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Abstract

Market mechanisms aim to deliver environmental services at low cost. However, this
objective is undermined by participants whose conservation actions are not marginal
to the incentive — or “additional” — as the lowest cost providers of environmental
services may not be the highest social value. We investigate this potential market
failure in the world’s largest auction mechanism for ecosystem services, the Conserva-
tion Reserve Program, with a dataset linking bids in the program’s scoring auction to
satellite-derived land use. We use a regression discontinuity design to show that three
of four marginal winners of the auction are not additional. Moreover, we find that the
heterogeneity in counterfactual land use introduces adverse selection in the market. We
then develop and estimate a joint model of multi-dimensional bidding and land use to
quantify the implications of this market failure for the performance of environmental
procurement mechanisms and competitive offset markets. We design alternative auc-
tions with scoring rules that incorporate the expected impact of the auction on bidders’
land use. These auctions increase efficiency by using bids and observed characteristics
to select participants based on both costs and expected additionality.
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1 Introduction

Land-use change contributes 13% of global greenhouse gas emissions (Friedlingstein et al.,
2022) and leads to biodiversity loss, water pollution, and erosion (Dirzo et al., 2014; Vörös-
marty et al., 2010; Borrelli et al., 2017). While environmental markets can, in theory, re-
duce environmental degradation at low cost (Samuelson, 1954; Anderson and Libecap, 2014;
Teytelboym, 2019), many believe that existing mechanisms have failed to meet this poten-
tial (Anderson, 2012; Filewod, 2017; Maron et al., 2016; West et al., 2020; Jones and Lewis,
2023). A leading explanation for this failure is the possibility of inframarginality: some par-
ticipants may have engaged in the incentivized action even absent an incentive. The notion
of “additionality,” defined as the likelihood that an action is marginal to an incentive, is a
central challenge to the design and success of many environmental markets (Engel et al.,
2008; West et al., 2023).

Does the challenge of additionality drive markets to failure, undermining environmental
incentive policies and offset markets?1 Or can markets be designed to achieve low-cost climate
change mitigation? We explore these questions by analyzing the challenge of additionality as
a market failure due to asymmetric information. Social welfare in markets for environmental
conservation depends on both a landowner’s unobserved additionality and her private cost
of complying with the market requirements. Market mechanisms, however, screen only on
the latter. If asymmetric information prevents incentives from reflecting heterogeneity in
landowner additionality, market mechanisms may not achieve allocative efficiency and in the
extreme, may fail (Akerlof, 1970). In this paper, we use this perspective to analyze, test,
and quantify this potential failure and to examine remedies in alternative market designs.

We conduct our analysis in the context of the United States Department of Agriculture’s
(USDA) Conservation Reserve Program (CRP), one of the oldest and largest Payments
for Ecosystem Services (PES) mechanisms in the world.2 The CRP incentivizes agricultural
land retirement and conservation actions via procurement auctions of conservation contracts.
CRP contracts pay landowners $1.6-$1.8 billion per year to take cropland out of production
and to plant grass mixes, plant or maintain trees, or establish habitats for a duration of ten

1In offset markets, private buyers purchase contracts that “offset” environmental degradation acre-for-
acre or ton-for-ton. Offset markets exist in a range of settings, due to direct implementation from regulators
(wetlands and air pollution), to allow for gains from trade between regulated and unregulated industries
(e.g. compliance offsets in California’s cap-and-trade program), between countries to provide flexibility in
meeting international emissions commitments (the Clean Development Mechanism and REDD+), and due
to the large volume of voluntary net-zero commitments among firms (McKinsey Sustainability, 2021, 2022).
See Salzman et al. (2018) for an overview of Payments for Ecosystems Services, specifically.

2Over its history, the CRP is the largest PES mechanism in the world. Within a given year, the CRP is
second to China’s Sloping Land Conversion Program.
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years. Combining administrative data and high-resolution satellite imagery, we construct a
dataset that links landowners’ multi-dimensional bids in the CRP scoring auction to their
land use, which we use to measure additionality. The CRP auction provides a rich empirical
setting for each step of our analysis: assessing the extent of additionality, testing for asym-
metric information, and quantifying their implications for social welfare under current and
alternative market designs. Moreover, the insights from this setting are broadly applicable:
CRP contracts are structured similarly to other PES programs, to contracts traded in global
offset markets, and to private competitive agricultural offset markets in the US.3

We first analyze the market failure introduced by additionality with a stylized framework that
builds on the graphical analysis in Einav et al. (2010). Landowners differ in two dimensions.
The first is their cost of contracting, which includes the forgone option value of cropping and
the hassle costs of complying with program requirements. The second is their conservation
behavior without the contract, which determines their additionality. The social value of
contracting depends on a landowner’s cost and additionality, but her choices depend only on
her cost and the market incentive. This difference can lead to allocative inefficiency. When a
landowner’s cost of contracting is positively correlated with her additionality — for example,
landowners who expect to conserve regardless of the program have lower opportunity costs of
contracting — there will be adverse selection in the market. In procurement, adverse selection
can limit the implementability of efficient allocations and undermine the performance of
standard mechanisms (Manelli and Vincent, 1995). In competitive offset markets, adverse
selection can limit trade because buyers consider the expected additionality of all market
participants, not only those contracting at the margin. These challenges can be remedied if
markets are designed to close the gap between socially-optimal choices and the choices made
in the market.

The stylized framework provides guidance for empirical analysis. Social welfare under current
and counterfactual market designs depends on the distribution of landowner contracting
costs and the population expectation of additionality at each value of costs. Contracting
costs and additionality may be correlated due to landowners’ expectations of low payoffs
from cropping land. However, landowners may have only limited information about future
payoffs to cropping over the contract’s duration and incur hassle costs that may be arbitrarily
correlated with additionality (Jack and Jayachandran, 2019). The extent of additionality,
the existence of adverse selection in the market, and together, their quantitative implications
for the performance and design of markets for environmental services are empirical questions.

We begin by examining the extent of additionality in our setting. Credible estimates of
3See Kinzig et al. (2011), Engel et al. (2008), and Stubbs et al. (2021), respectively.
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additionality, particularly in large-scale mature markets, are scarce as they require knowledge
of an unobserved counterfactual. We use the discontinuity in contracting around the winning
bid in the procurement auction to evaluate additionality at the margin of contract awards.
We find that, as incentivized by the CRP, landowners substitute away from agriculture to
natural vegetation and grasslands upon contracting. However, only one quarter of landowners
are additional, which we calculate by comparing the regression discontinuity treatment effect
to the magnitude of land contracting at the margin. In other words, three quarters of
landowners would have conserved without a CRP contract. However, the status quo auction
implicitly assumes all landowners are additional in the design of its scoring rule (Claassen
et al., 2018).

To test for adverse selection in the market, we correlate heterogeneity in additionality with
heterogeneity in the costs of contracting reflected in landowner bids. We make two assump-
tions — perfect compliance and no spillovers, both of which we test and validate — to obtain
a landowner-specific measure of additionality for all rejected bidders (82% in the most re-
strictive auction). We examine the relationship between landowner-specific additionality and
bids following classic tests for asymmetric information in insurance markets (Chiappori and
Salanie, 2000) and auctions (Hendricks and Porter, 1988). We document substantial hetero-
geneity in additionality and a positive correlation between additionality and bids, indicating
the presence of adverse selection in the market. The positive correlation persists even condi-
tional on a rich set of observed characteristics. This analysis also highlights opportunities for
improvements to market design: heterogeneity in additionality is predicted by landowners’
choice of contract in the mechanism and by the observed characteristic of soil productivity.

These facts demonstrate that both additionality and asymmetric information are relevant to
the function of this market; to quantify their welfare implications and evaluate the perfor-
mance of counterfactual market designs, we develop and estimate a joint model of bidding
and additionality. First, we infer costs of contracting from revealed preferences in optimal
bidding. Then, we estimate landowner additionality, including how it varies with costs, by
matching the moments of land use presented in the first half of the paper.

In the CRP auction, landowners submit multi-dimensional bids on a menu of heterogeneous
contracts, which are ranked by a scoring rule. This provides a rich environment for market
design, as scores across the menu of contracts and observed asymmetry terms are tools to
increase social welfare. In the first part of the model, we extend the multi-dimensional
bidding models of Asker and Cantillon (2008) and Che (1993) to a setting with a discrete
contract choice and a non-linear scoring rule. In the second part, we model additionality
with a conditional expectation function that relates land use to both observed characteristics
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and unobserved landowner costs. This conditional expectation function is the component of
the model that captures the possibility of inefficient or adverse selection.

We estimate the model in three steps. The first two steps adapt standard procedures for the
empirical analysis of auctions (Guerre et al., 2000; Hortaçsu, 2000; Hortaçsu and McAdams,
2010; Agarwal et al., 2023). First, we estimate bidder beliefs via simulation. Second, we
estimate bidder costs via revealed preferences in optimal bidding. Because of the discrete
choice in the bidding problem, we rely on variation in the scoring rule for identification. In
the final step, we estimate additionality, including how it varies with unobserved landowner
costs, by matching the levels of additionality and the correlation between additionality,
landowner characteristics, and optimal bids observed in our linked land use and bid data.
We use our estimates of additionality to calculate the social benefits of contracting based
on valuations of environmental services from the CRP literature and the USDA’s revealed
preferences across landowners and contracts implied by the scoring rule.

Using these estimates, we first examine whether the existence of a market for conservation
increases social welfare. When some landowners in the market are not additional, this is
theoretically ambiguous; we investigate it empirically in a simple uniform market for the
base contract. We find substantial social welfare gains under the socially-optimal uniform
price ($14.66 per acre-year) and in a stylized competitive offset market ($14.11 per acre-
year). The difference between these two market structures (-4%) reflects the trade-limiting
effects (-15%) of adverse selection in competitive markets. Despite landowners who are not
additional and the adverse selection this introduces, we find that the market does not fail.

We then evaluate the performance of the status quo auction mechanism. We estimate that
the status quo mechanism leads to social welfare gains of $126 million per auction, relative
to no market. However, it implements only 15% of the social welfare gains of an efficient
allocation. This allocation determines contract awards based on both landowners’ costs and
expected social benefits, which depend on additionality.

Implementing the efficient allocation with an incentive compatible auction may not be possi-
ble (Myerson, 1981). Because they are less additional, lower cost landowners are not always
higher social value. Our estimates imply that the allocation rule for this efficient benchmark
need not be monotone in bidder cost.

We instead propose and evaluate alternative auctions with scoring rules that trade off bid-
ders’ costs against both their conservation actions’ heterogeneous social benefits and their
expected additionality. This differs from the status quo scoring rule, which does not consider
the latter. Alternative scoring rules adjust asymmetry across bidder observables and scores
across the menu of contracts based on predictions of additionality. Instead of restricting

4



participation in the market through eligibility requirements, our approach re-designs the
auction to impact conservation, acknowledging that some landowners in the market may not
be additional.

Simple modifications to the auction’s scoring rule close the gap between the status quo and
efficient allocation by 41%, increasing social welfare by $284 million per auction. All gains are
due to changes that incorporate landowner additionality. A large share are from setting the
socially-optimal uniform adjustment to the scoring rule. Further gains accrue from using the
rule to differentiate among heterogeneously additional landowners. By contrast, switching
from the status quo (inefficient) auction to an (if all landowners were additional, efficient)
Vickrey-Clarke-Groves mechanism that remains naive to additionality reduces social welfare.

We conclude with the implications of supply-side adverse selection for competitive offset
market design.4 Competitive markets introduce distinct considerations: a differentiated
market may or may not be more efficient than a uniform one. Differentiation based on
available covariates would increase social welfare in a stylized competitive offset market for
the base contract by 15%, reducing both inefficient selection and inefficiently-limited trade
due to adverse selection. Next, we consider which contracts could be traded. Markets for
tree planting and maintenance unravel, while social welfare losses from adverse selection in
other markets, including grasses planting and habitat creation, are limited to at most 3%.

Together, our results highlight that although additionality and the adverse selection that
it introduces are relevant in practice, and in theory, can cause markets to fail, voluntary
environmental markets can deliver on their promise of low-cost conservation. However,
successful market design must consider not only the heterogeneity in private costs that
determine choices, but also the implications of these choices for additionality and social
welfare in the market.

Related Literature Our primary contribution is to develop an empirical framework to
evaluate social welfare under current and counterfactual market designs in the presence of
the additionality market failure. We also provide credible estimates of the extent of addition-
ality and evidence of adverse selection in a large-scale, mature market for ecosystem services.
Our regression discontinuity estimates of additionality contribute to a literature estimating
treatment effects of payments for ecosystem services (Jack, 2013; Alix-Garcia et al., 2015;
Jayachandran et al., 2017; West et al., 2020; Rosenberg et al., 2022) and inframarginality in
offset markets (Calel et al., 2021). Our framework builds on theoretical analyses of asymmet-

4The Growing Climate Solutions Act of 2021 includes provisions for the USDA to serve as a regulator of
agricultural offset markets.
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ric information (van Benthem and Kerr, 2013; Mason and Plantinga, 2013; Li et al., 2022;
Haupt et al., 2023) and empirical tests for selection (Montero, 1999; Jack, 2013; Jack and
Jayachandran, 2019) in environmental incentive programs and offset markets.

Though our context is additionality in conservation incentives, our framework relates broadly
to the design of environmental incentive programs and other voluntary regulation (Allcott
and Greenstone, 2012; Borenstein, 2012; Allcott and Greenstone, 2017; Einav et al., 2022;
Ito et al., 2023) and complements work studying other sources of inefficiency in markets for
environmental conservation (Harstad, 2016; Harstad and Mideksa, 2017; Aronoff and Rafey,
2023). Beyond environmental markets, our approach to auction design relates to a literature
evaluating market designs based on treatment effects, not only revealed preferences (e.g.
Agarwal et al. (2020)).

We contribute to a literature studying quality concerns in procurement auctions (Manelli and
Vincent, 1995; Decarolis, 2014; Carril et al., 2022; Lopomo et al., 2023), where we provide
an empirical framework to evaluate alternative auction designs in the presence of adverse
selection on bidder quality (additionality in our setting). This empirical framework draws
on a large literature studying selection in insurance markets (Akerlof, 1970; Chiappori and
Salanie, 2000; Einav et al., 2010; Bundorf et al., 2012; Marone and Sabety, 2022).

Methodologically, our model and estimation strategy use techniques from a rich literature
advancing the empirical analysis of auctions (Guerre et al., 2000; Hortaçsu, 2000; Hortaçsu
and McAdams, 2010; Jofre-Bonet and Pesendorfer, 2003; Agarwal et al., 2023). We draw on
and extend existing work on scoring and other multi-dimensional auctions (Che, 1993; Asker
and Cantillon, 2008, 2010; Lewis and Bajari, 2011; Sant’Anna, 2017; Hanazono et al., 2020;
Kong et al., 2022; Allen et al., 2023; Bolotnyy and Vasserman, 2023) to incorporate discrete
bidding, a non-linear scoring rule, and a correlation between additionality and bidder costs.

2 Theoretical Framework

We present a framework to analyze additionality in markets for environmental services.

2.1 Model

There exists a continuum of landowners, indexed by i, each making a decision to contract,
xi ∈ {0, 1}, to obtain a transfer, p. In Section 5, we adapt this framework to a finite number
of landowners bidding for contracts in an auction.
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The contract involves a promise to provide an environmental service (ai = 1) versus not
(ai = 0). In our setting, ai = 1 denotes agricultural land retirement (conservation) and ai = 0

denotes cropping. The action ai = 1 generates social benefits from positive environmental
externalities. The buyer of the contract — either a regulator or a private buyer in an offset
market — values the social benefits from ai = 1 at B > 0.

Define ai1 as landowner i’s action when xi = 1 and ai0 as her action when xi = 0. We
assume perfect compliance, so ai1 = 1. Because B is generated whenever i chooses ai = 1,
regardless of contract choice xi, the benefit of contracting with i is only the incremental
value B · (1− ai0). ai0 is unobserved whenever xi = 1 and is therefore non-contractible.

Landowner Types Each landowner i is characterized by a type θi = (ci, ai0) distributed
according to the cumulative distribution function F (θ). ci is a landowner’s cost of con-
tracting, defined as the minimum transfer p required for a landowner to accept the contract
xi = 1. ai0 is, as defined above, the action a landowner would have taken in the absence of
the contract.5 We do not restrict the joint distribution of ci and ai0. Landowners may have
a low ci because they have unprofitable land that they ultimately do not crop (ai0 = 1). But
landowners may also have only limited foresight about the option value of cropping, and
contracting in realistic settings involves activities beyond choosing not to crop that impose
hassle costs that enter ci (Jack and Jayachandran, 2019).6 It is therefore ambiguous whether
and how ci and ai0 are related.

It will be useful to define the conditional expectation function:

τ (c) = E [1− ai0 | c = ci] . (1)

This function describes the expected additionality, or the expected impact of contracting on
ai, among all landowners with the same cost of contracting.

Social versus Landowner Incentives The social surplus of contracting with landowner
i is:

SSi = B · (1− ai0)− ci. (2)
5We define landowners by the action ai0, but landowners could alternatively be defined by the cost of ai0.

Results that apply to a hidden information model also apply to a hidden action model (Milgrom, 1987).
6These include complying with mandates to purchase specific seed mixes whose costs to obtain differ

across regions, effort costs to comply with specific configurations of grass planting, tree planting, or habitat
establishment required in the contract, paperwork burdens to process payments, audits to manage compli-
ance, and any taste or distaste for participating in an environmental market.
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Gains from trade occur when the incremental value of environmental services due to con-
tracting is higher than a landowner’s cost of contracting.

Landowners choose xi = 1 if p ≥ ci. Let

x∗i (p) = 1 {p− ci ≥ 0} (3)

be landowner i’s choice to contract at price p. Equations (2) and (3) show that landowner
i transacts based only on p and her contracting cost ci, but social surplus depends also on
1 − ai0, or her additionality. p will therefore not necessarily incentivize the highest social
surplus landowners to contract.

Efficient Prices and Allocations The socially-optimal uniform price solves:7

max
p

∫
(B · τ (c)− c)x∗ (p; c) fC (c) dc, (4)

where the density fC is the marginal of F (θ) on contracting costs, ci, and x∗ (p; c) =

1 {p− c ≥ 0}. The solution to this problem is equivalent to one where a quantity is chosen
and an allocation is implemented with a Vickrey auction.

Equation (4) shows that fC and τ (c) are sufficient statistics for social welfare and landowner
choices when p is the only instrument available to allocate landowners to contracts. More
generally, fC and τ (c) are sufficient statistics for social welfare for any incentive compatible
mechanism.8 Contracting with landowner i will therefore be efficient if and only if:

B · τ (ci)− ci ≥ 0. (5)

Our interest in this stylized framework is in when p will implement this allocation, which we
will refer to as the efficient allocation.

2.2 Graphical Analysis

We analyze the efficiency of allocations in the market graphically, plotting markets with
different F (θ) in Figures 1a and 1b. Each figure plots two curves: one based on fC and

7A uniform price is motivated by the absence of observables. This could be because they have already
been conditioned on, where equation (4) defines the pricing problem in a sub-population.

8See Lopomo et al. (2023) for more details and a proof. See also Einav et al. (2010) on the use of similar
sufficient statistics for the analysis of adverse selection in competitive insurance markets
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one based on τ (c). The first curve is the inverse distribution function of contracting costs,
F−1C (q), or the marginal cost curve (MC), where the horizontal axis q is the share of the
population ranked by contracting costs. The second curve is the value of contracting at each
quantile of the distribution of contracting costs, B · τ , or the contract value curve.9 The
contract value curve lies weakly below B reflecting the possibility that ai0 = 1 for some
landowners.

