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1 Introduction

How do regional productivity shocks or transportation infrastructure affect aggregate welfare?
To answer these questions, there has been significant progress in the development of quantita-
tive spatial general equilibrium models. These frameworks allow researchers to fit the model to
geographically disaggregated data and to compute the aggregate welfare of a particular shock
or policy. At the same time, these frameworks are highly complex and parameterized, obscuring
which forces or parameters in the model govern the aggregate welfare effects.

An alternative approach is to appeal to first-order approximations. Hulten (1978) showed that,
in a frictionless economy under perfect competition, the impact on aggregate TFP of microeco-
nomic TFP shocks is equal to the shocked producer’s sales as a share of GDP (i.e., Domar weights).
In the evaluation of transportation infrastructure, a popular approach has been the “social saving”
approach (Fogel 1964), where the benefit of transportation infrastructure is calculated based on
the shipment cost saved relative to the second-based alternative. Underlying these approaches is
the macro-envelope condition resulting from the first welfare theorem. These approaches have
the advantage of being agnostic about the details of the underlying disaggregated equilibrium
system. However, whether or how this approach extends to spatial equilibrium models remains
an open question.

This paper fills this gap by providing a theory to unpack the first-order aggregate welfare
effects of spatially disaggregated shocks in a general class of spatial equilibrium models. We
provide an exact additive decomposition of aggregate welfare changes that depends on a minimal
set of nonparametric sufficient statistics. Our decomposition clarifies how andwhy the first-order
aggregate welfare gains and losses depart from Hulten’s (1978) characterization. We show how
our decomposition can be used to assess regional economic growth and returns to investment in
transportation infrastructure.

We consider a general class of spatial equilibrium models. Our framework accommodates
flexible location-specific utility functions capturing local amenities, production functions, input-
output linkages, trade frictions, agglomeration and congestion externalities, ex-ante heteroge-
neous households, and government transfers across locations and household types. We also
introduce idiosyncratic preference shocks to households’ location choices that follow arbitrary
distribution functions. By accommodating a flexible correlation of preference shocks across al-
ternatives, our model predicts general substitution patterns of location choice decisions. Special
cases include the case without preference shocks (Rosen 1979, Roback 1982, Allen and Arko-
lakis 2014), i.i.d. extreme value distribution (Redding 2016, Diamond 2016), and the generalized
extreme value distribution with arbitrary correlations (McFadden 1978).

We start by observing that the competitive equilibrium allocation is suboptimal from the per-
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spective of maximizing households’ expected utility. This suboptimality arises regardless of the
Pareto weights associated with ex-ante types of households. The suboptimality of the equilibrium
allocation arises for two reasons. First, competitive equilibrium does not internalize technolog-
ical externalities such as agglomeration or congestion externalities. Second, in the competitive
equilibrium, the marginal utility of income is not equalized across locations.

The first source of suboptimality is perhaps not surprising. The second source of subopti-
mality is subtle and warrants a discussion. In equilibrium, agents make location decisions based
on the utility levels (inclusive of preference shocks). This implies that marginal utility from a
dollar is not necessarily equalized across these locations. One way to interpret this dispersion
of marginal utility is the lack of insurance for the uncertainty associated with location choice.
Another interpretation is the lack of redistribution across agents within ex-ante identical house-
holds with different preference draws and their choice of locations. The observation that spatial
equilibrium models involve suboptimality due to a dispersion of marginal utility is reminiscent
of Mirrlees (1972), who points out this issue in a stylized residential location choice model within
a city.

The suboptimality of equilibrium implies that Hulten’s (1978) analysis does not extend to
spatial equilibrium models in general. The main contribution of this paper is to provide a theory
to unpack the aggregate welfare changes in spatial equilibrium models and how they depart
from Hulten’s (1978) characterization. We show that the aggregate welfare changes are exactly
additively decomposed into five terms. The first term, (i) technology, is the percentage change in
productivity multiplied by the revenue of the region or sector receiving a shock, resonating the
characterization by Hulten (1978). The remaining four terms, jointly constituting the reallocation
effects, are (ii) marginal utility (MU) dispersion, (iii) fiscal externalities (in the presence of spatial
transfers), (iv) technological externalities (such as agglomeration or congestion externalities),
and (v) redistribution across ex-ante heterogeneous households. The second term is positive if a
shock induces a relative increase in consumption where the marginal utility net of resource cost
is high. The third term is positive if a shock induces the reallocation of people to locations with
net negative government transfers. The fourth term is positive if a shock induces the reallocation
of people to locations that generate higher agglomeration externalities. The fifth term is positive
if a shock induces the reallocation of consumption toward the types of households with a higher
welfare weight.

We provide several stylized examples to illustrate whatmodel specification affects which com-
ponent of our welfare decomposition. For example, (ii) MU dispersion term is zero whenever
utility is linear and there are no trade frictions, or whenever there are no preference shocks. (iii)
Fiscal externality term is zero whenever the government transfers are only specific to household
types and they do not depend on locations. If households are immobile across locations, (ii)-(iv)
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terms disappear.
We also study how the prevailing spatial transfer policies shape the welfare changes from

disaggregated shocks. To address this question formally, we first characterize the government’s
optimal spatial transfer policies, generalizing Fajgelbaum and Gaubert’s (2020) results in the pres-
ence of an arbitrary form of preference shocks. We then show that, if the optimal transfer policies
are implemented in a pre-shock economy, (ii)-(v) terms add up to zero. This result clarifies that
(ii)-(v) terms reflect deviations of the competitive equilibrium from optimal spatial transfer poli-
cies. This is a careful reminder that the economy being subotpimal does not necessarily lead to
systematic deviations from Hulten (1978), and thereby provides a benchmark case. Accordingly,
whether and how much Hulten’s (1978) theorem over- or under-predict the aggregate welfare
changes can be assessed as the deviation of the observed spatial transfers to the optimal ones.

Another advantage of our formula is that it provides a minimal set of nonparametric suffi-
cient statistics to uniquely identify the aggregate welfare changes. In particular, given a minimal
subset of baseline equilibrium allocation (prices, population distribution, consumption, and trans-
fers) and the changes in population and consumption, aggregate welfare changes are uniquely
pinned down by agglomeration externalities and the spatial dispersion of marginal utility of in-
come. Relying on the econometric literature on discrete choice models (Berry and Haile 2014,
Allen and Rehbeck 2019), we argue that the dispersion of marginal utilities is nonparametrically
identified from location choice data as long as preference shocks are additively separable. In
some contexts, researchers are also interested in the counterfactual changes in welfare, without
observing the changes in population distribution and consumption in response to shocks. To-
gether with the existing nonparametric identification result of the factor demand system (Adao,
Costinot, and Donaldson 2017), we argue that these objects are also nonparametrically identified,
thereby establishing nonparametric identification of welfare changes for a counterfactual shock.

For our baseline analysis, we assume that preference shocks are additively separable. When
we depart from additively separable specification, preference shocks directly affect the spatial
dispersion of marginal utility. We show that our welfare decomposition is straightforwardly ex-
tended to this general case. While straightforward in theory, this extension reveals an identifica-
tion challenge, as a monotone transformation of utility function changes marginal utility without
affecting the location choice decisions. Nonetheless, if preference shocks are multiplicatively sep-
arable and follow max-stable multivariate Fréchet distribution with an arbitrary correlation – a
predominantly common specification in the literature besides additively separable specification –
the aggregate welfare changes are isomorphic to additively separable specification by taking log
transformation. Therefore, aggregate welfare changes are nonparametrically identified within
this class in addition to the additively separable class mentioned above.

We show that our approach can be further extended to the environment with general agglom-
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eration externalities that depend on the population in surrounding regions and producers’ inputs
and outputs, shocks to amenity that is not traded in the market, general social welfare function
involving paternalistic motive, and models with cross-regional commuting. We also show how
our decomposition can be used in applications, including the welfare impact of regional economic
growth and returns to investment in transportation infrastructure.

Our paper contributes to the literature on spatial equilibrium models. Building on seminal
models of peoples’ location choice, trading-off wages, amenities, and cost of living (Rosen 1979,
Roback 1982) and models with increasing returns to scale in production (Krugman 1991, Fujita,
Krugman, and Venables 2001), there is a recent development in quantitative spatial equilibrium
models that incorporates rich geographic heterogeneity in production, amenities, and trade fric-
tions. A growing number of researchers use these frameworks to study the aggregate welfare
effects of regional shocks or transportation infrastructure.1 Our contribution is to provide a
nonparametric formula to unpack the aggregate welfare effects of disaggregated shocks in these
classes of models.

Our analysis of the aggregate welfare effects of shocks builds on Hulten (1978), who shows
that in a perfectly competitive frictionless economy, the first-order effects of disaggregated shock
on aggregate welfare are summarized by Domar weights. We show that this characterization gen-
erally does not extend to spatial equilibrium models because of the equilibrium suboptimality.
Scholars have recognized that agglomeration externality leads to equilibrium suboptimality and
hence affects the first-order welfare effects of disaggregated shocks.2 The equilibrium subopti-
mality due to the dispersion of marginal utility of income has been pointed out by Mirrlees (1972)
in a stylized model of location decisions within a city. However, this point has been less high-
lighted in the recent quantitative spatial equilibrium literature.3 Our contribution is to connect
these sources of equilibrium suboptimality to the effects of disaggregated shocks on aggregate
welfare.

Our analysis of how the equilibrium suboptimality shapes the effects of disaggregated shocks
resonates with Baqaee and Farhi (2020), who study this question in an economy with exogenous

1See Redding and Rossi-Hansberg (2017), Redding (2022) for recent surveys on quantitative spatial equilibrium
models, and Redding and Turner (2015) for the usages of these models for studying the aggregate impacts of trans-
portation infrastructure. Donaldson and Hornbeck (2016) uses a full general equilibrium model to explore the devia-
tion from Fogel (1964) in the aggregate effects of U.S. railways. Tsivanidis (2019) and Zárate (2022) use parameterized
quantitative spatial equilibrium models to study the impacts of urban transportation infrastructure and provide a
quantitative comparison with Hulten’s (1978) characterization. Caliendo, Parro, Rossi-Hansberg, and Sarte (2018)
use these frameworks to study the propagation of region- and sector-specific productivity shocks.

2See Lebergott (1966) for an early criticism to Fogel (1964) due to an omission of technological externality.
Tsivanidis (2019) argues that agglomeration externalities affect the welfare gains from urban transport infrastructure
beyond the value of travel time saved (VTTS) (i.e., Small and Verhoef 2007).

3See alsoWildasin (1986), who explicitly point out that this suboptimality is related to the dispersion of marginal
utility of income. Mongey and Waugh (2023) discuss this suboptimality in the context of a broader discrete choice
model.
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wedges without location choice decisions. In contrast, wedges are endogenously determined in
our context. Our contribution is to characterize these endogenous wedges in spatial equilibrium
models using nonparametric sufficient statistics. Our paper also relates to Dávila and Schaab
(2023), who provide welfare decomposition of general equilibrium models with heterogeneous
agents. While the focus on aggregate welfare is similar, our paper is distinct in that we explicitly
characterize endogenous wedges in spatial equilibrium models relating to competitive equilib-
rium allocation.

The remaining paper is organized as follows. Section 2 establishes the general spatial equi-
librium framework and discusses its basic equilibrium properties. Section 3 establishes our main
theoretical result. Section 4 relaxes our baseline specification of additively separable preference
shocks. Section 5 discusses additional extensions. Section 6 discusses our applications.

2 Spatial Equilibrium Framework

We set up a general spatial equilibrium framework for our baseline analysis. Section 2.1 lays out
our baseline model and defines the competitive equilibrium. Section 2.2 provides a useful repre-
sentation of location choice decisions. Section 2.3 shows that competitive equilibrium allocation
is suboptimal from the perspective of maximizing households’ expected utility.

2.1 General Set-up

There are N locations indexed by i, j ∈ N ≡ {1, . . . , N}. There are S types of households in-
dexed by θ ∈ Θ ≡ {θ1, . . . , θS}. The mass of each type is l̄θ, and we normalize the total measure
to one,

∑
θ l̄

θ = 1. Each household decides its residential location at the beginning. Households
who decide to live in location j consume the location-specific final good aggregator specific to
household type θ produced using intermediate goods. There are K intermediate goods, some
of which can be potentially traded across locations subject to cost (e.g., food or manufacturing)
and some of which are not traded across locations (e.g., housing or nontradable services). Inter-
mediate goods are produced using local labor, intermediate goods, and local fixed factors (e.g.,
land). Households have ownership of these local fixed factors and earn factor income depending
on their type θ irrespective of their location choice decisions.

Households of type θ in location j inelastically supply one unit of labor regardless of the
location and consume final non-traded goods. Their preferences are given by

U θ
j (C

θ
j , ϵ

θ
j). (1)

Here, the utility function is indexed by j and θ to capture differences in type-and-location-specific
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amenities. ϵθj is idiosyncratic household-specific preference shocks associated with location j as
we describe further below.

The budget constraint is

P θ
j C

θ
j = wθ

j + T θ
j +Πθ, (2)

where P θ
j is the price of final goods of type θ household in location j and wθ

j is the wage of type θ
household in location j. T θ

j is the net government transfers for type θ household in location j. In
reality, T θ

j includes both taxes and transfers explicitly tagged to each location (such as state taxes
and transfers in the U.S.) and those set at the national level (such as federal taxes and transfers in
the U.S.). We do not impose any additional assumptions about T θ

j beyond the condition that the
net supply of these transfers is zero. Πθ is the income from fixed factors for household type θ.

Households choose a location that maximizes their utility. Let jθ(ϵθ) denote the choice of
location j conditional on their preference draw ϵθ = (ϵθ1, . . . , ϵ

θ
N). The households’ optimization

implies

jθ(ϵθ) ∈ argmax
m∈N

um(C
θ
m, ϵ

θ
m). (3)

Importantly, we do not assume any parametric assumptions of the distribution function for ϵθ

beyond the regularity condition that they have a strictly positive density everywhere in RN or
are degenerate. This specification nests different assumptions about the location decisions in the
literature. For example, Rosen (1979), Roback (1982), and Allen and Arkolakis (2014) consider the
case without preference shocks, i.e., where ϵθm is degenerate at zero for all m; Diamond (2016)
considers a case where ϵθm is distributed according to an i.i.d. type-I extreme value distribution
across locations m; and McFadden (1978) considers a case where ϵθ is distributed according to
generalized extreme value distribution with arbitrary correlation across alternatives. By aggre-
gating across the draws of idiosyncratic preference draws, the population size in location j of
type θ is given by

lθj = l̄θµθ
j , µθ

j =

∫
jθ(ϵθ)dG(ϵθ), (4)

where µθ
j is the probability that type θ chooses location j and G(ϵθ) is the distribution function

of preference shocks ϵθ.
Final goods in location j are produced using a constant returns to scale technology over in-

termediate goods

Cθ
j = Cθ

j (c
θ
j),
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where cθj ≡ {cθij,k}i,k denotes a vector of intermediate goods used for final goods production for
type θ household in j, where k indexes intermediate goods and i indexes the origin location of
these intermediate goods.

Intermediate good k produced in location i sold in location j is produced using the following
technology

yij,k = Aij,kfij,k(lij,k, hij,k,xij,k),

where lij,k ≡ {lθij,k}θ denotes an input of labor, hij,k denotes an input of local fixed factor, Aij,k

is Hicks-neutral technology (including iceberg trade costs), fij,k is strictly increasing, concave,
differentiable, and homogeneous of degree one function, and xij,k ≡ {xl,mij,k}l,m denotes a vector
of intermediate inputs, where m indexes the intermediate goods for inputs and l indexes the
location of origin.

