[u(Zn

B, y)− u(0, y)]− E
[

max
1≤k≤Kn

u(Zk, y)− u(0, y)

]
> 0

for large enough n.

Let xB = (xi)i∈B denote the covariates that Black Box observes, and as before let Zn
B =

E[y | xB] denote Black Box’s (random) posterior expectation. The optimal action choice

a = Zn
B yields expected payoff Var(y | xB). By the Law of Total Variance, E[−Var(y |

xB)] = Var(Zn
B)− Var(Y ). Since additionally E[u(0, y)] = Var(y), we obtain

E[u(Zn
B, y)− u(0, y)] = E

[
(Zn

B)
2
]
=

1

2(1−αB)n
.

Now turn to E [max1≤k≤Kn u(Zk, y)− u(0, y)]. By Lipschitz continuity of u, there is a

constant c2 such that u(zk, y)−u(0, y) ≤ c2|zk| holds pointwise for each realization of (zk, y).

So

E
[

max
1≤k≤Kn

u(Zk, Y )− u(0, Y )

]
≤ c2E[max{|Zk|}]

The remainder of the proof proceeds identically to the proof of Theorem 2.

B Proofs for Results in Sections 4 and 5

B.1 Proof of Corollary 1

We continue in the general setting outlined in the proof of Theorem A.1. Fix any realization

xS = (x1, . . . , xs) of the standard covariates. As in the proof of Theorem 1, there are 2n−s
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covariate vectors xn ∈ {0, 1}n with positive probability conditional on xS . Index these by

j = 1, . . . , 2n−s, and define

Y xS
j ≡ EPn

[
Y | (X1, . . . , Xn) = xj

n

]
to be the expected type given covariate vector xj

n. For each covariate vector xn and each

disclosure set Dk ⊆ {s+ 1, . . . , n}, there is a corresponding set of covariate vectors Sk such

that the evaluator’s posterior expectation after the agent discloses his covariates in set Dk is

ZxS
k =

∑
j∈Sk

Y xS
j

|Sk|
.

Different from the proof of Theorem 1, there are now Kn =
∑hn

j=0

(
n−s
j

)
2j unique sets Sk

(ranging over not only the different possible sets of covariates to disclose but also their

values). By the Binomial Theorem,

hn∑
j=0

(
n− s

j

)
2j ≤

n−s∑
j=0

(
n− s

j

)
2j = 3n−s.

Following the proof of Lemma A.1, we obtain that

E
(

max
1≤k≤Kn

|ZxS
k − µ|

)
≤ 1

2n−s−hn
C

√
log(Kn) ≤

1

2n(1−αh)−s
C
√
log(3n−s)

which again converges to zero by assumption that αh < 1. Finally observe that

E
[

max
xS∈{0,1}s

(
max

1≤k≤Kn

|ZxS
k − µ|

)]
≤ E

 ∑
xS∈{0,1}s

max
1≤k≤Kn

|ZxS
k − µ|


=

∑
xS∈{0,1}s

E
[

max
1≤k≤Kn

|ZxS
k − µ|

]
.

Since each E [max1≤k≤Kn |Z
xS
k |] → 0 as n → ∞, the RHS converges to zero. We thus obtain

the analogue of Lemma A.2 for the expected maximum value of context, and the remainder

of the proof proceeds identically to Theorem 1.

B.2 Proof of Proposition 1

Throughout this proof, we set s = 0 for simplicity of notation.

Let (σ∗, µ∗) denote a typical PBE, where σ∗ is the Sender’s disclosure strategy and µ∗

is the Receiver’s belief function. Fixing any such equilibrium, we use Zµ∗(d) to denote the

Receiver’s posterior expectation given disclosure d. We first prove that at least one pure-

strategy equilibrium always exists.
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Proposition B.1. For every n and f there exists a pure-strategy f-context equilibrium.

Proof. Consider a candidate equilibrium (σ∗, µ∗), where σ∗(xn) = ∅ for all xn ∈ {0, 1}n

(which is clearly a feasible disclosure for all agents). The Receiver’s beliefs at disclosure

∅ are pinned down by Bayes’ rule. For any other disclosure d ̸= ∅, we construct out-of-

equilibrium beliefs such that u(Zµ∗(∅)) ≥ u(Zµ∗(d)). This is always possible, for example

by setting Zµ∗(∅) = Zµ∗(d) for every d. Then by construction reporting ∅ is a best response

for any xn, so we are done.