Each panel in Figure 1 displays an upwards-sloping contract value curve (τ ′(c) > 0). This
captures the possibility that landowners’ expectations about future payoffs to cropping may
influence both ci and ai0; landowners who expect to conserve may face a low cost of accepting
a contract requiring conservation. In other words, there may be adverse selection in the
market.10 Modeling adverse selection with an upwards-sloping contract value curve builds
on the widely-used graphical analysis of adverse selection in insurance markets developed
in Einav et al. (2010). We emphasize, however, that Figure 1 is for illustration: τ (c) —
including whether it is upwards-sloping — and F−1C (q) are to be estimated.

The vertical distance between the contract value and marginal cost curves equals B ·τ (c)−c,
or the average social surplus of contracting with all landowners with costs equal to c. From
equation (5), it is efficient to contract only in regions where the contract value curve lies
above the marginal cost curve.

In Figure 1a, the efficient allocation can be implemented by setting the socially-optimal p∗

at the intersection of the contract value and marginal cost curves, leading to social welfare
gains in triangle CDE. Implementing this allocation requires knowledge of both fC and τ (c):
the distribution of contracting costs and heterogeneous impacts of contracting along this
distribution. Mispricing can result in inefficient contracting and social welfare losses. If
counterfactual actions are ignored, a common practice, setting p = B leads to social welfare
losses in triangle EFG.

In Figure 1b, the efficient allocation cannot be implemented. In the distribution of landowner
types illustrated in Figure 1b, the contract value curve lies below the marginal cost curve at
low contracting costs (low q). This represents landowners that have low but positive costs
of contracting — due to some option value of cropping and/or hassle costs — but a high
likelihood of conserving without the contract. In this market, a regulator cannot implement
the efficient allocation (triangle EFG), as any incentive that is attractive for landowners in
triangle EFG is also attractive for landowners in CDE for whom B · τ (ci) < ci. In the

9This plots B · τ
(
F−1C (q)

)
.

10Some may argue that using the term “adverse selection” abuses terminology. This is an example of
“selection on moral hazard” defined in Einav et al. (2013), which also includes a discussion on terminology.
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example market in Figure 1b, the constrained efficient allocation is to contract with no one
despite regions of social welfare gains because triangle CDE is larger than triangle EFG.

The difference between equations (2) and (3) causes the inefficiency in Figure 1b. The reg-
ulator can only affect allocations based on landowner costs, ci, and the incentive p, but
social surplus depends also on the impact of contracting, or ai0. In contrast to standard
markets, the relationship between social surplus and landowner costs may not be not mono-
tonically decreasing. Because the vertical distance between the contract value and marginal
cost curves (social surplus) crosses zero from below in Figure 1b, no mechanism can imple-
ment the efficient allocation (triangle EFG) as it would require an allocation rule that is not
monotonically decreasing in landowner costs (see Myerson (1981); Lopomo et al. (2023)).

If contracts are traded in competitive markets, which we term offset markets,11 adverse se-
lection can also prevent the competitive equilibrium price from implementing an efficient
allocation, even when it is implementable with the price that solves equation (4) (Akerlof,
1970). Price-taking buyers in the market take expectations over the additionality of all mar-
ket participants, not only those contracting at the margin. We define a competitive market
price pc by the equilibrium condition: pc = E [B · τ (ci) | ci ≤ pc].12 Figure 1c adds the curve
defined by E [B · τ (ci) | ci ≤ p] to the population of landowners presented in Figure 1a.13 Its
intersection with the marginal cost curve defines the competitive market equilibrium, which
differs from the socially-optimal price. In the presence of adverse selection, trade in com-
petitive (offset) markets will be limited and efficient contracting, with social welfare gains
represented in triangle EFG, will not occur.

Empirical Questions Figure 1 illustrates that the welfare implications of additionality
depend on fC and τ (c). The goal of our empirical analysis is therefore to estimate fC and
τ (c). But this stylized model was limited in its tools. Our empirical analysis will include
a richer set of contracts and observable characteristics. We will then investigate both the
possibility of social welfare losses when market incentives do not implement the efficient
allocation and social welfare gains from alternative market designs.

11We will refer to competitive markets with price-taking buyers as offset markets, though we model buyers
as valuing all of the social benefits of the conservation action B, not only an emissions offset.

12We focus on the social welfare losses from supply-side adverse selection. We abstract away from the
possibility that buyer valuations may diverge from B, that buyers may not know the distribution F (θ), or
that buyers may not value additionality.

13This curve is defined as
∫ q

0
B · τ

(
F−1C (q̃)

)
dq̃.
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3 Setting and Data

3.1 The Conservation Reserve Program

Our empirical setting is the Conservation Reserve Program (CRP), a Payments for Ecosys-
tem Services (PES) scheme incentivizing conservation on agricultural land administered by
the United States Department of Agriculture (USDA). Established in 1985, the CRP pays
landowners between $1.6 and $1.8 billion per year to retire erodible and other environmen-
tally sensitive cropland and adopt additional conservation actions for a contract duration
of 10 years. The CRP is one of the largest and most mature PES schemes in the world.
It is also a major source of expenditures on environmental policy in the United States; the
CRP is one of several conservation programs at the USDA with a combined budget of $8
billion.14 Moreover, the structure of the CRP and its incentivized activities are similar to
other government financed PES schemes,15 to offset contracts traded in voluntary markets,16

and most specifically, to a burgeoning private agricultural offset market in the US. There is
substantial policy interest in growing this market. The Growing Climate Solutions Act of
2021 includes provisions for the creation of a USDA-regulated agricultural offset market, in
which CRP-style contracts would be sold to private buyers.17

Unlike the uniform pricing problem in Section 2, the USDA awards CRP contracts via a
complex auction mechanism. This adds richness to both the strategic and contracting envi-
ronment that we will leverage empirically. Under the CRP’s General Enrollment mechanism,
eligible landowners bid for heterogeneous contracts in a discriminatory, asymmetric, scor-
ing auction.18 Contracts are differentiated by conservation actions that “top up” the base
action of land retirement. These actions include planting specific grass mixes, planting or
maintaining trees, and establishing or restoring pollinator or rare habitats.

Bids are scored according to a known scoring rule that awards bidders points for the envi-
ronmental sensitivity of their land, their chosen contract (described above), and their bid
rental rate, a payment per acre per year. Characteristics of the land that determine points

14By comparison, the Superfund program and Weatherization Assistance Programs have annual budgets
of $1.1 billion, and the total Environmental Protection Agency (EPA) budget is $12 billion. See the USDA
FY 2023 Budget Summary, FY 2023 EPA Budget in Brief, and NASCP Weatherization Assistance Program
Funding Report for FY 2019 for more details.

15See Kinzig et al. (2011) and Salzman et al. (2018) for overviews.
16Over 50% of contracts traded in voluntary offset markets are related to land use and management. See

the Voluntary Registry Offsets Database at the Berkeley Carbon Trading Project for more details.
17See S. 1251 and H.R. 2820 for more details.
18In addition to the General Enrollment mechanism, there is a posted-price Continuous Enrollment mech-

anism for targeted land. Historically, 75% of CRP acreage has been contracted via the General Enrollment
mechanism (Hellerstein, 2017).
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for environmental sensitivity include erodibility, importance for habitats, potential for water
and air pollution, and carbon sequestration potential. Bid rental rates are subject to a bid
cap based on the average land rental rate in the county and soil productivity estimates.
Appendix A describes the auction mechanism and scoring rule in more detail.

The aggregate acreage to be awarded contracts is determined by Congress in the Farm Bill,
which in turn determines the threshold score for contract awards. All bidders with scores
above the threshold score are awarded a contract.19 Given uncertainty in both the aggregate
acreage and their opposing bidders, bidders face uncertainty over the threshold score at the
time of bidding. Bids are prepared with the assistance of staff at Farm Services Agency
county offices, who help landowners trade-off different contracts and bid rental rates.

Auctions occur once every 1-4 years. Landowners are eligible to bid if they meet erosion stan-
dards, are in a national or state conservation priority area, and either had cropped at least
four years in a 5-10 year window preceding the auction or are re-enrolling CRP land.20 This
eligibility requirement is designed to limit participation to additional landowners. Landown-
ers face steep penalties, refunding all payments since enrollment plus a 25-percent penalty,
if they exit early or fail to comply with the rules of the program.21

Research quantifying the value of the CRP has documented improvements in wildlife habi-
tats, erosion control, water quality, and carbon sequestration from cropland retirement
(Feather et al., 1999; Hansen, 2007; FAPRI-MU, 2007; Allen and Vandever, 2012; Johnson et
al., 2016; Hellerstein, 2017). However, these analyses are typically conducted using models
that ignore counterfactual land use. Perhaps motivated by eligibility requirements designed
to restrict to additional landowners, the scoring rule is constructed under the assumption
that land would crop in the absence of the program (Claassen et al., 2018). Because the
primary environmental gains from the CRP accrue from land retirement, relative to crop-
ping, the possibility that some landowners conserve absent the CRP (ai0 = 1) presents the
additionality concern.

3.2 Data

Our dataset links bids to a panel of landowners’ land use to measure additionality.
19There is an additional constraint that no more than 25% of a county’s total acreage can be in a CRP

contract. This constraint essentially never binds.
20The fact that eligibility is determined in a window five years preceding bidding is designed to eliminate

any perverse incentives to crop land to in order to become eligible or maintain eligibility for the CRP.
Activities in the 1-5 years preceding bidding have no impact on CRP eligibility.

21The USDA has occasionally allowed for voluntary contract extensions or automatic re-enrollment. No
such initiatives were implemented during our main period of study.
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Data on Bids We obtain data on all components of the bid, including the bid rental rate,
the bid contract, and the characteristics of landowners that impact the score. Our data
cover all seven auctions that occurred from 2009 to 2021. We also obtain data on all CRP
contracts.

Each landowner is defined by a collection of fields, or Common Land Units, the smallest
agricultural unit with a common land use. CRP contracts typically cover only a subset of a
landowner’s total fields. Our data include the geolocation of all bidding landowners for all
auctions as well as identifiers for the specific fields offered into the mechanism (“bid fields”)
for one auction (in 2016).

Data on Land Use We link bidders, and for the purpose of comparison, agricultural
non-bidders, to a panel of land use outcomes. The primary land use outcome of interest is
whether land is cropped versus retired, as this is the behavior incentivized by the CRP. We
use both remote sensing and administrative datasets due to their complementary strengths.

Our primary dataset is the Cropland Data Layer (CDL), a remote-sensing product from
the National Agricultural Statistics Service (NASS). This dataset provides land cover clas-
sifications at 30m by 30m resolution (roughly a quarter acre) from 2009-2020. The binary
indicator of crop versus non-crop — our primary outcome of interest — is rarely misclas-
sified (Lark et al., 2021).22 However, as in other satellite-derived products, non-classical
measurement error can generate biases in assessing land-use change (Torchiana et al., 2022;
Alix-Garcia and Millimet, 2022).

Our second dataset is field-level administrative data on land use that agricultural landowners
report to the USDA in “Form 578” for 2013-2019. These data are accurate and comprehensive
for cropped land because crop insurance payouts are dependent on these reports, but have
two limitations. Landowners are only incentivized to report Form 578 if fields are insured
by crop insurance, and landowners with CRP contracts are mechanically classified as non-
cropped.

Our final land-use dataset is a collection of high-resolution satellite imagery (1m) of con-
tracted land collected under the National Agriculture Imagery Program (NAIP) from 2017-
2021. We use these images to observe and confirm compliance with CRP rules.

While accurate to assess agricultural land retirement — the main incentivized activity of
the CRP — these datasets cannot measure the different “top-up” actions that differentiate

22The superclass accuracy of cropland in the Cropland Data Layer has user (probability that a classification
of crop is true crop) and producer (probability that true crop is classified as crop) accuracy of over 95% from
2008-2016 (Lark et al., 2021)
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the heterogeneous contracts in the mechanism (e.g. specific species). Our main estimates
of additionality will focus on the measure that we can observe and the principal goal of the
program: the binary outcome of retiring versus cropping land.

Appendix B provides more details about agricultural land units, the construction of our
dataset, and the use of aerial photographs to confirm compliance with CRP rules.

Summary Statistics Table 1 presents summary statistics. Columns (1)-(2) summarize
all agricultural landowners in the US, including CRP-eligible and ineligible landowners.
Columns (3)-(4) summarize all land among bidders in our sample and columns (5)-(6) sum-
marize bid fields.

Panel A presents land use outcomes in the year prior to bidding. Approximately 21% of
bidders’ land is cropped (18-21% on bid fields) versus 28-30% nationwide. The majority of
the remainder is in natural vegetation and grassland. Corn and soybean cultivation account
for two-thirds of all cropping. The remote sensing and administrative data generally align,
but do not match exactly.

Bidders have lower USDA-constructed estimates of soil productivity (Panel B), are larger,
and are more environmentally sensitive as measured by the scoring rule than the average
agricultural landowner. These differences, along with the differences in land use in Panel
A, are likely driven in part by eligibility requirements that columns (1) and (2) are not
conditioning on.

The average bidder offers 84.1 acres into the CRP mechanism (33% of a bidder’s land)
for a rental rate per acre per year of $83. Two-thirds of bidders bid on a contract that
includes a grassland-planting action, 21% choose a wildlife habitat action, and 12% choose
a tree-planting action. 70% of bidders are re-contracting after their initial 10-year contract
expired.23 81% of bidders are awarded contracts across the auctions in our sample. The
average auction includes 36,763 bidders.

4 Evidence: Additionality and Asymmetric Information

In this section, we estimate the extent of additionality in the CRP and test for heterogeneity
in and asymmetric information about additionality.

23Re-contracting bidders are treated identically to new bidders by the scoring rule.
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4.1 Regression Discontinuity Estimates of Additionality

Estimates of additionality are important inputs into the evaluation and design of markets for
environmental services but require a credible empirical strategy. We exploit the sharp dis-
continuity in CRP contract awards at the winning score threshold to evaluate the treatment
effect of a CRP contract in a regression discontinuity (RD) design.

Empirical Strategy Our RD specification pools all auctions in the sample, normalizes
each landowner’s score relative to her auction’s win threshold, and evaluates how land use
outcomes differ over time around this threshold.

Our main specification estimates, for landowner (or bidder) i, in auction g, and year t:

yigt = βr(i,t) · 1{Sig ≥ Sg}+ fr(i,t)(Sig − Sg) + νigt, (6)

where Sig is landowner i’s score in auction g, Sg is the winning score threshold in auction g,
r (i, t) = t − tg(i) normalizes the time dimension relative to the year of each auction (tg(i)),
and fr(i,t)(Sig − Sg) are relative-year-specific local-linear regressions in the MSE-optimal
bandwidth (Calonico et al., 2014) allowed to differ for positive and negative values of Sig−Sg.
βr(i,t) estimates time-varying RD coefficients around the year of the auction. We also estimate
the following pooled specification:

yigt = β · 1{Sig ≥ Sg}+ f(Sig − Sg) + νigt. (7)

Restricted to r (i, t) ≤ 0, equation (7) provides a test of validity. Restricted to r (i, t) > 0,
β provides an estimate of the treatment effect at the margin of contract awards pooled over
auctions and post-auction years.

We estimate equations (6) and (7) at the landowner level to accommodate the possibility of
spillovers across bid and non-bid fields. We cluster standard errors at the landowner level.

Validity The RD design is valid under the assumption that bidders possess information
about the winning score threshold’s distribution, but not its exact ex-post realization. Test-
ing this assumption translates to standard smoothness and manipulation tests for RD anal-
yses (McCrary, 2008); if bidders knew the threshold score, they would optimally bid just
above it. Figure 2a presents a histogram of the score distribution normalized relative to the
threshold score, Sig−Sg, or the running variable of the RD. Bidders with positive values are
awarded contracts and bidders with negative values are not. Figure 2a confirms the lack of
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bunching at the winning score threshold. Figure 2b also shows no differential cropping at
the discontinuity before the auction, plotting (binned) raw data and estimates of equation
(7) for r (i, t) ≤ 0.

Interpretation of equations (6) and (7) also requires an estimate of the magnitude of the first
stage. Figure 2c plots the share of bidders with a CRP contract after the auction around the
award threshold (equation (7) for r (i, t) > 0) and demonstrates a first stage close to one.
We will therefore interpret the RD coefficients from equations (6) and (7) as the impact of
a CRP contract.

Results Figure 3 presents raw data and estimates of equation (7) for r (i, t) > 0. As the
CRP’s primary goal is to incentivize agricultural land retirement, our outcome of interest
in Figure 3a is the share of each bidder’s land that is cropped, which we measure in the
remote sensing data. Figure 3a demonstrates that CRP contracts impact land use at the
margin of contract awards. Landowners above the score threshold, who are awarded a
contract, crop eight percentage points less land than the marginal landowners who are not
awarded contracts. This land is instead put into natural vegetation and grassland (trees,
shrubs, wetlands and grasses), as incentivized by the CRP (Figure 3b). Because we present
estimates at the bidder level, cropping is not zero for winners who typically only contract
on a subset of their land.

To analyze the time path of effects and estimate the extent of additionality, Figure 4 presents
coefficient estimates of βr(i,t) from equation (6) and compares them to a 100% additional
(ai0 = 0 for all i) benchmark. We estimate equation (6) using both the remote sensing data
(used in Figures 2b and 3) and the administrative data to ensure that results are consistent
across the two datasets. The 100% additional (τ = 1) benchmark in Figure 4 is calculated
as the share of marginal bidders’ land in a CRP contract. If contracting induced all bidders
to change land use, treatment effects would equal the τ = 1 line on Figure 4. Dashed lines
represent pooled post-period estimates (equation (7)) in each dataset.

Figure 4 presents four facts. First, consistent with the pre-period placebo test in Figure
2b, coefficient estimates are zero before the auction. Because the estimates in Figure 4 are
relative-year-specific RD coefficients, pre-period effects are identified in levels. Second, post-
period effect sizes and time-trends are similar in both datasets, confirming that results are not
driven by either non-classical measurement error in the remote sensing data or misreporting
in the administrative data. Third, while treatment effects grow in the first two years as
land transitions, effects are constant over the ten year contract period. Opportunities to
rebid, which would cause treatment effects to decrease over time, do not drive down average
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treatment effects.24

Finally, the main result in Figure 4 is that over the 10-year contract, the magnitude of the
treatment effect of a CRP contract on land use is substantially smaller than the τ = 1, or
100% additional, benchmark. Figure 4 demonstrates that approximately one in four bidders
is additional. Conversely, three of four bidders conserve even absent a CRP contract. Figure
4 provides evidence on the relevance of additionality in the CRP.

Table 2 summarizes results from Figures 2, 3, and 4, presenting estimates for the pooled
specification (equation (7)) in both datasets. The main results in Table 2 quantify the
additionality estimates from Figure 4: depending on the specification and data, we estimate
rates of additionality at the margin of contract awards between 21% and 31%, with a mean
and median effect size of 26%. Panel B presents estimates on other land use outcomes.25

Discussion Estimates of additionality at the margin provide information about the con-
tract value (B · τ) curve in Figure 1. First, it lies below B, as many landowners are not
additional. The results in Figure 4 also highlight the need to estimate, rather than assume,
the τ(c) function. If alternatively, costs and additionality could be summarized by a single
index, in which bidders with positive costs are additional and bidders with costs equal to
zero are not, then at the margin additionality should be either zero or one. Estimates of ad-
ditionality at the margin reject both of these hypotheses.26 This will motivate our modeling
and estimation approach: neither estimates of costs nor additionality alone are sufficient to
estimate social welfare under current or counterfactual market designs.

