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Abstract

The exploitation of common property resources (to divide private commodities, share a co-
operative production function, cover jointly liable costs etc..) continues to inspire multiple
context-dependent definitions of fairness lacking the generality and reach of concepts like effi -
ciency and incentive compatibility.
We introduce a new principle to manage any sort of commons, building on the profoundly

appealing Lockean prescription that each agent should receive "the fruit of their own labor",
aka the “self-ownership”viewpoint. What could this mean when the participants’interactions
when they consume the resources makes it diffi cult to disentangle their individual contributions?
Our (multivalued) answer is to look for tight approximations of the decentralised Lockean

ideal, limiting for each agent, from above and below, the impact of other agents on their own
allocation.
We work out the consequences of this approach in a context-free model of the commons as a

production function from individual inputs to an output that we must divide. Our approxima-
tion viewpoint is mathematically tractable because we assume a freely transferable output and
a simple one dimensional input from each stakeholder. Choosing one pair in the infinite menu
of tight decentralised approximations puts sharp but far from deterministic bounds on the final
distribution of the output: it is a precise normative position that still leaves room for direct
negotiations or the choice of a deterministic sharing rule.
We describe in detail these design options in several iconic problems where each tight pair of

guarantees has a clear normative meaning: the allocation of indivisible goods or costly chores,
cost sharing of a public facility and the exploitation of a commons with substitute or comple-
mentary inputs. The corresponding benefit or cost functions are all sub- or super-modular, and
for this class we characterise the set of minimal upper and maximal lower guarantees in all two
agent problems.
JEL classification codes: D6, D63

1 Introduction

The exploitation of common property resources (to divide private commodities, share a cooperative
production function, assign costs to jointly liable agents, etc..) continues to inspire multiple context-
dependent tests of fairness lacking the generality and reach of the two other concepts at the heart
of the mechanism design program, effi ciency and incentive compatibility.
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Such properties include No Envy ([11], [36]), immunity to objections in an appropriate coop-
erative game ([9], [30]), a virtual decentralisation property ([13], [12]), solidarity in response to an
improvement of the resources ([21], [22], [34]), Consistency with respect to the departure of some
participants, ([38], [33]), and Welfare Bounds ([35], [26], [10], [6]).

Taking a step toward a general context-free definition of fairness, we introduce a new principle
for the management of a commons inspired by the appealing simple prescription that each agent
should receive "the fruit of their own labor" ([17]), in modern terminology the “self-ownership”
viewpoint. We assume that our agents are fully responsible for their own type1 (representing skills,
effort, endowment, preferences, etc..) and propose an interpretation of self-ownership with much
bite, even if it only places lower and upper bounds on the shares an agent with a given type can
receive, independently of other agents’types.

In the classic model of the commons as a production function where each agent enters an input
(their type) and receive a share of the output, our starting observation is that the Lockean principle
is operational only if we can unambiguously separate what each agent’s input contributes to the
total output, or vice versa what is the cost of each individual demand of output. This is feasible
if, and in fact only if, the production function has constant returns to scale (CRS). Then it is as
if each agent owns the technology "privately": by using it she does not affect how others can use
it, so there is no need to keep track of the various inputs because they do not affect my fair share:
whatever I produce, no more no less. Indeed this solution for the CRS commons is often taken as
a primitive requirement in the axiomatic discussion of the cooperative production problem (e. g.
[26]); it can also be deduced from its incentive properties ([25]).

The same argument applies to the allocation of any resources in common property: ensuring
that my allocation depends only on my own type, is not affected by other stakeholders’ types,
eliminates the transactional costs of negotiating and implementing a particular rule with its own
bias on the way it resolves complex interpersonal externalities. Taking this independence property
as a normative goal, and combining it with the horizontal equity principle that equal should be
treated equally, forces the Lockean solution for a CRS technology: if everyone else is my clone,
equal treatment gives us all the same share, and that share does not change when their types are
arbitrarily different.

But exploiting a commons is a problem only to the extent that the returns of the technology
are not constant, therefore this desirable independence property can only be approximated: if the
impact of other agents’types on my own share cannot be eliminated we will minimise it as much
as possible.

We work out the consequences of this principle in a thoroughly abstract model of the commons
as a function W inputting a n-profile x of individual types xi and returning the output W(x) to be
divided among the stakeholders. For tractability we assume that the output is freely transferable
accross agents, typically by cash transfers in our examples. Apart from some regularity properties,
the only critical assumption is that W is symmetric in its n variables, which makes sense of the
equal treatment property.

The function W captures all we need to know about effi ciency. We also set aside any issue of
incentive compatibility to concentrate on fairness only.

Our model accommodates a great variety of familiar fair division puzzles with completely dif-
ferent interpretations of the types and the output W(x).

The agents may share the cost W(x) = maxi{xi} of a public capacity and xi is the cost
of the capacity agent i needs ([17]). If xi is i’s willingness to pay for an indivisible good in

1So we do not enter the political philosophy controversy around self-ownership, defended by Nozick ([27]) but
criticised for its potentially libertarian implications by Roemer ([29]) and Cohen ([7]).
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common property, the same function W captures the effi cient surplus to be shared by means of
cash compensations (section 2).

In the classic commons (section 5) the types xi are inputs in the function F : the return is
W(x) = F (

∑
i xi) if they are substitutable like investments or efforts; or F (Πixi), F (mini{xi}) if

they are complementary. Alternatively the agents pool individual orders xi purchased at the bulk
rate C(

∑
i xi); or xi is the size of the job agent i sends to a server and C(

∑
i xi) is the total delay

they must share ([31]).
Other examples in section 6 includeW(x) = maxi{xi}−mini{xi}: sharing the cost of delivering

mail to all agents on a line; and W(x) = F (median{xi}): production of the output F (z) requires
at least a majority of agents to input the effort z.

The complete absence of interpersonal externalities inW is the property of additive separability :
W(x) =

∑
iw(xi) for all profiles x, for which the Lockean argument above makes w(xi) the correct

share for agent i of type xi. For any other function W the influence on agent i’s share of some of
the other agents’types xj cannot be avoided. Fixing her type xi and varying all other types, agent
i’s share varies in some interval I(xi): our goal is to choose these intervals as small as permitted
by the feasibility constraint that the sum of the shares is W(x). Critically, this design question is
independent not only of the interpretation of types and output but also of the particular sharing
rule or bargaining process by which the agents will arrive at a precise division of the output.

We write I(xi) = [g−(xi), g
+(xi)] and call g−(xi) type xi’s lower guarantee: if W(x) represents

a surplus g−(xi) is agent i’s worst case share, but her best case if W(x) is a cost; similarly g+(xi)
is type xi’s upper guarantee. The feasibility constraint is the following system of inequalities on the
pair (g−, g+): for x = (x1, · · · , xn) ∈ X [n]

n∑
1

g−(xi) ≤ W(x) ≤
n∑
1

g+(xi) (1)

The lower guarantee g− is tight if we can not increase g−(xi) at any type xi without bringing
a violation of the left side (LS) of system (1) at some n-profile x containing xi. Similarly g+ on
the right side (RS) of (1) is a tight upper guarantee if decreasing g+(xi) at any xi violates these
inequalities at some profile x containing xi.

We run into a hard and, as far as we know, original mathematical question: what are its tight
additively separable approximations, from below and above, of a given function W? This question
is diffi cult, even when the types xi vary in a real interval, which is the case in all the examples in
section 2, 5 and 6 as well as in the general representation Theorem 7.1 for two person problems.

We find that the choice of a particular pair (g−, g+) of tight guarantees is very consequential:
although for most types xi the inequality g−(xi) < g+(xi) leaves room for choice, a typical but not
systematic pattern, first illustrated in section 2 for the simple function W(x) = maxi{xi}, is that
each tight pair has a single benchmark type x̂i for which g−(x̂i) = g+(x̂i), the share of this type is
independent of other agents’types.

Tight guarantees are a coarse form of mechanism design, compatible with unscripted negotia-
tions where participants commit to the decision taken by the manager inside these bounds if no
compromise is reached. If instead the division of W(x) is the outcome of playing in a mechanism
with fully scripted messages, enforcing tight bounds on individual shares promotes participation
by minimising the risk of playing badly.

A deterministic sharing rule speciies at each profile of types x ∈ X [n] every agent i’s share ϕi(x)
ofW(x). The rule generates its own guarantees that may or may not be tight: selecting a rule that
does eliminates many familiar rules and support others. In the classic model of the commons where
W(x) = F (xN ) (with the notation xS =

∑
i∈S xi) and F is either convex or concave, this tests is
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failed by three well known rules: Average return (shares proportional to types), Shapley value (of
the stand alone game v(S) = F (xS) for S ⊆ N) and Marginal pricing (i’s share is dF

dx (xN )xi plus
a term independent of i); only the Serial rule passes the test, even for the more general class of
modular functions W: Proposition 4.3.

However, given any pair of tight guarantees it is easy to construct ad hoc sharing rules to
implementing it by simple extrapolations of the guarantees, or by “trimming”an arbitrary sharing
rule when its shares violate the guarantees (Lemma 3.3).

contents of the next sections Section 3 introduces the model for a general function W and
domain X , lists various topological properties, and two critical Lipschitz and differentiability prop-
erties that tight guarantees inherit from the function W. The long list of technical Lemmas can
be skipped by the reader impatient to discover the implications of system (1) in the concrete fair
division problems of sections 2, 4, 5 and 6.

Section 4 discusses general super or submodular functions W.2 We identify three tight guaran-
tees common to all modular functions. First the unanimity share una(xi) = 1

nW(xi, · · · , xi) is the
only tight guarantee on one side of (1) (Proposition 4.1). On the other side the two incremental
shares adapt to our model the stand alone share of an agent using the commons without without
sharing it with anyone else.

The commons W(x) = F (xN ) where F is convex or concave is the subject of section 5. We do
not crack the full set of tight guarantees on the other side of the unanimity one but identify two
interesting subsets, both of them linking the two incremental guarantees. The first one has only
(n − 2) guarantees of the stand alone type: Proposition 5.1. The second set is a continuous line,
containing most of the tangents to the graph of the unanimity function: Propositions 5.2.

Sections 6 introduces the rich class of rank-separable functionsW of the formW(x) =
∑
[n]wk(x

k)

where (xk)n1 is the order statistics of (xi)
n
1 . Theorem 6.1 fully characterise the solutions of (1) for

the modular and rank separable functions: on the other side of the unanimity guarantee, all tight
guarantees take a generalised stand alone form, and their set has dimension (n− 1). Applications
include sharing the cost of connecting the agents distributed on the line.

Theorem 7.1 in section 7 solves system (1) for all two agent problems with a strictly super or
submodular function W. The dimension of the set of solutions is a large infinite.

Section 8 collects two open questions and some take home points; section 9 is an Appendix
collecting several long or minor proofs.

fair shares in the literature For the fair division of private commodities, the role of endogenous
fair shares is central to the cake cutting model ([32], [14]), the division of a bundle ω of private
Arrow Debreu (AD) commodities ([36], [34]) or of indivisible items with cash transfers ([33], [2]).
Like here the unanimity welfare or utility plays a key role: with convex AD preferences it is the
welfare at the allocation 1

nω and with additive utilities over the cake it is that of a share worth
1
n -th of the whole cake. But very little is known about tight guarantees in cake division with non
additive utilities and for AD commodities with non convex preferences ([4]).

When the shared resource is a production function the oldest concept of fair share is the stand
alone utility mentioned above: depending upon the returns to scale it can be a lower or an upper
bound on welfare. The joint discussion of the unanimity and stand alone bounds on either side of
the Pareto frontier is one of the first themes in the axiomatic discussion of cooperative production:
for instance [23], Chapter 5 in [24], [26], and [37].