Consider any function f and any pure-strategy equilibrium (σ∗, µ∗) of the f -context

disclosure game. Let d1, . . . , dN index the disclosures that have positive probability under

σ∗ (i.e., all d ∈ D such that σ∗(xn) = d for some xn). For each such disclosure di,

Zµ∗(di) =
1

|{x : σ∗(x) = di}|
∑

x:σ∗(x)=di

f(x)

is the evaluator’s posterior expectation upon observing disclosure di. Given the evaluator’s

payoff function, the optimal action for the evaluator is precisely Zµ∗(di). Let

d∗ = (H∗, (X ∗
i )i∈H∗) := arg max

1≤i≤N
u(Zµ∗(di)) (B.1)

be the disclosure that yields the highest payoff to the Sender. Then it must be that σ∗(xn) =

d∗ for every covariate vector xn for which disclosure d∗ is feasible. Otherwise d∗ would be a

profitable deviation. Hence the evaluator’s posterior expectation in this equilibrium is the

same as it would have been given disclosure of d∗ in our main model. So

u(Zµ∗(d∗)) ≤ max
xn∈{0,1}n

v(f,xn).

Since the payoff received by an agent with any other covariate vector cannot exceed u(Zµ∗(d∗))

(by (B.1)), we have the desired result.

B.3 Result for Mixed Strategy Equilibria

In this part we restrict to equilibria (σ∗, µ∗) with the property that argmaxŷ∈A(σ∗,µ∗)
u(ŷ) is

unique on the set A(σ∗,µ∗) of posterior expectations with positive probability in this equilib-

rium. Call these equilibria generic. (A sufficient condition for all equilibria to be generic is

if u is strictly monotone.)

For each n and f , let vD(f,xn) denote the highest payoff that an agent with covariate

vector xn receives in any generic equilibrium (potentially mixed) of the f -context disclosure

game. Further define

vDf (n) = max
xn

vD(f,xn)
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and

V D(n) = E[vDf (n)]

where the expectation is with respect to the realization of f .

Proposition B.2. Suppose Assumption 1 holds and u(.) is twice continuously differentiable.

Then limn→∞ V D(n) = 0.

Proof. Fix n, f , and a context equilibrium (σ∗, µ∗) of the f -context disclosure game. Let

Z∗ ⊆ [−y, y] be the compact set of all equilibrium posterior expectations that are realized

with positive probability in this equilibrium. Further, denote

Z∗
(1) = argmax

z∈Z∗
u(z)

to be the most-preferred achievable posterior expectation, which is unique by assumption of

genericity of the equilibrium.

Since Z∗
(1) is the best attainable posterior expectation, an agent achieves Z∗

(1) in equilib-

rium if and only if it is feasible. (Otherwise, the agent can profitably deviate to the feasible

disclosure that induces this posterior expectation.)

Let X ∗ ⊆ {0, 1}n denote the set of agents who have a feasible disclosure that achieves

Z∗
(1). Let D(X ∗) be the set of disclosures that agents in X ∗ send with positive probability

in equilibrium. By the logic above, D(X ∗) ∩ D(X \ X ∗) = ∅. Using the structure of this

equilibrium we can write

E[Y ] = Z∗
(1)pX ∗ + (1− pX ∗)E[Y |X /∈ X ∗] (B.2)

where pX ∗ is the ex-ante probability that the agent’s covariate vector belongs to X ∗, and

E[Y |X /∈ X ∗] is the expectation of the agent’s type given that his covariate vector does not

belong to X ∗. Here we utilize the fact that the evaluator’s posterior expectation is constant

at Z∗
(1) across all agents with covariate vectors in X ∗.30

Now, consider the following alternative “strategy” σ0, which relaxes the feasibility con-

straint: For any x ∈ X \ X ∗ let σ0(x) ≡ σ∗(x), i.e., the disclosures are the same as in the

original equilibrium. Further choose some arbitrary disclosure d0 ∈ D(X ∗) and let σ0(x) = d0

for all x ∈ X ∗. The Receiver’s posterior expectation following observation of disclosure d0 is

Z0 =

∑
x∈X ∗ Yx

|X ∗|

and, analogous to (B.2), we can write

E[Y ] = Z0pX ∗ + (1− pX ∗)E[Y |X /∈ X ∗] (B.3)

30In general this does not have to be the case. We rule this out in the definition of the equilibrium.
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Combining equations (B.2) and (B.3) we conclude:

Z∗
(1) =

∑
x∈X ∗ Yx

|X ∗|

which almost surely converges to E[Y ] so long as |X ∗| n→∞−−−→ ∞. Since the Yx’s are uniformly

bounded, this also implies E[Z∗
(1)] → E[Y ], as desired. We now demonstrate that indeed

|X ∗| n→∞−−−→ ∞.