Mechanisms We argue that the estimates in Figure 4 are driven by heterogeneous land use
absent the contract (ai0) specifically on the land bid into the mechanism. Panel C of Table 2
(and Appendix Figure C.1) documents the absence of any spillovers onto non-bid fields. This
could occur either via a leakage mechanism, by which landowners reduce cropping on bid

24We observe limited rebidding. Appendix Figure C.4 plots the hazard rate of rebidding following a failed
initial bid. Even five years following the initial bid, only approximately 20% of losers have rebid and fewer
than 15% have won (despite multiple opportunities). This is consistent with the magnitude of the first
stage in Figure 2c and the institutions of the setting. The CRP is so mature that the General Enrollment
mechanism is shrinking over time; acreage contracted in later auctions is lower than acreage contracted in
earlier auctions over our time period of analysis.

25Appendix Figures C.1, C.2, and C.3 present corresponding RD figures. Appendix Table C.2 replicates
Table 2 restricting to bids of more than five acres, following Lark et al. (2017).

26This interpretation is slightly complicated by bidder asymmetry, contract choices, and the pooling of
auctions with different thresholds. Appendix Table C.1 presents RD estimates split by the location of the
win threshold parameterized by the amount a bidder would need to bid for the base contract to achieve Sg

and finds that 0 < τ < 1 across groups.
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fields but increase it on other fields, or if there are complementarities to cropping multiple
fields. We observe no evidence in support of either of these hypotheses.

In theory, both conservation without a CRP contract and cropping with a CRP contract
(non-compliance) could contribute to the result in Figure 4. We assess the CRP’s compliance
regime by inspecting high resolution aerial photographs of over 1,000 contracted fields.27 As
described in more detail in Appendix B, we find no evidence of non-compliance.

Beyond the RD Together, these two results — no spillovers and compliance — provide
a basis for empirical analysis beyond the RD. Among rejected bidders, we observe each
bidder’s ai0 on bid fields. With knowledge that ai1 = 1, we therefore observe 1− ai0 for each
landowner that loses the auction. In other words, we simplify to a “selective labels” problem
(Lakkaraju et al., 2017; Chan et al., 2022; Arnold et al., 2022).

4.2 Testing for Asymmetric Information

Empirical Strategy We use observations of landowner additionality (1− ai0) and bids to
conduct a test for asymmetric information in the spirit of Chiappori and Salanie (2000) and
Hendricks and Porter (1988). We estimate the following regression specification:

1− ai0 = β · bi + π · zi + h (zsi ) + νi, (8)

where 1− ai0 is measured as the share of landowner i’s bid fields that are cropped, observed
only for landowners without a contract award (those rejected by the auction), bi represents
characteristics of i’s bid, h (zsi ) are controls for characteristics that enter the scoring rule, and
zi are other landowner characteristics. Every specification of equation (8) includes controls
for the scoring rule, which impacts the strategic environment facing bidders. These include
estimates of groundwater quality, surface water quality, wind and water erosion (deciles), air
quality impacts, and whether a bidder is in a Wildlife Priority Zone or Air Quality Zone. We
restrict to the one auction where we observe the delineations of bid fields (the 2016 auction);
this is required to construct 1 − ai0. This auction is also the most restrictive auction in
our sample: 1 − ai0 is observed for 82% of bidders. We will address the complication that
equation (8) is estimated in the selected sample of rejected bidders in Section 5.

Following the logic of Chiappori and Salanie (2000) and Hendricks and Porter (1988), a
positive correlation between bids and 1− ai0 is indicative of asymmetric information about

27We use aerial photographs because any measurement error in the remote sensing classifications will
mechanically bias toward finding non-compliance.
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additionality. In the context of the stylized model in Section 2, a positive correlation implies
an upwards-sloping contract value curve, or adverse selection in the market.

Results We first document evidence of adverse selection in the market. Figure 5a presents
a binned scatterplot of the correlation between additionality and the bid per acre-year (the
bid rental rate), residualized of h (zsi ). Figure 5a demonstrates substantial heterogeneity in
additionality and a systematic positive relationship between higher bids — reflecting higher
costs of contracting — and additionality. The interpretation of Figure 5a is intuitive: bidders
with low costs of contracting have low costs in part because of private information that they
would be likely to conserve even without a CRP contract. Figure 5b shows that bids remain
correlated with additionality, capturing residual private information, conditional on other
observables including prior land use interacted with estimates of the soil productivity of the
bidders’ land

Next, we show that choices of contracts in the mechanism are systematically correlated
with additionality. Figure 5c replaces bi with a vector of chosen contract indicators — the
submitted bid on the menu of contracts — and documents substantial adverse selection (low
additionality) on tree-related contracts, relative to the base category of introduced grasses.
Figure 5c highlights that contract choices reveal information about additionality and that
alternative menus of contracts may lead to different outcomes in the market.

Finally, we present evidence that observable characteristics are predictive of additionality.
Figure 5d plots additionality by decile of landowner predicted soil productivity, conditional
on h (zsi ) but excluding any endogenous bid choices from the regression specification. These
estimates of soil productivity are collected by the USDA and are designed to approximate
the amount that a landowner would be able to earn on a given parcel of land. This charac-
teristic is an ideal predictor of additionality in theory, and Figure 5d demonstrates that it
is predictive of additionality in practice. This result highlights the potential to differentiate
incentives using this characteristic, which is not currently incorporated in the scoring rule.

Discussion The analysis in Sections 4.1 and 4.2 provide evidence on the extent of addi-
tionality, the presence of asymmetric information in the market, and the availability of tools
to differentiate landowners by their additionality. However, the welfare and market design
implications of these facts require a quantitative economic framework. In the next section,
we develop an empirical approach to obtain the sufficient statistics for welfare presented in
Section 2. Relative to that stylized set-up, our empirical model will incorporate heterogene-
ity across contracts and observable characteristics to capture a richer empirical setting for
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analysis and market design.

5 Empirical Model of Bidding and Additionality

We develop a joint model of bidding and additionality. We use this model to estimate (i) the
distribution of landowner costs of contracting over a menu of contracts and (ii) additionality
as a function of landowner costs and observable characteristics. Together with estimates of
the social benefits of CRP actions, which we take from the literature, the model facilitates
analysis of social welfare under current and counterfactual market designs.

Landowners are characterized by a vector of private costs and bid on discrete contracts,
differentiated by heterogeneous conservation actions, in response to a non-linear scoring rule.
Landowners also differ in their additionality, which we model with a conditional expectation
function that depends on both observable characteristics and bidders’ vector of costs. Our
empirical strategy first uses the optimality of bidding in the auction to estimate bidders’ costs
by revealed preferences and then estimates expected additionality as a function of costs and
landowner characteristics by matching moments of the observed joint distribution of land
use, landowner characteristics, and optimal bids (presented in Section 4).

5.1 Model

Landowners There are N landowners, indexed by i, and J contracts, indexed by j. Each
landowner is characterized by (i) her costs (ci, κi) for κi = {κij}, and (ii) her action ai0 absent
the CRP. Extending the model in Section 2, re-define F (θ) as the cumulative distribution
function of landowner types θi = ((ci, κi) , ai0) and Fc,κ as the marginal on (ci, κi).

The vector (ci, κi) defines landowner i’s costs of contracting. A landowner’s cost of contract
j is ci+κij, where ci is the base cost of contracting, common across contracts, and κij is the
top-up cost associated with contract j. We assume (ci, κi) are drawn independently across
landowners conditional on observables zi.

It will again be useful to define the function:

τ (zi, ci, κi) = E [1− ai0 | zi, ci, κi] , (9)

or the expected difference in conservation with a CRP contract versus without a CRP con-
tract given observable characteristics zi and landowner costs (ci, κi).
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Auction Landowners (bidders) submit a two-part bid bi = (ri,xi). xi is a contract vector,
with xij = 1 if the j-th contract is chosen and xij = 0 otherwise. Landowners choose a
single contract so

∑
j xij = 1. If landowner i wins the auction, bi describes the terms of her

CRP contract: she performs the action defined in xi and receives a payment of ri dollars per
acre-year. Each bid bi is converted into a score according to a known scoring rule s (bi, zsi ).
All landowners above a winning threshold score S are awarded a contract.

Landowner i forms beliefs about the probability of winning the auction with a score S
given uncertainty over her competitors and the acreage limit of the auction.28 We assume
that landowner i does not observe the number or characteristics of her competitors, and all
landowners form the same beliefs about the distribution of the threshold score S.29 Define
G(S) = Pr {S ≥ S}.

Optimal Bidding Each landowner i solves:

b∗i = argmax
(r,x)

 (r − ci − x · κi)︸ ︷︷ ︸
Payoff to i conditional on bid (r,x)

× G (s ((r,x) , zsi ))︸ ︷︷ ︸
Probability of i winning with bid (r,x)

 , (10)

where a landowner chooses her bid bi = (ri,xi) to maximizes her payoff conditional on
winning, multiplied by the probability of winning with that bid, given her costs (ci, κi).

Additionality In the contract period, landowners make land use decisions. If awarded a
contract, ai1 = 1. If not, landowners choose ai0, which is not contractible. At the time of
bidding, equation (9) is the population expectation of 1−ai0 for landowners with observable
characteristics zi and contracting costs (ci, κi). We estimate the function τ (zi, ci, κi), instead
of modeling the choice of ai0, because τ (zi, ci, κi) and Fc,κ are sufficient statistics for social
welfare under current and alternative market designs (see Section 2).

Remarks Landowners compete on both r and x in equation (10). This captures the
importance of competition on contracts in reality and allows for counterfactuals that re-
design the menu or incentives across contracts in the scoring rule.30 Although landowners

28The acreage limit is determined by Congress in the Farm Bill. Appendix Figure D.1 documents evidence
consistent with quantity uncertainty.

29This is motivated by the fact that bidding is decentralized among thousands of bidders across the US.
30The EBI Factsheets provided to landowners state: “The single most important producer decision involves

determining which cover practice to apply to the acres offered. Planting or establishing the highest scoring
cover mixture is the best way to improve the chances of offer acceptance.”
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are competing on multiple dimensions, whether the landowner wins against her competitors
depends only on the choice of score. The bidding problem can be solved as an “inner problem”
of a single-agent discrete choice and an “outer problem” of a one-dimensional game, building
on Asker and Cantillon (2008) and Che (1993). Each score induces a menu of payoffs from
winning the auction for each contract for each bidder (illustrated in Appendix Table A.3).
The resulting discrete choice problem is the bidder’s “inner problem.” Then, the choice of
the optimal score, given the optimally chosen contract, defines the bidder’s “outer problem.”

The bidding problem in equation (10) incorporates two important simplifications. First,
bidding is costless and there is no selection into bidding.31 Second, the bidding problem in
equation (10) is static. The CRP is so mature that the quantity procured in the auction is
in decline. This limits the option value to rebid, and is reflected in the fact that the vast
majority of bidders do not re-bid upon losing (see Appendix Figure C.4). However, in a
dynamic framework, the cost parameters estimated from equation (10) can be interpreted as
pseudo-costs that are the result of mapping a dynamic program with sequential auctions into
a static game (Jofre-Bonet and Pesendorfer, 2003). Counterfactuals that do not condition
on prior actions and hold the sequence of future auctions fixed will not be biased by the
static formulation of equation (10).

Although the mechanism is more complex, the market failure is the same as in Section 2.
Landowner choices and allocations depend only on the scoring rule s (bi, zsi ) and costs of
contracting (ci, κi), but the efficient allocation depends also on τ (zi, ci, κi).

5.2 Identification and Estimation

Identification Because observed bids are discrete, we cannot invert them using bidders’
first order conditions to point identify costs as in Guerre et al. (2000). We instead obtain
inequalities from the observed b∗i = (ri,xi) revealed preferred from optimal bidding in equa-
tion (10) that define identified sets containing the true values of (ci, κi) (Agarwal et al.,
2023). Instruments in the scoring rule s ((r,x), zsi ), which vary the relative payoffs across
contracts x but are conditionally independent of costs, narrow the bounds on the identified
sets. Variation in s ((r,x), zsi ) traces out the distribution of (ci, κi) conditional on observable
characteristics zi, Fc,κ | z. Appendix Figure D.2 provides a graphical explanation; Agarwal et
al. (2023) provides a proof.

For identification of τ (zi, ci, κi), suppose bidders truthfully report (ci, κi) to the mechanism,
31This is a simplifying assumption. Hellerstein (2017) makes the point that many eligible landowners do

not bid. We assume that non-bidders are invariant to changes in the mechanism.
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but no bidders are awarded contracts. F (θ) is point identified from observing the joint
distribution of (ci, κi) in bids and ai0 in the land use data. Our setting differs from this
ideal: (i) the discrete choice in equation (10) results in only identified sets for (ci, κi) from
observed bids, and (ii) ai0 is not observed for the 18% of bidders who win the auction and
are awarded a contract. Identification of the function τ (zi, ci, κi) uses the observed joint
distribution of 1−ai0, characteristics zi, and optimal bids b∗i = (ri,xi) and instruments that
shift s ((r,x), zsi ). τ (zi, ci, κi) is the conditional expectation function that rationalizes this
joint distribution. With full support, instruments in the scoring rule that shift payoffs across
contracts and the probability of winning replicate the “ideal experiment” described above.

We use three sources of variation in the scoring rule as instruments. Two shift relative payoffs
across contracts (illustrated in Figure D.3). One shifts only the level of the score. We assume
that all three sources of variation are conditionally independent of (ci, κi) and ai0. The first
source of variation is a mid-mechanism policy change: after bids were initially collected in
2021, Climate Smart Practice Incentives — additional payments dependent on contracts’
carbon sequestration potential — were announced and bids were recollected under the new
scoring rule. We obtained the bids submitted in both the interim and final mechanisms,
which provides variation in the relative payoffs across contracts for the same bidders and
same contract period.32 The second source of variation comes from the fact that bidders in
Wildlife Priority Zones (WPZs) face different payoffs across contracts both cross-sectionally
and over time. The third source of variation is similar, whether a bidder is in an Air Quality
Zone (AQZ), but shifts only the level of the score. The use of these instruments are justified
by the fact that WPZ and AQZ status are based on state priorities and the sensitivity of
wildlife or the importance of air quality, not characteristics of landowners or their land.

Parameterization Although with sufficient variation in the scoring rule, the model is
non-parametrically identified, to take it to the data, we parameterize Fc,κ | z and τ (zi, ci, κi).
Landowners make a discrete choice across contracts with heterogeneous features, so we pa-
rameterize (ci, κi) with a characteristics model:

ci ∼ N
(
c (zi) , σ

2
c (zi)

)
κij = pj (zi) + uj (zi) + εij εij

iid∼ N
(
0, σ2

κ (zi)
)
. (11)

ci and κij are drawn from independent normal distributions with means and variances that
depend on observable characteristics, zi. κij costs are differentiated by contract features, pj
and uj. pj defines mean costs for a vector of primary covers, which vary by the left-most

32We can use this policy experiment to directly test that landowners are competing on contracts; 8% of
landowners change their contract choice under the new scoring rule.

23



four categories in Figure 5c, relative to the base category of introduced grasses (normalized
to zero). uj is a vector of upgrade covers, which varies by the right-most two categories in
Figure 5c plus the no-upgrade option, normalized to zero. The parameterization in equation
(11) parsimoniously captures differences across contracts.33

We also parameterize
τ (zi, ci, κi) = π · zi + β · ci + α · κi. (12)

This specification allows τ (zi, ci, κi) to depend on observable characteristics, zi, and unob-
served bidder costs (ci, κi), where we align the dimension of α with the primary and upgrade
parameterization of κij, i.e. we impose that αj = αj′ if pj = pj′ and uj = uj′ .

Estimation Estimation proceeds in three steps and closely follows the identification ar-
gument. In the first step, we estimate landowner beliefs G(S) via simulation. In the second
step, we estimate the parameters of Fc,κ | z via revealed preferences in observed optimal bids
(equation (10)). In the third step, we estimate τ (zi, ci, κi) using the Step 2 estimates of
Fc,κ | z and optimal bidding in equation (10) to simulate and match land-use moments of the
joint distribution of 1 − ai0, b∗i = (ri,xi), and zi. Steps 1 and 2 are a common approach
to the empirical analysis of auctions (Guerre et al., 2000; Hortaçsu and McAdams, 2010;
Agarwal et al., 2023) and Steps 2 and 3 are a common approach to the empirical analysis
of selection markets (Bundorf et al., 2012; Tebaldi, 2022). Appendix D provides additional
details.

Step 1: Simulate G(S) First, we estimate G(S) by simulation following Hortaçsu (2000);
Hortaçsu and McAdams (2010). We fit Beta distributions to the number of bidders and
acreage limits across auctions. We supplement our primary dataset with additional historic
data on acreage limits and the numbers of bidders for all auctions from 2000 to 2021 to fit
these distributions. Then, we simulate the numbers of bidders and the acreage thresholds
and re-sample from the observed joint distribution of the scores and acreages of bidders
within each auction.

Step 2: Estimate Costs The next step estimates Fc,κ | z using the parameterization in
(11) and the optimality of observed bids from equation (10). We classify bidders into 32

33Landowners face a discrete choice over each of the primary and upgrade covers, but primary and upgrade
covers can be combined. There are 36 total possible contracts, reflecting finer categorizations of primary
covers beyond the five dimensions in pj (twelve total) that each can be combined with an upgrade option.
See Appendix A for more details.
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categories of observable types zi that parameterize Fc,κ | z based on interactions of quartiles
of soil productivity, prior CRP status, and prior land use status.

We estimate the parameters of Fc,κ | z via Maximum Simulated Likelihood (MSL). This esti-
mator maximizes the likelihood of each bidder’s observed score-contract combination. Esti-
mation poses a computational challenge because the combined discrete-continuous bidding
problem makes choice sets extremely large without allowing for an inversion. We address
this challenge in two ways. First, we coarsen the bid space used to construct each bidder’s
likelihood contribution, maintaining the full dimensionality of the problem when solving
equation (10).34 Second, we use a change of variables and importance sampling (following
Ackerberg (2009)) to reduce the computational burden associated with searching over a high
dimensional bid space for each simulation draw.

Step 3: Estimate Additionality The third step estimates the parameters in equation
(12), (π, β, α), via the Method of Simulated Moments (MSM). This estimator searches for the
parameters (π, β, α) that rationalize moments of the joint distribution of 1−ai0, b∗i = (ri,xi),
and zi observed in the data (key moments are illustrated in Figures 5). Specifically, we
simulate

(
cki , κ

k
i

)
from Fc,κ | z estimated in Step 2, solve for the optimal b∗ki (equation (10)) for

each simulation draw k, and search for the parameters (π, β, α) that match: (i) additionality
at the winning score threshold, (ii) additionality among all rejected bidders and by observable
characteristics, (iii) the covariance between additionality and chosen scores, and (iv) the
additionality among all landowners choosing a given contract.

We measure additionality as 1− ai0 among rejected bidders in the remote sensing land use
data, as in Section 4.2. All moments condition on optimal bids that are below the score
threshold. This feature of the estimator accounts for the sample selection in Figure 5. The
observables zi in τ (zi, ci, κi) are the 32 observable bidder types that parameterize Fc,κ | z and
the remaining components of the scoring rule.

5.3 Parameter Estimates

Costs Figures 6a and 6b plot the estimated distributions of ci and κij.35 A large share of
landowners have low values of ci, below $50 per acre, per year with a tail of bidders with
higher ci. Top-up costs κij are mostly positive; most contracts are more costly than the
normalized category of introduced grasses. Table 3 summarizes mean costs across contract

34We coarsen the observed continuous choice of score into deciles of the score distribution and the choice
of contract into seven categories corresponding to the seven dimensions of pj and uj . See Appendix D.

35Appendix Table D.1 presents parameter estimates for select cells of zi and standard errors.
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features and highlights observable heterogeneity along landowner soil productivity. Relative
costs across contracts are generally intuitive. Higher soil productivity bidders have higher
costs for primary covers, but lower costs for upgrade covers.