We assume that the supply of local fixed factor at location j is given exogenously by h̄j . We
assume that each of type θ household owns αθ share of fixed factors, where

∑
θ l̄

θαθ = 1. We
also denote the price of the local fixed factor by rj . Then, the aggregate per-capita return from
the fixed factor is given by

Πθ = αθ
∑
j

rjh̄j. (5)

The net government transfer is zero such that∑
θ

∑
j

T θ
j l

θ
j = 0. (6)

Finally, we assume that productivity {Aij,k} is subject to agglomeration spillovers depending
on the local population density of various household types:4

Aij,k = Ãij,kgij,k({lθi }θ), (7)

where gij,k(·) are the spillover functions, and Ãij,k is fundamental exogenous components of
the productivity. Note that we allow for the flexible functional form of spillovers arising from
the population size of different household types θ for different locations and sectors i, j, k. For

4By interpreting some intermediate goods k as type θ’s labor services, this specification nests general agglomer-
ation spillovers from type θ to another type θ̃ households’ labor productivity, nesting the framework of Fajgelbaum
and Gaubert (2020). In Section 5.1, we show that it is straightforward to extend the agglomeration externalities
beyond local population size, e.g., introducing cross-region productivity spillovers (e.g., Ahlfeldt, Redding, Sturm,
and Wolf 2015) or agglomeration/congestion externality specific to the sector’s inputs and outputs (e.g., Allen and
Arkolakis 2022).
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notational convenience, we define the elasticity of agglomeration spillover evaluated at {lθi }θ as

γθij,k ≡
∂ ln gij,k({lθi }θ)

∂ ln lθi
. (8)

We define the decentralized equilibrium of this economy as follows.

Definition 1. The decentralized equilibrium consists of prices {P θ
j , pij,k, wθ

j , rj}, quantities {Cθ
j ,

cθj , xij,k, lij,k, µθ
j , l

θ
j}, transfer policies {T θ

j }, productivity {Aij,k}, such that

(i) {Cθ
j }j,θ satisfies households’ budget constraint (2) and {µθ

j , l
θ
j}j,θ solves households’ opti-

mal location choice problem (3) and (4).

(ii) firms maximize profits:

cθj ∈ argmax
c̃θj

P θ
j Cθ

j (c̃
θ
j)−

∑
i,k

pij,kc̃
θ
ij,k (9)

and

(lij,k, hij,k,xij,k) ∈ arg max
lij,k,h̃ij,k,x̃ij,k

pij,kAij,kfij,k (̃lij,k, h̃ij,k, x̃ij,k)

−
∑
θ

wθ
i l̃

θ
ij,k − rih̃ij,k −

∑
l,m

pli,mx̃
l,m
ij,k (10)

(iii) goods markets clear ∑
θ

cθij,k +
∑
l,m

xk,mi,jl = Aij,kfij,k(lij,k, hij,k,xij,k) (11)

Cθ
j l

θ
j = Cθ

j (c
θ
j) (12)

(iv) labor markets clear ∑
i,k

lθji,k = l̄θµθ
j (13)

(iv) fixed factor markets clear ∑
i,k

hji,k = h̄j (14)

(v) aggregate factor payment Πθ satisfies (5)
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(vi) government budget constraint (6) holds

(vii) productivity {Aij,k} is subject to agglomeration spillovers given by (7).

We also define the aggregate welfare of this economy as follows:

Definition 2. Aggregate welfareW is given by a social welfare function that takes the expected
utility of each household type θ:

W = W({W θ}θ∈Θ), W θ = E[max
j

{U θ
j (C

θ
j , ϵ

θ
j)}]. (15)

Without loss of generality, we assumeW is homogenous of degree one.

In a special case with ex-ante homogenous household types (S = 1), the objective func-
tion is simply the expected utility of the household, or equivalently, the utilitarian social welfare
function with respect to preference shocks. One restriction of Definition 2 is that the aggregate
welfare only depends on the expected utilities of households, and not directly on allocations.
In Section 5.4, we show that our results straightforwardly extend to these alternative welfare
criteria, capturing the case where the social welfare function involves a paternalistic motive.

We refer to the welfare weights attached to households type θ, Λθ, as a contribution of the
welfare of households type θ to the aggregate welfare relative to their population size:

Λθ ≡ ∂W({W θ}θ∈Θ)
∂W θ

1

l̄θ
. (16)

With a linear social welfare function, {Λθ}θ∈Θ corresponds to what is often referred to as Pareto
weights. Under utilitarian social welfare function, Λθ = 1. Note that

∑
θ∈Θ l̄

θΛθ = 1 by the
assumption thatW is homogenous of degree one.

Our theoretical results in the remaining part of the paper do not rely on further restrictions of
primitives and fundamentals. However, for expositional purposes, it is instructive to first focus on
the case where the utility function is additively separable between the common location-specific
component and an idiosyncratic component:

U θ
j (C

θ
j , ϵ

θ
j) = uθj(C

θ
j ) + ϵθj . (17)

The key implication of this assumption is that the marginal utility of consumption is not affected
by the idiosyncratic preference shocks. In Section 4, we revisit how this additional consideration
influences our results. In Section 4.2, we show that in a common alternative specification in the
literature where the preference shocks enter multiplicatively and followmax-stable multi-variate
Frét distribution, all of our results remain isomorphic to the additively separable specification.
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For an expositional reason that will become clear below, we normalize prices so that the
population-weighted average of the inverse of the marginal utility of income uθ′j (Cθ

j ) is one:

∑
θ

∑
j

lθj
P θ
j

uθ′j (C
θ
j )

= 1. (18)

Although this merely amounts to a choice of numeraire, this normalization simplifies our expo-
sition.

We also focus on the case where decentralized equilibrium is unique and interior (lθj > 0 for
all j and θ). Since our approach relies on the first-order approximation, this assumption avoids
dealing with the case where equilibrium is non-differentiable with respect to the shock and the
possibility that a small shock leads to a switch to a different equilibrium.5

2.2 Isomorphic Representation of Location Choice

In this section, we introduce a convenient alternative representation of location choice decisions.
Following Hofbauer and Sandholm (2002), the discrete location choice decision under additive
preference shocks (17) can be isomorphically represented by households jointly choosing the
population size subject to a cost function, as summarized in the following lemma:

Lemma 1 (Hofbauer and Sandholm 2002). Under additively separable utility function (17), the
share of households of type θ living in each location, {µθ

j}j can be represented as the solution to
the following problem given a vector of equilibrium consumption {Cθ

j }j :

W θ =max
{µθ

j}j

∑
j

µθ
ju

θ
j(C

θ
j )− ψθ({µθ

j}j)

s.t.
∑
j

µθ
j = 1

(19)

for some functionψθ({µθ
j}j), which we provide an explicit expression for in Appendix A.1. More-

over,W θ coincides with the expected utility in Equation (15), i.e.,W θ = E[maxj{uθj(Cθ
j ) + ϵθj}].

The proofs of this lemma and the subsequent propositions of this paper are found in Ap-
pendix A. Importantly, ψθ({µθ

j}j) summarizes the influence of preference shocks on households’
location decisions. If there are no preference shocks, we have ψθ({µθ

j}j) = 0. If the preference
shocks follow i.i.d. type-I extreme value distribution with shape parameter ν, then ψθ({µθ

j}j) =
1
ν

∑
j l

θ
j ln l

θ
j (Anderson, De Palma, and Thisse 1988). When {ϵθj}j follows type-I generalized ex-

treme value (GEV)with an arbitrary correlation (i.e., McFadden 1978),ψθ({µθ
j}j) = 1

ν

∑
j µ

θ
j lnS

θ
j ({µθ

i }i),
5See Allen and Arkolakis (2014) and Allen, Arkolakis, and Li (2020) for sufficient conditions for the equilibrium

uniqueness in spatial equilibrium models.
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where function Sθ
j (·) depends on the correlation function of {ϵθj}j across alternatives j (see Ap-

pendix C for details).6

2.3 Suboptimality of Equilibrium Allocation

The following lemma shows that the competitive equilibrium allocation is represented as a solu-
tion to the “pseudo-planning” problem.

Lemma2. Any decentralized equilibrium {P̌ θ
j , p̌ij,k, w̌

θ
j , řj, Č

θ
j , č

θ
j , x̌ij,k, ľij,k, ȟij,k, µ̌

θ
j , ľ

θ
j , Ť

θ
j , Ǎij,k}

solves the following pseudo-planning problem

W = max
{W θ,Cθ

j ,c
θ
j ,xij,k,lij,k,hij,k,µ

θ
j ,Aij,k}

W({W θ}θ∈Θ) (20)

s.t. W θ =
∑
j

µθ
ju

θ
j(C

θ
j )− ψθ({µθ

j}j) (21)

Cθ
j l̄

θµθ
j = Cθ

j (c
θ
j) (22)∑

θ

cθij,k +
∑
l,m

xl,mij,k = Aij,kfij,k(lij,k, hij,k,xij,k) (23)∑
i,k

lθji,k = l̄θµθ
j ,

∑
i,k

hji,k = h̄j (24)

{µθ
j}j ∈ arg max

{µ̃j}:
∑

j µ̃j=1

∑
j

µ̃θ
ju

θ
j(C

θ
j )− ψθ({µ̃θ

j}j) (25)

Cθ
j = Čθ

j (26)

Aij,k = Ǎij,k (27)

with the Lagrangianmultipliers on (22)-(24), P θ,L
j , pLij,k,w

θ,L
j , and rLj , satisfyingP

θ,L
j = P̌ θ

j , pLij,k =
p̌ij,k, wθ,L

j = w̌θ
j and rLj = řj .

The objective function is what we define as the aggregate welfare. The constraints (22)-
(24) correspond to resource constraints. The constraints (25), (26), and (27) restrict that location
choice, consumption, and productivity follow equilibrium allocations.

An immediate implication of this lemma is that the equilibrium is suboptimal. This is regard-
less of the welfare weights associated with ex-ante heterogenous household types. To see this,
it is instructive to compare the pseudo-planning problem and the first-best planning problem,
where the planner specifies the labor and consumption allocations only subject to resource con-
straints (22)-(24). (See Appendix B for the full characterization of the first-best planning problem).

6An alternative interpretation of ψθ(·) is that it captures congestion externality. For example, the model with
preference shocks following i.i.d. type-I extreme value distribution with shape parameter ν is isomorphic to the
model without preference shocks and utility is given by uθj (Cθ

j ) − 1
ν lnµθ

j . See Section 5.3 for further discussion
about this isomorphism.
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There are two key differences from the frist-best allocation. First, the pseudo-planning problem
does not internalize the agglomeration externalities in productivity (27). Second, the pseudo-
planning problem takes the equilibrium population distribution and consumption allocation as
given by (25) and (26). Instead, the first-best planning problem allocates population distribution
and consumption only subject to adding up constraint

∑
j µ

θ
j = 1 for all θ.

The first source of suboptimality is perhaps not surprising; it is simply an externality that the
market does not internalize. The second source of suboptimality is subtle and warrants a discus-
sion. In equilibrium, agents make location decisions based on utility levels (inclusive of preference
shocks). This implies that marginal utility of income is not necessarily equalized across these
locations given household type θ. In contrast, in the first-best allocation, the Planner exactly
equalizes the marginal utility of income across locations. At the same time, the Planner directly
controls population movement by breaking the incentive compatibility constraint of households’
location decisions.

There are twoways to interpret this equilibrium suboptimality due to the dispersion ofmarginal
utility of income. The first interpretation is the lack of insurance for the uncertainty associated
with location choice. Depending on the preference draws, or depending on the random sunspot
process of location assignment in the absence of preference shocks, individual households may
end up in a variety of locations that differ in terms of their associated marginal utility of income.
Ex-ante, households can benefit by committing to making transfers from a state where they end
up in a location with a low marginal utility of income to a state with a high marginal utility of
income. However, there is no security that allows for such a transfer. The second interpreta-
tion is the lack of redistribution across agents within household type θ depending on location
preference shocks and where they reside. By taking the expected utility as a welfare criterion,
we effectively attach equal social marginal weight to individuals with different preference draws
within household type θ.

The purpose of this discussion is not to discuss particular policy tools to achieve the first-best
allocation. In most scenarios, it is unrealistic to consider a policy that directly controls population
movement by breaking the incentive compatibility constraint.7 Instead, this discussion aims to
show that this suboptimality could lead to the departure from Hulten’s (1978) characterization of
the aggregate welfare effects of disaggregated technological shocks. In the next section, we use
Lemma 2 to unpack the first-order effects of disaggregated shocks on aggregate welfare.

7A few examples where such policy could be realistic are the Hukou system in China or refugee settlement
policies.
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3 Unpacking Welfare Effects of Disaggregated Shocks

How do regional productivity shocks or transportation infrastructure improvements affect aggre-
gate welfare? This section provides our main theoretical result of the decomposition of the first-
order effects of disaggregated regional shocks. Section 3.1 provides our decomposition, where the
first term corresponds to Hulten’s (1978) characterization and the remaining terms correspond
to reallocation effects. Section 3.2 provides several stylized examples to illustrate what model
specification affects which component of our welfare decomposition. Section 3.3 shows that Hul-
ten’s theorem is recovered if second-best location-specific transfers are in place, implying that the
sign andmagnitudes of the reallocation effects can be assessed as the deviations from second-best
policies. Section 3.4 discusses how our framework can be used for ex-ante and ex-post welfare
evaluations in applications. Section 3.5 uses our decomposition to discuss the nonparametric
identification of aggregate welfare changes in spatial equilibrium models.

For expositional purposes, we introduce the following expectation and covariance operators.
The first set of operators takes the expectation and covariance of statistics associated with loca-
tion j for each household type θ, weighted by population share, µθ

j :

Ej|θ[X
θ
j ] =

∑
j

µθ
jX

θ
j , Covj|θ(Xθ

j , Y
θ
j ) ≡ Ej|θ[X

θ
j Y

θ
j ]− Ej|θ[X

θ
j ]Ej|θ[Y

θ
j ]. (28)

The second set of operators takes the expectation and covariance of statistics associated with
household type θ, weighted by population share of household type θ, l̄θ:

Eθ[X
θ] ≡

∑
θ

l̄θXθ, Covθ(Xθ, Y θ) ≡ Eθ[X
θY θ]− Eθ[X

θ]Eθ[Y
θ]. (29)

3.1 Main Results

Consider small changes in the exogenous components of productivity specific to origin loca-
tion, destination location, and sector, {d ln Ãij,k}. These shocks can represent region-sector TFP
shocks (e.g., Caliendo et al. 2018) or transportation infrastructure changes (e.g., Allen and Arko-
lakis 2014, Donaldson and Hornbeck 2016).8 We also allow for the possibility that the structure of
the transfers may change simultaneously, denoted by {dT θ

j }, are affected, either because of the
exogenous policy changes or as endogenous responses to the productivity shocks.