2Loosely speaking this means that the sign of ∂ijW is constant. So these functions meet “one half” of additive
separability characterised by ∂ijW(x) ≡ 0.
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To understand how diffi cult the search for tight guarantees can be a case in point is the allocation
of indivisible items (good or bad) with no cash transfers or randomisation, a favourite fair division
topic in the last fifteen years or so ([16]). TheMaxMinShare (MMS) adapts the concept of unanimity
welfare to the indivisibility constraints: it is the utility of my worst share in the best n-partition
of the items I can choose ([6]). But even with additive utilities over the items the MMS is hard
to compute as well as unfeasible in some (very rare) utility profiles ([28]). A blunt 3

4 fraction of
the MMS is a feasible lower guarantee on welfare ([1]), but it is not tight; it is not clear that the
exact largest feasible fraction of MMS is a tight guarantee. Alternative concepts of fair share in
the additive case include the any price share ([3]) even less feasible than the MMS but much easier
to compute, and, if we upper bound the relative weight of any item, Hill’s bound both feasible and
easy to compute ([8], [20], [15]) and more.

Probabilistic voting is another problem where we have looked for a “fair share of welfare”.
There is an easy canonical tight lower guarantee when preferences are dichotomic: an outcome I
like is chosen with a probability no less than max{ 1n ,

1
m} where m is the number of deterministic

outcomes, but the search is much harder with general preferences and [5] offers only partial results.
Contrasting with these challenging fair division models, our model is mathematically simpler

and allows much versatile examples and interpretations. But we rely heavily on the assumption,
typically absent in the literature just reviewed, that utility is transferable via some numeraire like
cash payments.

2 A canonical example

Example 2.1 sharing the cost of a capacity ([17])
The n agents share a public facility (canal, runway...) adjusted to their different needs (for a

canal more or less wide or deep, for a short or long runway...). The cost of building enough capacity
to serve the needs of agent i is xi; the cost of serving everyone is W(x) = maxi∈[n]{xi}, that must
be divided in n shares yi s. t.

∑
[n] yi = maxi∈[n]{xi}. The range of possible individual needs xi is

the interval [L,H] where 0 < L < H.

The unanimity share una(xi) = 1
nxi meets the LS of system (1) (

∑
[n]

1
nxi ≤ maxi∈[n]{xi}) and

every lower guarantee g− is bounded above by una (apply (1) to a unanimous profile). So una
is the only tight guarantee on that side: agent i should never pay less than her fair share of the
capacity she needs.

We generate two solutions of the RS in (1), not necessarily tight, by computing the worst
case (largest cost share) of two very simple rules: Equal-Split ϕegali (x) = 1

n maxj∈[n]{xj} ignoring
difference in individual needs, and Proportional ϕproi (x) = xi

xN
maxj∈[n]{xj} (recall the notation

xN =
∑

j∈[n] xj) focusing on these needs in the way already suggested by Aristotle (and well
defined everywhere because L > 0).

Computing g−(xi) = minx−i{ϕi(xi;x−i)} and g+(xi) = minx−i{ϕi(xi;x−i)} is easy for the
former and takes a little longer for the latter

g−egal(xi) =
1

n
xi ; g+egal(xi) =

1

n
H

g−pro(xi) =
x2i

xi + (n− 1)H
; g+pro(xi) = max{ x2i

xi + (n− 1)L
,

Hxi
xi +H + (n− 2)L

} (2)

So g−egal = una is tight; this is true as well for g+egal: if the function f is s.t. f(xi) ≤ 1
nH for all

xi and this inequality is strict at some x∗i , then it violates the RS of (1) at the x
∗
i unanimity profile.
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By contrast neither g−pro nor g
+
prois tight. This is clear for g

−
pro as g

−
pro(xi) < g−egal(xi) for all

xi except H. Now g+pro is not bounded below by g
+
egal but by another tight upper guarantee see

Remark 2.1 after Proposition 2.1 below.
In our first result we use the notation z+ = max{z, 0}.
Proposition 2.1: The minimal upper guarantees g+p of W(x) = max1≤i≤n{xi} are parametrised

by a benchmark type p ∈ [L,H] as follows: for xi ∈ [L,H]

g+p (xi) =
1

n
p+ (xi − p)+ (3)

Proof3: Assume g+ is a tight upper guarantee and set p = ng+(L). At the unanimous profile
of L-s the RS in (1) implies p ≥ L. Tightness implies that g+ increases weakly (Lemma 3.4) so
g+(xi) ≥ 1

np for all xi; moreover if p > H we have g+(xi) > g+egal(xi) everywhere and g
+ is not

tight; so p ≤ H.
Inequality (1) applied to xi and n − 1 types L gives g+(xi) ≥ xi − n−1

n p; combining this with
g+(xi) ≥ 1

np gives g
+ ≥ g+p . To check finally that g

+
p meets the right inequalities in (1) is routine.

�
Remark 2.1. We let the reader check that the upper guarantee g+pro in (2) is dominated by g

+
p

for p = nHL
H+(n−1)L .

Remark 2.2. The fact that in this example the Equal-Split rule generates a tight pair of
guarantees is an anomaly. In general this rule is not even compatible with our interpretation
of self-ownership for separably additive functions W. Moreover if W is strictly increasing and
modular, it is easy to check that g−egal and g+egal are dominated respectively by the left and right
incremental guarantees (section 4.2).

The end-points at p = H and p = L are the egalitarian g+H = g+egal and the following guarantee
g+L denoted g

+
inc and called incremental in section 4.2:

g+inc(xi) = xi −
n− 1

n
L

It computes type xi’s worst cost share by assuming that every other agent demands the benchmark
capacity L and charging i the full incremental cost xi − L on top of his fair share of L.

The normative choice between g+inc and g
+
egal is stark. The pair of guarantees (una, g+inc) implies

that a type L always pays 1
nL (as una(L) = g+inc(L)), while under (una, g+egal) she can pay as much

as 1
nH; vice versa a type H always pays 1

nH under the latter pair and as much as H (if L = 0)
under the former. Agents with small needs prefer g+inc to g

+
egal, and vice versa for agents with large

needs.
The serial sharing rule (proposed by ([17]) for this problem) implements the tight pair (una, g+inc).

Order the agents by increasing type, then charge y1 = 1
nL+ 1

n(xi−L), y2 = y1+ 1
n−1(x2−x1), etc..

We omit the easy proof, a special case of Proposition 4.3.4

The pair (una, g+p ) is a moving compromise between the two previous ones. The benchmark
type p always pays 1np, the worst cost share for each type below p, similar to the egalitarian upper
guarantee, while types abobe p can pay as much as xi − n−1

n p, like an incremental share starting
from p.

3The result is a special case of Theorem 6.1, but this redundant quick proof is much easier to follow.
4 In section 4.2 we generalise the guarantee g+inc to the entire class of modular functions W, and in section 4.3 the

serial rule for one-dimensional types,
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Note that In certain profiles of types the pair of guarantee determines the entire set of shares:
say xi∗ ≥ p and xj ≤ p for all j 6= i∗, then yi∗ = xi∗ − n−1

n p and yj = 1
np for j 6= i∗.

Remark 2.3 A true convex combination of g+inc and g
+
egal is another upper guarantee, but it is

never tight. One checks easily that for any λ ∈]0, 1[ we have: for x1 ∈]L,H[

{λg+inc + (1− λ)g+ega}(x1) > g+λL+(1−λ)H(x1)

The Corollary to Lemma 3.9 generalises this observation.

Example 2.1 revisited: assigning an indivisible good or bad
In this new interpretation of the same function W the n agents must assign an indivisible item

that could be desirable (a good) or not (a bad, e. g., a chore). A positive type xi is agent i’s
willingness to pay for the item, a negative xi means that agent i must be paid at least |xi| to accept
it (do the chore). Utilities vary in the real interval [L,H], so if L < 0 < H the item can be a good
for some agents and a bad for others.

One of the effi cient agents i∗ (with the largest type), gets the item and pays a cash transfer yj
(that can be positive or negative) to each other agent j, so that i∗’s net utility is yi∗ = xi∗−

∑
j 6=i∗ yj .

If L ≥ 0 the item is good for everyone. The tight pair (una, g+p ) give to each i at least a 1
n -th

share of what the good is worth to her. The parameter p is a reference (market?) price of the good:
those who are not willing to pay that price (xi ≤ p) may receive up to a 1

n -th share of p, those who
would pay more than p may keep the incremental value xi − p, and will do so for sure if no other
type exceeds p.

If H ≤ 0 the item is an objective and individible chore. Now the ineffi cient agents will pay the
effi cient agent for being spared the task. Among ineffi cient agents, those who would ask more than
the reference wage |p| to do the chore pay at least 1

n |p| (because
1
nxi ≤ yi ≤ 1

np), others pay less;
the agent i∗ selected to do the chose may well end up with a net benefit, for instance if xi∗ is very
small.

A simple auction-like sharing rule to implement (una, g+p ) for any interval [L,H] gives the item to
an effi cient agent i∗ who in turn makes a (personalised) cash transfer yi = 1

n(max{xi,min{xi∗ , p}})
to each other agent. By Lemma 3.3 the claim follows by checking that the share of any type xi is
in [una(xi), g

+
p (xi)].

3 General model

The set of agents is [n] = {1, · · · , n} and X is the common set of types. All properties in this
section apply if X is a compact subset of a general euclidian space RA partially ordered in the
usual way, an assumption maintained in this section except for statement ii) in Lemma 3.9 where
X is a compact interval in RA.

At the profile x = (xi)i∈[n] ∈ X [n] we must divide the benefit or cost W(x). A division of W(x)

is y = (yi)i∈[n] ∈ R[n] such that
∑
[n] yi = W(x), and yi is agent i’s share. The function W is

symmetric in the n variables xi and continuous.

3.1 lower and upper guarantees

Definition 3.1: The functions g− and g+ from X into R are respectively a lower and an upper
guarantee of W if and only if they satisfy the inequalities: for x ∈ X [n]∑

i∈[n]
g−(xi) ≤ W(x) ≤

∑
i∈[n]

g+(xi) (4)
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We write G−,G+ the sets of such guarantees.

Given two lower guarantees g1, g2 ∈ G− we say that g1 dominates g2 if g1(xi) ≥ g2(xi) for
xi ∈ X and g1 6= g2. The guarantee g ∈ G− is tight if increasing its value at a single x1 ∈ X creates
a violation of the LS inequality in (4) for some x−1 ∈ X [n−1].

The isomorphic statement for upper guarantees in G+ flips the domination inequality around
and for tightness replaces increasing by decreasing and LS by RS.

We write G− and G+ for the subsets of tight guarantees in G− and G+.

Lemma 3.1 For ε = +,− every guarantee g ∈ Gε�Gε is dominated by a tight one.
The omitted proof is a simple application of Zorn’s Lemma.

The restriction of W to the diagonal of X [n] define the unanimity share of agent i:

una(xi) =
1

n
W(

n
xi) (5)

where (
m
z ) is the m-vector with z in each coordinate.

Lemma 3.2
i) For any (g−, g+) ∈ G− ×G+ and for xi ∈ X

g−(xi) ≤ una(xi) ≤ g+(xi) (6)

ii) If una is a lower guarantee it dominates each lower guarantee; this is also true for upper
guarantees. For ε = +,−:

una ∈ Gε =⇒ Gε = {una}

The easy proof is again omitted.
If W is additively separable it takes the form W(x) =

∑
[n] una(xi) and statement ii) implies

Gε = {una} for ε = +,−: tight guarantees imply the compelling interpretation of self-ownership
discussed in section 1. Conversely if Gε = {una} for ε = +,− then una satisfies both sides of (4)
so that W is additively separable.

In any other case there is a real choice of at least one type of tight guarantees. Moreover for
any pair of tight guarantees the choice of a sharing rule ϕ to implement it is very open. Recall that
ϕ maps X [n] into R[n] and

∑
[n] ϕi(x) =W(x) for all x.

Lemma 3 3. Fix the function W and a tight pair (g−, g+) ∈ G− × G+. If the sharing rule ϕ
is such that g−(xi) ≤ ϕi(x) ≤ g+(xi) for all i and x then it implements (g−, g+): for all i and x

min
x−i
{ϕi(xi, x−i)} = g−(xi) ; max

x−i
{ϕi(xi, x−i)} = g+(xi)

A simple consequence of the tightness of g− and g+.