Because costs are estimated using only revealed preferences in bids, Figure 6c examines
whether estimated costs correlate with land use. Figure 6c presents a binned scatterplot
of 1 − ai0 against mean base costs ci among rejected bidders. Figure 6c documents that
landowners with higher mean base costs are more additional. This both validates the revealed
preference estimates and indicates the presence of adverse selection in the market mediated
by observables.

Appendix D examines model fit and compares estimated top-up costs to some limited ad-
ministrative data on costs submitted to the USDA. Our fit is reasonable and model-implied
costs are similar in rank and in magnitude to the administrative data.

Additionality Table 4 presents select parameter estimates in τ (zi, ci, κi) that describe
how additionality varies with (ci, κi). The remaining parameters estimate how additionality
varies across observable characteristics.

Each column of Table 4 presents a different specification of τ (zi, ci, κi). Columns (1) and
(2) restrict to a correlation between additionality and ci and impose that α = 0. Column
(1) includes observable characteristics from the scoring rule and column (2) adds observable
characteristics that parameterize Fc,κ | z (interactions of soil productivity and prior land use).
Consistent with the positive correlation between bids and additionality in Figures 5a and
5b, the positive coefficients in columns (1) and (2) of Table 4 indicate that landowner ad-
ditionality is systematically correlated with costs, conditional on observable characteristics.
The magnitude of the coefficients presented in Table 4 imply that a one standard deviation
increase in ci is associated with an eight percentage point increase in additionality. The
coefficient estimates in Table 4 reflect the adverse selection presented in Figures 5a and 5b.

Columns (3) and (4) allow additionality to also depend on κi. Column (3) only allows tree-
related action costs to impact additionality. The coefficient on tree-related κij is positive and
large, while the coefficient on ci is reduced, but still positive. Column (4) allows additionality
to vary with κi more flexibly, and the residual correlation between costs and additionality
loads onto κi. The largest coefficient remains on tree-related contracts.

The model-implied estimate of additionality at the RD margin is between 22-23%, within
our range of estimates of 21%-31%. This is expected, as our estimation strategy matches
land use moments directly.
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5.4 From Additionality to Contract Value

To calculate social welfare, we require estimates of the social benefits of contracted actions,
Bj (z

s
i ). We now index Bj (z

s
i ) by j to account for heterogeneous social benefits across

contracts and allow Bj (z
s
i ) to depend on observable characteristics in the scoring rule zsi

that capture heterogeneity in the environmental sensitivity of landowners. We take average
estimates of the value of CRP actions from literature that quantifies the benefits from habitat
restoration and reductions in erosion, water and air pollution, and greenhouse gas emissions
from the CRP (Johnson et al., 2016; Feather et al., 1999; Hansen, 2007). We take relative
valuations across landowners with characteristics zsi and across contracts j from the scoring
rule. We therefore consider social welfare under valuations Bj (z

s
i ) revealed preferred by the

USDA. See Appendix E for more details.

One remaining detail concerns the fact that additionality is one-dimensional (land-retirement),
but the menu of contracts is multi-dimensional. This is due to fundamental data limitations,
the substantial simplification that focusing on only this one dimension affords, and the fact
that the primary incentivized activity of the CRP is land retirement. Our baseline specifi-
cation follows Section 2 and calculates contract value as Bj (z

s
i )·τ (zi, ci, κi).36

6 Social Welfare and Alternative Market Designs

With estimates of the costs (ci, κi) and expected social benefits Bj (z
s
i ) · τ (zi, ci, κi) of con-

tracting, we turn to analyzing the social welfare and market design consequences of addi-
tionality. Define the expected social surplus of contracting with landowner i for contract j
as:

Bj (z
s
i ) · τ (zi, ci, κi)− ci − κij. (13)

Equation (13) is based on τ (zi, ci, κi) not the ex-post realization 1−ai0. Because current and
counterfactual mechanisms screen only on (zi, ci, κi), using equation (13) for comparisons of
social welfare under current and alternative market designs is without further loss.37

We first examine allocative efficiency and pricing in the context of our graphical framework
with a uniform price and a single contract. In these analyses, we collapse heterogeneity to
one dimension of cost for a single contract and the expected additionality at each point in

36In Appendix F, we present results under an alternative assumption where additionality only affects the
base contract. This assumes a valuation of contracts equal to B0 (z

s
i ) · τ (zi, ci, κi) + Bj (zsi ), where B0 (z

s
i )

is the value of the base action and Bj (zsi ) is the incremental value of the top-up action.
37We will not compute a full information benchmark based on ((ci, κi) , ai0).
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this one-dimensional cost distribution (as in Section 2). We then build on the graphical
analysis — incorporating heterogeneity across landowners and contracts — to investigate
the performance and design of current and counterfactual auctions and competitive markets
for conservation (offset markets).

6.1 Graphical Analysis

Base Contract Figure 7 presents the empirical analogue of Figure 1, graphing the marginal
cost (MC), contract value (B · τ), and average contract value curves for the base contract.
We simulate the minimum cost to landowners of fulfilling the base contract to construct
the MC curve. Then, we calculate the average B0 (z

s
i ) · τ (zi, ci, κi), where B0 (z

s
i ) denotes

the social benefit of the base action, at each quantile of this cost distribution to obtain the
contract value curve. The two facts from Section 4 are reflected in Figure 7. The con-
tract value curve lies below B, representing landowners who are not additional (Section 4.1),
and is upwards-sloping, representing adverse selection (Section 4.2). Figure 7 offers three
conclusions about the welfare implications of these two facts in the context of our stylized
framework.

First, the contract value curve crosses the marginal cost curve from above: the empirical
market described by Figure 7 is similar to Figure 1a, not Figure 1b. The socially-optimal
uniform price implements the one-dimensional efficient allocation defined by equation (5)
with social surplus equal to the vertical distance between the contract value and marginal
cost curves. This leads to social welfare gains of $14.66 per acre-year in region CDG. Figure
7 demonstrates that the potential market failure introduced by additionality does not lead
the market to completely fail.

Second, Figure 7 illustrates inefficient contracting when prices are set at B (the average
B0 (z

s
i ) across landowners), ignoring counterfactual land use. Pricing at B leads to social

welfare losses of $11.79 per acre-year in triangle GHI, 80% of the gains realized in trian-
gle CDG. These social welfare losses underscore the importance of quantitative analysis of
the joint distribution of the costs of contracting and additionality to set socially-optimal
incentives to implement efficient allocations.

Third, Figure 7 illustrates the trade-limiting effects of adverse selection in competitive (offset)
markets with price-taking buyers. We isolate the effect of supply-side adverse selection by
assuming buyers in competitive markets possess the same full-information preferences as
the USDA, but take expectations over the additionality of all market participants. This
demand curve is illustrated with the gray average contract value curve in Figure 7. Adverse
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selection would limit trade in a competitive market to the equilibrium quantity qc = 0.58, a
15% reduction from the socially optimal quantity q∗ = 0.68. Triangle EFG represents social
welfare gains from contracting that are not realized in competitive markets. The magnitude
of triangle EFG is 4% of the (one-dimensional) efficient allocation, triangle CDG. Though the
adverse selection introduced by additionality exists in the market, limits trade, and reduces
social welfare, it does not unravel the market.

Overall, Figure 7 presents a relatively optimistic view of markets for environmental services,
which contrasts with arguments that establishing these markets is a futile endeavor (Ander-
son, 2012). Figure 7 also illustrates why. Perhaps surprisingly, the contract value curve is
flat for landowners with low contracting costs.

Heterogeneity Figure 8 uses the estimated heterogeneity to examine differences in the
graphical analysis across observable characteristics and contracts. This heterogeneity will
serve as a basis for counterfactual market designs.

Figures 8a and 8b replicate Figure 7 in sub-populations split by estimated soil productivity.
Both contract value and marginal cost curves differ in the lowest versus high quintile of the
soil productivity distribution, implying different socially-optimal prices.

Figure 8c examines heterogeneity across contracts. We focus on tree contracts due to the
evidence of substantial adverse selection in Table 4 and the prevalence of tree-related PES
programs and offset contracts. Figure 8c calculates the marginal cost curve as the minimum
cost required to fulfill any tree-related contract and plots the average Bj (z

s
i ) · τ (zi, ci, κi) at

each quantile of this distribution. The exercise requires substantial out-of-sample extrapola-
tion, but it illustrates how alternative landowner type distributions across important classes
of contracts in our setting can generate different conclusions.

In Figure 8c, the contract value curve crosses the marginal cost curve from below, leading to
social welfare losses at low q. The socially-optimal uniform price cannot implement the one-
dimensional efficient allocation (DE) defined in equation (5). This is because, as in Figure 1b,
the ordering of landowners by social surplus (the vertical distance between the contract value
and marginal cost curves) differs from the ordering of landowners by contracting costs (the
construction of the x-axis, q). Because they are less additional, the lowest cost landowners
are not the highest social value.

Figure 8c also illustrates that supply-side adverse selection would cause a competitive (offset)
market for tree contracts to unravel.
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6.2 Alternative Auctions

The standard auction design problem focuses on cost-minimizing procurement auctions, but
the objective of payments for ecosystem services mechanisms is to impact outcomes (con-
servation) at lowest cost. Many other incentive-based public policies face similar objec-
tives. However, standard mechanisms focused on cost-minimization, which consider reports
of (ci, κi) but not the effect of contracting on conservation τ (zi, ci, κi), may not advance this
goal.

We simulate bidding and additionality under status quo and counterfactual auctions to
investigate this possibility and the performance of alternative designs. Figure 9 and Table 5
present results. Figure 9 plots social welfare under each allocation:

∑
i

∑
j

(Bj (z
s
i ) · τ (zi, ci, κi)− ci − κij) · xij. (14)

Table 5 tabulates the bars in Figure 9 and reports additional details: USDA spending,
landowner surplus, the value of environmental benefits

∑
i

∑
j Bj (z

s
i )·τ (zi, ci, κi)·xij, average

additionality, and the share of bidders allocated a contract. Each bar of Figure 9 corresponds
to the same numbered column in Table 5.

The Status Quo Auction versus an Efficient Benchmark Because social welfare
depends on additionality but the design of the status quo auction does not, the social value
of the CRP is ambiguous. We document social welfare gains of $126 million per auction in
the status quo (bar (1) of Figure 9). This is calculated by simulating optimal bidding in the
mechanism with the estimated distribution of (ci, κi) and beliefs G(S).

However, social welfare under the status quo auction is only 15% of an efficient benchmark.
This efficient benchmark is defined as the allocation that uses all observables zi and the full
vector of costs (ci, κi) to maximize social welfare (equation (14)) subject to two constraints.
First, each landowner must obtain at most one contract

∑
j xij ≤ 1. Second, no more

landowners are allocated contracts than in the status quo. Because many landowners are
not additional, the efficient allocation involves contracting with fewer landowners than the
status quo and the quantity constraint does not bind (column (2) of Table 5).

This efficient allocation may not be implementable in an incentive compatible auction if social
surplus and allocations are not monotone in bidder costs (Myerson, 1981). This complica-
tion is relevant because of adverse selection; once the mechanism’s impact on conservation
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(additionality) is considered, the lowest cost landowners may not be the highest social value.
This issue is illustrated in principle in Figure 1b and based on our estimates in Figure 8c.

Alternative Auctions: Vickrey Auctions with Scoring The status quo auction un-
derperforms the efficient allocation in part because it does not consider additionality in its
design. Implementing the efficient allocation may be impossible, but changes in design to
incorporate additionality may close the gap.

In practice, a common approach to additionality is to define eligibility requirements that
determine who and what is allowed to trade.38 Emphasis is placed on identifying additional
participants who are then allowed to participate in the market.

We consider a more flexible approach that treats landowners asymmetrically by their ex-
pected additionality. Contracting with a low expected additionality landowner could be
justified at sufficiently low cost. Conversely, landowners who are likely to be additional
may still counterfactually conserve with some probability. This approach accommodates a
minimum standard — incentives could be zero for some participants or some conservation
actions — but it also allows incentives to differ across landowner observables and contracts in
the market. We implement this approach in counterfactual scoring auctions that construct
scoring rules based on predictions of Bj (z

s
i ) · τ (zi, ci, κi). These auctions build directly on

the status quo, which uses a scoring rule based on Bj (z
s
i ).

Define a contract value scoring rule sj (zi) to parameterize the (score-implied) expected social
benefit of contracting with a bidder with characteristics zi for contract j. We focus on linear
rules based on (a simplified version of) the functional form of the status quo scoring rule,39

sj (zi) = ωz · zi + ωj, (15)

where ωz parameterizes scores across observables zi (asymmetry terms) and ωj parameterizes
scores across contracts j.

We implement allocations defined by the status quo and alternative scoring rules with a
Vickrey-Clarke-Groves (VCG) mechanism.40 We term these auctions “Vickrey auctions with

38For examples, see the Clean Development Mechanism Methodology Booklet, the REDD+ eligibility
requirements, and the Verified Carbon Standard.

39We simplify the status quo scoring rule by eliminating heterogeneity across contracts based on WPZ
status and non-linearities in the scoring rule. See Appendix A for more details.

40A VCG mechanism is a generalization of a second price auction. Many of the well-known undesirable
properties of VCG mechanisms do not apply in our setting because bidders have substitutes preferences (see
Ausubel and Milgrom (2005)).
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scoring,” which maximize a definition of social welfare implied by the scoring rule sj (zi):∑
i

∑
j

(sj (zi)− ci − κij) · xij. (16)

Bidders are treated asymmetrically by sj (zi) not τ (zi, ci, κi): compare equations (14) and
(16). In Vickrey auctions with scoring, bidders truthfully report their vector of (ci, κi), then
are ranked by maxj sj (zi)− ci − κij.41 The highest scoring bidders subject to the auction’s
quantity threshold are allocated the contract argmaxj sj (zi) − ci − κij.42 Unlike in Asker
and Cantillon (2008) and Che (1993), the scoring rule may not capture all heterogeneity in
τ (zi, ci, κi). sj (zi) depends only on observable characteristics. Moreover, some characteris-
tics may not be used to avoid introducing perverse incentives to game the scoring rule (e.g.
prior land use).

Vickrey auctions with scoring have three advantages. First, they focus attention on the design
of the scoring rule because they implement an allocation that maximizes scoring-rule-implied
social welfare (equation (16)). Second, allocations are not computationally demanding to
calculate. Finally, they are simple: the market designer needs only to compute sj(zi).43

Social Welfare Under Status Quo and Alternative Scoring Rules Bars (3)-(6) of
Figure 9 adjust the scoring rule sj (zi), holding the number of awarded contracts fixed at
the status quo quantity. Each bar evaluates the allocation implemented by the auction with
equation (14). Additional details are reported in the corresponding columns of Table 5.

Bar (3) maintains the status quo scoring rule, sj (zi) = Bj (z
s
i ), but changes the auction

mechanism to VCG. This counterfactual isolates the impact of a scoring rule that is naive
to additionality (bar (2) versus bar (3)) and provides a basis for further comparisons that
change only the rule sj (zi) but hold constant the VCG auction mechanism. If all landowners
were additional, the scoring rule defined by sj (zi) = Bj (z

s
i ) would implement the efficient

allocation and dominate the status quo. Instead, it slightly underperforms it. Correcting
41The term maxj sj (zi) − ci − κij is a bidder’s pseudo-type in the terminology of Asker and Cantillon

(2008). It is the maximum level of scoring-rule-implied social surplus that bidder i can generate.
42The VCG incentive payment that implements this allocation is:∑

j

sj (zi) · x∗ij +
∑
i′ 6=i

∑
j′

(sj′ (zi′)− ci′ − κi′j′) · x∗i′j′ −
∑
i′ 6=i

∑
j′

(sj′ (zi′)− ci′ − κi′j′) · x−ii′j′ ,

where {x∗ij} denotes the allocation that maximizes
∑

i′
∑

j′ (sj′ (zi′)− ci′ − κi′j′) given
all reports of (ci′ , κi′j′) in the population and {x−ii′j′} denotes the allocation that solves
maxx

∑
i′ 6=i

∑
j′ (sj′ (zi′)− ci′ − κi′j′) · x

−i
i′j′ .

43This is in contrast to alternatives that could incorporate randomization, as in Lopomo et al. (2023).
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inefficient design features of the status quo auction, e.g. bid caps, does not increase social
welfare when the scoring rule does not incorporate additionality. The comparison of bar (3)
to bars (1) and (2) illustrates that the poor performance of the status quo, relative to the
efficient allocation, is because τ (zi, ci, κi) is not incorporated into the mechanism.

Bars (4)-(6) in Figure 9 adjust the scoring rule sj (zi) defined in equation (15) based on
predictions of additionality. First, we adjust the scoring of the menu of contracts, ωj. In
bar (4), ωj is calculated to maximize equation (14), holding ωz constant at the status quo
rule.44 This change to the scoring rule doubles the social welfare gains of the auction relative
to the status quo ($128 million per auction). Relative to the status quo rule, re-weighting
ωj accounts for both heterogeneity in τ (zi, ci, κi) as a function of κi — for example, a
landowner’s choice of a tree-related contract reveals that her conservation is unlikely to be
additional — and the fact that the full social benefits across actions is not realized when
conservation would have counterfactually occurred.

Next, we adjust the bidder asymmetry terms across observables, ωz, in equation (15). Dis-
played in bars (5) and (6) in Figure 9, this change leads to a further $46 million of social
welfare gains per auction (37% of the status quo). Bar (5) first re-weights the existing charac-
teristics in the scoring rule, zsi . In the status quo, asymmetry is based only on environmental
sensitivity; re-weighting ωz across zsi based also on additionality contributes two-thirds of the
social welfare gains from adjusting the bidder asymmetry terms. The final adjustment (bar
(6)) adds an additional characteristic to the rule: an “additionality factor” τ̂ (zi). This builds
on the scoring rule’s design, which adds together many “factors” to construct a composite
score of bidder characteristics.45 We calculate τ̂ (zi) by projecting τ (zi, ci, κi) on immutable
characteristics of landowners already collected by the USDA, but not all incorporated in the
status quo scoring rule: deciles of soil productivity and wind and water erosion. Then, we
calculate the social-welfare maximizing score using both zsi and τ̂ (zi) as asymmetry terms in
equation (15). The simple change of adding this single “additionality factor” to the scoring
rule increases social welfare by a further 12% of the status quo.

Figure 9 illustrates that simple changes to the scoring rule can lead to significant social wel-
fare gains. In contrast to standard cost-minimizing procurement auctions, these auctions are
designed to impact conservation at lowest cost. A scoring rule that incorporates landowners’
expected additionality balances the objectives of allocating contracts to both low cost and
high social benefit, additional landowners.

44We solve for the ωj that maximize equation (14) given simulations of landowner (ci, κi), estimates of
τ (zi, ci, κi), calibrations of Bj (z

s
i ), and the allocation rule, holding ωz fixed at the status quo scoring rule.

45For more details on these factors, see an example EBI Factsheet here.
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Social Welfare Under Alternative Market Sizes Beyond the allocation rule, addi-
tionality also impacts the socially-optimal size of the market. This also contributes to the
gap between bars (1) and (2) but was ignored in the prior counterfactuals, which held the
number of contract awards constant at the status quo.

Because many landowners are not additional, the status quo quantity procured is higher than
is socially-optimal. Bar (7) in Figure 9 keeps the scoring rule sj (zi) of bar (6) but awards
contracts only to landowners with maxj sj (zi)− ci − κij ≥ 0. This reduction in market size
increases social welfare by a further $110 million dollars per auction.