8In some context, researchers are interested in the shocks to amenity instead of productivity. Our analysis
includes those cases by interpreting some intermediate goods as local amenities. From a measurement perspective,
applying Proposition 1 requires knowledge of prices of the amenities, which is often unobserved and needs to be
calibrated or estimated. For example, if transportation infrastructure also brings amenity benefits by shortening
commuting time, one can use the value of time for pij,k and commuting time for yij,k (i.e., Small and Verhoef 2007).
In Section 5.2, we provide an alternative expression for Proposition 1 without using amenity prices.
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By applying the envelope theorem to the pseudo-planning problem in Lemma 2, we obtain
the following expression for welfare changes:

Proposition 1. Consider an arbitrary set of small shocks to exogenous components of productivity,
{d ln Ãij,k}, and transfers {dT θ

j }, in a decentralized equilibrium. The first-order impact on welfare
defined by Definition 2 can be expressed as

dW =
∑
i,j,k

pij,kyij,kd ln Ãij,k︸ ︷︷ ︸
(i) Technology (ΩT )

+Eθ

[
Covj|θ

(
−

P θ
j

uθ
′

j (C
θ
j )
, uθ′j (C

θ
j )dC

θ
j

)]
︸ ︷︷ ︸

(ii) MU Dispersion (ΩMU )

+ Eθ

[
Covj|θ(−T θ

j , d ln l
θ
j )
]

︸ ︷︷ ︸
(iii) Fiscal Externality (ΩFE)

+Eθ

[
Covj|θ(

∑
l,k

pjl,kyjl,k
1

lθj
γθjl,k, d ln l

θ
j )

]
︸ ︷︷ ︸

(iv) Technological Externality (ΩTE)

+ Covθ

(
Λθ − Ej|θ

[
P θ
j

uθ
′

j (C
θ
j )

]
,Ej|θ

[
uθ′j (C

θ
j )dC

θ
j

])
︸ ︷︷ ︸

(v) Redistribution (ΩR)

.

(30)

The first term of Proposition 1, which we refer to as (i) technology (ΩT ), captures the effects
of productivity changes absent the reallocation of resources. The coefficient in front of d ln Ãij,k,
pij,kyij,k, corresponds to the total sales of intermediate inputs k produced in i and sold in j.
The observation that the total sales summarize the aggregate effects of a shock is reminiscent of
Hulten (1978).9

If the equilibrium maximizes aggregate welfareW , the first term is sufficient for the welfare
consequence of disaggregated shock to a first-order. However, since the equilibrium is generally
suboptimal, the reallocation of resources additionally enters on top of this technology term.

The second term, which we refer to as (ii) MU (marginal utility) dispersion (ΩMU ), captures
the fact that shocks reallocate resources across locations that differ in the marginal utility of
income. A shock leads to an increase of utility uθ′j (Cθ

j ) in each location j for household type
θ. The covariance inside Eθ[·] is positive if this utility change is higher in a location where the
marginal utility of income, uθ′j (Cj)/P

θ
j , is higher for household type θ. The expectation Eθ[·]

takes the weighted average of this covariance across household types θ.
The third term, which we label as (iii) fiscal externality (ΩFE), comes from the fact that shock

affects the government budget. If the shock induces the population to move toward a location

9Note that our choice of numeraire (equation 18) implies that all prices are in the unit of the population-weighted
average of marginal utilities.
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that receives net transfers (higher T θ
j ), this term induces additional negative effects on welfare.10

This term is absent whenever there are no transfers (T θ
j = 0 for all j and θ), or the shock does

not induce any labor reallocation (dlθj = 0 for all j and θ).
The fourth term, which we label as (iv) technological externality (ΩTE), captures the agglom-

eration externalities in productivity. If the shock induces the population to move toward a lo-
cation with a higher agglomeration externality

∑
l,k pjl,kyjl,k

1
lθj
γθjl,k, this term induces additional

positive effects on welfare.
The fifth term, whichwe label as (v) redistribution (ΩR), is the covariance between themarginal

increase of expected utility of type θ household Ej|θ[u
θ′
j (C

θ
j )dC

θ
j ] and the utility weight on each

household type θ, Λθ − Ej|θ

[
P θ
j

uθ′
j (Cθ

j )

]
. The first term of the utility weight is the welfare weight

defined by Equation (16) and the second term is the expected inverse marginal utility of income.
Proposition 1 provides a characterization of the changes in aggregate welfare. In many con-

texts, researchers may wish to convert the welfare changes into alternative measurable units. For
example, one may wish to compute how much uniform productivity changes d ln Ã for all i, j, k
induces equivalent changes in expected utility. To answer this question, one can use Proposition
1 again to ask what changes in d ln Ã can achieve the equivalent changes in dW .

3.2 Stylized Examples

We provide several stylized examples to illustrate what model specification affects which com-
ponent of our welfare decomposition. Table 1 summarizes which terms of our decomposition in
Proposition 1 are generically non-zero in each special case covered below. We go through each
case in turn.

1. Single Type If all households are ex-ante homogenous (S = 1), (v) redistribution term
becomes zero. Moreover, all the expectation operators with respect to household types Eθ[·]
drops out from the terms (ii)-(iv).

2. No preference shocks Following the tradition of Rosen (1979) and Roback (1982), re-
searchers often abstract preference shocks (Allen and Arkolakis 2014, Fajgelbaum and Gaubert
2020), i.e., ϵθm = 0 for all locationm for all households. In this case, assuming an interior solution,
shocks induce the same changes in utility in every location (uθ′j (Cθ

j )dC
θ
j are equalized across all

10In some existing models, researchers assume that some fraction of fixed factor income is rebated to local house-
holds directly (such as through local governments’ ownership of local fixed factors), which implies that Πi depends
on i (e.g., Caliendo et al. 2018). In such a case, the fiscal externality term is simply modified to capture these local
rebates, i.e., wθ

j − P θ
j C

θ
j = −(T θ

j +Πθ
j ).
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Table 1: Decomposition in Special Cases
ΩT ΩMU ΩFE ΩTE ΩR

1. Single type ✓ ✓ ✓ ✓

2. No preference shocks ✓ ✓ ✓ ✓

3. Linear utility and no trade frictions ✓ ✓ ✓ ✓

4. No location-specific transfers ✓ ✓ ✓ ✓

5. No population mobility ✓ ✓

6. No technological externality ✓ ✓ ✓ ✓

7. Second-best transfers ✓ ✓

8. ...with redistribution ✓

j). Therefore, the second term of the covariance in (ii) MU dispersion term is constant across j,
and (ii) MU dispersion term becomes zero.

3. Linear utility and no trade frictions Another special case where (ii) MU dispersion term
is zero arises if the marginal utility of income (uθ′j (Cθ

j )/P
θ
j ) is equalized across locations. This

case arises under linear utility (i.e., uθj(Cθ
j ) = Cθ

j + Bθ
j for some Bθ

j ) and no trade frictions
such that final prices Pj are equalized across locations j. The primitive assumptions that deliver
the equalizations of final prices correspond to Aij,k = Ak

i , fij,k(·) = fk
i (·), and Cθ

j (·) = Cθ(·).
Kline and Moretti (2014) consider this special case under ex-ante homogeneous households and
argue that expected utility is maximized in the competitive equilibrium without technological
externalities.

4. No location-specific transfers We next consider when (iii) fiscal externality term becomes
zero. A sufficient condition for this term to be zero is that transfers only depend on ex-ante house-
hold types and there are no location-specific components (T θ

j = T θ for all j and θ). Note that this
does not necessarily imply that the net transfers in each region are zero, because households of
different types θ with net positive or negative transfers T θ may sort into different locations.

5. No population mobility In some cases, researchers model locations but do not model pop-
ulation mobility. This is nested in our framework by setting S = N and preference shocks are
such that type θi households always locate themselves in location i, µθi

i = 1. Examples of these
specifications arise in international trade models where researchers typically abstract interna-
tional migrations or when studying the short-run effects of an acute shock.11 If the population

11For example, Fajgelbaum, Goldberg, Kennedy, and Khandelwal (2020) study the short-run welfare effects of the
trade war in the U.S. in 2018 by restricting population mobility across U.S. states.
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is immobile, i.e., d ln lθj = 0 for all j, θ, (iii) fiscal externality and (iv) technological externality
also become zero. Since there is no location choice, the covariance of (ii) MU dispersion term
(conditional on being type θ) also becomes zero as well.

6. No technological externality Finally, (iv) technological externality term becomes zero if
there are no technological externalities in the pre-shock equilibrium, i.e., γθij,k = 0 for all i, j, k, θ.

Importantly, assuming constant elasticity agglomeration externality (γθij,k = γ) alone does not
ensure that (iv) technological externality term is zero. To see why, consider a special case with a
single sectorK = 1, single typeS = 1, and no fixed factor h̄j = 0 for all j. We further assume that
there are no intermediate inputs used in production (yij = Aijfij(lij), dropping subscript k and
θ). In this case, from profit maximization and labor market clearing condition,

∑
l pjlyjl = wjlj ,

and the term
∑

l,k pjl,kyjl,k
1
lθj
γθij,k simplifies to wjγ. Therefore, the reallocation of the population

toward a location with a higher nominal marginal product of labor generates positive effects on
aggregate welfare. This result is consistent with the observation by Fajgelbaum and Gaubert
(2020), who show that competitive equilibrium involves misallocation of the population even
under constant elasticity of agglomeration externality as long as the marginal product of labor is
not equalized (e.g., due to compensating variation).

3.3 Welfare Changes if Optimal Spatial Transfers are in Place

So far, we have remained agnostic about how transfers T θ
j are endogenously determined in the

equilibrium. In reality, national governments may set spatial transfers T θ
j to correct for agglomer-

ation externalities (Fajgelbaum and Gaubert 2020, Rossi-Hansberg, Sarte, and Schwartzman 2019)
or to address spatial inequalities (Gaubert, Kline, and Yagan 2021). While Proposition 1 embraces
any endogenous response of T θ

j to shocks, it is instructive to consider how each term in Propo-
sition 1 is affected in those cases. We also argue below that understanding the government’s
incentive facilitates the interpretation of Proposition 1.

Specifically, we consider a scenario where the government sets spatial transfers T θ
j to trace the

Pareto frontier subject to competitive equilibrium constraint. The government’s optimal transfer
policy problem is

max
{Cθ

j ,c
θ
j ,xij,k,lij,k,hij,k,l

θ
j ,µ

θ
j ,Aij,k,w

θ
j ,rj ,pij,k,P

θ
j ,T

θ
j }

∑
j

µθ
ju

θ
j(C

θ
j )− ψθ({µθ

j}j) (31)

subject to (2)-(14) and the constraints such that∑
j

µθ̃
ju

θ̃
j(C

θ̃
j )− ψθ̃({µθ̃

j}j) ≥ W θ̃, ∀θ̃ ̸= θ. (32)
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Tracing for all feasible values ofW θ̃ for all θ̃ defines the set of optimal transfers.
To solve this problem, we follow the primal approach in the public finance literature. That

is, we focus on a relaxed planning problem where the Planner picks an incentive-compatible
consumption and population allocation and later confirms that the solution to the relaxed problem
is also a solution to the original one. The relaxed planning problem is defined as follows.

max
Cθ

j ,c
θ
j ,xij,k,l

θ
ij,k,hij,k,l

θ
j ,Aij,k

∑
j

µθ
ju

θ
j(C

θ
j )− ψθ({µθ

j}j) (33)

s.t. Cθ
j l̄

θµθ
j = Cθ

j (c
θ
j) (34)∑

θ

cθij,k +
∑
l,m

xl,mij,k = Aij,kfij,k(lij,k, hij,k,xij,k) (35)∑
i,k

lθji,k = l̄θµθ
j ,

∑
i,k

hji,k = h̄j (36)

{µθ
j}j ∈ arg max

{µ̃j}:
∑

j µ̃j=1

∑
j

µ̃θ
ju

θ
j(C

θ
j )− ψθ({µ̃θ

j}j) (37)

Aij,k = Ãij,kgij,k({lθi }θ) (38)∑
j

µθ̃
ju

θ̃
j(C

θ̃
j )− ψθ̃({µθ̃

j}j) ≥ W θ̃, ∀θ̃ ̸= θ (39)

Compared to the pseudo-planning problem in Lemma 2, the relaxed planning problem inter-
nalizes the agglomeration externality (equation (38) in place of (27)) and chooses consumption
instead of taking the equilibrium allocation as given (equation (26)). We also simply assume that
the government traces the Pareto frontier under constraints (39), instead of maximizing the social
welfare function defined by Definition 2. At the same time, this problem is also different from
the first-best planning problem as considered in Section 2.3 and Appendix B, as the Planner must
choose an incentive compatible location decision (37). For this reason, we refer to these policies
as the second-best policies. The following proposition provides our key characterization of the
second-best transfer policy.

We let {µ̂θ
j(C

θ)} denote the location choice function that maps a vector of consumption in
each location to location choice probabilities as the solution to (37).

Proposition 2. Assume that preference shocks are not degenerate at zero. If the second-best transfer
policy is implemented, the allocation {Cθ

j , c
θ
j ,xij,k, lij,k, hij,k, µθ

j} must satisfy (34)-(38) and

µθ
j

[
Λ̃θuθ

′

j (C
θ
j )− P θ

j

]
= −

∑
i

∂µ̂θ
i (C

θ)

∂Cθ
j

[
wθ

i − P θ
i C

θ
i +

∑
l,k

pil,kyil,k
1

lθi
γθil,k

]
, ∀j, θ, (40)

for some Λ̃θ > 0 that satisfies
∑

θ l̄
θΛ̃θ = 1, and ∂µ̂θ

i (C
θ)

∂Cθ
j

is the location choice response to consump-

18



tion. Furthermore, this allocation can be implemented with transfers T θ
j = P θ

j C
θ
j − wθ

j − Πθ.

This proposition summarizes the key trade-off associated with optimal spatial transfer policy.
The left-hand side of this expression summarizes the marginal benefit from transferring one unit
of consumption to location j for type θ. In particular, if the marginal utility uθ′j (Cθ

j ) is high and
the associated price P θ

j is low in location j relative to other locations, the net benefit of transfer to
location j tends to be high. On the right-hand side of this equation, we summarize the marginal
cost of this transfer through fiscal and technological externalities. In particular, a unit increase of
consumption in location j increases population by ∂µθ

i

∂Cθ
j
in location i. Notice that this relocation

happens in all locations, not only in location j. This population relocation is associated with
fiscal externality wθ

i − P θ
i C

θ
i and technological externality

∑
l,k pil,kyil,k

1
lθi
γθil,k.

The above formula has a strong connection to optimal unemployment insurance literature
(Baily 1978, Chetty 2006). In this literature, the trade-off is between the benefits of unemployment
insurance and the fiscal externality of unemployment. In our context, the fiscal externality instead
arises due to location decisions.

Proposition 2 is a strict generalization of Fajgelbaum and Gaubert (2020), who study the same
problem in the special cases where there are no preference shocks and where preference shocks
follow i.i.d. type-I extreme value distribution. In particular, if we take the limit of taking the
variance of preference shocks to zero, the elasticity of population with respect to consumption
diverges to infinity, i.e., | ∂µ

θ
i

∂Cθ
j
| → ∞. By noting that T θ

j = P θ
j C

θ
j −wθ

j −Πθ, the only way to satisfy
equation (40) is to setwθ

i−P θ
i C

θ
i +
∑

l,k pil,kyil,k
1
lθi
γθil,k = Eθ for some constantEθ.12 Therefore, the

cross-location component of transfers only addresses technological externalities, and the cross-
type component of transfers addresses redistribution concerns. Our formula generalizes their
cases under flexible preference shocks and highlights key nonparametric statistics for optimal
transfers.

We now consider how the implementation of these second-best policies affects the aggregate
welfare effects of disaggregated shocks in Proposition 1. Note that, if wemultiply equation (40) by
l̄θdCθ

j and sum up across j and θ, the second term of the left-hand side of equation (40) coincides
with (ii) MU dispersion term in Proposition 1, and the right-hand side of this equation coincides
with the negative of (iii) fiscal externality term and (iv) technological externality term. Therefore,
optimal spatial transfer policy offsets these three distortions, andwelfare changes are summarized
solely by (i) technology term and (v) redistribution term.