The moving average of g− and g+ is the simplest sharing rule implementing any pair in G−×G+:

ϕi(x) = λg−(xi) + (1− λ)g+(xi)

where λ is chosen s. t.
λ
∑
[n]

g−(xi) + (1− λ)
∑
[n]

g+(xi) =W(x)

Also, for any given sharing rule ϕ that does not implement (g−, g+) it is easy to adjust it only at
those profiles where if fails at least one of these bounds so that the adjusted rule ϕ̃ does implement
the pair of guarantees and preserves the choices of ϕ as much as possible.
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3.2 regularity and topological properties

Lemma 3.4 If X is ordered by � and W is weakly increasing in x, so is every tight guarantee in
Gε, for ε = +,−.

Proof Fix g ∈ G−. If xi � x′i and g(xi) < g(x′i) define g̃(xi) = g(x′i) and g̃ = g otherwise, then
check that g̃ is still in G−. But g is tight so g̃ = g, a contradiction. �

Lemma 3.5 For ε = +,− fix an equi-continuous function W in X [n].
i) A tight guarantee g ∈ Gε is continuous in X .
ii) A guarantee g in Gε is tight if and only if: for all xi ∈ X there exists x−i ∈ X [n−1] s. t.

g(xi) +
∑

j∈[n−1]
g(xj) =W(xi, x−i) (7)

If equality (7) holds we call (xi, x−i) a contact profile of g at xi ; the set of such profiles is the
contact set C(g) of g.

Proof in the Appendix section 9.1.

Lemma 3.6 For ε = +,−,
i) For any x1 ∈ X there is an tight guarantee g ∈ Gε s.t. g(x1) = una(x1).
ii) The set Gε is a singleton if and only if it contains una.

Proof in the Appendix section 9.2.

By statement ii) we see that G− and G+ are both singletons if and only if W is additively
separable.

Note that the equality g(x1) = una(x1) in statement i) holds if and only if the contact set C(g)
intersects the diagonal of X [n].

Next we state without proof two useful invariance properties.
Lemma 3.7 For ε = +,−,

i) If W0 is additively separable, W0(x) =
∑
[n]w0(xi), and W an arbitrary symmetric function on

X [n] we have
Gε(W +W0) = Gε(W) + {w0}

ii) Change of the type variable. If θ is a bicontinuous bijection xi = θ(zi) from Z into X , W is
defined on X [n] and g ∈ Gε(W), then g ◦ θ ∈ Gε(W̃) where W̃(z) =W(θ(z)) and θ(z)i = θ(zi).

For instance the problem W(x) = F (maxi∈[n]{xi}) reduces to W̃(z) = maxi∈[n]{zi} by the
change xi = F−1(zi); and W(x) = mini∈[n]{xi} reduces to W̃(z) = maxi∈[n]{zi} by the change of
variable xi = −zi.

3.3 Lipschitz and differentiability properties

They are key to the characterisation results in sections 6,7, 8.

Lemma 3.8 Fix g ∈ G+. For any xi, x′i and any contact profile x−i of g at xi we have

g(x′i)− g(xi) ≥ W(x′i, x−i)−W(xi, x−i) (8)

and the opposite inequality if g ∈ G−.
Proof In the inequality

g(x′i) +
n∑
i=2

g(xi) ≥ W(x′i, x−i)

9



we replace each term g(xi) by W(xi, x−i)−
∑

j 6=i g(xj) and rearrange it as follows

(n− 1)(W(xi, x−i)− g(xi))− (n− 2)
n∑
i=2

g(xi) ≥ W(x′i, x−i)− g(x′i)

⇐⇒W(xi, x−i)− g(xi) + (n− 2)(W(x)−
∑
[n]

g(xi)) ≥ W(x′i, x−i)− g(x′i)

The claim follows because x−i is a contact profile for g at xi. �
Our last general result is critical to our two diffi cult Theorems 6.1 and 7.1, where it is only used

in a one-dimensional interval of types. But its statement and proof are just as easy when X is a
multidimensional interval.

Lemma 3.9
i) Suppose K is a positive constant, X ⊂ RA and the function W is K-Lipschitz in each xi,
uniformly in x−i ∈ X [n−1]. Then so is each tight guarantee g ∈ G− ∪ G+.
ii) Suppose X = [L,H] is the interval L ≤ x ≤ H in RA. We fix xi ∈ X , an tight guarantee
g ∈ G− ∪ G+ and a contact profile x−i ∈ X [n−1] of g at xi. If for some a ∈ A, g and W(·, x−i) are
both differentiable in xia at xi, we have

if La < xia <Ha
dg

dxia
(xia) =

∂W
∂xia

(xi, x−i) (9)

if xi = La and g ∈ G− or xi = Ha and g ∈ G+

dg

dxia
(xia) ≤

∂W
∂xia

(xi, x−i)

if xi = Ha and g ∈ G− or xi = La and g ∈ G+

dg

dxia
(xia) ≥

∂W
∂xia

(xi, x−i)

Proof Statement i) If g ∈ G− property (8) and the Lipschitz assumption imply g(xi)− g(x′i) ≤
K‖xi− x′i‖ (where ‖ · ‖ is the norm w. r. t. which W is Lipschitz). Exchanging the roles of xi and
x′i gives g(x′i)− g(xi) ≤ K‖x′i − xi‖ and the conclusion.

Statement ii) Note that if the functions f, g of one real variable z are differentiable at some z0
in the interior of their common domain and the inequality f(z)− f(z0) ≥ g(z)− g(z0) holds for z
close enough to z0, then their derivatives at z0 coincide. Apply this to the functions xia → g(xi)
and xia →W(xi, x−i) and the inequalities (8) to deduce the equality (9). The last two inequalities
are equally easy to check. �

For a fixed coordinate a ∈ A the Lipschitz property in statement i), that we call uniformly
Lipschitz by a slight abuse of terminology5, implies that g is differentiable in xia almost everywhere
in [La,Ha]. All our examples in sections 5,6,7 involve functionsW uniformly Lipschitz in this sense,
therefore all corresponding tight guarantees are differentiable almost everywhere in each coordinate
of xi.

Corollary to Lemma 3.9 Suppose X = [L,H] ⊂ R, W is differentiable in [L,H][n] and for
ε = +,−, the tight guarantees in Gε are a. e. differentiable. Then tight guarantees are characterised

5Because we only require the Lipschitz property in each coordinate.
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by their contact set C(g). Moreover any (true)convex combination of two or more guarantees in Gε
stays in Gε but leaves Gε. Formally: for g, h ∈ Gε

g 6= h =⇒ {C(g) 6= C(h), ]g, h[∩Gε = ∅}

Proof. We prove the contraposition of the first statement with the help of statement ii). If
C(g) = C(h) we get dg

dx = dh
dx in the interval ]L,H[ so they differ by a constant, and if the latter is

not zero one of g, h is not tight.
Check now the second statement by contradiction: say that G− contains g, h and 1

2(g + h), all
different. Fix xi ∈]L,H[ and a contact profile x̃−i of 12(g + h) at xi. Clearly x̃−i is also a contact
profile of g and of h at xi. Therefore by statement ii) in Lemma 7, almost surely in xi ∈]L,H[ we
have dg

dxi
(xi) = dh

dxi
(xi) = ∂iW(xi, x̃−1). We conclude that g−h is a constant and get a contradiction

of g 6= h. The argument for larger convex combinations with general weights is entirely similar. �

4 Sub- and super-modular functions W
In this class of benefit and cost functions that includes most of our examples, the analysis of tight
guarantees greatly simplifies and allows our two main characterisation results Theorems 6.1 and
7.1.

The type space X is a compact subset of RA for Proposition 4.1, a compact interval in RA for
Propositions 4.2, and a one-dimensional interval in Proposition 4.3.

Definition 4.1 We call W supermodular if for i, j ∈ [n] and x, x′ in X [n] such that xk = x′k for
all k 6= i, j we have

{xi ≤ x′i, xj ≤ x′j} =⇒W(x′i, xj ;x−i,j) +W(xi, x
′
j ;x−i,j) ≤ W(x) +W(x′) (10)

We say that W is strictly supermodular if whenever (xi, xj) � (x′i, x
′
j) the RS of (10) is strict.

And W is submodular or strictly so if the opposite inequalities holds under the same premises. A
modular function is one that is either supermodular or submodular.

An equivalent definition of supermodularity is useful too: for i, j ∈ [n] and x, x′ in X [n] s. t.
xj ≤ x′j for all j

W(x′i, x−i)−W(xi, x−i) ≤ W(x′i, x
′
−i)−W(xi, x

′
−i) (11)

The Appendix 9.3 lists other well known properties of the partial derivatives of modular func-
tions that are useful in some of the long proofs.

4.1 the unanimity guarantee of modular functions

The unanimity share of a modular function is a tight guarantee on one side of the system (4).

Proposition 4.1 If W is supermodular the unanimity function (5) is the single tight upper
guarantee: G+ = {una}. It is the single tight lower guarantee if W is submodular: G− = {una}.

Notation: when the ordering of the coordinates does not matter (z;
k
y) represents the (k + 1)-

vector where one coordinate is z and k coordinates are y.
Proof Fix W supermodular. For n = 2 the statement una ∈ G+ amounts to

W(x1, x2) ≤
1

2
(W(x1, x1) +W(x2, x2))

a direct consequence of supermodularity and W(x1, x2) =W(x2, x1).
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Proceeding by induction we assume the statement is true up to (n−1) agents and fix a n-person
supermodular functionW and a profile x ∈ X [n]. As una is an upper guarantee of the (n−1)-benefit
function W(·;xi) we have: for all i and xi

W(x) ≤ 1

n− 1

∑
j∈[n]�{i}

W(xi;
n−1
xj ) =⇒ nW(x) ≤ 1

n− 1

∑
(i,j)∈P

W(xi;
n−1
xj ) (12)

where P is the set of ordered pairs (i, j) in [n].

Apply next the same property of una for W(·;xj) but at each profile of the form (xi,
n−2
xj ):

W(xi;
n−1
xj ) ≤ 1

n− 1
((n− 2)W(

n
xj) +W(xj ;

n−1
xi ))

Summing up both sides over (i, j) ∈ P and writing S for the summation in the most RS of (12)
gives

S ≤ (n− 2)

n∑
j=1

W(
n
xj) +

1

n− 1
S =⇒ S ≤ (n− 1)

n∑
j=1

W(
n
xj)

Combining (12) with the latter inequality concludes the proof.
The proof for a submodular W exchanges a few signs. �
Lemma 4.1 Suppose W is supermodular and a tight lower guarantee g ∈ G− has two different

unanimous contact point: g(xi) = una(xi) for some x1 6= x2. Then W is separably additive in
the interval [(

n
x1), (

n
x2)]; in particular it is not strictly supermodular.The same is true if W is

submodular for a tight upper guarantees.

Proof Fix W, g ∈ G− as in the first statement and suppose g has two unanimous contact
profiles

n

(x1) and
n

(x2) such that x1 < x2. Property (11) implies:

W(x2;
n−1
x1 )−W(

n
x1) ≤ W(

n
x2)−W(x1;

n−1
x2 )

⇐⇒W(x2;
n−1
x1 ) +W(x1;

n−1
x2 ) ≤ W(

n
x1) +W(

n
x2)

By our choice of x1, x2 the RS in the last inequality is

ng(x1) + ng(x2) = (g(x2) + (n− 1)g(x1)) + (g(x1) + (n− 1)g(x2)) ≤

≤ W(x2;
n−1
x1 ) +W(x1;

n−1
x2 )

so the supermodularity inequality (4) between (
n
x1) and (

n
x2) is in fact an equality. Its additive

separability consequence is routine (Appendix 9.3). �
If W is supermodular function, for each unanimity profile (

n
xi) there is a non empty set of

tight lower guarantees for which (
n
xi) is a contact point (Lemma 3.6)6, and those subsets of G− are

mutually disjoint (Lemma 4.1). Ditto for submodular W and tight upper guarantees.
But tight guarantees with no unanimous contact point are not a pathological occurrence: large

sets of such guarantees are described in Proposition 5.1 and Theorem 6.1.

6Exactly one in Example 2.1, but infinitely many for strictly supermodular two person problems (Theorem 7.1).
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4.2 two canonical incremental guarantees

All modular functions share two simple tight guarantees on the other side of the unanimity one.