Together, simple adjustments to both the size of the market and the scoring rule based
on predicted additionality closes the gap between the status quo (bar (1)) and the efficient
allocation (bar (2)) by 41% (an increase of $284 million per auction).46 Each component of
the mechanism — adjusted incentives across contracts, across characteristics, and the overall
size of the market — is a quantitatively important contribution to this improvement.

Mechanisms: Additionality in the Scoring Rule The alternative auctions in Figure
9 outperform the status quo by adjusting the scoring rule to reflect the social benefit of
contracting, which depends on additionality. This occurs via two channels.

First, the status quo scoring rule Bj (z
s
i ) over-weights asymmetry across characteristics zsi

and contracts j. The heterogeneous social benefits of conservation Bj (z
s
i ) are not fully

realized when conservation would have counterfactually occurred. An auction that treats
bidders and contracts asymmetrically by Bj (z

s
i ) may not implement an efficient allocation.

This relates to the social welfare losses from pricing at B illustrated in Figure 7.

Second, as highlighted in Figure 8, bidders may be systematically heterogeneous in their
additionality, which can be exploited in the scoring rule. Adjusting the scoring rule based
on heterogeneity in additionality — using observable characteristics and choices of contracts
— more closely aligns the allocation implemented by the auction with the socially-optimal
allocation that considers heterogeneity in both additionality and costs.

Figure 10 explores these two mechanisms. Figure 10 holds quantity constant and plots
social welfare under the status quo auction (bar (1)), a Vickrey auction with a scoring rule
sj (zi) = θ·Bj (z

s
i ) for the (single) multiplier θ chosen to maximize equation (14) (bar (2)), and

a Vickrey auction with a scoring rule that adjusts ωj and ωz to maximize equation (14) (bar
(3), which replicates the auction in bar (6) in Figure 9). Bar (2) examines the social welfare

46Further differences between bar (7) and bar (2) reflect (i) zi that are not incorporated into the scoring
rule to avoid perverse incentives to game the rule, (ii) private landowner costs in τ (zi, ci, κi), and (iii) the
functional form of equation (15) relative to Bj (z

s
i ) · τ (zi, ci, κi).
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gains achieved with only a uniform instrument to adjust the scoring rule for additionality.
Bar (3) further adjusts ωj and ωz to reflect heterogeneously additional landowners.

Figure 10 demonstrates that adjusting the scoring rule based on heterogeneity in additionality
yields substantial social welfare gains of $23 million per auction (bar (3)), but that a uniform
adjustment for additionality (bar (2)) achieves a large share of the gains relative to the
status quo. An auction that incorporates asymmetry in the social benefits of actions must
also reflect the additionality of landowners in its design (see bar (2)). Moreover, further
adjusting asymmetry based on heterogeneity in additionality yields further social welfare
gains, equivalent to 18% of the status quo (see bar (3)).

USDA Spending Beyond social welfare, the budgetary implications of alternative auc-
tions may be relevant in practice. Among implementable auctions we consider, the auction
with the greatest social welfare gains also reduces USDA spending relative to the status quo
(column (7) of Table 5). This occurs because the status quo auction contracts with too many
landowners. Reducing the size of the market, and therefore total USDA spending, increases
social welfare. Appendix F also evaluates social welfare with a cost of public funds, moti-
vated by the need to finance expenditures with distortionary taxation. Social welfare with a
cost of public funds is negative under the status quo, but becomes positive and substantial
under alternative designs.

However, Table 5 also demonstrates that in all auctions, government spending exceeds the
value of environmental services procured,

∑
i

∑
j Bj (z

s
i ) · τ (zi, ci, κi) · xij. This is due to the

presence of adverse selection in the market: the marginal landowner has a higher value of
τ (zi, ci, κi) than the inframarginal landowner.

6.3 Offset Market Design

We conclude with the implications of supply-side adverse selection for the performance and
design of competitive (offset) markets for environmental services. We continue to isolate the
effect of supply-side adverse selection. We assume that buyers have the same full-information
preferences as the USDA and form expectations over the value of any contract given the
equilibrium price(s). We ask two questions motivated by the analysis in Section 6.1. First,
should offset markets be differentiated? And second, which markets risk unravelling?

The effect of differentiation on social welfare in competitive markets is ambiguous (Einav and
Finkelstein, 2011). We analyze this market design choice empirically in Figure 11a, restricting
analysis to the base contract. Figure 11a plots the percent reduction in quantities traded
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and social welfare in a competitive market, relative to with socially-optimal prices, under
uniform and differentiated markets. In the uniform market, there is only a single socially-
optimal price and market-clearing condition. In the differentiated market, we project B0 (z

s
i )·

τ (zi, ci, κi) onto immutable observable characteristics (zsi , soil productivity, and erosion) and
then segment the market into deciles of predicted contract value. This “certification scheme”
is similar in structure to existing rating schemes in environmental markets.47 Figure 11a also
presents social welfare per acre-year under each of these offset market designs.

Differentiation reduces social welfare losses from adverse selection in competitive markets
from 5% to less than 1% and increases social welfare by 15% overall via more efficient
trades in the market. The gains from differentiation are high even in the ex-ante ambiguous
competitive market setting, supporting on-going efforts to collect detailed information to
predict additionality in environmental markets.48

Next, we investigate which contracts can be successfully traded in competitive markets,
motivated by Figures 7 and 8c. We consider uniform markets for grass-, tree-, and habitat-
related contracts. Figure 11b plots the reduction in social welfare relative to the socially
optimal uniform price in each of these three hypothetical markets. Tree-related contracts
unravel, but social welfare losses for the remaining contracts are limited to at most 3%.

Figure 11 presents a relatively optimistic view of offset markets and actionable insights for
market design. We offer three ideas about features of our setting that contribute to this
conclusion. First, the eligibility requirements for the CRP are stringent enough that there
is some probability that landowners are additional even at the bottom of the contracting
cost distribution. Second, hassle costs and long-term contracts mute the extent of adverse
selection, which limits unravelling. Finally, agricultural decisions are simple to predict,
offering covariates to differentiate landowners and increase social welfare.

7 Conclusion

Additionality is a central challenge to environmental market design. It undermines the appeal
of market-based mechanisms if incentives attract the least additional landowners.

This paper combines data and theory to document this potential market failure, quantify its
implications for social welfare, and evaluate alternative market designs in the largest auction
mechanism for ecosystem services in the world. Linking satellite data to auction bids, we

47See, for example, Carlyx Global, BeZero Ratings, and Sylvera.
48See, for example, Google, Microsoft, and the platform NCX.
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use a regression discontinuity design to demonstrate that only one quarter of landowners are
additional. Moreover, heterogeneity in counterfactual land use introduces adverse selection in
the market. To quantify the implications of these facts and test possible remedies, we develop
and estimate a joint model of multi-dimensional bidding and land use that incorporates
adverse selection on additionality.

With socially-optimal incentives, the market can deliver social welfare gains, but the lowest
cost providers of environmental services are not always the highest social value. Re-designing
the auction’s scoring rule to incorporate predicted additionality substantially outperforms
the status quo, and a simple differentiation scheme also increases social welfare in competitive
offset markets.

A common market design solution to the issue of additionality is to define eligibility re-
quirements that restrict who and what can trade; in this paper, we propose a more flexible
approach. Because many markets will inevitably attract landowners who are with some prob-
ability not additional, allocation mechanisms should consider this dimension of heterogeneity
in their design. We show how auctions can be used to cost-effectively impact conservation,
selecting participants based on both expected additionality and costs, despite the existence
of many landowners in the market that are not additional. Segmenting offset markets yields
social welfare gains via similar mechanisms.

Our analysis focused only on the supply-side market failure of additionality. Investigating
other features of offset markets, including demand, the incentives of platforms and certifiers
that facilitate trade, and both of their interactions with supply-side additionality and adverse
selection are interesting and impactful avenues for future research.

More broadly, our results highlight that successful market design depends not only on market
participants’ private costs, but also on whether their behavior in the market advances a
socially desirable outcome. Developing empirical approaches to apply this idea to the design
of other markets and policy objectives is a rich and exciting area for research.
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Figures and Tables

Figure 1: Graphical Analysis

(a) Efficient allocation can be implemented (b) Efficient allocation cannot be implemented

(c) Inefficiency in competitive markets

Notes: Figure describes markets characterized by marginal cost (MC = F−1
C (q)) and contract value (B · τ) curves. The

horizontal axis is the share of the population ordered by costs of contracting ci. B denotes the social benefits of ai1 = 1. B · τ
denotes the incremental social benefits of contracting (contract value), relative to no contract, at each quantile of landowner
costs of contracting. The vertical distance between the B · τ and MC curves represents the social surplus from contracting.
Upwards-sloping B · τ curves illustrate markets with adverse selection. Panel (a) documents a population distribution in which
the efficient allocation (defined in equation (5)) can be implemented with the socially optimal uniform price p∗ and panel (b)
documents a population distribution in which it cannot. Panel (a) also demonstrates the social welfare losses from mis-pricing
(at B) (triangle EFG). Panel (c) includes a curve defining the average contract value of all landowners selecting into the market
at any given price p, E [B · τ (c) | c ≤ p]. This defines the value of a contract to a price-taking buyer in a stylized competitive
(offset) market. The intersection of the MC and average contract value curves define a competitive market equilibrium price
pc. In panel (c), adverse selection limits trade in competitive markets with social welfare gains in triangle EFG that are not
achieved.
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Figure 2: Regression Discontinuity Validity and First Stage

(a) Histogram of running variable
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(c) First stage: contracting
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Notes: Panel (a) presents a histogram of bidders’ scores in the auction relative to that auction’s win threshold, Sig−Sg , pooled
across auctions. This is the running variable for the regression discontinuity design: bidders above zero win the auction. Panels
(b) and (c) present raw data and estimates from equation (7). Panel (b) is estimated for r (i, t) ≤ 0 (pre-auction), and panel (c)
is estimated for r (i, t) > 0 (post-auction). The outcome in panel (b) is the share of the bidder’s land that is cropped, measured
in the remote sensing data. The outcome in panel (c) is an indicator for a bidder obtaining a CRP contract. Positive numbers
on the x-axis correspond to winning scores, negative numbers correspond to losing scores. In panel (a), each observation is a
bidder, in panels (b) and (c), each observation is a bidder-year.
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Figure 3: The Effect of a CRP Contract on Land Use

(a) Share of land cropped
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(b) Share of land in natural vegetation
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Notes: Panels (a) and (b) present raw data and estimates from equation (7) for r (i, t) > 0 (post-auction). Outcomes are
the share of the bidder’s land that is cropped (a) and the share of the bidder’s land that is in natural vegetation (trees,
grassland, shrubs, and wetlands) (b), both measured in the remote sensing data. The running variable is the difference between
each bidder’s score and the threshold score. Positive numbers on the x-axis correspond to winning scores, negative numbers
correspond to losing scores. Each observation is a bidder-year. Appendix Figure C.3 provides corresponding figures with
outcomes measured in the administrative data. Corresponding coefficient estimates and standard errors presented in Table 2.

Figure 4: Regression Discontinuity Estimates of Additionality
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Notes: Figure plots coefficient estimates from equation (6). The outcome is the share of each bidder’s land that is cropped,
measured with both remote sensing and administrative datasets. The x-axis is the year relative to the year of each bidder’s
auction: r (i, t) = t− tg(i). Positive years correspond to post-auction years. Each point is a regression discontinuity coefficient.
Dashed lines indicate the pooled post-auction treatment effects (equation (7) estimated for r (i, t) > 0). The black line at 0
(τ = 0) and red line at -.35 (τ = 1) indicate the implied effect size if ai0 = 1 ∀i and ai0 = 0 ∀i, respectively. τ = 1 represents
a benchmark where all landowners are additional. This is calculated as the share of land contracting in the MSE-optimal
bandwidth (Calonico et al., 2014) used to estimate the RD. Each observation is a bidder-year. Standard errors are clustered
at the bidder level. Ten years is the full duration of a CRP contract. Corresponding coefficient estimates and standard errors
presented in Table 2.
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Figure 5: Testing for Asymmetric Information
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(b) Additionality vs. bids | observables
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(c) Additionality across contracts
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(d) Observable predictors of additionality
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Notes: Figures present visual representations of estimates of equation (8). All regressions control for landowner characteristics
in the scoring rule: whether a bidder is in a wildlife priority zone, estimates of groundwater quality, estimates of surface water
quality, estimates of wind and water erosion (deciles), air quality impacts, and whether or not a bidder is in an air quality zone.
The outcome variable in all panels is a landowner-specific measure of additionality (1 − ai0). This is calculated as the share
of all fields bid into the CRP mechanism that are cropped post auction for rejected landowners. The sample is restricted to
the 2016 auction, in which 82% of bidders are rejected and the delineations of bid fields are observed. Cropping on bid fields
is measured in 2017-2020 in the remote sensing data (see Figure C.5 for corresponding figures using the administrative data).
Panel (a) is a binned scatterplot correlating the dollar bid (per acre, per year) with additionality, conditional on characteristics
included in the scoring rule. Panel (b) adds controls for interaction terms of prior land use (quartiles of share of land cropped
prior to bidding and re-enrolling CRP status) and deciles of estimated soil productivity. Panel (c) plots relative additionality
by the chosen contract in the bid, relative to an omitted category of introduced grasses. Panel (d) plots relative additionality
by deciles of estimated soil productivity. Standard errors clustered at the bidder level.
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Figure 6: Estimated Landowner Cost Distribution
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Notes: Panels (a) and (b) present kernel density plots of estimates of the base cost ci (a) and top-up cost κij (b) of contracting.
Panels (a) and (b) pool bidders across auctions. Costs are estimated using revealed preferences in optimal bidding (equation
(10)). See Section 5.2 for estimation details. Panel (c) correlates expected base costs, ci, conditional on observable characteristics
zi, with land use outcomes measuring landowner additionality in the remote sensing data. Panel (c) is restricted to the 2016
auction and the 82% of bidders who lose (see Section 4.2 for more details). zi includes interactions of soil productivity, prior
CRP, and prior land use. Costs are reported in dollars per acre per year.
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Figure 7: Empirical Graphical Analysis

Notes: Figure presents the empirical version of Figure 1 for the base contract. The horizontal axis is the share of the population,
ordered by contracting costs. Values are reported in dollars per acre per year. TheMC curve is the inverse distribution function
of the minimum cost to fulfill the base contract. B denotes the average value of the base contract action, calculated as described
in Appendix E. B · τ denotes the incremental value of contracting, relative to no contract, averaged at each quantile of the
population distribution of the base costs of contracting. The vertical distance between the B · τ and MC curves represents
the social surplus from contracting at each quantile of the population distribution of contracting costs. The upwards-sloping
B · τ curve illustrates the presence of adverse selection in the market. The intersection of the MC and B · τ curve denotes the
socially-optimal uniform price, p∗. Triangle CDG represents social welfare gains under the socially-optimal price. The triangle
GHI represents social welfare losses from mispricing at B. The average contract value curve calculates the average B · τ of
all landowners selecting into the market at any given price p, E[B · τ |MC ≤ p]. This defines the value of a contract to a
price-taking buyer in a stylized competitive (offset) market. The intersection of the MC and average contract value curves
define a competitive market equilibrium price pc. Adverse selection limits trade in competitive markets leading to social welfare
gains that are not realized (triangle EFG).
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Figure 8: Empirical Graphical Analysis: Heterogeneity Across Observables and Contracts

(a) Lowest quintile soil productivity (b) Highest quintile soil productivity

(c) Tree planting and maintenance contracts

Notes: Figures presents empirical version of Figure 1. Panels (a) and (b) calculate the MC curve as the inverse distribution
function of the minimum cost to fulfill the base contract, split by whether landowners are in the lowest or highest quintile of
soil productivity. In panel (c), the MC curve is calculated as the inverse distribution function of the minimum cost to fulfill
a tree planting and maintenance contract. The horizontal axis is the share of the population, ordered by contracting costs for
the base contract in each sub-population ((a) and (b)) and for tree planting and maintenance contracts (c). B · τ denotes the
incremental value of contracting, relative to no contract, averaged at each quantile of contracting costs for the base contract
in each sub-population ((a) and (b)) and for tree planting and maintenance contracts (c). The vertical distance between the
B · τ and MC curves represents the social surplus from contracting at each quantile of contracting costs. p∗ denotes the
socially-optimal price, set at the intersection of the B · τ and MC curves. The average contract value curve (gray) calculates
the average B · τ of all landowners selecting into the market at any given price p, E[B · τ |MC ≤ p]. This defines the value
of a contract to a price-taking buyer in a stylized competitive (offset) market. In panel (c), the efficient allocation defined in
equation (5) cannot be implemented. The stylized competitive market also unravels.

53



Figure 9: Social Welfare Under Alternative Auctions
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Notes: Figure presents estimates of the social welfare gains (defined in equation (14)) under status quo and alternative auctions.
Results reported in million dollars per auction. All auctions impose that each landowner obtains at most one contract and that
total contracts awarded cannot exceed the status quo. Bar (1) simulates the status quo. Bar (2) calculates the social welfare
gains under an efficient allocation that allocates contracts using all zi and (ci, κi) to maximize equation (14). Due to adverse
selection, this allocation may not be implementable. Bars (3)-(7) calculate social welfare under alternative Vickrey auctions
with scoring (see Section 6.2 for more details). Bars (3)-(6) hold quantity (the number of landowners allocated contracts)
constant at the status quo and change the scoring rule sj (zi) defined in equation (15). Bar (3) uses the existing scoring rule
sj (zi) = Bj

(
zsi
)
. Bar (4) uses a scoring rule with the social-surplus maximizing incentives across contracts (ωj). Bar (5) uses a

scoring rule with the social-surplus maximizing asymmetry across bidders using characteristics already in the scoring rule (zsi ).
Bar (6) adds an additional characteristic to the scoring rule, a prediction of τ (zi, ci, κi) based on immutable characteristics of
landowners already collected by the USDA (deciles of soil productivity and wind and water erosion). Bar (7) uses the same
scoring rule as bar (6) but reduces the number of contracts allocated to landowners: only landowners with positive scoring-
rule-implied social surplus maxj sj (zi)− ci − κij ≥ 0 are awarded contracts. See each bar’s corresponding column in Table 5
for more details.
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Figure 10: Mechanisms: Uniform vs. Heterogeneous Scoring Rule Adjustments
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Notes: Figure presents estimates of the social welfare gains (defined in equation (14)) under status quo and alternative auctions.
Results reported in million dollars per auction. All auctions impose that each landowner obtains at most one contract. All
auctions hold constant the total number of landowners awarded contracts at the status quo. Bar (1) simulates the status
quo. Bars (2) and (3) simulate Vickrey auctions with scoring (see Section 6.2 for more details). Bar (2) uses a scoring rule
sj
(
zsi
)
= θ ·Bj

(
zsi
)
for a uniform multiplier θ that maximizes equation (14). Bar (3) corresponds to Bar (6) in Figure 9: it uses

the social welfare maximizing ωjand ωz using all characteristics in the rule and a prediction of τ (zi, ci, κi) based on immutable
characteristics of landowners already collected by the USDA (deciles of soil productivity and wind and water erosion).