Proposition 3. Suppose that second-best transfers {T θ
j }j,θ are implemented according to Proposition

12See Appendix A.4 for a more formal treatment of this limit case.
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2 in the pre-shock equilibrium. Then, Proposition 1 comes down to

dW =
∑
i,j,k

pij,kyij,kd ln Ãij,k︸ ︷︷ ︸
(i) Technology (ΩT )

+Covθ
(
Λθ − Λ̃θ,Ej|θ

[
uθ′j (C

θ
j )dC

θ
j

])
︸ ︷︷ ︸

(v) redistribution (ΩR)

.
(41)

Furthermore, if the implied Pareto weights of the second-best policy Λ̃θ coincide with the
welfare weights in the social welfare function Λθ, (v) redistribution term also disappears, thereby
obtaining Hulten’s theorem in a spatial economy.

Corollary 1. Suppose that transfers {T θ
j }j,θ are set so that Proposition 2 holds with Λ̃θ = Λθ for all

θ in the pre-shock equilibrium. Then, Proposition 1 comes down to

dW =
∑
i,j,k

pij,kyij,kd ln Ãij,k︸ ︷︷ ︸
(i) Technology (ΩT )

. (42)

Interestingly, despite the policy being the second-best but not the first-best, the reallocation
effects become zero. This is because the incentive compatibility constraint of households’ location
decisions in Lemma 1 is not directly affected by shocks in technology (d lnAij,k), and therefore
the reallocation effects from location choices remain as second-order. This observation resonates
with Costinot and Werning (2018), who show that Hulten’s theorem holds under the second-best
policies, although the environment they consider is very different from ours.

In reality, it is unlikely the case that the government implements optimal transfers. Never-
theless, Proposition 3 and Corollary 1 are careful reminders that the spatial equilibrium models
being suboptimal do not necessarily imply systematic deviations from Hulten (1978) and thereby
provide an important benchmark case. Moreover, Proposition 3 and Corollary 1 are helpful to
facilitate the assessment of how the aggregate welfare changes depart from Hulten’s (1978) the-
orem. In particular, by assessing which of the left-hand side and right-hand side of Proposition
2 is greater under observed transfers {Tj}, one can conclude whether Hulten’s (1978) theorem
over- or under-predict the aggregate welfare changes.

3.4 From Theory to Applications

In the previous sections, we show how Proposition 1 can be useful in understanding the sources
of welfare gains and losses in special cases of spatial equilibrium models. This section discusses
how one can use Proposition 1 in more general, applied cases.

One usage of our formula is for ex-post welfare accounting. For example, suppose we are in-
terested in the aggregate welfare changes in the U.S. economies from regional economic growth
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for the last decade. Suppose we observe the subset of baseline equilibrium prices {P θ
j , pij,k, w

θ
j},

quantities {Cθ
j , l

θ
j , yij,k}, and transfers {T θ

j }. Suppose also that we observe the changes in produc-
tivity {d ln Ãij,k} and associated consumption and population changes {dCθ

j , d ln l
θ
j} during the

period of interest.13 Then, given the knowledge of agglomeration externalities {γθij,k} and spatial
dispersion of marginal utility {uθ′j (Cθ

j )} evaluated around the baseline equilibrium, as well as the
assumption about the welfare weights {Λθ}, one can use Proposition 1 to compute the aggregate
welfare change and its decomposition. Importantly, this ex-ante welfare accounting does not
require specifying additional model structure beyond the sufficient statistics discussed above.

Our formula can also be used for ex-ante welfare accounting. For example, suppose we are
interested in understanding the heterogeneous returns from transportation infrastructure across
different locations. Researchers often answer this question through counterfactual simulations
using a parameterized structural model.14 In these situations, researchers can use Proposition
1 to unpack the sources of the welfare changes in their structural model. This exercise is par-
ticularly useful when researchers have less confidence about the parametric assumptions of the
full structural model. Specifically, by knowing which term of Proposition 1 is most relevant for
the heterogeneous investment returns, one can undertake sensitivity analysis for the parameters
associated with each term. For example, if (ii) MU dispersion term turns out as most relevant for
their quantitative results, they can focus on the estimation or sensitivity analysis of the utility
function specification {uθj(·)}.

3.5 Nonparametric Identification of Welfare Changes

Another benefit of Proposition 1 is that it clarifies the minimal set of sufficient statistics to
uniquely identify the aggregate welfare changes. In this section, we discuss the nonparamet-
ric identification of these sufficient statistics, and hence the aggregate welfare changes.

We first consider the case where the changes in productivity, consumption, and population
{d ln Ãij,k, dC

θ
j , d ln l

θ
j} are observed, corresponding to the case of ex-post welfare evaluation dis-

cussed in the previous section. Suppose we observe the subset of baseline equilibrium prices
{P θ

j , pij,k, w
θ
j}, quantities {Cθ

j , l
θ
j , yij,k}, and transfers {T θ

j }. Suppose we also take a stand on
welfare weights {Λθ}. The only remaining two statistics are the agglomeration externality elas-
ticities {γθij,k} and the spatial dispersion of marginal utility {uθ′j (Cθ

j )} evaluated around the base-
line equilibrium. For the former, identification requires the causal effect of exogenous popula-

13The changes in productivity {d ln Ãij,k} may not be directly observed, and one may need to back out from
the changes using the goods demand system. See, for example, Allen and Arkolakis (2014) for an example of this
procedure.

14For example, Allen and Arkolakis (2022) use a fully specified parametric spatial equilibriummodel to undertake
a counterfactual simulation of the improvement of transportation infrastructures in various locations, assuming that
the transportation infrastructure affects productivity (through trade costs) {d ln Ãij,k}.
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tion changes on productivity. The long-standing literature on agglomeration economies provides
plausible values for these parameters.15

The identification of the spatial dispersion of marginal utility is highlighted less in the con-
text of spatial equilibriummodels. Fortunately, existing econometrics literature on discrete choice
models provides a way to nonparametrically identify these objects from location choice data. Let
us focus on the casewhere preference shocks are additively separable and not degenerate.16 In this
case, location choice decisions are summarized by the function {µ̂θ

i (C
θ)}i = argmax{µθ

j}:
∑

j µ
θ
j=1∑

j µ
θ
ju

θ
j(C

θ
j ) − ψθ({µθ

j}j). Suppose that we have a sufficiently long period of data observa-
tions. Suppose also that we have an exogenous variation of consumption in each location, so
that we can credibly identify the response of the population size in i to consumption change in j,
∂µ̂θ

i (C
θ)/∂Cθ

j , for all location pairs i, j and household types θ. Berry and Haile (2014) establish
sufficient conditions for the nonparametric identification of such a discrete choice system (see
Appendix Appendix E for further detail).

Once we have the discrete choice system, Allen and Rehbeck (2019) show that the dispersion
of marginal utility is obtained using Lemma 1. Namely, denoting the expected utility of type θ
household as a function of location-specific utility Ŵ θ(uθ) = max{µθ

j}j :
∑

j µ
θ
j=1 µ

θ
ju

θ
j−ψθ({µθ

j}j),
from the envelope theorem and the chain rule,

∂µ̂θ
i (C

θ)

∂Cθ
j

=
∂2Ŵ θ(uθ)

∂uθi∂u
θ
j

uθ′j (C
θ
j ). (43)

Taking the ratio between arbitrary pair (i, j), we have

uθ′j (C
θ
i )

uθ′i (C
θ
j )

=
∂µ̂θ

i (C
θ)

∂Cθ
j

/
∂µ̂θ

j(C
θ)

∂Cθ
i

. (44)

Intuitively, if the marginal utility is higher in j than i, a marginal increase of consumption in
location j induces a larger effect of population reallocation away from i, compared to the other
way around (consumption increase in i on population reallocation away from j).

We next consider the case where we only know the changes in productivity {d ln Ãij,k}, cor-
responding to the ex-ante welfare evaluation in the previous section. In this case, we additionally
need to identify the changes in consumption {dCθ

j } and population size {d ln lθj} as a response to
counterfactual shocks {d ln Ãij,k}. These equilibrium responses are uniquely determined by the
factor supply and demand systems. Factor supply system, i.e., how population {d ln lθj} responds
to the vector of consumption {dCθ

j }, can be nonparametrically identified following Berry and

15For example, see Melo, Graham, and Noland (2009) for a meta-analysis of the agglomeration externality.
16If the preference shocks are degenerate, (ii) MU dispersion term is zero as discussed in Section 3.2. Therefore,

the relative marginal utility does not directly influence aggregate welfare changes in Proposition 1.
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Haile (2014) as discussed above. Factor demand system, i.e., how the changes in consumption
{dCθ

j } affect each location’s labor demand {d ln lθj}, can be nonparametrically identified follow-
ing Adao et al. (2017), who establish the nonparametric identification of factor demand system
in general equilibrium trade models. Together, {dCθ

j , d ln l
θ
j} can be nonparametrically identified

for a counterfactual shocks {d ln Ãij,k}.
While it is reassuring that the welfare changes are in principle nonparametrically identified,

the data requirement for the nonparametric identification is unrealistic in most applications. For
example, identifying the factor supply system, {∂µ̂θ

i (C
θ)/∂Cθ

j }i,j for all i and j, requires a long
period of data and exogenous variation of consumption at every location. Therefore, the purpose
of this section is not to suggest a practical estimation procedure in applications. Instead, this
discussion aims to establish a clear mapping between nonparametric welfare-relevant sufficient
statistics and data moments. Such results are useful because they point toward the data moments
that discipline the welfare conclusions drawn from spatial equilibrium models.

4 Beyond Additively Separable Preference Shocks

So far, we have focused on specifications where preference shocks are additively separable. This
section relaxes this assumption. Section 4.1 discusses the general case. Section 4.2 discusses a spe-
cial case with the multiplicatively separable preference shocks following max-stable multivariate
Fréchet distribution.

4.1 General Case

We now assume that utility in location i is given by U θ
i (C

θ
i , ϵ

θ
i ). Compared to the additively

separable specification, marginal utility in each location now depends on the preference shock
draws. To see this, the average marginal utility for households deciding to live in location j is
given by

E

[
∂

∂Cθ
j

U θ
j (C

θ
j , ϵ

θ
j)|j = argmax

l
U θ
l (C

θ
l , ϵ

θ
l )

]
. (45)

Unlike the additively separable specification, i.e., ∂
∂Cθ

j
U θ
j (C

θ
j , ϵ

θ
j) = uθ′j (C

θ
j ), the selection of pref-

erence shocks influences the marginal utility of consumption in each location.
Under this general preference specification, the isomorphic representation of households’ lo-

cation decisions in Lemma 1 is modified as

max
{µθ

j}:
∑

j µ
θ
j=1

U θ({Cθ
j }, {µθ

j}), (46)
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where we give the explicit expression for U θs in Appendix A.6. Under additively separable speci-
fication, U θ({Cθ

j }, {µθ
j}) =

∑
j µ

θ
ju

θ
j(C

θ
j )− ψθ({µθ

j}j), and ∂U θ({Cθ
j }, {µθ

j})/∂Cθ
j = µθ

ju
θ′
j (C

θ
j ),

i.e., marginal expected utility only depends on j’s population and consumption. In the general
case, it is affected by the entire vector of population distribution {µθ

j}j and consumption {Cθ
j }j

beyond location j through the selection of preference draws.
It is straightforward to extend our theory to this general case. Proposition 1 is simply mod-

ified by replacing the marginal utility per household uθ′j (Cθ
j ) with the one under this general

specification. In particular, (ii) MU dispersion term becomes

ΩMU = Eθ

[
Covj|θ

(
−

P θ
j

MU θ
j

,
1

lθj
MU θ

jdC
θ
j

)]
, MU θ

j =
1

lθj

∂U θ({Cθ
j }, {µθ

j})
∂Cθ

j

. (47)

Conditional on the price normalization using this marginal utility (18), all other terms are unaf-
fected.

While this extension is straightforward in theory, it poses a challenge to the identification
of aggregate welfare. To understand this challenge, consider a monotone transformation of the
utility function from the additively separable class: U θ

j (C
θ
j , ϵ

θ
j) = m(uθj(C

θ
j )+ϵ

θ
j) for some strictly

increasing function m(·). This transformation does not affect the model’s positive prediction
because of the ordinal nature of the utility function for location choice decisions. However, the
expected marginal utility in each location becomes

MU θ
j = uθ′j (C

θ
j )E

[
g′(uθj(C

θ
j ) + ϵθj)|j = argmax

l
g(uθl (C

θ
l ) + ϵθl )

]
. (48)

Therefore, the function m(·) generally affects the marginal utility in each location. This discus-
sion implies that the normative prediction, i.e., aggregate welfare, generically depends on the
choice ofm(·). Sincem(·) cannot be identified from data, aggregate welfare also cannot be iden-
tified from location choice data alone.

This lack of identification isworrisome, as it indicates thatwelfare predictions are not uniquely
pinned down from data. Even when the two models match the same data moments, the welfare
conclusions drawn from these two models can be arbitrarily different. However, we show below
that, under a common parametric assumption in the existing literature, such a concern is not
warranted.

4.2 Multiplicative Shocks with Multivariate Fréchet Distribution

We now focus on a special case of nonseparable preference shocks. Specifically, we assume that
preference shocks are multiplicatively separable and follow max-stable multivariate Fréchet dis-
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tribution. Formally, we assume that preference for households living in location j of type θ is
given by

Ũ θ
j (C

θ
j , ϵ̃

θ
j) = ũθj(C

θ
j )ϵ̃

θ
j ,

with P(ϵ̃θ1 ≤ ϵ̄1, . . . , ϵ̃
θ
N ≤ ϵ̄N) = exp(−Gθ(Kθ

1(ϵ̄1)
−νθ , . . . , Kθ

N(ϵ̄N)
−νθ)),

(49)

where Gθ is a function of homogeneous degree one, which we call “correlation function.” The
key implication of this specification is the max-stability property, where the distribution of the
maximum is Fréchet with shape parameter νθ.17

Specification (49) covers many specifications that appear in the previous literature besides the
additively separable specification. For example, Redding (2016) is a special case with i.i.d. Fréchet
distribution, which corresponds to the case with Gθ(x1, . . . , xN) =

∑N
j=1 xj . Some researchers

introduce nested Fréchet distribution to accommodate richer substitution patterns of location
choice. More broadly, this preference specification delivers a generalized extreme value (GEV)
demand system with flexible substitution patterns as introduced by McFadden (1978). Dagsvik
(1995) shows that GEV demand systems can approximate arbitrary demand system generated by
random utility models.

To consider the property of this specification, consider the log transformation of this utility
specification: uθj(Cθ

j ) = ln(ũθj(C
θ
j )), and ϵθj = ln(ϵ̃θj). It is straightforward to show that ϵj follows

multivariate Gumbel distribution with the same correlation function G(·) such that

U θ
j (Cj, ϵj) = uθj(C

θ
j ) + ϵθj ,

with P(ϵ1 ≤ ϵ̄θ1, . . . , ϵ
θ
N ≤ ϵ̄N) = exp(−Gθ(Kθ

1(exp(−νθ ϵ̄1)), . . . , Kθ
N(exp(−νθ ϵ̄N)))).

(50)

Since ln(·) is a monotone transformation, the system (49) and (50) have isomorphic positive pre-
dictions. The following proposition shows that these two models also deliver isomorphic norma-
tive predictions.

Proposition 4. Consider the spatial equilibrium with max-stable multivariate Fréchet preference
shocks (49). Let W̃ ≡ W̃({W̃ θ}θ∈Θ) be the welfare in this economy. Consider another econ-
omy with the log transformation of utility specification (50) without changing remaining equi-
librium conditions in Definition 1. Let W ≡ W({W θ}θ∈Θ) be the welfare in this economy with
W({W θ}θ∈Θ) ≡ ln W̃({exp(W θ)}θ∈Θ) being the social welfare function.