Proposition 4.2 Suppose X is an interval [L,H] ⊆ RA and W is supermodular. Then the
equations

ginc(xi) = W(xi;
n−1
L )− n− 1

n
W(

n
L) (13)

ginc(xi) = W(xi;
n−1
H )− n− 1

n
W(

n
H)

for xi ∈ [L,H], define two tight lower guarantees called the left-incremental ginc and right-incremental
ginc. Their unanimous contact points are at L and H respectively. If W is submodular ginc and
ginc are tight upper guarantees.

In Example 2.1 these two guarantees are the end-points of G+ and ginc comes from the egalitarian
sharing rule.

Under the guarantees (una, ginc), types L always get their unanimity share; and ginc(xi) is what
i must pay for sure if everyone else has type L, which explains our terminology.

If W is supermodular and W(x) is a surplus, the left-incremental ginc favors the types xi close
to L who get a share close to their best case una(xi), while ginc favors those close toH. Isomorphic
comments obtain if W(x) is a cost and/or W is submodular.

Proof of Proposition 4.2
FixW supermodular and check first that ginc is a feasible lower guarantee. If n = 2 this follows

at once from (10). If n = 3 we must show the following inequality for any x:

W(x1,L,L) +W(x2,L,L) +W(x3,L,L) ≤ W(x1, x2, x3) + 2W(L,L,L)

We use the symmetry of W to apply successively (10) and (11):

W(x1,L,L) +W(L, x2,L) ≤ W(x1, x2,L) +W(L,L,L)

W(L,L, x3)−W(L,L,L) ≤ W(x1, x2, x3)−W(x1, x2,L)

and sum up these two inequalities.
The argument for any n is now clear: in the desired inequality∑

[n]

W(xi;
n−1
L ) ≤ W(x) + (n− 1)W(

n
L)

we replace the the first two terms on the LS by W(x1, x2;
n−2
L ) +W(

n
L): by (10) this increases

weakly the LS so it is enough to check

W(x1, x2;
n−2
L ) +

n∑
3

W(xi;
n−1
L ) ≤ W(x) + (n− 2)W(

n
L)

Next by (11) we replace the two first terms on the LS by W(x1, x2, x3;
n−3
L ) +W(

n
L) and so on.

To show finally that ginc is tight we use (13) to check that (xi;
n−1
L ) is a contact profile of ginc at

xi, then apply Lemma 3.5 . The proofs for ginc and/or submodularW are identical up to switching
the relevant signs. �

13



4.3 implementing the incremental guarantees: the serial rules

We adapt to our model these well known sharing rules, originally introduced for the commons
problem with substitutable inputs ([26], [31]), the object of the next section.

Definition 4.3 Suppose X is an interval [L,H] ⊆ R. The Serial↑ sharing rule ϕ from [L,H][n]

into R[n] is defined by the combination of two properties a) it is symmetric in its variables and b)
the share of agent i with type xi is independent of other agents’larger shares.7

When the agents are labelled by increasing types as x1 ≤ x2 ≤ · · · ≤ xn agent i’s share is:

ϕser↑i (x) =
W(x1, · · · , xi−1,

n−i+1
xi )

n− i+ 1
−

i−1∑
j=1

W(x1, · · · , xj−1,
n−j+1
xj )

(n− j + 1)(n− j) (14)

We omit this computation for brevity: see the details in ([25]) where this is equation (6).
The Serial↓ sharing rule is defined symmetrically property a) and b)* agent i’share is indepen-

dent of other agents’smaller shares. It is given by the same expression (14) if we label the agents
by decreasing types.

Proposition 4.3 Fix a supermodular function W in [L,H][n].
The Serial↑ sharing rule implements both the left-incremental and unanimity guarantees ginc, una;
the Serial↓ rule implements both ginc and una.

The isomorphic statement for submodular functions exchanges left- and right- incremental guar-
antees.

Proof in the Appendix 9.4.

5 Substitutable inputs

The continuous production function F transforms a profile of non negative one-dimensional inputs
xi ∈ [L,H] (L ≥ 0) into the output W(x) = F (xN ). This problem is supermodular if (and only if)
F is convex and submodular if F is concave. In the familiar interpretations of this model (section
1where F is typically increasing; this assumption is not needed for any of the results in this section,
and in fact is not satisfied in our Example 5.2.

5.1 stand alone guarantees

For a general function W a stand alone guarantee is one that takes the form g(xi) =W(xi, c)− γ
where c ∈ X [n−1] and γ ∈ R are constant. IfW is modular the left and right incremental guarantees
are prime examples of tight stand alone guarantees (Proposition 4.2), and we will find many more
in Theorem 6.1.

In the substitutable inputs model we find n− 2 additional tight stand alone guarantees linking
the two incremental ones.

Proposition 5.1
i) If F is convex in [L,H] the supermodular commons W(x) = F (xN ) admits the following sequence
of n tight lower guarantees g`,h, where `, h ∈ N ∪ {0} are s. t. `+ h = n− 1: for xi ∈ [L,H]

g`,h(xi) = F (xi + (`L+ hH))− 1

n
{`F ((`+ 1)L+ hH) + hF (`L+ (h+ 1)H)} (15)

and gn−1,0 = ginc, g0,n−1 = ginc ((13)).

7The share ϕi(x) does not change if agent j’s type changes from xj to x′j both weakly larger than xi.
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ii) The gap una(xi)− g`,h(xi) is minimal at the benchmark type xi = 1
n−1(`L+ hH).

iii) If F is strictly convex only ginc and ginc have a unanimous contact point.
If F is concave (15) defines n tight upper guarantees with the same properties for the gap

g`,h − una and contact points.
Proof in the Appendix 9.5.
We illustrate this result for a commons with an interesting type of input complementarity.

Example 5.1: Commons with complementary inputs
A project wil return one unit of surplus if and only if all agents succeed in completing their own

part. Agent i’s effort xi is also the probability that i is successful, therefore the expected return is,
for x ∈ [L,H][n]

W(x) = x1x2 · · ·xn
where [L,H] ⊂ [0, 1]. We must to divide the expected return between the workers.

The function W is supermodular so una(xi) = 1
nx

n
i is the single tight upper bound on type xi’s

share.
By Lemma 3.7 the change of variable xi = ezi transformsW into W̃(z) = ezN and the guarantees

(15) for W̃ correspond for W to n tight lower guarantees linear in type:

g`,h(xi) = L`Hh(xi −
1

n
(`L+ hH))

ginc(xi) = Ln−1(xi −
n− 1

n
L)

ginc(xi) = Hn−1(x− n− 1

n
H)

Note that ginc(xi) ≥ 1
nL

n: even providing the minimal effort L guarantees the share una(L) =
1
nL

n (irrespective of other types). Contrast with ginc that rewards high effort much more, even
guarantees una(H) = 1

nH
n to the maximal effort H: this is feasible by charging cash penalties

to all “slackers”, defined as those with xi <
n−1
n H; for instance type L pays out |ginc(L)| =

Hn−1(n−1n H − L) in the worst case where all others provide maximal effort H.
The n− 2 other guarantees g`,h allow the manager to adjust, along a grid increasingly fine as n

grows, the critical effort level 1n(`L+ hH) guaranteeing a positive share.

5.2 tangent and hybrid guarantees

Observe that if the general functionW is globally convex and differentiable in [L,H][n] the tangent
at any point (α, una(α)) of its unanimity graph defines a feasible but not necessarily tight lower
guarantee gα ∈ G−: for xi ∈ [L,H]

gα(xi) =
1

n
W(

n
α) + ∂1W(

n
α)(xi − α)

Indeed the LS of (4) reads

W(
n
α) + ∂1W(

n
α)(xN − nα)) ≤ W(x)

precisely the tangent hyperplane inequality at (
n
α) because W is symmetric in all variables.

For the globally convex W(x) = F (xN ) we find that many of the tangents to the unanimity
graph are tight lower guarantees: those touching that graph inside the subinterval of [L,H] left
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after deleting 1
n -th at each end. And on the deleted intervals we construct guarantees concatenating

(parts of) a tangent and a stand alone guarantee. We obtain in this way a continuous line of tight
guarantees with the two incremental ones at its endpoints.

Proposition 5.2: If F is convex in [nL, nH] the supermodular commons W(x) = F (xN )
admits the following tight lower guarantees gα, where α ∈ [L,H] and gL = ginc, gH = ginc.

i) If n−1
n L + 1

nH ≤ α ≤ 1
nL + n−1

n H the graph of gα is tangent to that of una at nα: for
L ≤ xi ≤ H

gα(xi) =
1

n
F (nα) +

dF

dx
(nα)(xi − α) (16)

ii) If L ≤ α ≤ n−1
n L + 1

nH the graph starts as a tangent then takes a stand alone shape: for
L ≤ xi ≤ nα− (n− 1)L

gα(xi) =
1

n
F (nα) +

dF

dx
(nα)(xi − α)

for nα− (n− 1)L ≤ xi ≤ H

= F (xi + (n− 1)L)− (n− 1)

n
F (nα) + (n− 1)

dF

dx
(nα)(α− L) (17)

iii) If 1
nL + n−1

n H ≤ α ≤ H the graph starts as a stand alone then turn into a tangent: for
L ≤ xi ≤ nα− (n− 1)H

gα(xi) = F (xi + (n− 1)H)− n− 1

n
F (nα)− (n− 1)

dF

dx
(nα)(H − α)

for nα− (n− 1)H ≤ xi ≤ H
=

1

n
F (nα) +

dF

dx
(nα)(xi − α)

Proof
Statement i) We already noted that gα is inG−. For tightness we fix a type xi and look for a vector
x−i such that xi + xN�i = nα: then (16) implies

∑
[n] gα(xj) = F (nα) and (xi, x−i) is a contact

profile of gα at xi (Lemma 3.5). Such x−i exists if and only if xi + (n− 1)L ≤ nα ≤ xi + (n− 1)H,
precisely the bounds on α we assume.

Statement ii) At a profile x where xi ≤ nα− (n− 1)L for all i, we just saw that g meets the LS of
(4). We check now this inequality for a profile x where the first t types are above nα − (n − 1)L,
t ≥ 1, and the other n− t types (possibly zero) are below that bound.

In the LS of (4) a type xi for i ≤ t affects the difference F (xi + xN�i) − F (xi + (n − 1)L);
as xN�i ≥ (n − 1)L the inequality in question is most demanding (the difference is smallest) if
xi = nα − (n − 1)L. Similarly a type xj for j > t, if any, affects ∆ = F (xj + xN�j) − dF

dx (nα)xi.
Now t ≥ 1 implies xN�j ≥ nα− (n− 1)L+ (n− 2)L = nα−L, therefore the derivative of ∆ w.r.t.
xj is non negative at xj = L and weakly increasing: the inequality in question is most demanding
if xj = L. It is then enough to check

tgα(nα− (n− 1)L) + (n− t)gα(L) ≤ F (tnα− (t− 1)nL)

⇐⇒ dF

dx
(nα)(t− 1)n(α− L) ≤ F (tnα− (t− 1)nL)− F (nα)

which follows at once from the convexity of F .
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Checking tightness. At a type xi ≤ nα− (n− 1)L we have

xi + (n− 1)L ≤ nα ≤ xi + (n− 1)(nα− (n− 1)L)

(replace xi by L on the RS and rearrange). As in the proof of statement i) this implies the existence
of a contact profile (xi, x−i) entirely inside [L, nα − (n− 1)L]. And at a type xi ≥ nα − (n− 1)L

we see that (xi,
n−1
L ) is a contact profile of gα.

We omit the symmetric proof of statement iii). �
Example 5.2 sharing the cost of the variance
Agents choose a type xi in [0, 1] and must share (n times) the variance of their distribution:

W(x) =
∑
[n]

x2i −
1

n
(
∑
[n]

xi)
2 (18)

For instance xi is i’s location in [0, 1] and a public facility is located at the mean 1
nxN of this

distribution, to minimise the quadratic transportation costs to the facility; the total cost W(x) is
precisely (18).

The problem is submodular and una(xi) ≡ 0 so the only tight lower guarantee (best case) is
to pay nothing: no one should get a net profit but everyone can hope that his type is adopted by
everyone else. By statement i) in Lemma 3.7 and a change of sign, every tight upper guarantee g+

of W obtains from a tight lower guarantee g∗ of W∗(x) = (xN )2 as g+(xi) = x2i − 1
ng
∗(xi).