Figure 11: Offset Market Design
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Notes: Figures describe social welfare and quantities traded under a stylized competitive offset equilibrium versus under
socially-optimal prices. The competitive market equilibrium is calculated under the assumption that buyers have the same
full-information preferences as the USDA and form expectations over the value of any contract given the equilibrium price(s).
Panel (a) restricts to the base contract and reports quantities traded and social welfare under a competitive market equilibrium
relative to socially-optimal prices in a uniform and a differentiated market. In the uniform market, there is only a single socially-
optimal price and market-clearing condition. In the differentiated market, the market is segmented into deciles of predicted
contract value (based on zsi , soil productivity, and erosion). Panel (b) plots the percent reduction in social welfare under a
stylized competitive market equilibrium relative to socially-optimal prices under three different hypothetical markets, each with
only one contract traded at a uniform price. The numbers above the bars in panels (a) and (b) tabulate total social welfare
(per acre-year) in each competitive market.
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Table 1: Summary Statistics

All agricultural land Bidders Bid fields

Remote

sensing

Admin Remote

sensing

Admin Remote

sensing

Admin

(1) (2) (3) (4) (5) (6)

Panel A. Land use

Share cropped 0.30 0.28 0.21 0.21 0.21 0.18

Share corn 0.11 0.11 0.07 0.08 0.07 0.06

Share soybean 0.11 0.10 0.06 0.07 0.07 0.07

Share fallow 0.02 0.01 0.03 0.01 0.05 0.03

Share nat. veg. or grassland 0.55 0.70 0.65

Panel B. Land characteristics

Size (acres) 160.7 250.6

(2690.7) (506.5)

Soil productivity ($/acre) 92.4 86.9

(63.2) (58.5)

Enviro sensitivity (points) 53.5 86.5

(29.8) (33.7)

Panel C. Bid characteristics

Rental rate ($/acre/year) 83.0

(56.4)

Acres bid 84.1

(136.3)

Share re-contracting 0.70

Contract action = grasses 0.67

Contract action = trees 0.12

Contract action = habitat 0.21

Share contracting 0.81

N bidders / auction 36,763

N 7,890,426 258,286 61,703

Notes: Table presents summary statistics of all agricultural landowners (columns (1)-(2)), bidding landowners (columns (3)-(4)),
and bid fields (columns (5)-(6)), defined as the delineated land area entered into the mechanism to be awarded a CRP contract
(observed only for bidders in the 2016 auction). Standard deviations in parenthesis. Panel A reports land use outcomes in the
remote sensing (CDL) and admin (Form 578) data. All land use outcomes are reported for the year prior to bidding among
bidders. Years in columns (1)-(2) are re-weighted to match the distribution of bidder-years. Columns (1) and (2) includes both
eligible non-bidders and ineligible land. Land use categories follow Lark et al. (2017). Crop outcomes exclude alfalfa and hay.
Soil productivity is calculated by NASS and is reported in dollars per acre. Environmental sensitivity points are the points given
for characteristics of land in the scoring rule. Rental rate is reported in dollars per acre per year and is the dollar component
of the bid in the auction. Acres bid is the total acreage entered into the auction to be awarded a CRP contract. Grasses, trees,
and habitat contract indicators are aggregated over the menu of possible contracts.
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Table 2: Regression Discontinuity Coefficient Estimates

Remote

sensing

Admin

(1) (2)

Panel A: Main outcome: share of land cropped

Pre-auction (placebo) 0.014 0.009

(0.007) (0.006)

Post-auction (pooled sign-ups) -0.075 -0.091

(0.007) (0.006)

Implied additionality 21% 26%

Post-auction (full contract duration: 2010-2020) -0.109

(0.020)

Implied additionality 31%

Panel B: Other outcomes

Corn -0.015 -0.023

(0.003) (0.003)

Soybean -0.018 -0.026

(0.003) (0.003)

Fallow -0.008 -0.011

(0.002) (0.001)

Natural vegetation or grassland 0.091

(0.007)

Panel C: Spillovers to non-bid fields

Share of non-bid fields cropped -0.001 -0.000

(0.015) (0.015)

N bidders 258,286 258,286

N bidder-years 3,099,432 1,808,002

Notes: Table presents coefficient estimates from equation (7) with land use outcomes measured in the remotely sensed (column
(1)) and administrative (column (2)) data. All results use a local linear regression on either side of the win threshold in the
MSE-optimal bandwidth (Calonico et al., 2014). The full-contract duration specification restricts to the 2009 auction, others
pool all auctions with post-period data (2009, 2011, 2012, 2013, and 2016). The pooled post-period includes an average of
7-8 post-auction years. Natural vegetation or grassland is only observed in remotely sensed data. Calculations of implied
additionality divide the treatment effect estimates by the amount of land contracting among winning bidders in the MSE-
optimal bandwidth. Panel C estimates the effect of a CRP contract on non-bid, and therefore non-contracting, fields to test
for spillovers. This analysis is restricted to the 2016 auction. Standard errors are clustered at the bidder level.
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Table 3: Mean Landowner Costs of Contracting

All Landowners with

above median soil

productivity

(1) (2)

Base cost (ci) 67.49 87.05

Top-up cost (κij)

Introduced grasses (normalized) 0. 0.

Native grasses 0.11 3.38

Trees 24.41 26.65

Habitat 14.87 17.49

Rare habitat 15.33 17.98

Wildlife food plot 18.58 15.32

Pollinator habitat 18.03 17.54

Notes: Table presents estimated mean landowner costs of contracting for the base cost ci and top-up cost κij reported in
dollars per acre per year. The cost of each contract j is defined as ci + κij . Costs are estimated using revealed preferences
in optimal bidding (equation (10)). See Section 5.2 for estimation details. Column (1) presents mean costs for all bidders
across all auctions, and column (2) restricts to landowners with above median soil productivity. See Appendix Table D.2 for a
comparison to administrative data.
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Table 4: Additionality as a Function of Landowner Costs

Estimates of τ (zi, ci, κi)

(1) (2) (3) (4)

β: coefficient on base cost (ci) 0.0018 0.0020 0.0007 -0.0002

(0.0002) (0.0002) (0.0003) (0.0004)

α: coefficient on top-up cost (κij)

Trees 0.0035 0.0046

(0.0002) (0.0005)

Native grasses -0.0011

(0.0006)

Habitat -0.0004

(0.0005)

Rare habitat 0.0027

(0.0007)

Wildlife food plot 0.0031

(0.0006)

Pollinator habitat 0.0010

(0.0005)

Includes zsi � � � �
Includes prior land use and soil prod. zi � � �

Notes: Table presents select coefficient estimates of τ (zi, ci, κi) (equation (12)). Coefficients measure how additionality varies
with a $1 per acre, per year change in costs. Positive coefficients indicate a positive correlation between costs of contracting and
additionality, or adverse selection in the market. Parameter estimates obtained via the Method of Simulated Moments estimator
described in Section 5.2. This estimator matches moments of land use in the remote sensing data (for losing bidders in the
2016 auction) and bids given simulated (ci, κi) and optimal bidding in equation (10). All specifications include flexible controls
for the components of the scoring rule excluding landowners’ Wildlife Priority Zone and Air Quality Zone status. Columns
(2)-(4) control for the 32 cells of soil productivity, prior CRP status, and prior cropping status that parameterize bidder costs.
Standard errors are calculated using 100 bootstrap draws and do not (yet) account for variance in the Step 2 estimates.
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Table 5: Outcomes Under Alternative Auctions

Status quo Efficient

allocation

Vickrey auctions with scoring

Status quo

rule

Re-weight

contracts

(ωj)

Re-weight

zsi (ωz)

Add τ̂(zi)

(incl. zi

not in

status quo

rule)

Reduce

quantity

(1) (2) (3) (4) (5) (6) (7)

Panel A. Welfare and spending (million $ per auction):

Social welfare 126 820 121 254 285 300 410

USDA spending 1,323 2,033 1,760 1,703 1,724 936

Landowner surplus 546 906 1,176 1,127 1,147 580

Environmental value 902 1,239 1,130 838 861 876 766

Panel B. Other outcomes

Additionality | contract 0.206 0.424 0.199 0.200 0.209 0.213 0.215

Share awarded contract 0.81 0.55 0.81 0.81 0.81 0.81 0.70

Notes: Table presents results under current and alternative auctions. Panel A tabulates social welfare (equation (14)), USDA
spending, landowner surplus, and environmental value

∑
i

∑
j Bj

(
zsi
)
· τ (zi, ci, κi) · xij in million dollars per auction. Panel

B tabulates average additionality of contracting landowners and the share of landowners with a contract. All auctions impose
that each landowner obtains at most one contract and that total contracts awarded cannot exceed the status quo. Column
(1) simulates the status quo. Column (2) simulates an efficient allocation that allocates contracts using all zi and (ci, κi)
to maximize equation (14). Due to adverse selection, this allocation may not be implementable. Columns (3)-(7) simulate
alternative Vickrey auctions with scoring (see Section 6.2 for more details). Columns (3)-(6) hold quantity (the number of
landowners allocated contracts) constant at the status quo and change the scoring rule sj (zi) defined in equation (15). Column
(3) uses the existing scoring rule sj (zi) = Bj

(
zsi
)
. Column (4) uses a scoring rule with the social-surplus maximizing incentives

across contracts (ωj). Column (5) uses a scoring rule with the social-surplus maximizing asymmetry across bidders using
characteristics already in the scoring rule (zsi ). Column (6) adds an additional characteristic to the scoring rule, a prediction
of τ (zi, ci, κi) using immutable characteristics of landowners already collected by the USDA but not all included in the status
quo scoring rule (deciles of soil productivity and wind and water erosion). Column (7) uses the same scoring rule as column (6)
but reduces the number of contracts allocated to landowners: only landowners with positive scoring-rule-implied social surplus
maxj sj (zi)− ci − κij ≥ 0 are awarded contracts. Each column corresponds to a bar in Figure 9.
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A Institutional Appendix: The CRP Mechanism

The scoring rule depends on characteristics of the land, the conservation action defined in
the contract, and the dollar component of the bid (the bid rental rate). We describe the
details associated with each of these components below. The details of the scoring rule are
published each year in EBI Factsheets.49

Land characteristics The characteristics that influence the scoring rule include:

• Whether a bidder is in a Wildlife Priority Zone (WPZ), defined high priority
wildlife geographic areas. 30 points.

• Whether a bidder is in a Water Quality Zone (WQZ), areas with high value to
improving ground or surface water quality. 30 points.

• Groundwater quality: an evaluation of the predominant soils, potential leaching
of pesticides and nutrients into groundwater, and the impact to people who rely on
groundwater as a primary source of drinking water. Continuous score: 0 to 25 points.

• Surface water quality: an evaluation of the amount of sediment (and associated
nutrients) that may be delivered into streams and other water courses. Continuous
score: 0 to 45 points.

• Erosion potential: Continuous score of 0 to 100 points depending on the Erodibility
Index.

• Air quality: an evaluation of the air quality improvements by reducing airborne dust
and particulate caused by wind erosion from cropland. Continuous score of 0 to 30
points depending on wind speed, wind direction, and the duration of wind events and
soil erodibility.

• Whether a bidder is in an Air Quality Zone (AQZ). 5 points.

These characteristics depend on a bidder’s location and not their bid, i.e. they determine
bidder asymmetry in the scoring rule. These characteristics are known for every agricultural
field in the US.

49See an EBI Factsheet for an example.
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Heterogeneous contracts defined by conservation actions Conservation actions can
be grouped into two categories: a primary cover, described in Table A.1, which covers the
total area offered into the CRP, and an (optional) additional upgrade action, described in
Table A.2, which can be offered in addition to the primary cover on a smaller area. In
total, there are 36 possible contracts: 12 primary covers interacted with three upgrade cover
options (including no upgrade).
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Table A.1: Contract Action Choices: Primary Covers

Short name Description

Grasses 1 Permanent introduced grasses and legumes (CP1): Existing stand of one to three species or
planting new stand of two to three species of an introduced grass species

Grasses 2 Permanent introduced grasses and legumes (CP1): Existing stand or planted mixture (minimum
of four species) of at least 3 introduced grasses and at least one forb or legume species best suited
for wildlife in the area.

Grasses 3 Permanent native grasses and legumes (CP2): Existing stand (minimum of one to three species)
or planting mixed stand (minimum of three species) of at least two native grass species at least
one forb or legume species beneficial to wildlife.

Grasses 4 Permanent native grasses and legumes (CP2): Existing stand or planting mixed stand (minimum
of five species) of at least 3 native grasses and at least one shrub, forb, or legume species best
suited for wildlife in the area.

Trees 1 Tree planting (softwoods) (CP3): Southern pines, northern conifers, or western pines – solid
stand of pines/conifers/softwoods (existing, according to state developed standards, or planted at
more than 550 (southern pines), 850 (northern conifers), or 650 (western pines) trees per acre).

Trees 2 Tree planting (softwoods) (CP3): Southern pines, northern conifers, or western pines –
pines/confiers/softwoods existing or planted at a rate of 500-550 (southern pines), 750-850
(northern conifers), or 550-650 (western pines) per acre depending on the site index
(state-developed standards) with 10-20% openings managed to a CP4D wildlife cover.

Trees 3 Hardwood tree planting (CP3A): Existing or planting solid stand of nonmast producing
hardwood species.

Trees 4 Hardwood tree planting (CP3A): Existing or planting solid stand of single hard mast producing
species.

Trees 5 Hardwood tree planting (CP3A): Existing or planting mixed stand (three or more species) or
hardwood best suited for wildlife in the area or existing or planting stand of longleaf pine or
atlantic white cedar – planted at rates appropriate for the site index.

Habitat 1 Permanent wildlife habitat, noneasement (CP4D): Existing stand or planting mixed stand
(minimum of four species) of either grasses, trees, shrubs, forbs, or legumes planted in mixes,
blocks, or strips best suited for various wildlife species in the area. A wildlife conservation plan
must be developed with the participant.

Habitat 2 Permanent wildlife habitat, noneasement (CP4D): Existing stand or planting mixed stand
(minimum of five species) or either predominantly native species including grasses, forbs,
legumes, shrubs, or trees planted in mixes, blocks, or strips best suited to providing wildlife
habitat. Only native grasses are authorized. A wildlife conservation plan must be developed with
the participant.

Habitat 3 Rare and declining habitat restoration (CP25): Existing stand or seeding or planting will be best
suited for wildlife in the area. Plant species selections will be based upon Ecological Site
Description data.

Notes: Table describes the menu of primary cover actions.
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Table A.2: Contract Action Choices: Upgrades

Short name Description

No upgrade Primary cover only
Wildlife food
plot

Wildlife food plots are small plantings in a larger area

Pollinator
habitat

Existing stand or planting (minimum of .5 acres) of a diverse mix of multiple species suited for
pollinators

Notes: Table describes the menu of upgrade actions.

We obtain the points associated with each of the contract options, defined by the actions in
Tables A.1 and A.2 from the EBI Fact Sheets. The point values assigned to the different
contracts can vary across bidders based on whether or not a bidder is in a Wildlife Priority
Zone (WPZ).

Bid rental rate The scoring rule is non-linear in ri. The existence of bid caps make some
choices infeasible if ri > ri, where ri denotes the i-specific bid cap. The scoring rule also
includes non-linearities based on the amount a bidder bids below the bid cap with kinks at
10% and 15% below the bid cap.50 The weight on this component is announced only after
bids are collected, but it has remained essentially constant throughout our sample period,
so we treat it as known.

An example menu The mechanism implies a menu of payments for each contract at each
score. These menus differ by observable characteristics of landowners due to asymmetry in
the existing rule. Table A.3 describes an example menu.

50We observe bunching at the kink points, suggesting that bidders understand the scoring rule and make
sophisticated choices in the mechanism.
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Table A.3: Payments (for a Target Score of S) and Market Shares Across Contracts

Average

payment

at

thresh-

old

score

Market

share

Average

payment

at

thresh-

old

score

Market

share

Average

payment

at

thresh-

old

score

Market

share

No upgrade + wildlife flood plot + pollinator habitat

Intro Grasses 1 28.63 0.140 35.21 0.015 52.91 0.007

Intro Grasses 2 74.30 0.104 77.86 0.022 86.00 0.019

Native Grasses 1 43.64 0.067 49.37 0.005 64.68 0.009

Native Grasses 2 81.00 0.201 83.59 0.023 90.34 0.056

Trees 1 65.13 0.039 69.44 0.003 79.54 0.000

Trees 2 94.73 0.020 96.45 0.003 101.47 0.001

Trees 3 73.29 0.012 76.52 0.001 85.06 0.000

Trees 4 79.54 0.002 82.40 0.000 89.65 0.000

Trees 5 98.14 0.029 99.83 0.003 104.71 0.002

Habitat 1 75.29 0.032 78.72 0.006 86.60 0.001

Habitat 2 81.73 0.039 84.25 0.007 90.84 0.014

Rare Habitat 93.07 0.077 94.82 0.009 99.91 0.025

Notes: Table presents the menu of all 36 possible contracts, split into 12 primary covers and three upgrade options. Table
reports payments across contracts, calculated as the rental rate per acre per year to reach a given score (held fixed in this table
at the threshold score, S) with a given contract. Payments vary across bidders with heterogeneous zsi ; this table calculates the
averages across all bidders. Table also reports the market shares of each contract, pooled across auctions.
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B Data Appendix

Agricultural Units: Tracts and Fields Figure B.1 provides an illustrative example of
the various agricultural land units.

All agricultural land is the US is divided into fields, or Common Land Units, by the USDA. A
field is defined as the smallest unit of land that has: (i) a permanent, contiguous boundary,
(ii) a common land cover and land management, and (iii) a common owner.51 There are
37,480,917 fields in the US (as of 2016), with an average size of 33.82 acres. Each field, by
definition, has a single land use.

Figure B.1: Example: Tract, Fields, and Bid Fields

Notes: Figure explains the various geographic units in our dataset. The blue outline is a single tract: this is the unit of
landowner (bidder) in our analysis. This tract contains six fields, these are administrative delineations of a tract, each with a
single land use. The green shaded area represents an example area bid into the CRP. This could follow field boundaries (as for
field 4) or cut into fields (as for field 3).

A tract is a collection of fields under one common ownership that is operated as a farm or
part of a farm (a tract is a landowner, or bidder, in our setting). The average tract includes
4.75 fields. Each tract can submit at most one bid into a CRP auction. This bid can include
any subset of a tract’s fields. A bid is not constrained to bid only entire fields; in principle,
a bidder can bid any subset of their land, regardless of field delineations. In practice, a
large share of bids follow field boundaries, as illustrated by Figure B.2. In our analyses, we
therefore treat bid fields as defining the land offered into the mechanism.

51See the Common Land Unit Information Sheet published by the USDA for more details.
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Our dataset includes an identifier and the geolocation of each of the bidding tracts, and their
subset fields, for all auctions. We only observe the identifiers of the bid fields in 2016.

Figure B.2: Share of Bid Fields Bid into the Mechanism

Notes: Figure shows a histogram of the share of the land of the bid fields that are bid into the CRP (the shaded green area as
a share of the total area of fields 3 and 4 in Figure B.1). The mass point at one indicates that the vast majority of bidders bid
the entire field.

Remote Sensing Data (CDL) Our first source of land use data is the Cropland Data
Layer (CDL) from 2009 to 2020. The CDL is derived from annual satellite imagery at a
30m by 30m resolution (approximately one quarter acre) for the entire contiguous US. The
dataset classifies each pixel into over 50 crop categories and over 20 non-crop categories.
The CDL is produced by the National Agricultural Statistics Service (NASS), and is trained
on administrative data submitted to the USDA for crop insurance purposes (Form 578,
discussed in more detail below). The CDL has been used in prior economics research studying
agriculture and land use (Scott, 2013; Hagerty, 2022).52

Our primary analysis aggregates CDL classifications into super-classes of crop versus non-
crop, following (Lark et al., 2017). Also following Lark et al. (2017), our crop classification
excludes alfalfa, hay, fallow, and idle cropland. The super-class accuracy of the CDL is
high with > 95% average producer’s (classified as cropped when truly cropped) and user’s
(truly cropped when classified as cropped) accuracy in the years 2008-2016 (Lark et al.,
2017). Despite this high super-class accuracy, remote sensing classifications are subject to
measurement error in classification (Alix-Garcia and Millimet, 2022; Torchiana et al., 2022),
particularly when analyzing land use transitions. Moreover, in order to improve accuracy,

52See https://www.nass.usda.gov/Research_and_Science/Cropland/SARS1a.php for more details and
Metadata.
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some states in some years use prior years’ CDL as an input into the training algorithm,
providing a further source of bias stemming from the classification algorithm.