1. Equilibrium allocations are identical in both economies.

2. The welfare decomposition according to Proposition 1 is identical in both economies up to
17See McFadden (1978) for further properties of this demand system and the correlation function. See also Lind

and Ramondo (2023) for the application of this demand system for Ricardian trade models.

25



multiplicative constant. Formally, let dW̃ = Ω̃T + Ω̃MU + Ω̃FE + Ω̃TE + Ω̃R be the de-
composition in the economy with multiplicative Fréchet preference shocks, and let dW =

ΩT + ΩMU + ΩFE + ΩTE + ΩR be the decomposition in an economy with additive sepa-
rable preference shocks counterpart. Then,

dW̃ = W̃dW, Ω̃c = W̃Ωc, for c ∈ {T,MU, FE, TE,R}. (51)

Proposition 4 establishes that an economywith multiplicative Fréchet shocks is isomorphic to
an economy to its additively separable counterpart both for positive and normative implications.
An important corollary of Proposition 4 is that all the welfare relevant sufficient statistics of
an economy with multiplicative Fréchet shocks are identified, provided that they are identified
in an economy with additively separable preference shocks, as in Section 3.5. The possibility of
identification is enlightening. As discussed in the previous section, outside of additively separable
preference shocks, it is generally not possible to identify the marginal utility of consumption
from location choice data, and thereby our decomposition lacks an empirical content. However,
Proposition 4 shows such a concern is not warranted under a class of models with nonseparable
preference shocks that cover almost all the applications in the literature.

What is the reason behind the equivalence under multiplicative Fréchet? As discussed in the
previous section, the transformation of the utility function matters only through the differences
in marginal utility. The marginal utility of consumption of households in location j in the system
(49) is given by

MU θ
j = uθ′j (C

θ
j )E
[
ũθj(C

θ
j )ϵ̃

θ
j |j = argmax

l
ũθl (C

θ
l )ϵ̃

θ
l

]
= uθ′j (C

θ
j )W̃

θ, (52)

where the first transformation used the fact that uj(Cj) = ln(ũθj(C
θ
j )) and ϵθj = ln(ϵ̃θj). The sec-

ond transformation of equation (52) follows from the max-stable property of ϵ̃j : The distribution
of the maximum follows the same distribution irrespective of the chosen option (McFadden 1978,
Lind and Ramondo 2023). Therefore, the marginal utility under specification is identical to its log
transformation (50) up to scale W̃ . Given that all terms in our welfare decomposition in Propo-
sition 1 scale up by marginal utility under price normalization (18), we have the isomorphism in
the aggregate welfare.18

It is worth stressing again that this result depends both on the multiplicatively separable spec-
ification and the max-stable multivariate Fréchet distribution of preference shocks. A failure of

18Another way to interpret this result is through a particular property of the Fréchet distribution: the expectation
of the log coincides with the log of the expectation.
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either assumption implies that the normative implications are not isomorphic under log transfor-
mation.19 Despite this sensitivity, it is reassuring that specifications (49) and (50) – predominantly
common specifications in the literature – agree in their aggregate welfare predictions.

5 Additional Extensions and Discussions

This section provides additional extensions and discussions to our baseline analysis.

5.1 General Externality

In our main model, we assumed that agglomeration externality is purely a function of local popu-
lation size (7). In some contexts, researchers specify that a higher population size in the surround-
ing regions also generates agglomeration spillovers (e.g., Ahlfeldt et al. 2015). In other contexts,
researchers also specify that the externality arises from the specific producers’ input use (e.g., free
entry model with labor fixed cost such as Krugman 1991) or the producers’ output (e.g., conges-
tion cost from shipment, as in Allen and Arkolakis 2022). To capture these general externalities,
we extend the spillover function (7) such that

Aij,k = Ãij,kgij,k({lθℓ}ℓ,θ, {lθij,k}θ, yij,k), (53)

where the first argument of gij,k(·) corresponds to the population size across types and locations,
the second argument corresponds to labor input in production, and the third argument corre-
sponds to output. We also denote the spillover elasticities such that

γP,ℓθij,k =
∂ ln gij,k
∂ ln lθℓ

, γL,θij,k =
∂ ln gij,k
∂ ln lθij,k

, γY,θij,k =
∂ ln gij,k
∂ ln yij,k

(54)

Under this extension, the only modification in Proposition 1 is the (iv) technological externality
term, which is modified as:

ΩTE =
∑
j,l,k

pjl,kyjl,k

(∑
ℓ,θ

γP,ℓθℓl,k d ln l
θ
j +

∑
θ

γL,θjl,kd ln l
θ
ij,k + γYjl,kd ln yij,k

)
. (55)

This expression comes down to (iv) technological externality term in Proposition 1 if the spillover
function only depends on local population size. The only difference here is that the reallocation of

19An important exception where preference shocks do not follow max-stable multivariate Fréchet distribution is
the mixed logit model. See Davis and Gregory (2021) for a discussion of the lack of identification of optimal transfer
policy under multiplicatively separable specifications with additional random shocks.
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population in surrounding regions and other quantities may have first-order effects on aggregate
welfare through additional technological externalities.

5.2 Shocks to Amenity and Amenity Externality

In Section 3, we analyzed the effects of productivity shocks on aggregate welfare. In some con-
texts, researchers are interested in the shocks to amenity instead of productivity. The analysis in
Section 3 embraces this possibility by interpreting some intermediate goods as local amenities.
From a measurement perspective, applying Proposition 1 requires knowledge of prices associ-
ated with amenities, which is often unobserved. Below, we provide an alternative expression for
Proposition 1 without using prices for the amenities.

To consider this extension, we explicitly introduce amenity as an argument of utility function
as follows:

U θ
j (C

θ
j , B

θ
j , ϵ

θ
j) = uθj(C

θ
j , B

θ
j ) + ϵθj , (56)

where Bθ
j is the amenity in region j. Furthermore, we assume that these amenities take the

following form:

Bθ
i = B̃θ

i g
B,θ
i ({lθi }θ), γB,θ̃θ

i =
∂ ln gB,θ̃θ

i ({lθi }θ)
∂ ln lθ̃i

, (57)

B̃θ
i is the fundamental exogenous component of amenity, gB,θ

i ({lθi }θ) is the spillover function,
and γB,θ̃θ

i is the amenity spillover elasticity from type θ̃ to type θ in location i.
Under this extension, Proposition 1 is modified as follows. Consider an arbitrary set of small

shocks to exogenous components of productivity, {d ln Ãij,k}, and amenity, {d ln B̃θ
i }. The first-
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order impact of microeconomic shocks on welfare in utility terms can be expressed as

dW =
∑
i,j,k

pij,kyij,kd ln Ãij,k +
∑
i,θ

lθi ∂Bu
θ
iB

θ
i d ln B̃

θ
i︸ ︷︷ ︸

(i) Technology (ΩT )

+Eθ

[
Covj|θ

(
−

P θ
j

∂Cuθj
, ∂Cu

θ
jdC

θ
j

)]
︸ ︷︷ ︸

(ii) MU Dispersion (ΩMU )

+ Eθ

[
Covj|θ(−T θ

j , d ln l
θ
j )
]

︸ ︷︷ ︸
(iii) Fiscal Externality (ΩFE)

+Eθ

Covj|θ(∑
l,k

pjl,kyjl,k
1

lθj
γθjl,k +

∑
θ̃

∂Bu
θ̃
jB

θ̃
j γ

B,θθ̃
j , d ln lθj )


︸ ︷︷ ︸

(iv) Technological Externality (ΩTE)

+ Covθ

(
Λθ − Ej|θ

[
P θ
j

∂Cuθj(C
θ
j )

]
,Ej|θ

[
∂Cu

θ
jdC

θ
j

])
︸ ︷︷ ︸

(v) Redistribution (ΩR)

.

(58)

where ∂Buθj ≡
∂uθ

j

∂Bθ
j
and ∂Cuθj ≡

∂uθ
j

∂Cθ
j
.

The main difference from Proposition 1 is the additional terms in (i) technology and (iv) tech-
nological externality. The second term inside (i) technology captures the effects of exogenous
amenity terms absent reallocation effects. The coefficient in front of d ln B̃θ

i , li∂BuθiBθ
i , is the

population-weighted sum of the marginal utility of amenity. This term strongly resembles the
technology effect on productivity (the first term). In particular, if the amenity is traded and priced
in the market, ∂Bui corresponds to the competitive price of the amenity, and hence li∂BuiBi is
the total sales of the amenity, corresponding to pij,kyij,k. The second term inside (iv) technologi-
cal externality term has the same feature: if the amenity is traded, the changes of amenity from
externality collapses to the same form as the productivity externality term.

5.3 Isomorphism between Amenity Externality and Preference Shocks

In quantitative spatial equilibrium literature, researchers often argue that amenity congestion
externality is isomorphic to amenity externality and use these specifications interchangably.20

This section discusses this isomorphism through the lens of our framework.
For expositional convenience, we assume a single type and drop superscript θ. Consider the

following utility specification with amenity externality without preference shocks:

Uj(Cj, Bj, ϵj) = uj(Cj) +Bj, Bj = gj({li}i) = −1

ν
lnSj({li}i), (59)

20See, for example, Allen and Arkolakis (2014) and Desmet, Nagy, and Rossi-Hansberg (2018), for papers that
mention the isomorphism between the two specifications.
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where Sj({li}i) satisfies the following property

1

ν

∑
j

lj
∂ lnSj({li}i)

∂li
= 1. (60)

Note that this specification accommodates that the population in i generates externality in other
regions. A special case of this example is when Sj({li}i) = lνj , i.e., amenity is iso-elastic to local
population size with elasticity −ν.

It is straightforward to see that this specification is isomorphic to the case where there are no
amenity externality and preference shocks follow max-stable multivariate Gumbel distribution
with shape parameter ν, i.e., Uj(Cj, Bj, ϵj) = uj(Cj) + ϵj and {ϵj} follows Specification (50).21

It is also straightforward to see that both specifications deliver the same households’ expected
utilities, thereby delivering identical normative predictions.

This isomorphism arises because this particular form of congestion externality does not in-
duce misallocation. In particular, the (iv) amenity externality term in Equation (58) comes down
to

Covj(−
∑
i

li
lnSi({lj}i)
∂ ln lj

, d ln lj) = Covj(−ν, d ln lj) = 0, (61)

where we used (60) and ∂Bui = 1. Given that all other terms in Equation (58) are identical
between the two specifications, the aggregate welfare predictions are also isomorphic.

This discussion also clarifies this isomorphism holds only when preference shocks follow
max-stable multivariate Gumbel distribution, or equivalently, when the congestion externality
takes the specific functional form given by (59) and (60). Outside these special cases, congestion
externality generates a source of misallocation, and hence the isomorphism does not hold in
general.22

5.4 Arbitrary Social Welfare Function

Our baseline analysis focuses on expected utility as the welfare criterion. In some contexts, re-
searchers may want to consider an alternative welfare criterion. For example, consider a scenario

21See Appendix C for the derivation that ψ({lj}) in Lemma 1 takes the form of ψ({lj}) = 1
ν

∑
j lj lnSj({li}i)

in this case.
22Fajgelbaum and Gaubert (2020) show that, under multiplicative utility specification, competitive equilibrium

involves misallocation even under iso-elastic amenity externality. Through the lens of Equation (58), this source of
misallocation appears in (ii) MU dispersion term. The multiplicative amenity without preference shocks implies that
the marginal utility of income is not equalized across locations. Furthermore, unlike our baseline model abstracting
direct effects of shocks on utility uj(·), the utility changes from consumption changes dCj are not equalized because
of the changes of utility from amenity. Therefore the term (ii) is not zero. Note that this specification is isomorphic to
the specification with multiplicative max-stable Fréchet shocks (without amenity externality) as discussed in Section
4.2. In this case, the dispersion of marginal utility instead arises from preference shock draws.
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where researchers alternatively interpret idiosyncratic preference shocks {ϵθj} as “mistakes”. Un-
der this interpretation, one may desire to exclude this component of ϵj from aggregate welfare.
To capture these cases, in Appendix D.2, we consider a scenario with a general social welfare
functionW SP = W({USP,θ({Cθ

j }j, {lθj}j)}θ), where USP,θ is defined arbitrarily on the distribu-
tion of consumption and population of household type θ. Then, our decomposition in Proposition
1 only adds an additional term (vi) paternalistic motive, which is defined as

ΩPM = Eθ

[
ΛθEj|θ

[(
MUSP,θ

j − uθ′j (Cj)
)
dCθ

j

]]
, MUSP,θ

j =
∂

∂Cj

USP,θ({Cθ
i }, {lθi }).

(62)
This additional term captures the misalignment between the social planner’s welfare assess-
ment of a marginal value of consumption may not coincide with the private agents’ assessment
(marginal utility).

5.5 Commuting

Our baseline model assumes that households supply labor at the same location as their residen-
tial location. In the urban economics literature, it is typically assumed that households make
separate decisions about their residential and employment location decisions (e.g., Ahlfeldt et al.
2015, Tsivanidis 2019, Zárate 2022). Our framework can be straightforwardly extended to such a
framework by reinterpreting household’s location decisions j as a combination of residential and
work locations, (j1, j2), where the first index captures the residential location and the second in-
dex captures the work location. For example, the utility of agents deciding home location j1 and
work location j2 is given by U θ

j1j2
(Cθ

j1j2
, ϵθj1j2), where ϵ

θ
j1j2

is home-and-work-specific preference
shocks.23 Consequently, Proposition 1 remains unchanged by simply replacing j with (j1, j2)

combinations.

6 Applications

TBA

23This extension accommodates the specification where households consume different consumption bundles de-
pending on the home-work combination, as studied by Miyauchi, Nakajima, and Redding (2022).

31



References

Adao, R., A. Costinot, and D. Donaldson (2017). Nonparametric Counterfactual Predictions in
Neoclassical Models of International Trade. American Economic Review 107 (3), 633–689.

Ahlfeldt, G. M., S. J. Redding, D. M. Sturm, and N. Wolf (2015). The Economics of Density: Evi-
dence from the Berlin Wall. Econometrica 83(6), 2127–2189.

Allen, R. and J. Rehbeck (2019). Identification with additively separable heterogeneity. Economet-
rica 87 (3), 1021–1054.

Allen, T. and C. Arkolakis (2014). Trade and the Topography of the Spatial Economy. The Quar-
terly Journal of Economics 129(3), 1085–1140.

Allen, T. and C. Arkolakis (2022). The welfare effects of transportation infrastructure improve-
ments. The Review of Economic Studies 89(6), 2911–2957.

Allen, T., C. Arkolakis, and X. Li (2020). On the equilibrium properties of network models with
heterogeneous agents. Technical report, National Bureau of Economic Research.

Anderson, S. P., A. De Palma, and J.-F. Thisse (1988). A Representative Consumer Theory of the
Logit Model. International Economic Review, 461–466.

Baily, M. N. (1978). Some Aspects of Optimal Unemployment Insurance. Journal of Public Eco-
nomics 10(3), 379–402.

Baqaee, D. R. and E. Farhi (2020). Productivity and misallocation in general equilibrium. The
Quarterly Journal of Economics 135(1), 105–163.

Berry, S. T. and P. A. Haile (2014). Identification in differentiated products markets using market
level data. Econometrica 82(5), 1749–1797.

Caliendo, L., F. Parro, E. Rossi-Hansberg, and P.-D. Sarte (2018). The impact of regional and
sectoral productivity changes on the us economy. The Review of Economic Studies 85(4), 2042–
2096.

Chetty, R. (2006). A General Formula for the Optimal Level of Social Insurance. Journal of Public
Economics 90(10-11), 1879–1901.