The tangent lower guarantees of W∗ (statement i) in Proposition 5.2) are g∗α(xi) = nα(2xi−α)
and in turn deliver the simple tight upper guarantees g+α (xi) = (xi − α)2 of W for α ∈ [ 1n ,

n−1
n ]

Here the location α is "free": a type α never pays, and the worst cost share at other locations
is precisely the travel cost to the benchmark.

The stand alone guarantees in Proposition 5.1, denoted g+h and indexed by the integer h are:
for h = 0, 1, · · · , n− 1

g+h (xi) =
n− 1

n
(xi −

h

n− 1
)2 + δh

in particular ginc(xi) = n−1
n x2i and g

inc(xi) = n−1
n (1− xi)2 (also the endpoints in Proposition 5.2).

For any h the non negative constant δh = h(n−1−h)
n2(n−1) is below

1
4n , so if n is large and α '

h
n−1 the

guarantees g+α and g
+
h are similar: g

+
h is

n−1
n flater than g+α and smaller at 0 and 1, but g+h never

vanishes.
For α ≤ 1

n the hybrid guarantees g
+
α (statement ii) in Proposition 5.2) concatenate smoothly

(xi−α)2 for xi ≤ nα with n−1
n x2i−(n−1)α2 for xi ≥ nα; the location α is still the “free”benchmark.

5.3 three familiar sharing rules and their guarantees

While Proposition 4.3 shows that each Serial sharing rule implements one of the the two (tight)
incremental guarantees we show next that the guarantees implemented by three other familiar rules
are mostly not tight.

We fix F strictly concave on [0, H] and such that F (0) = 0. The three sharing rules under
scrutiny are:

Average Cost: ϕavgi (x) = xiAF (xN ), with the notation AF (z) = F (z)
z ;8

8At the profile (
n

0) the definition needs adjusting, e. g. to equal split, but this does not affect the computations of
worst and best cases.
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Shapley value: ϕShai (x) = ES(F (xi + xS) − F (xS)), where the expectation is over S,∅ ⊆ S ⊆
N�{i}, uniformly distributed;

Marginal pricing: ϕmrgi (x) = 1
nF (xN ) + dF

dx (xN )(xi − 1
nxN ) (always a non negative share as

F (z) ≥ dF
dx (z)z for z ≥ 0).

Lemma 5.1
i) For the Average and Shapley rules: for xi ∈ [0, H[

g−avg(xi), g
−
Sha(xi) < una(xi) =

1

n
F (nxi)

(with equality at H) and for xi ∈ [0, H]

g+avg(xi) = g+Sha(xi) = ginc(xi) = F (xi)

ii) For the Marginal pricing rule a reverse pattern may hold: for xi ∈ [0, H]

g−mrg(xi) = una(xi) =
1

n
F (nxi)

We conjecture that g+mrg is not a tight upper guarantee for all the functions F we allow in the
Lemma.

Proof of statement i) For the Average rule note that the average return AF decreases strictly
so that g−−avg(xi) = xiAF (xi + (n− 1)H). For the same reason g+avg(xi) = xiAF (xi) = F (xi).

For the Shapley rule we have

g−Sha(xi) =
1

n

n−1∑
k=0

(F (xi + kH)− F (kH))

<
1

n

n−1∑
k=0

(F (xi + kxi)− F (kxi))=
1

n
F (nx)

and g+Sha(xi) = F (xi) after replacing H by 0 in the expression of g−Sha above.

Remark 5.1 If the domain of types [L,H] starts at L > 0, it is easy to check that neither of
g+avg or g

+
Sha is tight.

Proof of statement ii) The derivative of ϕmrgi (x) w. r. t. xN�i is
n−1
n

d2F
dx2

(xN )(xi −
xN�i
n−1 ),

so when xN�i varies from 0 to (n− 1)H the share ϕmrgi (x) decreases until xN�i = (n− 1)xi then

increases. This implies that for a fixed xi, the share ϕ
mrg
i (x) is minimal at the profile (

n
xi) and

g−mrg(xi) = ϕmrgi (nxi) = una(xi). Moreover that share ϕ
mrg
i (x) is maximal either for xN�i = 0 or

for xN�i = (n− 1)H, which gives a closed form for g+mrg(xi) and some hope to decide whether or
not it is tight. �

6 Rank separable functions

In this section like the previous and next ones the domain of types X is an interval [L,H] ⊆ R.
Given a profile x ∈ [L,H][n] we write its decreasing order statistics as (xk)nk=1, so x

1 = maxi{xi} and
xn = mini{xi}. The statement “xi is of rank k in profile x”is unambiguous if xi is different from
every other coordinate; otherwise we mean that xi appears at rank k for some weakly increasing
ordering of the coordinates of x.

18



Definition 6.1 The function W on [L,H][n] is called rank-separable if there exist n equicon-
tinuous real valued functions wk on [L,H] s. t. wk(L) = w`(L) for k, ` ∈ [n] and for x ∈ [L,H][n]

W(x) =
n∑
k=1

wk(x
k) (19)

From the mathematical angle a rank-separable function is almost everywhere separably additive:
this is true in the open cone of [L,H][n] defined by the strict inequalities x1 < x2 < · · · < xn and
in the n! isomorphic cones obtained by permuting the coordinates.9

Note that the equicontinuous functions wk are differentiable almost everywhere (a. e.) in [L,H].

Lemma 6.1 The rank-separable function (19) is supermodular if and only if we have: for
k ∈ [n− 1] and a. e. in xi ∈ [L,H]

dwk
dx

(xi) ≤
dwk+1
dx

(xi) (20)

and is submodular iff the opposite inequalities hold.

Proof in Appendix 9.6.
For instance max[n]{xi} = x1 is submodular while min[n]{xi} = xn is supermodular.
To introduce our next result we go back to Example 2.1 and write the tight upper guarantees

g+p of the function W(x) = x1 (Proposition 2.1) in a different way

g+p (xi) = (xi − p)+ +
1

n
p =W(xi,

n−1
p )− n− 1

n
W(

n
p)

At the beginning of section 5.1 we called this the stand alone form gc,γ(xi) = W(xi, c) − γ
where c is a (n − 1)-profile of types and γ ∈ R. Other examples are the incremental guarantees
(Proposition 4.2) and the n guarantees in Proposition 5.1.

In all of these c is a contact profile of every type xi: applying this to the n−1 types ck determines
γ as a function of c and W.

Definition 6.2 Fix a function W and c ∈ [L,H][n−1]. If the function gc on [L,H]

gc(xi) =W(xi, c)−
1

n
(
∑

k∈[n−1]
W(ck, c)) (21)

is a feasible (upper or lower) guarantee in Gε, we call it a general stand alone guarantee.
Then gc is tight and (xi, c) is a contact profile for all xi.

Verifying the contact property gc(xi) +
∑n−1
1 gc(ck) =W(xi, c) is straightforward.

Theorem 6.1 Fix a rank-separable and supermodular function W. The set of its tight lower
guarantees is given by (21) for all possible choices of c: G−(W) = {gc; c ∈ [L,H][n−1]}. If instead
W is submodular, this is the set of its tight upper guarantees.

Proof in Appendix 9.7.

If the parameter c = (
n−1
c0 ) is unanimous the tight guarantee gc(xi) = W(xi;

n−1
c0 ) − n−1

n W(
n
c0)

“touches”the unanimity guarantee at c0, gc(c0) = una(c0), and c0 is the familiar benchmark type.
But if c is not unanimous, we do not expect the graph of these two functions to share a point.10

9For a continuous and symmetric functionW Rank Separability is characterised by the property that ∂ijW(x) = 0
for all i, j ∈ [n] and x such that xi 6= xj .
10Take for instance n = 3, W(x) = 3x1 + 2x2 + x3 in the domain [0, 1] and check that the two graphs do not meet

if c1 > 0 and 2c1 + c2 > 1.
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Example 6.1 sharing the connection cost
After each agent i chooses a location xi in the interval [L,H] the manager must cover the cost

of connecting them (e g by building a road) which we assume linear in the largest distance between
agents: for x ∈ [L,H][n]

W(x) = x1 − xn (22)

Should an agent be penalised (pay more than the average) for being far away at the periphery
of the distribution of agents, and if so, by how much? As in Example 2.1, enforcing a pair of tight
guarantees does not require to take a position on this issue: it allows to completely disregrard
differences in location, or on the contrary to reward steeply proximity to an arbitrary location, and
a two-dimensional family of intermediate positions between these two.

The cost function W is submodular and the tight lower guarantee is una(xi) ≡ 0: everyone’s
best case is to pay nothing. By Theorem 6.1 a tight upper guarantee involves the choice of n − 1
variables ck but it is easy to check in equation (21) that for any n ≥ 3 only the largest and smallest
values c+ and c− matter:

gc(xi) = (max{xi, c+} −min{xi, c−})−
n− 1

n
(c+ − c−)

Setting µ = 1
n(c+ − c−) we develop this equation as follows: gc(xi) = µ if c− ≤ xi ≤ c+; gc(xi) =

µ+ (c− − x) if L ≤ xi ≤ c−; gc(xi) = µ+ (x− c+) if c+ ≤ xi ≤ H.
All types in the benchmark interval [c−, c+] have the same worst cost share µ; a type outside

this interval could pay, in addition to µ, the full connecting cost to the benchmark.
If c− = c+ = c∗ an agent locating at c∗ pays nothing (irrespective of other agents’ location)

and gc(xi) = |x − c∗|. While if (c−, c+) = (L,H) the worst cost share is 1
n(H − L) for everybody,

compatible with the egalitarian sharing rule, and many others.
Remark 6.1 A facility location problem with linear transportation costs (instead of quadratic

in Example 5.2) generates a cost function similar to (22): the optimal location of the facility is at
the median of the individual locations xi in [L,H]. If n = 2m + 1 is odd the median is xq+1 and
the total cost to share is

W(x) =

q∑
k=1

xk −
2q+1∑
`=q+2

x`

still submodular. The tight upper guarantees gc resembles those just discussed but with more flexi-
bility in the design because tgheir set is of dimension n− 1.

Example 6.2 ranked commons
Fix a rank k ∈ [n]. Agent i inputs the effort xi: to achieve the output y = F (z) we need at
least n− k + 1 agents contributing an effort at least z: for x ∈ [L,H]n]

Wk(x) = F (xk) (23)

The function Wk is neither sub nor supermodular, except submodular for k = 1 (Example 2.1)
and supermodular for k = n, two cases we exclude below.

We see that una(xi) = 1
nF (xi) is neither a lower guarantee nor an upper guarantee: there is

now a one dimensional choice of tight guarantees on both sides of (4). It is in fact easy to describe
the sets G±k : the proof given in Appendix 9.8 mimicks that of Proposition 1.

The set G+k is parametrised by p ∈ [L,H]:

g+k,p(xi) =
1

n
F (p) +

1

k
(F (xi)− F (p))+
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and G−k is similarly parametrised by q ∈ [L,H]:

g−k,q(xi) =
1

n
F (q) +

1

n− k + 1
(F (xi)− F (q))

If p = q = z∗ this “standard”level of effort guarantees the share 1
nF (z∗). If the actual output

xk is below z∗ the agents inputting a sub-standard effort must subsidize those who input at least z∗

because the worst share of the latter is 1
nF (z∗); conversely if xk is above z∗ the “slackers”cannot

get more than the standard share 1
nF (z∗), and may get less.

7 Two person modular problems

In two person strictly modular problems with one-dimensional types we give a general representation
of the tight solutions of system (4) on the other side of the unanimity (Proposition 4.1) by means
of their contact set. For a tight guarantee g this set has the simple shape of a decreasing and
occasionally multivalued function ϕ described in the next two Lemmas. Conversely we can pick
any such function ϕ and integrate the critical differential equation dg

dxi
(xi) = ∂W

∂xi
(xi, ϕ(xi)) (Lemma

3.9) to get an integral representation of a tight guarantee, and in turn a complete resolution of the
functional inequalities (4).

