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Abstract

The difference between the population analogs of the traditional Jacobian rank sta-

tistic and the J statistic provides an appropriate identification measure for the pseudo-

true value of the continuous updating estimator in misspecified linear GMM whilst the

population analog of the widely used traditional Jacobian rank test does not. It is by

construction non-negative and if equal to zero, the pseudo-true value of the continu-

ous updating estimator is not identified while the pseudo-true value of the two-step

estimator is degenerate and the limiting distribution of its estimator non-standard.

The sample analog of the identification measure provides a likelihood ratio statistic

for testing no-identification. For the homoskedastic setting, we construct a conditional

critical value function to obtain a conditional likelihood ratio test of no-identification.

Unlike the Jacobian rank test, it provides an appropriate test of no-identification in

possibly misspecified linear GMM. Applying it for empirical linear asset pricing where

misspecification is common, it shows that no-identification is often not rejected at the

5% significance level.
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1 Introduction

Many widely used econometric models, such as, for example, the linear instrumental variables

(IV) regression, linear asset pricing, dynamic panel data and New-Keynesian Phillips curve

models are analyzed using the generalized method of moments (GMM) of Hansen (1982).

Recently awareness has risen that structural parameters in popular models estimated us-

ing GMM might be weakly identified which implies that traditional inference methods are

unreliable, see e.g. Staiger and Stock (1997), Stock and Wright (1999) and Dufour (1997).

Inference methods have therefore been developed which remain reliable under weak identi-

fication, see e.g. Kleibergen (2002, 2005), Moreira (2003), Andrews and Cheng (2012) and

Andrews and Mikusheva (2016). Weak identification in correctly specified GMM occurs

when the Jacobian is relatively close to a reduced rank value. Tests for a reduced rank value

of the Jacobian are therefore commonly employed to determine the strength of identification

of the structural parameters of interest, see e.g. Cragg and Donald (1997), Kleibergen and

Paap (2006) and Robin and Smith (2000).

The GMM toolkit of Hansen (1982) has foremost been developed for analyzing correctly

specified models, i.e. models for which there is a, so-called, true value of the structural para-

meters at which the population moments are exactly zero. Many empirical models estimated

using GMM, or perhaps even every (over-identified) model with more moment equations than

structural parameters, are yet to some extent misspecified. For these models, there is no

longer a true value of the structural parameters at which the population moment conditions

hold exactly. The earlier literature on the econometrics of misspecified models primarily

focusses on the consequences of the inconsistency of estimators of the true value of the pa-

rameters of interest, see e.g. Maasoumi (1990) and Maasoumi and Phillips (1982). Applied

researchers, however, mostly just proceed with interpretating the estimated structural pa-

rameters that result from misspecified models. The population analogs of these estimators

are then referred to as pseudo-true values which are defined as the minimizers of the pop-

ulation analogs of the sample objective function. Different sample objective functions lead
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to distinct pseudo-true values. For correctly specified models, true and pseudo-true values

coincide. Inference methods for analyzing the pseudo-true values have been developed by,

amongst others: Hall and Inoue (2003), Hansen and Lee (2021), Lee (2018) and Gospodinov

et al. (2014).

Identification issues for the pseudo-true values similarly play out in misspecified models.

We show that the identification condition for the structural parameters in misspecified over-

identified models differs from the one for correctly specified models. For linear moment

conditions, identification of the pseudo-true value of the structural parameters is reflected by

the difference between the population analogs of the traditional rank statistic identification

measure and the over-identification J-statistic. Because the former results from constrained

optimization of the objective function involved in the latter, this measure is non-negative by

construction. Identification fails when this identification measure equals zero. For correctly

specified models, the population J-statistic equals zero so the identification measure falls

back to the usual one.

Because the traditional rank statistic identification measure does not properly reflect

identification in misspecified linear moment condition models estimated by GMM, the com-

mon practice of using its empirical analog to test for (no) identification is inappropriate

because it does not test the suitable no identification hypothesis. We develop an appropriate

test of (no) identification in misspecified linear moment conditions models. The involved

test statistic is the sample analog of the population identification measure so it equals the

difference between the sample analogs of the traditional rank statistic and the J-statistic. It

coincides with the (quasi-) likelihood ratio (LR) statistic which tests if the moment vector

evaluated at a zero value of the structural parameters is absent in a linear combination of

the moment vector and its Jacobian evaluated at a zero value of the structural parameters.