Costinot, A. and I. Werning (2018). Robots, trade, and luddism: A sufficient statistic approach to
optimal technology regulation. NBER Working Paper (w25103).

32



Dagsvik, J. K. (1995). How large is the class of generalized extreme value random utility models?
Journal of Mathematical Psychology 39(1), 90–98.

Dávila, E. and A. Schaab (2023). Welfare Accounting. Working Paper .

Davis, M. and J. M. Gregory (2021). Place-Based Redistribution in Location Choice Models. Work-
ing Paper 29045, National Bureau of Economic Research.

Desmet, K., D. K. Nagy, and E. Rossi-Hansberg (2018). The Geography of Development. Journal
of Political Economy 126(3), 903–983.

Diamond, R. (2016). The determinants and welfare implications of us workers’ diverging location
choices by skill: 1980–2000. American Economic Review 106(3), 479–524.

Donaldson, D. and R. Hornbeck (2016). Railroads and american economic growth: A “market
access” approach. The Quarterly Journal of Economics 131(2), 799–858.

Fajgelbaum, P. D. and C. Gaubert (2020). Optimal Spatial Policies, Geography, and Sorting. The
Quarterly Journal of Economics 135(2), 959–1036.

Fajgelbaum, P. D., P. K. Goldberg, P. J. Kennedy, and A. K. Khandelwal (2020). The return to
protectionism. The Quarterly Journal of Economics 135(1), 1–55.

Fogel, R. W. (1964). Railroads and American Economic Growth. Johns Hopkins Press Baltimore.

Fujita, M., P. R. Krugman, and A. Venables (2001). The spatial economy: Cities, regions, and inter-
national trade. MIT press.

Gaubert, C., P. M. Kline, and D. Yagan (2021). Place-Based Redistribution. Working Paper 28337,
National Bureau of Economic Research.

Hofbauer, J. and W. H. Sandholm (2002). On the global convergence of stochastic fictitious play.
Econometrica 70(6), 2265–2294.

Hulten, C. R. (1978). Growth Accounting with Intermediate Inputs. The Review of Economic
Studies 45(3), 511–518.

Kline, P. and E. Moretti (2014). People, Places, and Public Policy: Some SimpleWelfare Economics
of Local Economic Development Programs. Annual Review of Economics 6(1), 629–662.

Krugman, P. (1991). Increasing returns and economic geography. Journal of Political Econ-
omy 99(3), 483–499.

33



Lebergott, S. (1966). United States Transport Advance and Externalities. The Journal of Economic
History 26(4), 437–461.

Lind, N. and N. Ramondo (2023). Trade with correlation. American Economic Review 113(2),
317–353.

McFadden, D. (1978). Modeling the choice of residential location. Transportation Research
Record (673).

Melo, P. C., D. J. Graham, and R. B. Noland (2009). A Meta-Analysis of Estimates of Urban Ag-
glomeration Economies. Regional Science and Urban Economics 39(3), 332–342.

Mirrlees, J. A. (1972). The Optimum Town. The Swedish Journal of Economics, 114–135.

Miyauchi, Y., K. Nakajima, and S. J. Redding (2022). The economics of spatial mobility: Theory
and evidence using smartphone data. Technical report, National Bureau of Economic Research.

Mongey, S. and M. Waugh (2023). Discrete choice, complete markets and equilibrium. Slide.

Redding, S. J. (2016). Goods trade, factor mobility and welfare. Journal of International Eco-
nomics 101, 148–167.

Redding, S. J. (2022). Trade and Geography. Handbook of International Economics 5, 147–217.

Redding, S. J. and E. Rossi-Hansberg (2017). Quantitative Spatial Economics. Annual Review of
Economics 9, 21–58.

Redding, S. J. and M. A. Turner (2015). Transportation Costs and the Spatial Organization of
Economic Activity. Handbook of Regional and Urban Economics 5, 1339–1398.

Roback, J. (1982). Wages, Rents, and the Quality of Life. Journal of Political Economy 90(6),
1257–1278.

Rosen, S. (1979). Wage-Based Indexes of Urban Quality of Life. Current Issues in Urban Economics,
74–104.

Rossi-Hansberg, E., P.-D. Sarte, and F. Schwartzman (2019). Cognitive Hubs and Spatial Redistri-
bution. Working Paper 26267, National Bureau of Economic Research.

Small, K. and E. T. Verhoef (2007). The Economics of Urban Transportation. Routledge.

Tsivanidis, N. (2019). Evaluating the Impact of Urban Transit Infrastructure: Evidence from Bo-
gota’s Transmilenio. Working Paper .

34



Wildasin, D. E. (1986). Spatial variation of the marginal utility of income and unequal treatment
of equals. Journal of Urban Economics 19(1), 125–129.

Zárate, R. D. (2022). Spatial Misallocation, Informality, and Transit Improvements.Working Paper .

35



Online Appendix for “Aggregate Welfare in a Spatial Economy”
Eric Donald, Masao Fukui, Yuhei Miyauchi

A Proofs 1
A.1 Proof of Lemma 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
A.2 Proof of Lemma 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
A.3 Proof of Proposition 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
A.4 Proof of Proposition 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
A.5 Proof of Proposition 3 and Corollary 1 . . . . . . . . . . . . . . . . . . . . . . . . . 9
A.6 General Non-Separable Preference Shocks . . . . . . . . . . . . . . . . . . . . . . 9
A.7 Proof of Proposition 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

B First-Best Allocation 11

C Location Choice under Generalized Extreme Value (GEV) Preference Shocks 13
C.1 Additively Separable Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
C.2 Multiplicatively Separable Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

D Details on Extensions 16
D.1 Amenity Shocks and Amenity Externality . . . . . . . . . . . . . . . . . . . . . . . 16
D.2 Arbitrary Social Welfare Function . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

E Nonparametric Identification of Location Choice System 18



A Proofs

A.1 Proof of Lemma 1

For expositional simplicity, we prove the lemma under ex-ante homogenous types and drop su-
perscript θ. Note also that we have lj = µj given the normalization of population size l̄ = 1.

Economy with Heterogeneous Preferences. Consider the problem of households deciding
where to live. We index each individual by ω ∈ [0, 1], and {ϵk(ω)}k denote the preference draw
of individual ω. Each individual solves the following problem:

v(ω) = max
{Ij(ω)}j

∑
j

Ij(ω) [uj(Cj) + ϵj(ω)]

s.t.
∑
j

Ij(ω) = 1,
(A.1)

where Ij(ω) ∈ {0, 1} is an indicator function for location choice of individual ω, andCj = wj/Pj .
The fraction of individuals living in location j is given by

lj =

∫ 1

0

Ij(ω)dω. (A.2)

Economy with Representative Agent. Define the following function:

ψ({lj}j) = − max
{Ij(ω)}ω,j

∫ 1

0

∑
j

ϵj(ω)Ij(ω)dω

s.t.
∫ 1

0

Ij(ω)dω = lj∑
j

Ij(ω) = 1.

(A.3)

The representative agent solves

W = max
{lj}j :

∑
j lj=1

∑
j

ljuj(Cj)− ψ({lj}j) (A.4)

Equivalence Result. We formally restate the equivalence result of Lemma 1 as follows.

Lemma. Suppose {Ij(ω)}j solves (A.1) for all ω. Then, {lj}j , given by (A.2), solves (A.4). Con-
versely, suppose {lj}j solves (A.4). Then {Ij(ω)}ω,j , given by the solution to (A.3) associated with
{lj}j , solves (A.1) for almost all ω. Moreover, the expected utility in the economy with heterogeneous
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preferences equals the utility of the representative agent:∫ 1

0

v(ω)dω = W

Proof. We prove the first part. Suppose to the contrary, there exists {l̃j}j such that∑
j

l̃juj(Cj)− ψ({l̃j}j) >
∑
j

ljuj(Cj)− ψ({lj}j). (A.5)

Let {Ĩj(ω)}ω,j denote the solution to (A.3) associated with {l̃j}j . Plugging into (A.5),∫ 1

0

∑
j

Ĩj(ω) [uj(Cj) + ϵj(ω)] dω >

∫ 1

0

∑
j

Ij(ω) [uj(Cj) + ϵj(ω)] dω, (A.6)

where
∑

j Ĩj(ω) = 1 and
∑

j Ij(ω) = 1 for all ω. However, this is a contradiction because by our
presumption, for any ω,∑

j

Ij(ω) [uj(Cj) + ϵj(ω)] ≥
∑
j

Ĩj(ω) [uj(Cj) + ϵj(ω)]

for all Ĩj(ω), which would imply∫ 1

0

∑
j

Ĩj(ω) [uj(Cj) + ϵj(ω)] dω ≤
∫ 1

0

∑
k

Ik(ω) [uj(Cj) + ϵj(ω)] dω. (A.7)

Now we prove the converse. Suppose to the contrary, there exists {Ĩj(ω)}j such that∑
j

Ĩj(ω) [uj(Cj) + ϵj(ω)] >
∑
j

Ij(ω) [uj(Cj) + ϵj(ω)] (A.8)

and
∑

j Ĩj(ω) = 1 hold for all ω ∈ Ω, where Ω ⊂ [0, 1] and |Ω| > 0. Define

l̃j =

∫ 1

0

Ĩj(ω)dω. (A.9)
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Then

∑
j

ljuj(Cj)− ψ({lj}j) =
∫ 1

0

∑
j

Ij(ω) [uj(Cj) + ϵj(ω)] dω

<

∫ 1

0

∑
j

Ĩj(ω) [uj(Cj) + ϵj(ω)] dω

≤
∑
j

l̃juj(Cj)− ψ({l̃j}j).

This is a contradiction that {lj}j is a solution to (A.4).
We need to show that the expected utility coincides with each other in the two economies.

This immediately follows given the above result. Let {Ij(ω)}ω,j be the solution to (A.1) for all ω,
and let {lj}j denote the solution to (A.4). Then∫ 1

0

∑
j

Ij(ω) [uj(Cj) + ϵj(ω)] dω =
∑
j

ljuj(Cj)− ψ({lj}j). (A.10)

A.2 Proof of Lemma 2

Decentralized equilibrium solves (22)-(27) and firms’ optimality conditions, given by

P θ
j

∂Cθ
j

∂cθij,k
= pij,k, pij,kAij,k

∂fij,k
∂lθij,k

= wθ
i , pij,kAij,k

∂fij,k
∂hij,k

= ri, pij,kAij,k
∂fij,k

∂xl,mij,k
= pli,m,

(A.11)

The first-order conditions of the pseudo planner’s problemwith respect to cij,k, lθij,k, hij,k, x
l,m
ij,k

are

PL,θ
j

∂Cθ
j

∂cθij,k
= pLij,k, pLij,kAij,k

∂fij,k
∂lθij,k

= wL,θ
i , pLij,kAij,k

∂fij,k
∂hij,k

= rLi , pLij,kAij,k
∂fij,k

∂xl,mij,k
= pLli,m,

(A.12)

The pseudo planner’s solution solves (22)-(27) as well as (A.12). When PL,θ
j = P θ

j , pLij,k = pij,k,
wL,θ

j = wθ
j , and rLj = rj , these conditions are identical to the equilibrium conditions. Therefore

the decentralized equilibrium satisfies the optimality conditions for the pseudo planner’s problem
with associated Lagrangian multipliers PL,θ

j = P θ
j , pLij,k = pij,k, wL,θ

j = wθ
j , and rLj = rj .
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A.3 Proof of Proposition 1

To solve the pseudo planning problem, we first note that the constraint (25) is simply rewritten
as µθ

j = µ̌θ
j , where µ̌θ

j is the equilibrium population distriubtion.
The first order condition of pseudo planning problem with respect to Cθ

j is given by

χθ
j = lθj [Λ

θuθ′j (C
θ
j )− P θ

j ], (A.13)

whereχθ
j andP θ

j correspond to the Lagrangemultipliers for constraints (25) and (22), respectively.
Furthermore, the first order condition with respect to µθ

j is given by

ηθi = l̄θ

[
wθ

i − P θ
i C

θ
i +

∑
l,k

pil,kyil,k
1

lθi
γθil,k

]
, (A.14)

where ηθj , wθ
j and pil,k correspond to the Lagrange multipliers for constraints (22), (24) and (23),

respectively.
By applying the Envelope theorem to pseudo planning problem (20),

dW

d ln Ãil,k

=pil,kyil,k +
∑
θ

∑
j

[
χθ
j

dCθ
j

d ln Ãil,k

+ ηθj
dµθ

j

d ln Ãil,k

]

=pil,kyil,k +
∑
θ

∑
j

lθj [Λ
θuθ′j (C

θ
j )− P θ

j ]
dCθ

j

d ln Ãil,k

+
∑
θ

∑
j

l̄θ

[
wθ

j − P θ
j C

θ
j +

∑
l,k

pjl,kyjl,k
1

lθj
γθjl,k

]
dµθ

j

d ln Ãil,k

.

Multiplying both hand side by d ln Ãil,k, we have

dW =
∑
i,j,k

pij,kyij,kd ln Ãij,k +
∑
θ

∑
j

χθ
jP

θ
j l

θ
jdC

θ
j

=
∑
i,j,k

pij,kyij,kd ln Ãij,k +
∑
θ

∑
j

lθj [Λ
θuθ′j (C

θ
j )− P θ

j ]dC
θ
j

+
∑
θ

∑
j

[wθ
j − P θ

j C
θ
j ]dl

θ
j +

∑
θ

∑
j

∑
l,k

pjl,kyjl,k
1

lθj
γθjl,kdl

θ
j . (A.15)
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Now,∑
θ

∑
j

lθj [Λ
θuθ′j (C

θ
j )− P θ

j ]dC
θ
j

=
∑
θ

l̄θ
∑
j

µθ
j [Λ

θ −
P θ
j

uθ′j (C
θ
j )
]uθ′j (C

θ
j )dC

θ
j

=
∑
θ

l̄θ

[∑
j

Covj|θ(Λ
θ −

P θ
j

uθ′j (C
θ
j )
, uθ′j (C

θ
j )dC

θ
j ) + Ej|θ[Λ

θ −
P θ
j

uθ′j (C
θ
j )
]Ej|θ[u

θ′
j (C

θ
j )dC

θ
j ]

]

=
∑
θ

l̄θ

[
Covj|θ(−

P θ
j

uθ′j (C
θ
j )
, uθ′j (C

θ
j )dC

θ
j ) +

(
Λθ − Ej|θ[

P θ
j

uθ′j (C
θ
j )
]

)
Ej|θ[u

θ′
j (C

θ
j )dC

θ
j ]

]

=Eθ[Covj|θ(−
P θ
j

uθ′j (C
θ
j )
, uθ′j (C

θ
j )dC

θ
j )] + Covθ

(
Λθ − Ej|θ[

P θ
j

uθ′j (C
θ
j )
],Ej|θ[u

θ′
j (C

θ
j )dC

θ
j ]

)

+ Eθ

[
Λθ − Ej|θ[

P θ
j

uθ′j (C
θ
j )
]

]
Eθ

[
Ej|θ[u

θ′
j (C

θ
j )dC

θ
j ]
]

=Eθ[Covj|θ(−
P θ
j

uθ′j (C
θ
j )
, uθ′j (C

θ
j )dC

θ
j )] + Covθ

(
Λθ − Ej|θ[

P θ
j

uθ′j (C
θ
j )
],Ej|θ[u

θ′
j (C

θ
j )dC

θ
j ]

)
,

where the last equation used the fact that Eθ

[
Λθ
]
= 1 under our normalization of Pareto weights

(??) and Eθ

[
Ej|θ[

P θ
j

uθ′
j (Cθ

j )
]
]
= Eθ

[
P θ
j

uθ′
j (Cθ

j )

]
= 1 under our price normalization (18). The two terms

correspond to (ii) MU dispersion and (v) redistribution in Proposition 1.
Similarly, ∑

θ

∑
j

[wθ
j − P θ

j C
θ
j ]dl

θ
j

=
∑
θ

l̄θ
∑
j

µθ
j [w

θ
j − P θ

j C
θ
j ]d ln l

θ
j

=
∑
θ

l̄θ

Covj|θ(wθ
j − P θ

j C
θ
j , d ln l

θ
j ) + Ej|θ[w

θ
j − P θ

j C
θ
j ]Ej|θ[d ln l

θ
j ]︸ ︷︷ ︸

=0


=Eθ

[
Covj|θ(w

θ
j − P θ

j C
θ
j , d ln l

θ
j )
]

=Eθ

[
Covj|θ(−Πθ − T θ

j , d ln l
θ
j )
]

=Eθ

[
Covj|θ(−T θ

j , d ln l
θ
j )
]
,
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which corresponds to (iii) fiscal externality term. Finally,

∑
θ

∑
j

∑
l,k

pjl,kyjl,k
1

lθj
γθjl,kdl

θ
j

=
∑
θ

l̄θ
∑
j

µθ
j

∑
l,k

pjl,kyjl,k
1

lθj
γθjl,kd ln l

θ
j

=Eθ

[
Covj|θ(

∑
l,k

pjl,kyjl,k
1

lθj
γθjl,k, d ln l

θ
j )

]
,

which corresponds to (iv) technological externality term.