For any modular function W on [L,H]2 and g ∈ G±, a tight guarantee on either side of (4), we
define the contact correspondence ϕ:

ϕ(x1) = {x2 ∈ [L,H]|g(x1) + g(x2) =W(x1, x2)} (24)

(non empty by Lemma 3.5). Its graph is Γ(ϕ).

Lemma 7.1 If W is supermodular, g ∈ G− and Γ(ϕ) contains (x1, x2) and (x′1, x
′
2) s.t.

(x1, x2)� (x′1, x
′
2), then (x1, x

′
2), (x

′
1, x2) ∈ Γ(ϕ) as well, and W is not strictly supermodular.

For a submodular function W simply replace G− by G+.
Proof We sum up the two equalities in (24) for (x1, x2) and (x1′, x2′):

W(x1, x2) +W(x′1, x
′
2) = {g(x1) + g(x′2)}+ {g(x′1) + g(x2)} ≤ W(x1, x

′
2) +W(x′1, x2)

Combined with the supermodular inequality (10) this gives an equality and the conclusion by
Definition 4.1. As explained in Appendix 9.3 this also means that W is locally additive. �

Lemma 7.2 Fix and a strictly supermodular function W and a tight guarantee g ∈ G− —or a
submodular W and g ∈ G+ —with contact correspondence ϕ.
i) Γ(ϕ) is symmetric: x2 ∈ ϕ(x1)⇐⇒ x1 ∈ ϕ(x2) for all x1, x2.
ii) ϕ is convex valued: ϕ(x1) = [ϕ−(x1), ϕ

+(x1)], single-valued a.e., and upper-hemi-continuous
(its graph is closed).
iii) ϕ− and ϕ+ are weakly decreasing and x1 ≤ x′1 =⇒ ϕ−(x1) ≥ ϕ+(x′1); ϕ is the u.h.c. closure of
both ϕ− and ϕ+.
iv) ϕ(L) contains H and ϕ(H) contains L.
v) ϕ has a unique fixed point a: a ∈ ϕ(a), and a is an end-point of ϕ(a).

Proof in the Appendix 9.9.

Theorem 7.1 Fix a strictly super- (resp. sub-) modular function W, continuously differentiable
in [L,H]2.
i) For any correspondence ϕ as in Lemma 7.2, the following equation

g(x1) =

∫ x1

a
∂1W(t, ϕ(t))dt+ una(a) (25)
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defines a tight lower guarantee g ∈ G− (resp. G+).
ii) Conversely if g is a guarantee in G− (resp. G+) with contact correspondence ϕ (as in Lemma
7.2) then g takes the form (25).

Proof in the Appendix 9.10.
Theorem 2 shows that the sets G± on the other side of unanimity are parametrised by a large

set of functions ϕ. After choosing the benchmark type a which guarantees the share una(a) we can
pick any decreasing single-valued function ϕ from [L, a] into [a,H] mapping L to H, then fill the
(countably many) jumps down to create the correspondence ϕ of which the graph connects (L,H)
to (a, a), and finally extend ϕ to [a,H] where its graph is the symmetric around the diagonal of
[L,H]2 of its graph in [L, a], so that ϕ maps H to L.

We illustrate this embarrassement of riches in the problem of section 5.
Example 7.1 Commons with substitutable inputs
We have W(x) = F (x1 + x2) and F is strictly concave on [0, 1].
The contact correspondence of the incremental guarantees ginc is ϕinc(0) = [0, 1];ϕinc(x1) = 0

for x1 ∈]0, 1] ; and ϕinc simply exchange the role of L and H.
Proposition 5.1 has no bite for n = 2. Statement i) in Proposition 5.2 delivers a single full

tangent guarantee g 1
2
in (16) with the anti-diagonal contact function ϕ 1

2
(x1) = 1−x1. The contact

functions of the guarantees in statements ii) and iii) are two-piece linear. For instance if α ∈ [0, 12 ]:
ϕα(x1) = 2α− x1 on [0, 2α] and ϕα(x1) = 0 on [2α, 1].

To find new tight upper guarantees connecting ginc and ginc we pick ϕ with a similar piecewise
constant graph. For β ∈ [0, 1] define ϕβ ≡ 1 on [0, β[; ϕβ(β) = [β, 1]; ϕβ ≡ β on ]β, 1]. Equation
(25) gives on [0, β]

gβ(x1) = F (x1 + 1)− F (β + 1) +
1

2
F (2β)

and on [β, 1]

gβ(x1) = F (x1 + β)− 1

2
F (2β)

concatenating parts of two different stand alone guarantees, connected at x1 = β where they touch
the unanimity graph but, unlike with the guarantees gα in Proposition 5.2, the connection is not
smooth.

Exchanging the roles of the end types 0 and 1 we define for γ ∈ [0, 1]: ϕγ ≡ γ on [0, γ[;
ϕγ(γ) = [0, γ]; ϕγ ≡ 0 on ]γ, 1]. Then (25) delivers a new non smooth concatenation of partial
stand alone guarantees:

gγ(x1) = F (x1 + γ)− 1

2
F (2γ)

on [0, γ] and on [γ, 1]:

gγ(x1) = F (x1)− F (γ) +
1

2
F (2γ)

8 Concluding comments

We start with two open questions.

extending Theorem 7.1 for n ≥ 3 The key for two agent problems is the deep understanding
of the contact correspondence of any tight guarantee (Lemmas 7.1, 7.2 ). We could not gain a
similar understanding of this correspondence with three or more agents. In particular Lemma 7.2
shows that in a two agent problem the contact set of every tight guarantee g in Gε intersects the
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diagonal (and g touches una): this gives the crucial starting point of the integral equation (25).
But we saw in Proposition 5.1 and Theorem 6.1 many problems with n ≥ 3 where the contact set
of some of tight guarantees does not intersect the diagonal.

multi-dimensional types The general results in section 3 apply to functions W of m real
variables xi for any m, and so do the Propositions 4.1 and 4.2 for general modular functions.
On the way to further develop the multidimensional analysis we run into an extremely challenging
decentralisation question.

The following claim is obvious from the definitions and Lemma 3.5. Suppose each type has two
components xi = (x1i , x

2
i ) ∈ X 1×X 2 = X and we have two functions: W1 defined on X 1[n] and W2

on X 2[n]. If gεi ∈ Gε(Wi) for some ε = +,− and both i = 1, 2, then gε1 + gε2 is a tight guarantee of
the function W adding the two independent problems as W(x) =W1(x

1) +W2(x
2) for x ∈ X .

We do not know for which domain of functions W the converse decentralisation property holds:
every tight guarantee gε of W1+W2 (both in the domain) is the sum of two tight guarantees in the
component problems.

The answer eludes us even for the specific problem of assigning multiple indivisible objects
and cash transfers when utilities are additive over objects (and linear in money), which is a sum
of multiple one object problems as in Example 2.1 (second interpretation). With much sweat we
showed that the decentralisation property holds for two agents and two objects!

some take-home points The generality of our approach is a story-free interpretation of indi-
vidual rights in an abstract model of cooperative production.Each pair of tight guarantees severely
restricts the range of feasible allocations, but is far from choosing a specific division of the com-
mons; a frequent exception is one single “benchmark”type whose share is fixed, does not depend
upon other agents’types.

The prominent role of the unanimity guarantee in the rich class of modular problems confirms
its importance already recognised in other fair division problems (see the literature review in section
1).

We find that even if the unanimity guarantee is optimal for one side of system (3), the other
side offers an choice of infinitely many guarantees.

When the function W takes a concrete interpretation in our examples, this large menu offers a
range of options compatible with many sharply different normative positions the designer can take.

We can of course apply new tests to help our choice in the menu. For instance, in line with the
Lockean interpretation, we can choose g± so that the pair (una, g±) minimises the largest gap over
all types, or the expected gap w.r.t. some given distribution of types.
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9 Appendix: missing proofs

9.1 Lemma 3.5

Step 1: upper-hemi-continuity We fix g ∈ G− and check that it is u.h.c.. If it is not, there is in X
some x1, a sequence {xt1} converging to x1, and some δ > 0 such that g(xt1) ≥ g(x1) + δ for all t.
Then we have, for any x−1 ∈ X [n−1]

W(xt1, x−1) ≥ g(xt1) +
n∑
i=2

g(xi) ≥ (g(x1) + δ) +
n∑
i=2

g(xi)

Taking the limit in t of W(xt1, x−1) and ignoring the middle term we see that we can increase g at
x1 without violating (4), a contradiction of our assumption g ∈ G−.
Step 2: statement ii) “If” is clear. For “only if”we fix g ∈ G− and show that it meets property
(7). For any x1 ∈ X define

δ(x1) = min
x−1∈X [n−1]

{W(x1, x−1)−
∑
[n]

g−(xi)}

and note that this minimum is achieved at some x−1 because the function x−1 →
∑n

i=2 g
−(xi) is

u.h.c. (step 1). Moreover δ(x1) is non negative.
If δ(x1) = 0 property (7) holds at x−1. If δ(x1) > 0 we can increase g at x1 to g(x1) + δ(x1),

everything else equal, to get a guarantee dominating g.

Step 3: lower-hemi-continuity We fix g ∈ G− and check that it is l.h.c.. By assumption W is
equi-continuous in its first variable, uniformly in the others:

∀η > 0,∃θ > 0, ∀x1, x∗1, x−1 : ||x1 − x∗1|| ≤ θ ⇒W(x1, x−1) ≤ W(x∗1, x−1) + η (26)

If g is not l.h.c. there is some x1 and {xt1} converging to x1 and δ > 0 s.t. g(xt1) ≤ g(x1) − δ
for all t. Pick θ for which (26) holds with η = 1

2δ and t large enough that ||x
t
1 − x1|| ≤ θ: then for

any x−1 we have

g(x1) +

n∑
i=2

g(xi) ≤ W(x1, x−1) ≤ W(xt1, x−1) +
1

2
δ

Replacing g(x1) with g(xt1) + δ gives g(xt1) +
∑n

i=2 g(xi) ≤ W(xt1, x−1) − 1
2δ for any x−1: this

contradicts the contact property (7) for xt1.
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9.2 Lemma 3.6

Proof Statement i) Fix ε = −, an arbitrary x̃1 ∈ X and write B(x̃1, r) for the closed ball of center
x̃1 and radius r. Use the notation ∆(x) =

∑n
1 una(xi)−W(x) to define the function

δ(x1) = max{∆(x1, x−1) : ∀i ≥ 2, xi ∈ B(x̃1, d(x1, x̃1))}

It is clearly continuous, non negative because ∆(x1, x−1) = 0 if xi = x1 for i ≥ 2, and δ(x̃1) = 0.
Define g = una − δ and check that g is the desired lower guarantee of W. At an arbitrary profile
x = (xi)

n
1 choose xi∗ s.t. d(x̃1, xi∗) is the largest: this implies δ(xi∗) ≥ ∆(x). Combining this with

δ(xi) ≥ 0 for i 6= i∗ gives
∑n
1 δ(xi) ≥ ∆(x) which, in turn, is the LS inequality in (4) for g. As g is

in G−, it is dominated by some g̃ in G−(Lemma 3.1) and g̃(x1) = una(x̃1) by inequality (6).

Statement ii) The if part is statement ii) in Lemma 3.2. For only if we assume that G− does
not contain una and check that G− is not a singleton. This assumption and the continuity of W
imply that for an open set of profiles x ∈ X [n] we have

∑
[n] una(xi) > W(x). Fix such an x and

(by Lemma 3.1) pick for each i a tight guarantee gi equal to una at xi: these n guarantees are not
identical.

9.3 Some properties of modular functions

Whenever the partial derivative ∂iW(x) is defined in a neighborhood of x, supermodularity implies
that it is weakly increasing in xj for j 6= i. And if ∂iW(x) is strictly increasing in xj then W
is strictly supermodular. The isomorphic statements for submodularity replaces increasing by
decreasing.

Whenever ∂iW(x) is differentiable almost everywhere, the supermodularity property can be
written: for i, j ∈ [n], i 6= j, ∂ijW(x) ≥ 0 a. e. in x ∈ [L,H][n]. For submodularity reverse the
inequality.