For any disclosure d denote by Cd ⊆ {0, 1}n the set of all covariate vectors x given which

d is feasible. Since Z∗
(1) is achieved by all agents for whom Z∗

(1) is feasible, it must be that

for every disclosure d ∈ D(X ∗) we have Cd ⊆ X ∗. Then for any d ∈ D(X ∗),

|X ∗| ≥ |Cd|
n→∞−−−→ ∞.

where the limit follows by assumption that αh < 1. This completes the proof.

B.4 Proof of Proposition 2

We again continue in the general setting outlined in the proof of Theorem A.1, and adopt the

conventions that E(Y ) = µ while Var(Y ) = 1. Recalling that rn is the number of relevant

covariates, there are 2rn distinct expected conditional types, which we can enumerate as

Y1, . . . , Y2rn . If disclosure k involves disclosing kr relevant covariates, then there is a set Sk

of size 2rn−kr such that the evaluator’s posterior expectation can be written

Zk =
1

2n−hn

∑
j∈Sk

2n−rn−(hn−kr)Yj =
1

2rn−kr

∑
j∈Sk

Yj.

As in Step 1 of the proof of Theorem 1 (Section A.2.1), replace each Yj with a variable

Y k
j

d
= Yj which is independent across disclosure sets. This yields the random variables

Zind
k =

1

2rn−kr

∑
j∈Sk

Y k
j .

As in the proof of Proposition A.1, it follows from Lemma 1 that

E[max{Z1, . . . , ZKn}] ≤ E[max{Zind
1 , . . . , Zind

Kn
}].

Next define

Ziid
k =

1

2rn−hn

2rn−hn∑
j=1

Y k
j
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and note that these are identically and independently distributed with shared variance

V ar(Ziid
k ) =

1

2rn−hn
.

Following the arguments in Step 2 of the proof of Theorem 1 (Section A.2.2), we get

E[max{Zind
1 , . . . , Zind

Kn
}] ≤ E[max{Ziid

1 , . . . , Ziid
Kn

}].

where as before Kn =
∑hn

j=0

(
n
j

)
. Further, by the argument given in Step 3 of the proof of

Theorem 1 (Section A.2.3),

lim
n→∞

|V iid
n − V N

n | = 0

where

V N
n ≡ E

[
max{ZN

1 , . . . , ZN
Kn

}
]

and Zk ∼ N
(
µ, 1

2rn−hn

)
. Again applying the bound from Berman (1964), we have

V N
n ≤ 1

2rn−hn
C
√
log(Kn) ≤

1

2n(αr−αh)
C
√
n.

By assumption that αr > αh, the right-hand expression converges to zero as n grows large,

concluding the proof.

B.5 Proof of Proposition 3

Throughout the proof we assume u(x) ≡ x and s = 0. In addition, for simplicity of notation,

we enumerate feasible disclosures by k and denote the corresponding posteriors (as random

variables) as Zn
k := ρf (dk). To upper bound the value of context, we apply a result from

Arnold and Groeneveld (1979):∣∣∣∣∣E
[

max
k∈{1,...,Kn}

Zn
k − E

[∑Kn

i=1 Z
n
i

Kn

]]∣∣∣∣∣ ≤√√√√(1− 1

Kn

) Kn∑
i=1

V ar(Zn
i ) +

1

Kn

Kn∑
i=1

(√
Kn

(
E[Zn

i ]−
∑Kn

i=1 E[Zn
i ]

Kn

))2
(B.4)

By Assumption 6, inequality B.4 simplifies to

∣∣∣∣E [ max
k∈{1,...,Kn}

Zn
k

]
− µ

∣∣∣∣ ≤
√√√√(1− 1

Kn

) Kn∑
i=1

V ar(Zn
i )

Finally, Assumption 7 implies that V ar(Zn
k ) = o( 1

Kn
) for every disclosure k. Hence
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∣∣∣∣E [ max
k∈{1,...,Kn}

Zn
k

]
− µ

∣∣∣∣ ≤
√(

1− 1

Kn

)
Kno(K−1

n )

which yields the desired result after taking a limit in n. The argument for the lower bound

follows the same line of reasoning and is thus omitted.

48