A.4 Proof of Proposition 2

We first characterize the first-order condition of the relaxed problem (33). The first-order condi-
tions of Problem with respect to cθij,k, lθij,k, hij,k, x

l,m
ij,k are given by

P SB,θ
j

∂Cθ
j

∂cθij,k
= pSBij,k, pSBij,kAij,k

∂fij,k
∂lθij,k

= wSB,θ
i , pSBij,kAij,k

∂fij,k
∂hij,k

= rSBi , pSBij,kAij,k
∂fij,k

∂xl,mij,k
= pSBli,m.

(A.16)

When P SB,θ
j = P θ

j , p
SB
ij,k = pij,k, wSB,θ

j = wθ
j , and rSBj = rj , these conditions are identical to

the equilibrium conditions (A.11). Finally, the first-order condition with respect to Cθ
j is given by

equation (40).
It remains to be shown that all the equilibrium conditions are satisfied under T θ

j = P θ
j C

θ
j −

wθ
j − Πθ where Cθ

j satisfies (40) with supporting prices {P SB,θ
j , pSBij,k, w

SB,θ
j , rSBj }. First, it is im-

mediate to see that market clearing conditions coincide by comparing (11)-(14) with (34)-(36). The
constraint (37) implies that the population distribution solves (19). Given prices {P SB,θ

j , pSBij,k, w
SB,θ
j , rSBj },

the firm’s optimality conditions (A.12) are satisfied because they are identical to (A.16).
Finally, it remains to show that the government budget (6) and price normalization (18) are

6



satisfied. Multiplying T θ
j = P θ

j C
θ
j − wθ

j − Πθ by lSB,θ
j and summing across j and θ,∑

θ

∑
j

T θ
j l

SB,θ
j

=
∑
θ

∑
j

P SB,θ
j CSB,θ

j lSB,θ
j −

∑
θ

∑
j

wSB,θ
j lSB,θ

j −
∑
θ

l̄θΠθ

=
∑
θ

∑
i,j,k

pSBij,kc
SB,θ
ij,k lSB,θ

j −
∑
θ

∑
j

wSB,θ
j lSB,θ

j −
∑
θ

l̄θΠθ

=
∑
i,j,k

pSBij,k

[
Aij,kfij,k(l

SB
ij,k, h

SB
ij,kx

SB
ij,k)−

∑
l,m

pSBij,kx
SB,i,k
jl,m

]
−
∑
θ

∑
j

wSB,θ
j lSB,θ

j −
∑
θ

l̄θΠθ

=
∑
i,j,k

pSBij,k

[∑
θ

Aij,k
∂fij,k
∂lij,k

lSB,θ
ij,k + Aij,k

∂fij,k
∂hij,k

hSBij,k +
∑
l,m

Aij,k
∂fij,k

∂xl,mij,k
xSB,l,m
ij,k −

∑
l,m

pSBij,kx
SB,i,k
jl,m

]
−
∑
θ

∑
j

wSB,θ
j lSB,θ

j −
∑
θ

l̄θΠθ

=
∑
i,j,k

[∑
θ

wSB,θ
i lSB,θ

ij,k + rSBi hSBij,k +
∑
l,m

pSBli,mx
SB,l,m
ij,k −

∑
l,m

pSBij,kx
SB,i,k
jl,m

]
−
∑
θ

∑
j

wSB,θ
j lSB,θ

j −
∑
θ

l̄θΠθ

=
∑
θ

∑
j

wSB,θ
j lSBj +

∑
j

rSBj h̄SBj −
∑
θ

∑
j

wSB,θ
j lSB,θ

j −
∑
θ

l̄θΠθ

= 0.

Finally, by dividing Equation (40) by uSB,θ′
j (CSB,θ

j ) and summing up across j and θ with weights
l̄θ,

∑
θ

l̄θ
∑
j

µθ
j

[
Λ̃θ −

P SB,θ
j

uSB,θ′
j (CSB,θ

j )

]

= −
∑
θ

l̄θ
∑
j

∑
i

1

uSB,θ′
j (CSB,θ

j )

∂µθ
i

∂Cθ
j

[
wθ

i − P θ
i C

θ
i +

∑
l,k

pil,kyil,k
1

lθi
γθil,k

]

= −
∑
θ

l̄θ
∑
i

∑
j

1

uSB,θ′
j (CSB,θ

j )

∂µθ
i

∂Cθ
j︸ ︷︷ ︸

=0

[
wi − PiCi +

∑
l,k

pil,kyil,k
1

lθi
γθil,k

]

= 0,

7



Therefore, by using the normalization
∑

θ l̄
θΛ̃θ = 1,

∑
θ

∑
j

lθj
P SB,θ
j

uSB,θ′
j (CSB,θ

j )
= 1, (A.17)

satisfying our price normalization (18).

Without preference shocks. We also discuss the case without preference shocks as consid-
ered by Fajgelbaum and Gaubert (2020). To do so, we rewrite the second-best problem as follows:

W = max
{Cθ

j ,c
θ
j ,xij,k,lij,k,hij,k,µ

θ
j ,Aij,k,W θ}

∑
j

µθ
ju

θ
j(C

θ
j ) (A.18)

s.t. Cθ
j l̄

θµθ
j = Cθ

j (c
θ
j) (A.19)∑

θ

cθij,k +
∑
l,m

xl,mij,k = Aij,kfij,k(lij,k, hij,k,xij,k) (A.20)∑
i,k

lθji,k = l̄θµθ
j ,

∑
i,k

hji,k = h̄j (A.21)

l̄θµθ
j

[
uθj(C

θ
j )−W θ

]
= 0 (A.22)∑

j

µθ
j = 1 (A.23)

Aij,k = Ãij,kgijk({lθi }θ) (A.24)∑
j

µθ̃
ju

θ̃
j(C

θ̃
j ) ≥ W θ̃,∀θ̃ ̸= θ (A.25)

Note that we rewrote households’ incentive compatibility constraint for location choice (25) with
utility equalization (A.22) and adding up constraint (A.23). Note also that ψθ(·) = 0 without
preference shocks.

The first-order condition for µθ
j is given by

l̄θ

[
wθ

j − P θ
j C

θ
j +

∑
l,k

pjl,kyjl,k
1

lθj
γθjl,k

]
+ δθ + lθjκ

θ
j

[
uθj(C

θ
j )− u

]︸ ︷︷ ︸
=0

= 0

⇐⇒ wθ
j − P θ

j C
θ
j +

∑
l,k

pjl,kyjl,k
1

lθj
γθjl,k = δ̃θ, (A.26)

where κθj and δθ denote the Lagrangemultipliers for (A.22) and (A.23), respectively. By noting that
T θ
j = P θ

j C
θ
j − wθ

j − Πθ, the cross-location component of transfers only addresses technological
externalities, and the cross-type component of transfers addresses redistribution concerns, as
highlighted by Fajgelbaum and Gaubert (2020).
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A.5 Proof of Proposition 3 and Corollary 1

By multiplying equation (40) by dCθ
j /u

θ′
j (C

θ
j ) and summing up across j and θ, we have

∑
j

∑
θ

lθj

[
Λ̃θuθ

′

j (C
θ
j )− P θ

j

]
dCθ

j

= −
∑
j

∑
θ

∑
i

l̄θdCθ
j

∂µθ
i

∂Cθ
j

[
wθ

i − P θ
i C

θ
i +

∑
l,k

pil,kyil,k
1

lθi
γθil,k

]

= −
∑
θ

∑
i

l̄θ
∑
j

dCθ
j

∂µθ
i

∂Cθ
j︸ ︷︷ ︸

=dµθ
i

[
wθ

i − P θ
i C

θ
i +

∑
l,k

pil,kyil,k
1

lθi
γθil,k

]
(A.27)

By following the same procedure as in the Proof of 1, we prove the statement in the proposition.
Given Proposition 3, Corollary 1 is immediate. One can also prove Corollary 1 is also obtained

by directly applying the envelope theorem to the relaxed planning problem (33). Despite the
presence of incentive compatibility constraint of households’ location decisions, there are no
reallocation effects because technological effects do not directly affect this constraint.

A.6 General Non-Separable Preference Shocks

We follow the same notation and setup as in Appendix A.1. Now we define U as follows.

U({Cj}j, {lj}j) = max
{Ij(ω)}ω,j

∫ 1

0

∑
j

uj(Cj, ϵj(ω))Ij(ω)dω

s.t.
∫ 1

0

Ij(ω)dω = lj∑
j

Ij(ω) = 1.

(A.28)

Then, Lemma 1 straightforwardly generalizes to this environment by replacing
∑

j ljuj(Cj) −
ψ({lj}) with U({Cj}j, {lj}j).

A.7 Proof of Proposition 4

Since ln(·) is a monotone transformation, it is immediate that the system (49) and (50) have iso-
morphic positive predictions. This proves the first statement.

We nowprove the second statement. We first note that, given the assumption thatW({W θ}θ∈Θ) ≡

9



ln W̃({exp(W θ)}θ∈Θ), we have

dW =
∑
θ

∂W
∂W θ

dW θ, d ln W̃ =
∑
θ

∂W
∂W θ

d ln W̃ θ (A.29)

Therefore, to show dW = d ln W̃ , it is sufficient to show the same isomorphism for the expected
utility for each type θ, i.e., dW θ = d ln W̃ θ. The expected households’ utility in (49) is given by

W θ =
1

νθ
lnGθ(exp(νθuθ1(C

θ
1)), . . . , exp(ν

θuθN(C
θ
N))) (A.30)

and that in (50) is given by

W̃ θ = Gθ(ũθ1(C
θ
1)

νθ , . . . , ũθN(C
θ
N)

νθ)1/ν
θ

. (A.31)

See Appendix C for detailed mathematical derivation. Therefore, under uθj(Cθ
j ) = ln(ũθj(C

θ
j )),

and ϵθj = ln(ϵ̃θj), we haveW θ = ln W̃ θ.
Finally, we prove that the decomposition is also identical. To do so, we obtain the marginal

utility of consumption in each specification. From the envelope condition, ∂
∂Cθ

j
U θ({Cθ

i }i, {µθ
i }i)

= ∂
∂Cθ

j
max{µθ

i }:
∑

i µ
θ
i=1 U θ({Cθ

i }, {µθ
i }). Therefore,

∂W θ

∂Cθ
j

=
Gθ

j(exp(ν
θuθ1(C

θ
1)), . . . , exp(ν

θuθN(C
θ
N)))

Gθ(exp(νθuθ1(C
θ
1)), . . . , exp(ν

θuθN(C
θ
N)))

uθ′j (C
θ
j ) = µθ

ju
θ′
j (C

θ
j ), (A.32)

whereGθ
j indicates the derivative of functionGθ with respect to its j-th argument and the second

transformation uses the property of the GEV demand system (see Appendix C). Furthermore,

∂W̃ θ

∂Cθ
j

= W̃ θ
Gθ

j(ũ
θ
1(C

θ
1)

νθ , . . . , ũθN(C
θ
N)

νθ)

Gθ(ũθ1(C
θ
1)

νθ , . . . , ũθN(C
θ
N)

νθ)
ũθ′j (C

θ
j ) = W̃ θµθ

j

ũθ′j (C
θ
j )

ũθj(C
θ
j )

= W̃ θµθ
ju

θ′
j (C

θ
j ), (A.33)

where the final transformation used the fact that lnuθj(Cθ
j ) = ũθj(C

θ
j ). Therefore,

∂W θ

∂Cθ
j

=
1

W̃ θ

∂W θ

∂Cθ
j

. (A.34)

That is, the marginal utility is identical up to scale W̃ θ. By noting that each term of our decompo-
sition in Proposition 1 scales up by marginal utility under price normalization (18), the statement
in the proposition holds.
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B First-Best Allocation

In this section, we discuss the first-best planning problem, where the Planner can specify the
consumption allocation and location decisions based on the draw of preference shocks ϵ. The
problem is given by follows:

W = max
{W θ,Cθ

j ,c
θ
j ,xij,k,l

k,θ
ij ,hij,k,l

θ
j}
W({W θ}θ∈Θ) (B.1)

s.t. W θ =
∑
j

µθ
ju

θ
j(C

θ
j )− ψθ({µθ

j}j) (B.2)

Cθ
j l

θ
j = Cθ

j (c
θ
j) (B.3)∑

θ

cθij,k +
∑
l,m

xl,mij,k = Aij,kfij,k(lij,k, hij,k,xij,k) (B.4)∑
i,k

lθji,k = lθj ,
∑
i,k

hkji = hj (B.5)∑
j

lθj = l̄θ (B.6)

Aij,k = Ãij,kgij,k(li) (B.7)

Compared to the pseudo planning problem in Lemma 2, there are twomajor differences. First,
the first-best planning problem does not have incentive compatibility constraints for households’
location decisions (25) and the competitive consumption allocation (26), and instead freely choose
population only subject to add up constraint (B.6). Second, the first-best planning problem in-
ternalizes the agglomeration externalities in productivity and amenity (B.7), while the pseudo-
planning problem take the values in the competitive equilibrium as given (27).

The first-order conditions with respect to cij,k, lθij,k, hij,k, x
l,m
ij,k are

P FB,θ
j

∂Cθ
j

∂cij,k
= pFB

ij,k, pFB
ij,kAij,k

∂fij,k
∂lθij,k

= wFB,θ
i , pFB

ij,kAij,k
∂fij,k
∂hij,k

= rFB
i , pFB

ij,kAij,k
∂fij,k

∂xl,mij,k
= pFB

li,m,

(B.8)

where P FB,θ
j , pFB

ij,k, w
FB,θ
i , rFB

i are the Lagrangian multipliers on (B.3), (B.4), and (B.5), respec-
tively. We let all the variables with FB superscript denote those of the planner’s solution. There-
fore, the relative quantities of inputs are not distorted in equilibrium.