A well known consequence of modularity is this: if (xi, xj)� (x′i, x
′
j) and the RS of (10) is an

equality, then in the interval [(xi, xj), (x
′
i, x
′
j)] the function (zi, zj) → W(zi, zj ;x−i,j) is separably

additive, and its cross derivative ∂ijW(·, ·;x−i,j) is identically zero. We say that W is locally i, j-
additive at the profile x if there is a rectangular neighborhood of (xi, xj) in which ∂ijW(·;x−i,j) is
zero.

A strictly modular function like, in section 5, W(x) = F (
∑
[n] xi) with F strictly convex or

strictly concave, is not i, j-additive anywhere. But the submodular function W(x) = maxi{xi}
(Example 2.1) is locally i, j-additive whenever xi 6= xj , hence almost everywhere (although W is
not globally i, j-additive!).

Submodularity is preserved by positive linear combinations, but not by the maximum or mini-
mum operation. For instance if n is odd, the median of profile x is minS maxi∈S{xi} where the min
is over all majority coalitions S: it is the minimum of several submodular functions but is neither
sub- nor super-modular.

9.4 Proposition 4.3

We prove the statement for the serial↑ rule (14). By Remark 3.1 it is enough to check the inequality
ginc(xi) ≤ ϕser↑i (x) ≤ una(xi) for all x.

Step 1. We show that ϕser↑i (x) increases (weakly) in all variables xj such that xj ≤ xi, i. e., for
j ≤ i− 1 . This generalises Lemma 1 in [25].
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If W is differentiable in [L,H]n we check this by computing the derivative ∂kϕ
ser↑
i for k ≤ i− 1

in the LS of equation (14) and using the symmetry of W:

∂kϕ
ser↑
i (x) =

∂kW(x1, · · · , xi−1,
n−i+1
xi )

n− i+ 1
−∂kW(x1, · · · , xk−1,

n−k+1
xk )

n− k −
i−1∑

j=k+1

∂kW(x1, · · · , xj−1,
n−j+1
xi )

(n− j + 1)(n− j)

Because ∂kW increases weakly in xj , j 6= k, the numerator of each negative fraction is not
larger than that of the first fraction. The identity 1

n−i+1 = 1
n−k +

∑i−1
j=k+1

1
(n−j+1)(n−j) concludes

the proof.
Without the differentiability assumption the only step that requires an additional argument

is the following consequence of supermodularity. If the coordinates of the profile x are weakly

increasing then W(x) − 1
n−k+1W(x1, · · · , xk−1,

n−k+1
xk ) increases weakly in xk for each k ≤ n − 1.

We omit the straightforward proof.

Step 2. By construction of ϕser↑ we have ϕser↑i (x) = ϕser↑i (x1, · · · , xi−1,
n−i+1
xi ) and by Step 1 it

is enough to check that ginc(xi) lower bounds ϕ
ser↑
i (x) at the profile (

i−1
L ,

n−i+1
xi ) while una upper

bounds it at (
n
xi). The latter follows from ϕser↑i (

n
xi) = una(xi). Applying (14) we see that the

desired lower bound reduces to

W(
n−1
L , xi) ≤

1

n− i+ 1
W(

i−1
L ,

n−i+1
xi ) +

n− i
n− i+ 1

W(
n
L)

⇐⇒ (n− i)(W(
n−1
L , xi)−W(

n
L)) ≤ W(

i−1
L ,

n−i+1
xi )−W(

n−1
L , xi)

Finally we apply (11) to successively lower bound W(
k
L,

n−k
xi )−W(

k+1
L ,

n−k−1
xi ) by W(

n−1
L , xi)−

W(
n
L) for k = (n− 2), · · · , (i− 1) and sum up these inequalities.

9.5 Proposition 5.1

Step 1 The function g`,h defined by (15) is a lower guarantee: g`,h ∈ G−.
We set Z = `L+ hH for easier reading. The feasibility inequality (4) applied to g`,h reads: for

x ∈ [L,H][n] ∑
[n]

F (xi + Z) ≤ F (xN ) + `F (Z + L) + hF (Z +H) (27)

We proceed by induction on n. There is nothing to prove if n = 2. For n = 3 we already know
that g2,0 and g0,2 are in G−; for g1,1 the inequality (27) is∑

[3]

F (xi + L+H) ≤ F (x123) + F (2L+H) + F (L+ 2H) (28)

Suppose x12 ≥ L+H: then the convexity of F implies

F (x3 + L+H)− F (2L+H) ≤ F (x123)− F (x12 + L)

Replacing F (x3 + L + H) in (28) by this upper bound and rearranging gives a more demanding
inequality

F (x1 + L+H) + F (x2 + L+H) ≤ F (x12 + L) + F (L+ 2H)

following again from the convexity of F .
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So we are done if xij ≥ L + H for any pair i, j. Suppose next xij ≤ L + H for all three pairs.
Then we have for i = 1, 2, 3

x123, 2L+H ≤ xi + L+H ≤ L+ 2H

and the uniform distribution on the triple x123, 2L+H,L+ 2H is a mean-preserving spread of that
on (xi + L+H)i∈[3], which proves (28).

For the inductive argument we fix n ≥ 4 and g`,h s. t. ` + h = n − 1 and ` ≥ 1. We assume
that (27) holds for n− 1 agent problems and prove it for (`, h).

Suppose xN�{n} ≥ Z for some agent labeled n without loss of generality. Then the convexity
of F implies

F (xn + Z)− F (Z + L) ≤ F (xN )− F (xN�{n} + L)

As before we replace F (xn+Z) by this upper bound and rearrange (27) to the more demanding∑
[n−1]

F (xi + Z) ≤ F (xN�{n} + L) + (`− 1)F (Z + L) + hF (Z +H)

which for the convex function F̃ (y) = F (y + L) and Z̃ = (`− 1)L+ hH is exactly (27) at x−n for
the guarantee g(`−1),h.

We are left with the case where xN�{i} ≤ Z for all i for which the different terms under F in
(27) are ranked as follows:

xN , Z + L ≤ xi + Z ≤ Z +H

and the distribution ( 1n ,
`
n ,

h
n) on the support x, Z + L,Z + H is a mean-preserving spread of the

uniform distribution on the n inputs xi + Z. So g`,h meets (27).
If h ≥ 1 the symmetric proof starts by assuming xN�{n} ≤ Z and using the convexity inequality

F (xN�{n} +H)− F (xN ) ≤ F (Z +H)− F (xn + Z)

to obtain a more demanding inequality that is in fact (27) for g`,h−1 and the function
←→
F (y) =

F (y +H).

Step 2 The guarantee g`,h is tight. We fix xi and compute

g`,h(xi) + `g`,h(L) + hg`,h(H) = F (xi + `L+ hH)

We see that the profile (xi,
`
L,

h
H) is in the contact set of g`,h at xi and conclude by Lemma 3.5.

Statement ii) The derivative of the gap function is dF
dx (nxi) − dF

dx (xi + Z) which changes from
negative to positive at 1

n−1Z.
Statement iii) The equality g`,h(xi) = una(xi) is rearranged asi:

F (xi + Z) =
1

n
F (nxi) +

`

n
F (Z + L) +

h

n
F (Z +H))

This contradicts the strict convexity of F if `, h are both positive. If ` or h is zero we are dealing
with ginc or ginc with unanimous contact points at L and H respectively.
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9.6 Lemma 6.1

Fix W defined by (19) and the equicontinuous functions wk. For “only if” we assume that W
is supermodular. Fix two agents i, j and a (n − 2)-profile x−ij ∈ [L,H][n]�i,j . For any 4-tuple
xi, yi, xj , yj such that xi > yi and xj > yj supermodularity means

W(xi, xj ;x−ij)−W(yi, xj ;x−ij) ≥ W(xi, yj ;x−ij)−W(yi, yj ;x−ij)

Suppose L < yi < xi < H and pick an arbitrary rank k, k ≤ n− 1: we can choose x−ij , xj and
yj s. t. in the profiles on the RH xi and yi are of rank k, while after increasing yj to xj they are
of rank k + 1 in the profiles on the LH. Then the inequality above reads

wk+1(xi)− wk+1(yi) ≥ wk(xi)− wk(yi)

As xi, yi can be chosen arbitrary close to each other, this proves (20) at any interior point of [L,H]
where wk is differentiable (that is, a. e.).

For “if”we assume (20) and fix x−ij . For any xi, yj s. t. xi has rank k in (xi, yj ;x−ij) we have
∂iW(xi, yj ;x−ij) = dwk

dx (xi) (a. e.): if yj is below xi and jumps up to xj above xi then by (20)

∂iW(xi, xj ;x−ij) also increases (weakly) to
dwk+1
dx (xi). If xi is not isolated in the profile (xi, yj ;x−ij)

the same argument applies to the left and right derivatives of W in xi.

9.7 Theorem 6.1

We fix W given by (19) and supermodular, so dwk
dx (·) increases weakly with k.

Step 1. For any c the function gc defined by (21) is in G−. We saw in Definition 6.2 that it is
enough to show gc ∈ G−.

Because gc(xi) and W(xi; c) are continuous in xi, c it is enough to prove the LS inequality (4)
for strictly decreasing sequences {x`}n1 and {ck}n−11 such that H > c1 and cn−1 > L and moreover
x` 6= ck for all `, k. These assumptions hold for all the sequences x, c below.

Step 1.1 Call the profile of types x∗ regular if

x∗1 > c1 > x∗2 > c2 > · · · > ck−1 > x∗k > ck > · · · > cn−1 > x∗n (29)

then compute

n∑
1

gc(x
∗
k) =

n∑
1

W(x∗k, c)−
n−1∑
1

W(ck, c) =

n−1∑
1

(wk(x
∗
k)− wk(ck)) +W(x∗n, c) =W(x∗)

so that x∗ is a contact profile of gc.

Step 1.2 For any three sequences x, x′ and c we say that x′ is reached from x by an elementary
jump up above ck if there is some ` such that x−` = x′−`; ck is adjacent to x` in x from above and
adjacent to x′` in x

′ from below. In other words: x′` > ck > x` and there is no other element of x or
c between x` and x′`. The definition of an elementary jump down below ck is exactly symmetrical.

We claim that for any sequence x̃ we can find a regular profile x∗ and a path (a sequence of
sequences) σ = {x̃ = x1, · · · , xt, · · · , xT = x∗} such that
1) each step from xt to xt+1 is an elementary jump up or down of some xt` over some ck
2) ` ≤ k if xt` jumps up above ck, and ` ≥ k + 1 if xt` jumps down below ck.

The proof by induction on n starts by distinguishing
Case 1: x̃1 > c1. Then x̃1 never moves and x̃1 = x∗1; if x̃2, · · · , x̃` are above c1 then ` − 1

successive elementary jumps down of these below c1 defines the first `−1 steps of the desired path;
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continuing until there are none, it remains to construct a path from the shorter sequence x̃−1 into
a one regular w. r. t. the sequence c−1 by invoking the inductive assumption.

Case 2: c1 > x̃1. Then the successive elementary jumps up of x̃1 over the closest ck then
ck−1, · · · , c1 define the first k steps of the desired path until xk+1 = x∗1 that never moves again;
then we proceed with the shorter sequences x̃−1 and c−1 by the inductive assumption.

Step 1.3 We pick an arbitrary profile x̃ and construct a sequence σ from x̃ to some regular x∗,
and check that in each step of the sequence the sum

∑n
1 gc(x`) − W(x) cannot decrease, which

together with Step 1.1 concludes the proof that gc ∈ G−. This sum develops as

B︷ ︸︸ ︷
(

n∑
`=1

W(x`, c))−
C︷ ︸︸ ︷
W(x)−

D︷ ︸︸ ︷
n−1∑
k=1

W(ck, c)

Consider a jump up of xt` above ck: x
t+1
` > ck > xt`. The net changes to the sum are

∆B = wk(x
t+1
` )− wk+1(xt`) + wk+1(ck)− wk(ck)

∆C = w`(x
t+1
` )− w`(xt`) ; ∆D = 0

With the notation ∆f(a→ b) = f(b)− f(a) and some rearranging this gives

∆B −∆C + ∆D = ∆(wk − w`)(ck → xt+1` ) + ∆(wk+1 − w`)(xt` → ck)

where both final ∆ terms are non negative because ` ≤ k and by (20) wk − w` and wk+1 − w`
increase weakly.