We merge the CDL to a shapefile of all agricultural fields in the US, which we can then
aggregate to landowners (tracts) using USDA identifiers. We merge the CDL data to the
geocoded location of the bidder, time-stamped at the point of bidding.

Calculating land use outcomes at the tract level as either the share of pixels that fall into the
crop super-class, or a weighted average of field-level (binary) cropping indicators produce
similar results. We use the former in our main specifications.

Form 578 Administrative Data Our second source of data (from Form 578) is new to
economics research. It is the administrative data submitted to the USDA that the CDL is
trained on. The data consist of annual field-level reports of total acreage cropped in detailed
crop categories and enrollment in USDA programs. Though Form 578 is self-reported, crop
insurance payouts depend on these reports. Unlike the CDL, which has coverage over the
entire US, field-level data is only submitted if there is an incentive to do so, i.e. if it is
cropped and covered by crop insurance. We assume that all non-reporting fields are not
cropped. This is the primary limitation of the administrative data relative to the CDL.

We merge the Form 578 administrative data to bidders based on field and tract identifiers.
We construct a panel that tracks changes in field identifiers over time using their geolocation.

NAIP Imagery Our final dataset is derived from the National Agriculture Imagery Pro-
gram (NAIP) collected via Google Earth Engine. The NAIP is administered through the
Forest Service Agency (FSA) of the USDA, and collects 0.6-1m resolution images of all agri-
cultural land during growing season. We obtain NAIP images for enrolled land (the high-
lighted green area in Figure B.1) to assess compliance with CRP rules. We use high-resolution
photographs as classification error in the derived (CDL) data product would mechanically
bias toward finding non-compliance.
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Figure B.3: Sample Images

(a) Enrolled field (b) Cropped field

Notes: Example images for classification. For compliance, neither of these are actual images of CRP enrolled fields.

Validating Compliance To assess compliance, we hired and trained two MIT undergrad-
uates (the “reviewers”) to classify high resolution aerial photographs (NAIP images) of fields
at 1m resolution (see Figure B.3 for examples). We focus on the 2016 auction and images
taken between 2017 and 2021. Before asking the reviewers to classify any images, we pro-
vided them with a test set of hundreds of images of cropped and uncropped fields across the
US. The reviewers used this “test set” to familiarize themselves with the visual patterns of
cropped fields (see Figure B.3b). We then provided each of the reviewers with over 1,000 im-
ages of CRP enrolled fields and hundreds of placebo cropped fields as attention checks. The
reviewers were blind to whether the images were of CRP enrolled fields or placebo cropped
fields. Each of the two reviewers were provided with the same images.

Table B.1 presents results for the classification exercise. We restrict to the 83% of CRP
images that the reviewers agreed upon for our assessment of compliance to minimize the
potential for classification error. We find only 5% of fields to be out of compliance in all
post-period years. Once we drop the two “transition” years from 2017-2018, we find even
lower rates of non-compliance, and reject rates of non-compliance above 3%. We attribute
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the difference between columns (1) and (2) to be driven by the fact that fields appear different
when they are transitioning out of cropland, e.g. rows from row cropping may still be visible
as new vegetation grows in. While not reported, rates of cropping are substantially higher,
at approximately 40%, on placebo cropped fields; the reviewers were making meaningful
classifications. We note, however, that this number is far below 100%. This is because we
instructed the reviewers to be conservative in their assessment of non-compliance, operating
under the (reasonable) null hypothesis that the program is in fact enforced.

Table B.1: Validation of Compliance: ai1 = 1 ∀i

All post-period years Drop first two years
(1) (2)

Share of enrolled fields classified as cropped 0.054 0.024
(0.008) (0.0085)

Upper bound of 95% CI 0.070 0.034
N fields classified (with agreement) 925 842
Rate of agreement across reviewers 0.824 0.863

Notes: Table presents results from an exercise classifying aerial photographs of contracted fields as cropped or non-cropped
among two reviewers, who also reviewed images of non-CRP fields and were blind to the distinction. Classification focuses on
the 2016 auction. Column (1) includes photographs from 2017-2021. Column (2) includes only photographs from 2019-2021.
Crop classifications are based on only fields in which the two reviewers agree (which occurred for 82-86% of fields). Fields more
likely to be flagged as non-compliant (based on remote sensing data) were over-sampled, to be as conservative as possible.

This exercise only studies compliance on the base action, land retirement, not the top-up
actions, which we cannot observe. We thus use this assessment of compliance to make an
inference about the overall compliance regime across all actions.
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C Supplemental Figures and Tables

RD

Figure C.1: Spillovers: Cropping Effects on Non-Bid Fields

(a) Remote sensing
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Notes: Panels (a) and (b) present raw data and estimates from equation (7) for r (i, t) > 0 (post-auction). Regression is
estimated at the field level, restricting to non-bid fields for bidding landowners. Estimates are restricted to the 2016 auction
where delineations of bid and non-bid fields are observed. Land-use outcomes are measured as the share of the bidding land
that is cropped using the remote sensing data (a) and administrative data (b). The running variable is the difference between
each bidder’s score and the threshold score. Positive numbers on the x-axis correspond to winning scores, negative numbers
correspond to losing scores. Each observation is a bidder-year. Corresponding coefficient estimates and standard errors presented
in Table 2.
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Figure C.2: Additional RD Plots: Remote-Sensing Data

(a) Cropping corn
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(b) Copping soybeans
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(c) Fallow
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Notes: Figure presents raw data and estimates from equation (7) for r (i, t) > 0 (post-auction). Land-use outcomes are measured
using crop classifications in the remote sensing data. The running variable is the difference between each bidder’s score and the
threshold score. Positive numbers on the x-axis correspond to winning scores, negative numbers correspond to losing scores.
Each observation is a bidder-year. Corresponding coefficient estimates and standard errors presented in Table 2.
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Figure C.3: Additional RD Plots: Admin Data

(a) Cropping
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(b) Cropping corn
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(c) Cropping soybeans
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(d) Fallow
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Notes: Figure presents raw data and estimates from equation (7) for r (i, t) > 0 (post-auction). Land-use outcomes are measured
using crop classifications in the Form 578 data reported to the USDA. The running variable is the difference between each bidder’s
score and the threshold score. Positive numbers on the x-axis correspond to winning scores, negative numbers correspond to
losing scores. Each observation is a bidder-year. Corresponding coefficient estimates and standard errors presented in Table 2.
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Figure C.4: Rebidding Hazard
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Notes: Figure plots the share of losing bidders who have rebid at least once in the years following an index auction, split by all
bidders (beige) and successful bidders (blue).

Table C.1: RD Estimates: By Win Threshold of Bid Rental Rate for Base Contract

Remote-sensing Admin

(1) (2)

Quartile 1 threshold bid (lowest) -0.039 -0.054

(0.013) (0.013)

Quartile 2 threshold bid -0.059 -0.068

(0.012) (0.012)

Quartile 3 threshold bid -0.031 -0.042

(0.012) (0.013)

Quartile 4 threshold bid (highest) -0.075 -0.098

(0.015) (0.015)

Notes: Table presents pooled RD coefficients (Equation (7) for r (i, t) > 0 (post-auction) split by the bid rental rate required
to achieve the threshold score with the base contract. This parameterizes heterogeneity in the location of the discontinuity
across auctions and variation within auctions across bidders (based on zsi ). The outcome is the share of a bidder’s land that is
cropped, measured in the remotely sensed data. Standard errors clustered at the tract level.
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Table C.2: RD Coefficient Estimates | Bid ≥ Five Acres of Land

Remote sensing Admin

(1) (2)

Panel A: Main outcome: share of land cropped

Pre-sign-up (placebo) 0.016 0.014

(0.007) (0.006)

Post-period (pooled sign-ups) -0.076 -0.095

(0.007) (0.006)

Post-period (full contract duration: 2010-2020) -0.117

(0.020)

Panel B: Other outcomes

Corn -0.016 -0.023

(0.003) (0.003)

Soybean -0.021 -0.027

(0.003) (0.003)

Fallow -0.009 -0.011

(0.002) (0.001)

Natural vegetation or grassland 0.097

(0.007)

Panel C: Spillovers to non-offered fields

Share of non-offered fields cropped -0.001 -0.000

(0.015) (0.015)

N bidders 236,593 236,593

N bidder-years 2,839,116 1,656,151

Notes: Table presents coefficient estimates from equation (7) with land use outcomes measured in the remotely sensed (column
(1)) and administrative (column (2)) data, restricted to bidders who bid more then five acres into the mechanism (following
Lark et al. (2017)). All results use a local linear regression on either side of the win threshold in the MSE-optimal bandwidth
(Calonico et al., 2014). The full-contract duration specification restricts to the 2009 auction, others pool all auctions with
post-period data (2009, 2011, 2012, 2013, and 2016). The pooled post-period includes an average of 7-8 post-auction years.
Natural vegetation or grassland is only observed in remotely sensed data. Calculations of implied additionality divide the
treatment effect estimates by the amount of land contracting among winning bidders in the MSE-optimal bandwidth. Panel C
estimates the effect of a CRP contract on non-bid, and therefore non-contracting, fields to test for spillovers. This analysis is
restricted to the 2016 auction. Standard errors are clustered at the bidder level.
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Testing for Asymmetric Information

Figure C.5: Testing for Asymmetric Information, Admin Data
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(b) Additionality vs. bids | observables
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(c) Additionality across contracts
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(d) Observable predictors of additionality
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Notes: Figures present visual representations of estimates of equation (8). All regressions control for landowner characteristics
in the scoring rule: whether a bidder is in a wildlife priority zone, estimates of groundwater quality, estimates of surface water
quality, estimates of wind and water erosion (deciles), air quality impacts, and whether or not a bidder is in a air quality zone.
The outcome variable in all panels is a landowner-specific measure of additionality (1 − ai0). This is calculated as the share
of all fields bid into the CRP mechanism that are cropped post auction for rejected landowners. The sample is restricted to
the 2016 auction, in which 82% of bidders are rejected and the delineations of bid fields are observed. Cropping on bid fields
is measured in 2017-2020 in the administrative data. Panel (a) is a binned scatterplot correlating the dollar bid (per acre, per
year) with additionality, conditional on characteristics included in the scoring rule. Panel (b) adds controls for interaction terms
of prior land use (quartiles of share of land cropped prior to bidding and re-enrolling CRP status) and deciles of estimated
soil productivity. Panel (c) plots relative additionality by the chosen contract in the bid, relative to an omitted category of
introduced grasses. Panel (d) plots relative additionality by deciles of estimated soil productivity. Standard errors clustered at
the bidder level.
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D Model and Estimation Details

Information

Quantity uncertainty Figure D.1 provides empirical support for the uncertainty in quan-
tity cleared based on the acreage limit of the auction (determined by the Farm Bill). The
2013 and 2016 auctions had very different quantity thresholds, and thus very different thresh-
old scores — denoted by the dashed lines in blue and beige — but the cumulative distribution
functions (CDFs) of bidder scores are similar.

Figure D.1: CDF of Scores versus Winning Thresholds: 2013 versus 2016
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Notes: Figure presents ex-post win thresholds and cumulative distribution functions (CDFs) of ex-ante score distributions for
the 2013 and 2016 auctions.

Identification

Figure D.2 presents a graphical identification argument in the simple case with only two
contract choices (one normalized to have κ = 0) and a quasi-linear scoring rule. s−1 (S∗, x)
describes the payment a bidder can receive to achieve score S∗ with action x (see Table A.3
for an illustration of this function).

The choice to bid S∗ and x1 under scoring rule s defines the blue line segment containing
the true parameters c and κ. S∗ can be inverted as in Guerre et al. (2000) to point identify
c + κ (the line containing the blue line segment in Figure D.2). The observation that x1

was chosen (not x0) to reach S∗, given the different payoffs associated with x0 and x1 in the
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scoring rule, bounds the magnitude of κ, defining the line segment. If κ were higher than the
horizontal line in Figure D.2, it would have been optimal to reach score S∗ with x0 instead
of x1.

Variation in the scoring rule that shifts the payoffs to x1 versus x0, i.e. from s to ŝ, traces
out the density of bidder costs as bidders’ optimal choices change in response to the variation
in the scoring rule. For example, the vertical dashed line documents a bidder who changes
her optimal bid to x0 with Ŝ∗ under the new rule.

This argument extends to non-linearities in the scoring rule, a larger menu of contracts, and
the fact that scores can only be integers. See (Agarwal et al., 2023) for more details.

Figure D.2: Graphical Identification Argument

Notes: Figure presents a graphical identification argument.

As discussed in the main text, the final component of the model, τ (zi, ci, κi), is identified
by also observing ai0 jointly with optimal bids (including as they change with the variation
from s to ŝ described in Figure D.2).

Figure D.2 clarifies the need for variation in the scoring rule to trace out the distribution of
c and κ. Figure D.3 describes this variation in our context.

78



Figure D.3: Sources of Variation in the Scoring Rule

(a) Wildlife Priority Zone Variation
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(b) Mid-Mechanism Policy Change
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Notes: Figure presents sources of policy variation in the scoring rule that yield variation in payments across contracts differ-
entiated by top-up conservation actions. Panel (a) plots average action points awarded for a set of “treated” actions, actions
for which after the 2011 auction WPZ bidders no longer got WPZ points, and “untreated” actions, whose points remained the
same, and the same average action points for non-WPZ bidders. Panel (b) plots the average rental rate that would be received
for a target score (illustrated using the threshold score) among bidders under the interim mechanism before the introduction of
Climate Smart Practice Incentives, and in the final mechanism after their introduction, for each of the twelve primary covers.
G indicates grasses, T indicates trees, H indicates habitats.

Estimation

Step 0: Constructing the Scoring Rule We only observe scores for chosen bids bi,
so we construct the function s (bi, z

s
i ) from the EBI Factsheets. Figure D.4 confirms that

our reconstruction performs well: at observed actions, our scoring-rule-implied required bid
rental rate to achieve the score chosen in the data predicts the observed bid rental rate with
an R2 of over 0.99.
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Figure D.4: True versus Predicted Bid Rental Rate at Observed Scores and Contracts
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Notes: Figure presents a scatter plot of true versus predicted bid rental rates at observed contract and score choices to validate
the construction of s

(
bi, z

s
i

)
.

Step 1: Obtain Bidder Beliefs via Simulation Our resampling procedure to simu-
late the probability of winning at any score, G(S) follows Hortaçsu (2000); Hortaçsu and
McAdams (2010). Specifically, we:

1. Fit a Beta distribution to the observed distribution of acreage thresholds across auc-
tions. For this step, we use additional historic data on auctions starting in 1999. This
provides us with 12 auctions.

2. Fit a Beta distribution to the observed distribution of number of opposing bidders
across auctions. For this step, we again use additional historic data on auctions starting
in 1999. This provides us with 12 auctions.

3. Draw an acreage threshold from the distribution fit in Step 1 and the number of
opposing bidders, N , in Step 2. Then, for each auction g, sample with replacement
N bidders from the empirical distribution of bidders in that auction. Given the joint
distribution of scores and acreage amounts among the N resampled bidders, and the
drawn acreage threshold, find the winning score threshold S.

4. Repeat Step 3 to obtain an auction specific probability of winning at any given score
Gg(S).

Bidders form expectations about the distribution of competing scores without knowledge of
their competitors’ identities or characteristics, consistent with the large and decentralized
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bidding process, so Gg(S) is the same for all bidders. Figure D.5 plots the output of our
simulation procedure across all auctions.

Figure D.5: Probability of Winning at Score S
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Notes: Figure presents CDFs of the simulated distribution of win probabilities at a given score across auctions.

Step 2: Estimate Fc,κ | z Our estimation procedure is as follows:

1. Construct a proposal distribution. We begin by constructing a proposal distribu-
tion from which to draw proposal (ci, κi) draws. We obtain our proposal distribution
by estimating a simplified version of the model. Bidders choose a score using only their
expectations of their κij draws, then given that score, choose an optimal contract. In
this model, estimation of κij and ci can be separated into a discrete choice problem
and an inversion. We obtain parameter estimates from this simplified model, then set
our proposal distribution to be independent normals with the estimated means and
variances of this simplified model (inflating the variance by 25%).

2. Draw from proposal and solve the bidder’s problem. Following the approach of
Ackerberg (2009), we use a change of variables to draw simulations of

(
cki , κ

k
i

)
from the

proposal distribution and solve the bidder’s problem in equation (10) for each bidder
and each simulation draw. Bidders can only bid integer scores, so to solve equation
(10), we search over all feasible score-contract combinations among integers in the
support of observed scores. This change of variables allows us to solve the bidder’s
problem only N ×K times, once for each bidder and each simulation draw, instead of
N ×K ×R times, for each evaluation of the objective function (R times).
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3. Coarsen choice probabilities. Because the number of possible bids is large (on the
order of 10,000 choices), we face the challenge that the probability of simulating each
bid observed in the data is low. We address this challenge by coarsening the bidder’s
solution obtained in Step 2. We coarsen to the cartesian product of (i) deciles of the
scoring rule and (ii) the five dimensions of pj when uj is the no upgrade option, plus
the two upgrade options. Let b̃∗i =

(
S̃i, x̃i

)
denote the optimal coarsened bid observed

in the data.

4. Reweight simulation draws. We can then construct the importance sampling es-
timator by re-weighting simulation draws. The likelihood of observing the coarsened
choice in the data, b̃∗i =

(
S̃i, x̃i

)
, given a parameter guess θ, is:

Li =
1

K

∑
1

(
b̃∗i = b̃∗ki |

(
cki , κ

k
i

)) p ((cki , κki ) |θ)
g
((
cki , κ

k
i

)) , (17)

where b̃∗ki is the coarsened optimal bid given simulation draw
(
cki , κ

k
i

)
, the solution

to the bidder’s problem in equation (10), and the coarsening described in Step 3.

Equation (17) then re-weights simulation draws by
p((cki ,κki )|θ)
g((cki ,κki ))

, where p
((
cki , κ

k
i

)
|θ
)
is

the probability of observing simulation draw
(
cki , κ

k
i

)
given parameter guess θ, and

g
((
cki , κ

k
i

))
the probability of observing

(
cki , κ

k
i

)
given the proposal distribution from

Step 1.

5. Find θ to maximize the log likelihood. We suppressed dependence in (17) on
zi. We estimate θ separately for each of the 32 cells of observable heterogeneity for a
sample of 1,000 bidders in each cell in each auction (due to computational constraints
on the USDA servers). An auxiliary benefit of the importance sampling approach of
Ackerberg (2009) is that it yields a differentiable objective function.

6. Repeat. We repeat Steps 2-5 several times, using estimates from the solution to Step
5 as the new proposal distribution. Our final estimates use 10,000 simulation draws to
mitigate simulation bias (Train, 2009).

Step 3: Estimate τ (zi, ci, κi) Our final step involves estimating the conditional expec-
tation function τ (zi, ci, κi) = E [1− ai0 | zi, ci, κi] = π · zi + β · ci + α · κi. We match model
implied moments of additionality to observed moments of additionality, 1− ai0, among bid-
ders who lose the auction. We search for θτ = (π, β, α) that minimizes ĝ (θτ )′Aĝ (θτ ) for
weight matrix A and ĝ (θτ ) = Ê

[
mi − 1

K

∑
kmi

(
θτ |cki , κki

)]
, where Ê denotes the sample

expectation, for mi equal to:
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• Additionality at the award threshold: (1− ai0)·1 [S − b < s (b∗i , z
s
i ) < S] for bandwidth

b.