The Planner’s solution deviates from the equilibriumwhen we consider optimality conditions
for Cθ

j and lθj . The first-order condition with respect to Cθ
j gives

Λθu′j(C
FB,θ
j )/P FB,θ

j = 1, (B.9)
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i.e., the marginal utility of income is equalized across locations conditional on type θ. The opti-
mality condition for lθj is

uθj

(
CFB,θ

j

)
+ wFB,θ

j +
∑
i,k

pk,FB
ji

∂

∂lθj
gji,k({lθj}θ)fk

ji(l
k
ji, h

k
ji,x

k
ji)− P FB,θ

j CFB,θ
j =

∂ψθ({lθk}k)
∂lθj

+ uFB,θ,

(B.10)

where uFB,θ is a Lagrangian multiplier on (B.6). Now, with {P FB,θ
j , pFB

ij,k, w
FB,θ
i , rFB

i } coinciding
with {P θ

j , pij,k, w
θ
i , ri} up to scale, the onlyway inwhich Equation (B.10) is satisfied in the equilib-

rium is that there is no transfer so thatCθ
j = wθ

j/P
θ
j and there are no agglomeration externalities,

i.e., ∂
∂lθj
gji,k({lθj}θ) = 0. However, there is no guarantee in general that (B.9) is satisfied for this

Cθ
j , except for the knife-edge case where the marginal utility is equalized across all locations. We

summarize the results as follows.

Proposition B.1. Decentralized equilibrium is suboptimal for any Pareto weights Λθ except for the
case that marigal utility of income is equalized across locations ( 1

P θ
j
uθ

′
j

(
wθ

j/P
θ
j

)
is equalized across j

for all θ), there are no agglomeration externalities (γθij,k = 0 for all i, j, k, θ), and there is no transfer
(T θ

j = 0 for all j and θ).

What is the reason for the suboptimality of the equilibrium? There are two reasons. First,
market does not internalize the agglomeration externalities in productivity (27). Second, the
market does not equalize the marginal utility of income across locations.

The first source of suboptimality is perhaps not surprising; it is simply an externality that
the market does not internalize. The second source of suboptimality is subtle and warrants a
discussion. In equilibrium, agents make location decisions based on utility levels (inclusive of
preference shocks). This implies that marginal utility of income is not necessarily equalized
across these locations. In contrast, in the first-best allocation, the Planner equalizes the marginal
utility of income across locations, while simultaneously controlling for population movement by
breaking the incentive compatibility constraint of households’ location decisions.

There are two ways to interpret this suboptimality of the dispersion of marginal utility of
income. The first interpretation is the lack of insurance for the uncertainty associated with loca-
tion choice. Depending on the preference draws, or depending on the random sunspot process
of location assignment in the absence of preference shocks, individual households may end up in
a variety of locations that differ in terms of their associated marginal utility of income. Ex-ante,
households can benefit by committing to making transfers from a state where they end up in a
location with a low marginal utility of income to that with a high marginal utility of income,
but there is not security that allows for such a transfer. The second interpretation is the lack of
redistribution across agents depending on location preference and where they reside. By taking
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the expected utility as a welfare criterion, we effectively attach equal social marginal weight to
individuals with different preference draws. The observation that spatial equilibrium models in-
volve suboptimality due to dispersion of marginal utility is reminiscent of Mirrlees (1972), who
show this issue in the context of location decisions within a city.

C Location Choice under Generalized Extreme Value (GEV)

Preference Shocks

For expositional simplicity, we assume that households are ex-ante homogenous and drop the
superscript θ indexing household types.

C.1 Additively Separable Case

Consider the additively separable utility function of the form

Uj(Cj, ϵj) = uj(Cj) + ϵj, (C.1)

and ϵj follows type-I generalized extreme value distribution:

P[ϵ1 ≤ ϵ̄1, . . . , ϵN ≤ ϵ̄N ] = exp(−G(exp(−νϵ̄1), . . . , exp(−νϵ̄N)), (C.2)

and G is a correlation function for its definition), and we normalize the location so that the
unconditional mean is zero. As is well known since McFadden (1978), this yields the following
location choice probability.

lj =
Gj(V1, . . . , VN)Vj∑
lGl(V1, . . . , VN)Vl

, where Vj ≡ exp(νu(Cj)). (C.3)

where

Gj =
∂G(V1, . . . , VN)

∂Vj
. (C.4)

Now we construct a representative agent formulation that is isomorphic to the above model.
Define a mapping Vj = Sj(l) that satisfies the following condition for all j:

Gj(V1, . . . , VN)Vj = lj. (C.5)
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The representative agent solves

W = max
{lj}:

∑
k lk=1

∑
j

uj(Cj)lj −
1

ν

∑
j

lj lnSj(l). (C.6)

The first-order optimality condition is given by

ui(Ci)−
1

ν
lnSi(l)−

1

ν

∑
j

lj
∂ lnSj(l)

∂li
− ū = 0, (C.7)

where ū is the Lagrangian multiplier on the adding up constraint,
∑

k lk = 1. Note that

∑
j

lj
∂ lnSj(l)

∂li
= 1, (C.8)

for all j. To see this, we add up (C.5) across j to have G(S1(l), . . . , SN(l)) =
∑

j lj . Taking the
derivative with respect to li gives

∑
j

Gj(S1(l), . . . , SN(l))Sj(l)
∂ lnSj(l)

∂li
= 1 (C.9)

⇔
∑
j

lj
∂ lnSj(l)

∂li
= 1, (C.10)

where we used (C.5) in the second line. Therefore the optimality condition collapses to

Si(l) = exp(−νū− 1 + νui(Ci)). (C.11)

Since Vi = Si(l) satisfies (C.5) by its definition, we plug back Vi = Si(l) into (C.5) to obtain

li = exp(−νū− 1)Gi

(
exp(νu(C1)), . . . , exp(νuN(CN))

)
exp(νui(Ci)). (C.12)

The adding up constraint,
∑

i li = 1, implies that

exp(νū+ 1) =
∑
j

Gj

(
exp(νu(C1)), . . . , exp(νuN(CN))

)
exp(νuj(Cj)). (C.13)

Therefore we obtain

lj =
Gj(V1, . . . , VN)Vj∑
lGl(V1, . . . , VN)Vl

, where Vj ≡ exp(νu(Cj)), (C.14)

coinciding with the solution to the discrete choice problem (C.20).
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Finally, we confirm that the indirect utility coincides with each other. In the discrete choice
problem, the indirect utility is given by (see McFadden (1978))

W ≡ E
[
max

j
{uj(Cj) + ϵj}

]
(C.15)

=
1

ν
lnG(exp(νu1(C1)), . . . , exp(νuN(CN))). (C.16)

In the representative agent model, substituting (C.7) and (C.13) into (C.6), we obtain

W =
1

ν
lnG(exp(νu1(C1)), . . . , exp(νuN(CN))), (C.17)

verifying that the indirect utility also coincides with the original discrete choice formulation.

C.2 Multiplicatively Separable Case

Consider the multiplicatively separable utility function of the form

Ũj(Cj, ϵj) = ϵ̃jũj(Cj) (C.18)

and ϵ̃j follows type-II generalized extreme value distribution (multi-variate Fréchet):

P[ϵ̃1 ≤ ϵ̄1, . . . , ϵ̃N ≤ ϵ̄N ] = exp(−G((ϵ̄1)−ν , . . . , (ϵ̄N)
−ν)), (C.19)

and G is a correlation function. This yields the following location choice probability.

lj =
Gj(V1, . . . , VN)Vj∑
lGl(V1, . . . , VN)Vl

=
Gj(V1, . . . , VN)Vj
G(V1, . . . , VN)

, where Vj ≡ ũ(Cj)
ν . (C.20)

where

Gj(V1, . . . , VN) =
∂G(V1, . . . , VN)

∂Vj
. (C.21)

The indirect utility is

W̃ = G(V1, . . . , VN)
1/νwhere Vj ≡ ũ(Cj)

ν . (C.22)

Now we construct a representative agent formulation that is isomorphic to the above model.
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The representative agent solves

W̃ = max
{lj}:

∑
k lk=1

∑
j

(lj)
ν−1
ν Gj

(
ũ1(C1)

ν , . . . , ũN(CN)
ν
)1/ν

ũj(Cj). (C.23)

The first-order condition is

(lj)
−1/νGj

(
ũ1(C1)

ν , . . . , ũN(CN)
ν
)1/ν

ũj(Cj)− ū = 0, (C.24)

where ū is the Lagrangian multiplier on the adding up constraint,
∑

k lk = 1. Solving the set of
first-order conditions together with the adding up constraint, we have

lj =
Gj(V1, . . . , VN)Vj∑
lGl(V1, . . . , VN)Vl

=
Gj(V1, . . . , VN)Vj
G(V1, . . . , VN)

, where Vj ≡ ũj(Cj)
ν , (C.25)

as desired. We can plug the above expression into the objective to confirm that the indirect utility
also coincides with the original discrete choice formulation:

W̃ = G(V1, . . . , VN)
1/νwhere Vj ≡ ũj(Cj)

ν . (C.26)

D Details on Extensions

D.1 Amenity Shocks and Amenity Externality

We follow the same steps in the proof of Proposition 1. The first order condition of pseudo
planning problem with respect to Cθ

j is given by

χθ
j = lθj [Λ

θ∂Cu
θ
j − P θ

j ] (D.1)

whereχθ
j andP θ

j correspond to the Lagrangemultipliers for constraints (25) and (22), respectively.
Furthermore, the first order condition with respect to µθ

j is given by

ηθi = l̄θ

wθ
i − P θ

i C
θ
i +

∑
l,k

pil,kyil,k
1

lθi
γθil,k +

∑
θ̃

∂Bu
θ̃
iB

θ̃
i γ

B,θθ̃
i

 (D.2)

where ηθj , wθ
j and pil,k correspond to the Lagrange multipliers for constraints (22), (24) and (23),

respectively.
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By applying the Envelope theorem to pseudo planning problem (20),

dW =
∑
i,j,k

pij,kyij,kd ln Ãij,k +
∑
i,θ

lθi ∂Bu
θ
iB

θ
i d ln B̃

θ
i +

∑
θ

∑
j

χθ
jP

θ
j l

θ
jdC

θ
j

=
∑
i,j,k

pij,kyij,kd ln Ãij,k +
∑
i,θ

lθi ∂Bu
θ
iB

θ
i d ln B̃

θ
i +

∑
θ

∑
j

lθj [Λ
θ∂Cu

θ
j − P θ

j ]dC
θ
j

+
∑
θ

∑
j

[wθ
j − P θ

j C
θ
j ]dl

θ
j +

∑
θ

∑
j

∑
l,k

pjl,kyjl,k
1

lθj
γθjl,k +

∑
θ̃

∂Bu
θ̃
jB

θ̃
j γ

B,θθ̃
j

 dlθj ,
which delivers the results in the main text.

D.2 Arbitrary Social Welfare Function

Consider a scenario with a general social welfare function

W SP = W({USP,θ({Cθ
j }j, {lθj}j)}θ)

, where USP,θ is defined arbitrarily on the distribution of consumption and population of house-
hold type θ. Then, by applying the envelope theorem to the pseudo planner’s problem as in the
proof of Proposition 1 yields

dW =
∑
i,j,k

pij,kyij,kd ln Ãij,k +
∑
θ

∑
j

[
∂

∂lθj
USP ({lθj}, {Cθ

j })− lθjP
θ
j

]
dCθ

j

+
∑
θ

∑
j

[
wθ

j − P θ
j C

θ
j

]
dlθj +

∑
θ

∑
j

∑
l,k

pjl,kyjl,k
1

lθj
γθjl,kdl

θ
j (D.3)

The only difference fromourmain proposition is the second term. By denoting ∂
∂Cj

USP,θ({Cθ
i }, {lθi }),∑

θ

∑
j

[
ΛθMUSP,θ

j − P θ
j

]
dCθ

j

=
∑
θ

l̄θ
∑
j

µθ
j [Λ

θ

(
MUSP,θ

j

uθ′j (Cj)
− 1

)
+ Λθ −

P θ
j

uθ′j (Cj)
]uθ′j (Cj)dC

θ
j

=Eθ

[
Covj|θ

(
−

P θ
j

uθ′j (Cj)
, uθ′j (Cj)dC

θ
j

)]
+ Covθ

(
Λθ − Ej|θ

[
P θ
j

uθ′j (Cj)

]
,Ej|θ

[
uθ′j (Cj)dC

θ
j

])
+ Eθ

[
ΛθEj|θ

[(
MUSP,θ

j − uθ′j (Cj)
)
dCθ

j

]]
, (D.4)

which gives the expression in our main text.
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E Nonparametric Identification of Location Choice System

We discuss the conditions under which the location choice system, {µj(C)}j are nonparametri-
cally identified. To do so, we build on the existing results of the nonparametric identification of
discrete choice models (Berry and Haile 2014). We abstract household types and drop superscript
θ.

We start by formalizing our econometric environment. Consider a dataset generated by
the model of Section 2. We assume that we observe equilibrium configurations under differ-
ent sets of fundamentals, indexed by t = 0, 1, . . . , T . A natural interpretation of t is time,
while one could also interpret them as types of individuals or demographic groups. We as-
sume that {wj,t, lj,t, Pj,t, Tj,t,Πt} are observed to the econometrician, so that consumptionCj,t =

(wj,t + Tj,t +Πt)/Pj,t is observed as well.
We specify the utility of residing in location by uj(Cj,t, ζj,t) + ϵj,t(ω), where ζj,t is a scalar

variable that is unobserved to the econometrician. The unobserved location heterogeneity, ζj,t,
captures amenity that varies over t. Analogous to Assumption 1 of Berry and Haile (2014), we
assume that ζj,t only affects location choice through the utility index uj(Cj,t, ζj,t), but it does not
affect the distribution of {ϵj,t}.

Assumption E.1. The distribution function of preference shocks ϵj,t is independent of {ζj,t} and
t, i.e.,

P(ϵ1,t ≤ ϵ̄1, . . . , ϵN,t ≤ ϵ̄N |{ζj,t}) = H(ϵ̄1, . . . , ϵ̄N). (E.1)

While this assumption is restrictive, we are not imposing any parametric assumption for the
distribution functionH(·), allowing for flexible correlation of preference shocks across locations.

For the sake of expositional clarity, we also assume in the main text that the unobserved
heterogeneity enters into the utility function in as amultiplicative of consumption, uj(Cj,t, ζj,t) =

ūj(ζj,tCj,t). As is demonstrated by Berry and Haile (2014), this assumption can be relaxed but it
requires more technically invovled assumptions.

Importantly, we assume that there are vectors of instruments zt that are mean independent
of unobserved component of location choice, ln ζj,t, for all j and t (Assumption E.2), and there is
a sufficient variation of zt to induce the changes in consumption vector (Assumption E.3).

Assumption E.2. E[ln ζj,t|zt] = 0 for all j, t.

Assumption E.3. For all functions B(Cjt) with finite expectation, if E[B(Cjt)|zt] = 0 almost
surely, then B(Cjt) = 0 almost surely.

Assumption E.2 is the standard exclusion restriction. Assumption E.3 requires the complete-
ness of the joint distribution {Cjt, zt}, capturing the idea that instruments zt induces sufficient
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variation in Cjt. Under these assumptions, Berry and Haile (2014) show that the location choice
system µj,t(Ct) is identified.

Lemma E.1. (Berry and Haile 2014). Suppose Assumptions E.1, E.2, E.3 hold. Then the location
choice system µj,t(Ct) is identified.

Therefore, location choice system {µj,t(Ct)}j are, at least in principle, nonparametrically
identified. At the same time, the data requirement of the excluded instruments zt (Assumptions
E.2 and E.3) is substantial. Importantly, to fully identify the flexible substitution patterns for
location choice, we need instruments zt that induce independent variation in consumption lev-
els in each location Cj,t. More fundamentally, we need independent observation of equilibrium
configurations across different fundamentals (t).
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