The proof for a jump down step is quite similar by computing the variation of
∑n
1 gc(x`)−W(x)

to be ∆(w` − wk)(ck → xt`) + ∆(w` − wk+1)(xt+1` → ck) and recalling that in this case we have
` ≥ k + 1.

Step 2 A tight guarantee g ∈ G− takes the form gc in (21).
Recall the notation C(g) for the set of contact profiles of g defined by (7). For each k ∈ [n] its

projection Ck(g) is the set of those xi ∈ [L,H] appearing in some profile x ∈ C(g) with the rank
k; it is closed because C(g) is closed and we call its lower bound ck. The sequence {ck} decreases
weakly because in a contact profile where ck is k-th the type xk+1 ranked k+ 1 is weakly below ck.
And cn = L because cn is in some contact profile of g.

Check first that C1(g) = [c1, H] with the help of Lemma 3.9. For each x1 ∈ [c1, H[ where g
is differentiable and x1 appears with rank k in some contact profile we have

dg
dx(x1) = dwk

dx (x1) ≥
dw1
dx (x1) because W is supermodular. This implies g(x1) − g(c1) ≥ w1(x1) − w1(c1) everywhere in

[c1, H].
Pick a profile (c1, x−1) ∈ C(g) where c1 is ranked first and combine the latter inequality with

this contact equation:

g(c1)− w1(c1) =
n∑
2

(wk(xk)− g(xk)) ≤ g(x1)− w1(x1)

The inequality above must be an equality because g is a lower guarantee therefore dg
dx(x1) =

dw1
dx (x1) a.e. in [c1, H] and [c1, H] = C1(g).
We repeat this argument for x2 ∈ [c2, c1[. In any of its contact profiles its rank is at least

2 by definition of c1, so when g is differentiable at x2 we have
dg
dx(x2) = dwk

dx (x2) ≤ dw2
dx (x2) by

submodularity of W. Then g(x2) ≤ g(c2) + w2(x2) − w2(c2) holds in [c2, c1] and by plugging as
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above this inequality at a contact profile where c2 is ranked second, we see that it is an equality
and conclude that first, dgdx(x2) = dw2

dx (x2) a.e. in [c2, c1] and second, [c2, c1] ⊆ C2(g).11

The clear induction argument gives dg
dx(xk) = dwk

dx (xk) a.e. in [ck, ck−1]; together with the
continuity of g it implies that g is entirely determined by the value g(L). But for c = (c1, · · · , cn−1)
the tight lower guarantee gc ((21)) meets precisely the same differential system, therefore g and gc
differ by a constant; if they don’t coincide g is either not a lower guarantee or not tight.

9.8 Example 6.2

We can without loss assume that F is the identity because the change of variable yi = F (xi) reaches
precisely that problem (exactly like in Example 2.1).

The proof resembles that of Proposition 2.1. Fix a tight upper guarantee g+ ∈ G+k and recall
that g+ is weakly increasing (Lemma 3.4). Define p = ng+(L): from una(xi) = 1

nxi and inequality
(6) (Lemma 3.2) we get p ≥ L. Observe next that gH(xi) ≡ 1

nH is in G+
k (in fact also in G

+
k as we

show below); if p > H then g+ is everywhere larger than gH , a contradiction. So p ∈ [L,H].

Apply now the feasibility inequality (4) to g+ at the profile (
n−k
L ,

k
xi):

n− k
n

p+ kg+(xi) ≥ xi

If k = n this gives g+(xi) ≥ una(xi): as una ∈ g+ we conclude g+ = una. For k ≤ n − 1 we
combine the inequality above with g+(xi) ≥ 1

np and obtain

g+(xi) ≥ max{ 1

n
p,

1

k
(xi −

n− k
n

p)} =
1

n
p+

1

k
(xi − p)+

It remains to check that the function on the right, which we write g+p , is itself an upper guarantee.
Pick an arbitrary profile x ∈ [L,H][n] and suppose that p is s. t. x` ≥ p ≥ x`+1. We must show

∑
[n]

g+p (xi) = p+
1

k
((
∑̀
t=1

xt)− `p) ≥ xk

If p ≥ xk we are done because the term in parenthesis is non negative. Assume now p < xk so
that xk ≥ · · · ≥ x` ≥ p ≥ x`+1, then note that (

∑`
t=1 x

t)− `p ≥ k(xk − p) and we are done.
The proof that for k ≥ 2 the set G−k is also parametrised by q ∈ [L,H] as

g−p (xi) ≥
1

n
q +

1

n− k + 1
(xi − q)−

and for k = 1 contains only una, is entirely similar.

9.9 Lemma 7.2

Statement i) is clear because W is symmetric. In Statement ii) upper-hemi-continuity of ϕ is clear
because W and g are both continous (Lemma 3.5).

To check that ϕ is convex valued we fix (x1, x2), (x1, x
′
2) ∈ Γ(ϕ) and z s. t. x2 < z < x′2, and

check that Γ(ϕ) contains (x1, z) too. Pick some w ∈ ϕ(z): if w > x1 we see that Γ(ϕ) contains

11Note that C2(g) can extend beyond c1 but this can only happen if dw2dx
= dw1

dx
in the overlap interval. To see this

compare two contact profiles x and y such that x1 ≥ x2 > y1 ≥ y2 and use the LS of (4) at the two profiles where x2
and y2 have been swapped plus supermodularity of W to deduce that they are contact profiles as well.
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(x1, x2) and (w, z) s.t. (x1, x2)� (w, z) which is a contradiction by Lemma 7.1. If w < x1 we use
instead (w, z) and (x1, x

′
2) to reach a similar contradiction, and we conclude w = x1.

The proof below that ϕ is single-valued a. e. will complete that of statement ii).

Statement iii) If x1 < x′1 in X and ϕ−(x1) < ϕ+(x′1) we again contradict the strict super-
modularity of W (Lemma 7.1) . So x1 < x′1 =⇒ ϕ−(x1) ≥ ϕ+(x′1) and ϕ

− and ϕ+ are weakly
decreasing.

If ϕ(x1) is not a singleton, ϕ+(x1) > ϕ−(x1), then ϕ+ jumps down at x1; a weakly decreasing
function can only do this a countable number of times. That the u.h.c. closure of ϕ+ contains
[ϕ−(x1), ϕ

+(x1)] follows from ϕ−(x1) ≥ ϕ+(x1 + δ) for any δ > 0.

Statement iv) If ϕ(L) does not contain H we pick some x1 in ϕ(H): by statement i) ϕ(x1)
contains H therefore x1 > L; we reach a contradiction again from Lemma 10 because Γ(ϕ) contains
(L,ϕ+(L)) and the strictly larger (x1, H).

Statement v) Kakutani’s theorem implies that at least one fixed point exists. If Γ(ϕ) contains
both (a, a) and (b, b) we contradicts again Lemma 10. Check finally that the inequalities ϕ−(a) <
a < ϕ+(a) are not compatible. Pick δ > 0 s.t. ϕ(a) contains a − δ and a + δ: then Γ(ϕ) contains
(a, a+ δ) and (a− δ, a) (by symmetry) and we invoke Lemma 7.1 again.

9.10 Theorem 7.1

Step 0: the integral in (25) is well defined.
For any correspondence ϕ as in Lemma 7.2 the integral

∫ x1
a ∂1W(t, ϕ(t))dt is the value of∫ x1

a ∂1W(t, f(t))dt for any single-valued selection f of ϕ: this is independent of the choice of f
because ϕ is multi-valued only at a countable number of points and every single-valued selection
of ϕ(x1) is a measurable function.

Statement ii) Fix g ∈ G− and its contact correspondence ϕ. The functionW is uniformly Lipschitz
in [L,H]2 so by Lemma 3.8 g is Lipschitz as well, hence differentiable a. e.. The derivative dg

dx is
given by property (9) in Lemma 3.9: given x1 for any x2 ∈ ϕ(x1) we have

dg
dx(x1) = ∂1W(x1, x2),

therefore we can write the RH as ∂1W(x1, ϕ(x1)) without specifying a particular selection of ϕ(x1).
Note that g(a) = una(a) because (a, a) ∈ Γ(ϕ). Now integrating the differential equation above

with this initial condition at a gives the desired representation (25).

Statement i)
Step 1 Lemma 7.2 implies that Γ(ϕ) is a one-dimensional line connecting (L,H) and (H,L) that we
can parametrise by a smooth mapping s→ (ξ1(s), ξ2(s)) from [0, 1] into [L,H]2 s.t. ξ1(·) increases
weakly from L to H and ξ2(·) decreases weakly from H to L. We can also choose this mapping so
that ξ1(

1
2) = ξ2(

1
2) = a, the fixed point of ϕ.12

We fix an arbitrary selection γ of ϕ, an arbitrary x1 in [L,H], and check the identity∫ x1

a
∂1W(t, ϕ(t))dt+

∫ γ(x1)

a
∂1W(t, ϕ(t))dt =W(x1, γ(x1))−W(a, a) (30)

We change the variable t to s by t = ξ1(s) in the former and by t = ξ2(s) in the latter. Next s
is the parameter at which (ξ1(s), ξ2(s)) = (x1, γ(x1)) and we rewrite the LH above as∫ s

1
2

∂1W(ξ1(s), ξ2(s))
∂ξ1
∂s

(s)ds+

∫ s

1
2

∂1W(ξ2(s), ξ1(s))
∂ξ2
∂s

(s)ds

12 If a is 0,or 1 we check that (25) defines the two canonical incremental guarantees in Proposition 4.2.
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where in each term ∂1W(t, ϕ(t)) we can select a proper selection of the (possible) interval because
(ξ1(s), ξ2(s)) ∈ Γ(ϕ). As W(x1, x2) is symmetric in x1, x2, we can replace the second integral by∫ s
1
2
∂2W(ξ1(s), ξ2(s))

∂ξ2
∂s (s)ds and conclude that the sum is precisely

W(ξ1(s), ξ2(s))−W(ξ1(
1

2
), ξ2(

1

2
)) =W(x1, γ(x1))−W(a, a)

Step 2 We show that (25) defines a bona fide guarantee g: g(x1) + g(x2) ≤ W(x1, x2) for x1, x2 ∈
[L,H].

The identity (30) amounts to g(x1) + g(γ(x1)) = W(x1, γ(x1)) for all x1. If we prove that
g ∈ G− this will imply it is tight. Compute

g(x1) + g(x2) =W(x1, γ(x1)) + g(x2)− g(γ(x1)) =W(x1, γ(x1)) +

∫ x2

γ(x1)
∂1W(t, ϕ(t))dt

We are left to show ∫ x2

γ(x1)
∂1W(t, ϕ(t))dt ≤ W(x1, x2)−W(x1, γ(x1)) (31)

We assume without loss x1 ≤ x2 and distinguish several cases by the relative positions of a and
x1, x2 .

Case 1: a ≤ x1 ≤ x2, so that γ(x1) ≤ a. For every t ≥ γ(x1) property iii) in Lemma
7.2 implies ϕ+(t) ≤ ϕ−(γ(x1)) and ϕ(γ(x1)) contains x1: therefore submodularity of W implies
∂1W(t, ϕ(t)) ≤ ∂1W(t, x1) and∫ x2

γ(x1)
∂1W(t, ϕ(t))dt ≤

∫ x2

γ(x1)
∂1W(t, x1)dt =W(x2, x1)−W(γ(x1), x1)

Case 2: x1 ≤ a ≤ γ(x1) ≤ x2. Similarly for t ≥ γ(x1) we have ϕ+(t) ≤ ϕ−(γ(x1)) and conclude
as in Case 1.

Case 3: x1 ≤ x2 ≤ a, so that γ(x1) ≥ a. For all t ≤ γ(x1) we have ϕ−(t) ≥ ϕ+(γ(x1)) and
ϕ(γ(x1)) contains x1: now submodularity of W gives ∂1W(t, z) ≥ ∂1W(t, x2) for z between x2 and
γ(x1) and the desired inequality because the integral in (31) goes from high to low.

Case 4: x1 ≤ a ≤ x2 ≤ γ(x1). Same argument as in Case 3.
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