• Additionality by observable characteristics: (1− ai0) · 1 [s (b∗i , zsi ) < S] · zi.

• Covariance between additionality and chosen scores: (1− ai0)·s (b∗i , zsi )·1 [s (b∗i , zsi ) < S].

• Additionality within chosen contracts: (1− ai0) · 1 [xij = 1] · 1 [s (b∗i , zsi ) < S].

Our estimation approach follows the following steps:

1. Draws simulations
(
cki , κ

k
i

)
from Fc,κ | z estimated in Step 2.

2. Calculate optimal bids b∗i given
(
cki , κ

k
i

)
using equation (10).

3. Calculate mi

(
θτ |cki , κki

)
by replacing 1 − ai0 with π · zi + β · ci + α · κi and observed

bids with simulated optimal bids for each simulation draw k and parameter guess θτ .

4. Minimize the objective ĝ (θτ )′Aĝ (θτ ).

We use the two-step optimal weight matrix for the matrix A.

Because we require an observation of bid fields to calculate 1− ai0, we estimate τ (zi, ci, κi)
using only the auction where we observe bid fields (2016). Our primary estimates use the
remote-sensing data from 2017-2020 to measure 1 − ai0. We assume that the relationships
estimated in τ (zi, ci, κi) in this auction can be extrapolated to the other auctions in our
sample, and that τ (zi, ci, κi) can be estimated in only the three years following the auction.
This may seem unappealing given the transition period in Figure 4, but we note that 1− ai0
is calculated among losing bidders, not those transitioning into land retirement.

As discussed in the main text, we require instruments that shift s (b∗i , zsi ) but that are con-
ditionally independent of ai0. We use landowners’ Wildlife Priority Zone and Air Quality
Zone status as instruments. We conduct a test to provide additional support for this as-
sumption. Specifically, we estimate the simplified version of the model described in Step 1
of our Step 2 estimator, in which we can point identify ci with an inversion. We show in
Figure D.6 that cropping outcomes are independent of the score after controlling for ci and
the remaining observables in τ (zi, ci, κi). This suggests that the residual variation in the
score is conditionally independent of ai0.
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Figure D.6: Residualized Correlation Between Scores and Cropping
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Notes: Figure presents the relationship between a binary indictor for cropping, residualized of observable characteristics, a
point-identified ci estimate from an alternative model, and scoring rule characteristics except for Wildlife Priority Zone and Air
Quality Zone. Estimated among losing bidders in the 2016 auction only.

We calculate standard errors via bootstrapping. Our final procedure will bootstrap over
the entire estimation procedure to incorporate estimation error in earlier steps. The current
standard errors do not incorporate estimation error in (ci, κi).
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Table D.1: Fc,κ | z Parameter Estimates (Select zi)

Former CRP = 0 Former CRP = 1

Prior crop Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4

Soil prod. Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4

(1) (2) (3) (4) (5) (6) (7) (8)

ci

Mean 31.65 37.51 66.35 135.97 36.55 42.90 66.85 126.27

(0.02) (0.04) (0.05) (0.06) (0.02) (0.03) (0.05) (0.06)

Log σc 1.60 2.77 3.53 3.61 1.16 2.60 3.47 3.89

(0.004) (0.002) (0.001) (0.001) (0.004) (0.002) (0.001) (0.001)

κij

Means

Native grasses 0.70 -4.46 3.96 -0.61 -2.59 -4.76 4.87 2.31

(0.02) (0.02) (0.03) (0.02) (0.02) (0.02) (0.02) (0.02)

Trees 28.57 27.53 30.11 34.51 15.85 19.25 23.77 30.67

(0.02) (0.03) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02)

Habitat 17.25 12.71 16.82 22.01 13.96 11.76 15.94 12.92

(0.03) (0.03) (0.03) (0.03) (0.03) (0.03) (0.03) (0.03)

Rare habitat 17.73 15.63 17.97 10.05 18.30 12.96 22.57 19.60

(0.04) (0.04) (0.03) (0.03) (0.05) (0.04) (0.04) (0.03)

Wildlife food plot 23.77 23.07 12.69 14.24 25.66 18.65 14.45 16.24

(0.03) (0.03) (0.02) (0.02) (0.03) (0.02) (0.02) (0.02)

Pollinator habitat 16.72 10.81 14.12 18.00 22.04 18.68 18.27 17.40

(0.02) (0.02) (0.02) (0.02) (0.03) (0.02) (0.02) (0.02)

Log σκ 2.70 2.86 2.81 2.76 2.85 2.84 2.83 2.81

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.000) (0.000)

Notes: Table presents presents parameter estimates for 8 cells of zi. Standard errors calculated using the inverse of the negative
Hessian, calculated numerically. Standard errors do not account for simulation error or the estimation error in the first step
estimator of G(S).
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Figure D.7: Model Fit

(a) Choice probabilities: coarsened
0

.1
.2

.3
M

ar
ke

t s
ha

re

Introduced
grasses

Native
grasses

Trees Habitat Rare
habitat

Food
plot

Pollinator
habitat

Data Model

(b) Choice probabilities: all 36 contracts

0
.0

5
.1

.1
5

.2
M

ar
ke

t s
ha

re

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

Data Model

(c) Bids

0
10

0
20

0
30

0
D

at
a 

(b
id

)

0 100 200 300
Model (bid)

(d) Scores

10
0

20
0

30
0

40
0

D
at

a 
(s

co
re

)

100 200 300 400
Model (score)

Notes: Figures summarize model fit by comparing simulated choices of contracts, bids, and scores to the data.

Table D.2: Comparison Between Estimated and Administrative Cost Estimates

Estimates Median admin cost Average admin cost

(1) (2) (3)

Tree primary covers (rel. to grasses) 24.36 26.46 73.15

Habitat primary covers (rel. to grasses) 15.05 2.67 3.30

Notes: Table presents average revealed preference estimates of costs of aggregate primary cover categories, relative to grasses
(column 1), compared to administrative data collected on the costs of these actions by the USDA (columns 2 and 3).

E Valuing Benefits

We assume that the weights in the scoring rule Bj (z
s
i ) reflect the relative social benefits (in

dollars) across j and zsi , assuming ai0 = 0 for all i. The mechanism implicitly makes trade-offs
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in the scoring rule that monetize relative preferences across contracts and characteristics.

Using this logic requires two assumptions. First, we require the assumption that ai0 = 0 for
all i, motivated by Claassen et al. (2018), who write: Benefit-cost indices are used to rank
applications for acceptance in all major USDA conservation programs... Existing indices,
however, implicitly assume full additionality. Second, we require that the weights in the
scoring rule are not distorted to reduce expenditures (Che, 1993). There is no evidence to
support this behavior (Ribaudo et al., 2001), and moreover, the USDA values transfers to
agricultural landowners. We assume that the USDA maximizes social welfare by announcing
its preferences in the scoring rule.

However, the USDA revealed-preferred values of Bj (z
s
i ) may not necessarily align with the

true environmental benefits for a variety of reasons, e.g. political concerns (Ribaudo et al.,
2001). We choose to take this USDA-revealed-preferred approach, versus calibrating Bj (z

s
i )

from an external integrated assessments model,53 to focus on additionality as the primary
source of social welfare losses.

To calculate these scoring-rule implied relative valuations, we note that scoring rule is sep-
arable in the actions incentivized by the heterogeneous contracts and the bid ($) rental
rate

s (bi, z
s
i ) = sa (xi, z

s
i )︸ ︷︷ ︸

action points

+ sr (ri)︸ ︷︷ ︸
bid rental rate points

(18)

and construct a quasi-linear approximation to the scoring rule to obtain relative willingness
to pay. The scoring rule departs from quasi-linearity because of kinked incentives in points
bidders receive as a percentage of their bidcap. We “quasi-linearize” the scoring rule by
taking the average of s′r (ri) in the region without the added percentage points bonus and
the region with the percentage point bonus (at the median bidcap value).54

Using our “quasi-linearized” approximation to the scoring rule, we know how the USDA
trades off higher costs with heterogeneous environmental benefits across contracts j and
observable characteristics zsi . However, the scoring rule is not directly informative about the
level of social benefits. We obtain this using estimates of the value of the CRP from the
literature. We assume that all impacts of the CRP accrue only over the contract period.

We use following values of the CRP from the literature. Our baseline estimates take the
average across these three studies.

53See https://naturalcapitalproject.stanford.edu/software/invest for an example.
54The fact that different bidders face different scoring rules based on their bidcap does not reflect differential

valuation of environmental benefits across bidders.

87

https://naturalcapitalproject.stanford.edu/software/invest


1. Our first estimate sums the recreational,55 public works,56 and air quality benefits57

from Feather et al. (1999) and adds estimates of the value of greenhouse gas reductions
from sequestered CO2 (over the 10-year contract) and reduced fuel and fertilizer use58

monetized at $43 per metric ton. This leads to an overall estimated value of the CRP
of $98.34 per acre, per year. This is likely to be an under-estimate because biodiversity
is only valued insofar as it provides recreational benefits, and this estimate does not
include water quality improvements from reduced run-off.

2. Our second estimate takes the valuation of the CRP from Hansen (2007), and adds
estimates of the value of greenhouse gas reductions from sequestered CO2 (over the
10-year contract) and reduced fuel and fertilizer use, which then equals $255.70, per
acre, per year.

3. Our third and fourth estimate take a conservative and generous value of the non-GHG
CRP benefits from Johnson et al. (2016) and adds estimates of the value of greenhouse
gas reductions from sequestered CO2 (over the 10-year contract) and reduced fuel and
fertilizer use. This leads to estimates of $367.96 and $456.04, per acre, per year. These
may be an over-estimate because benefits are estimated in only one geographic area,
which may have more environmentally sensitive land.

The description above highlights the difficulties of monetizing the value of the all of the
environmental benefits of the CRP, both in terms of quantifying all of the potential environ-
mental benefits. We emphasize that our focus is not on obtaining estimates of Bj (z

s
i ), but

rather on τ (zi, ci, κi); results can be recalculated for any alternative valuation of Bj (z
s
i ).

Quantifying the environmental value of ecosystem services is an important complementary
area of research.

F Additional Counterfactuals

Cost of Public Funds Figure E.1 considers the same auctions presented in Figure 9,
but evaluates social welfare with a cost of funds λ = 0.15. Under this framework, 15% of

55Includes sport-fishing, small-game hunting, noncompetitive viewing, and waterfowl hunting.
56Includes cost savings associated with reduced maintenance of roadside ditches, navigation channels,

water treatment facilities, municipal water uses, flood damage, and water storage.
57Includes reduced health risks and cleaning costs associated with blowing dust.
58See https://www.fsa.usda.gov/Assets/USDA-FSA-Public/usdafiles/EPAS/

natural-resouces-analysis/nra-landing-index/2017-files/Environmental_Benefits_of_the_
US_CRP_2017_draft.pdf.

88

https://www.fsa.usda.gov/Assets/USDA-FSA-Public/usdafiles/EPAS/natural-resouces-analysis/nra-landing-index/2017-files/Environmental_Benefits_of_the_US_CRP_2017_draft.pdf
https://www.fsa.usda.gov/Assets/USDA-FSA-Public/usdafiles/EPAS/natural-resouces-analysis/nra-landing-index/2017-files/Environmental_Benefits_of_the_US_CRP_2017_draft.pdf
https://www.fsa.usda.gov/Assets/USDA-FSA-Public/usdafiles/EPAS/natural-resouces-analysis/nra-landing-index/2017-files/Environmental_Benefits_of_the_US_CRP_2017_draft.pdf


all USDA spending is considered deadweight loss, motivated by the social costs of financing
expenditures via distortionary taxation. With a cost of funds, the status quo auction reduces
social welfare. However, social welfare gains become positive once the auction is designed to
consider additionality. In bar (7), social welfare gains are large at $270 million per auction.

Figure E.1 evaluates auctions using the same scoring rules as in Figure 9. With weights ωj
and ωz re-optimized to reduce government spending, social welfare gains would be higher.

Figure E.1: Social Welfare Under Alternative Auctions: Cost of Funds
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Notes: Figure presents estimates of the social welfare gains (defined in equation (14) with a cost of funds λ = 0.15) under
status quo and alternative auctions. Results reported in million dollars per auction. All auctions impose that each landowner
obtains at most one contract and that total contracts awarded cannot exceed the status quo. Bar (1) simulates the status
quo. Bar (2) calculates the social welfare gains under an efficient allocation that allocates contracts using all zi and (ci, κi)
to maximize equation (14). Due to adverse selection, this allocation may not be implementable. Bars (3)-(7) calculate social
welfare under alternative Vickrey auctions with scoring (see Section 6.2 for more details). Bars (3)-(6) hold quantity (the
number of landowners allocated contracts) constant at the status quo and change the scoring rule sj (zi) defined in equation
(15). Bar (3) uses the existing scoring rule sj (zi) = Bj

(
zsi
)
. Bar (4) uses a scoring rule with the social-surplus maximizing

incentives across contracts (ωj). Bar (5) uses a scoring rule with the social-surplus maximizing asymmetry across bidders
using characteristics already in the scoring rule (zsi ). Bar (6) adds an additional characteristic to the scoring rule, a prediction
of τ (zi, ci, κi) based on immutable characteristics of landowners already collected by the USDA (deciles of soil productivity
and wind and water erosion). Bar (7) uses the same scoring rule as bar (6) but reduces the number of contracts allocated to
landowners: only landowners with positive scoring-rule-implied social surplus maxj sj (zi)− ci−κij ≥ 0 are awarded contracts.
See each bar’s corresponding column in Table 5 for more details.

Top-Actions not Affected by Additionality For all analyses beyond those restricted to
the base contract, we require an assumption about how additionality impacts the social value
derived from the top-up actions that differentiate the contracts in the mechanism. This is
due to fundamental data limitations (see Section 3.2). Our primary specification defines the
social benefit of contracting as Bj (z

s
i ) · τ (zi, ci, κi). In this specification, no social benefits

are generated when a landowner is not additional. This could be either because, as with
land retirement, top-up actions (or close substitutes) would have occurred even absent a
CRP contract. It could also be motivated by an assumption that land retirement and the
top-up actions are complements in the USDA’s valuation of contracting.
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In this section, we consider an alternative assumption in which the incremental actions
incentivized by the contracts are always additional. Specifically, we consider an alternative
valuation of contracts equal to B0 (z

s
i )·τ (zi, ci, κi)+Bj (zsi ), where B0 (z

s
i ) is the social benefit

of the base action and Bj (zsi ) is the incremental social benefit of the top-up action beyond
the base action. This could be motivated by a scenario in which contracting impacted the
specific species mix, which we assume the USDA values at Bj (zsi ), even if it did not impact
land retirement. Under this assumption, over one third of the total social surplus at stake is
not impacted by additionality at all. This makes correctly incentivizing the top-up actions
— whose relative valuations are derived solely from monetizing the scoring rule — matter
substantially to the performance of the mechanism. This is another reason to favor our
baseline assumption over this alternative.

Figure E.2: Social Welfare Under Alternative Auctions: Alternative Top-Up Assumption
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Notes: Figure presents estimates of the social welfare gains (defined in equation (14), but replacing Bj
(
zsi
)
· τ (zi, ci, κi) with

B0

(
zsi
)
· τ (zi, ci, κi)+Bj

(
zsi
)
where B0

(
zsi
)
is the social benefit of the base action and Bj

(
zsi
)
is the incremental value of the

top-up action) under status quo and alternative auctions. Results reported in million dollars per auction. All auctions impose
that each landowner obtains at most one contract and that total contracts awarded cannot exceed the status quo. Bar (1)
simulates the status quo. Bar (2) calculates the social welfare gains under an efficient allocation that allocates contracts using
all zi and (ci, κi) to maximize equation (14). Due to adverse selection, this allocation may not be implementable. Bars (3)-(7)
calculate social welfare under alternative Vickrey auctions with scoring (see Section 6.2 for more details). Bars (3)-(6) hold
quantity (the number of landowners allocated contracts) constant at the status quo and change the scoring rule sj (zi) defined
in equation (15). Bar (3) uses the existing scoring rule sj (zi) = Bj

(
zsi
)
. Bar (4) uses a scoring rule with the social-surplus

maximizing incentives across contracts (ωj). Bar (5) uses a scoring rule with the social-surplus maximizing asymmetry across
bidders using characteristics already in the scoring rule (zsi ). Bar (6) adds an additional characteristic to the scoring rule,
a prediction of τ (zi, ci, κi) based on immutable characteristics of landowners already collected by the USDA (deciles of soil
productivity and wind and water erosion). Bar (7) uses the same scoring rule as bar (6) but reduces the number of contracts
allocated to landowners: only landowners with positive scoring-rule-implied social surplus maxj sj (zi)−ci−κij ≥ 0 are awarded
contracts.

Figure E.2 re-creates Figure 9 under this alternative assumption. Social welfare under the
status quo is higher, but the status quo still achieves less than half of the social welfare
gains under the efficient allocation. The biggest difference between Figures 9 and E.2 is the
large social welfare gains from the switch to the VCG mechanism, holding the scoring rule
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constant (bar (3)). This is because the Vickrey auction with scoring using the status quo rule
now efficiently incentivizes choices across contracts. Because the top-up actions represent a
large share of social welfare gains at stake in the mechanism, incentivizing them efficiently
is important for the auction’s performance.

Adjusting the mechanism for heterogeneity in additionality is still quantitatively important:
moving from bar (3) to bar (6) increases social welfare by 7% of the status quo, or 15% of
the gains of the improvement between bar (1) and bar (6). Also as in our baseline estimates,
quantity procured is higher than is socially optimal. Reducing quantity to reflect the many
landowners who are not additional increases social welfare by a further 13% of the status
quo social welfare gains.

We emphasize that the exercise of Figure E.2 is not to document that results are quanti-
tatively the same under this alternative assumption versus our baseline assumption. The
assumptions are very different, so naturally lead to some different quantitative implications.
Instead, we highlight that the insights from our baseline assumption are quantitatively rel-
evant even when a large share of the surplus at stake in the mechanism (Bj (zsi )) is not
impacted by additionality.

Figure E.3: Alternative Assumption: Offset Market Design Across Contracts
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Notes: Figure plots the percent reduction in social welfare under a stylized competitive market equilibrium relative to socially-
optimal prices under three different hypothetical markets, each with only one contract traded at a uniform price. The numbers
above the bars in panels (a) and (b) tabulate total social welfare (per acre-year) in each competitive market. The competitive
market equilibrium is calculated under the assumption that buyers have the same full-information preferences as the USDA
and form expectations over the value of any contract given the equilibrium price(s). In this figure, we assume that B0

(
zsi
)
·

τ (zi, ci, κi) +Bj
(
zsi
)
, where B0

(
zsi
)
is the social benefit of the base action and Bj

(
zsi
)
is the incremental value of the top-up

action, instead of our baseline assumption of Bj
(
zsi
)
· τ (zi, ci, κi).

We also examine how this alternative assumption impacts our analysis of competitive offset
market design. Most of the analysis in the main text is focused on the base contract (e.g.
Figures 7 and 11a), so is unaffected by our assumptions about top-up actions. However,
our analysis in Figure 11b is affected. Figure E.3 re-creates Figure 11b under this section’s
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alternative assumption about top-up actions. Figure E.3 documents social welfare losses
from adverse selection, but markets for tree planting and maintenance contracts no longer
unravel. This occurs because the social value from Bj (zsi ) is generated regardless of addi-
tionality, propping up the market. While we think that our baseline assumption likely holds,
this exercise is informative of an alternative lever for market design. Offset markets can bun-
dle additional benefits (often termed “co-benefits”) into the contract that are unaffected by
additionality. These benefits not only provide additional social value, but can also prevent
market unravelling due to adverse selection.
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