For a boundary setting of no identification, we construct a conditional critical value function

based on homoskedasticity which implies a Kronecker product structure (KPS) of the joint

covariance matrix of the sample moment vector and its Jacobian.
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We build up the conditional critical value function stepwise for gradually more challenging

(no) identification testing problems. We start from one structural parameter and a known

covariance matrix. It allows us to specify the LR (no) identification statistic as a function

of two of the three elements of an appropriate specification of the maximal invariant while

its third element provides an approximately independent conditioning statistic. This is

similar in spirit to the conditional likelihood ratio test of Moreira (2003) albeit that the

conditioning statistic and the null distribution under which the conditional critical value

function is computed differ. Hereafter, we provide empirically important generalizations

which incorporate covariance matrix estimators and multiple structural parameters. Because

misspecification allows for population moments which are non-zero at the pseudo-true value

of the structural parameter, an accurate approximation of the conditional distribution of the

LR statistic has to take the estimation error resulting from the covariance matrix estimators

into account, see e.g. Maasoumi and Phillips (1982), Hall and Inoue (2003), Hansen and

Lee (2021), Lee (2018) and Gospodinov et al. (2014). Alongside the dependence on the

conditioning statistic, the conditional critical value function that we provide for empirical

settings with multiple structural parameters therefore depends on the sample size at hand

and a few consistently estimable nuisance parameters.

The remaining content of the paper is organized as follows. Section 2 introduces the

appropriate identification measure for possibly misspecified over-identified linear moment

equation models. Section 3 emphasizes its empirical importance showcasing eight well known

studies from the asset pricing literature. Section 4 develops the conditional LR (no) identi-

fication test build up along the lines alluded to previously. We show that it has good size

and power properties. Section 4 also compares the LR (no) identification test with existing

tests that test part of the no identification hypotheses or just use elements of the LR (no)

identification statistic. We show that while these tests can have superior power for specific

settings, they are inadequate in other settings which overall renders them inappropriate for

testing the no identification hypothesis. Section 4 also applies the LR (no) identification test
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to the Fama-French (1993) three factor model using data from Lettau, Ludvigson and Ma

(2019). The misspecification J-test signals that the three factor model leads to misspecifi-

cation because the J-test rejects correct specification at tiny significance levels for both the

specification that incorporates the zero-beta return as well as the one without. The tradi-

tional identification rank tests indicate strong identification for both of these specifications.

On the other hand, the appropriate LR (no) identification test just rejects no identification

with 5% significance when the zero-beta return is not incorporated while it does not when

the zero-beta return is incorporated. Given the importance of the Fama-French three factor

model, it illustrates the empirical relevance of using the appropriate identification test. Sec-

tion 5 discusses how to incorporate more general covariance matrix settings which is mainly

left for future work because the distribution resulting from the null hypothesis involves more

parameters. The sixth section draws some conclusions.

2 Identification in over-identified misspecified linear

GMM

We are interested in analyzing a kf -dimensional moment vector µf (θ) which is a continuous

function of the m-dimensional parameter vector θ. The parameter vector θ is over-identified

by the linear moment equations so kf exceeds m, kf > m. The linear moment equations are

specified accordingly:

EX(f(θ,Xi)) = µf (θ)

= µf (0) + J(0)θ,
(1)

with J(θ) = ∂
∂θ′µf (θ), J(0) = ∂

∂θ′µf (0). Many widely used econometric models, like, for

example, the linear IV regression model, the linear factor model and linear dynamic panel

data model, accord with this setting. The sample moment vector µ̂f (θ) then just depends on

the estimators of µf (0), µ̂f (0), and the Jacobian J(0), Ĵ(0), whose joint convergence when

the sample size increases results from Assumption 1.
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Assumption 1: The joint limit behavior of µ̂f (0) and Ĵ(0) = ∂
∂θ′ µ̂f (0), is described by:

√
N


 µ̂f (0)

vec(Ĵ(0))

−
 µf (0)

vec(J(0))


 →

d

 ψµ

ψJ

 ,

 ψµ

ψJ

 ∼ N(0, V ),

(2)

where the covariance matrix of the limit behavior of (µ̂f (0)′
... vec( Ĵ(0))′)′ reads:

V = limN→∞E

N

 µ̂f (0)

vec(Ĵ(0))

−
 µf (0)

vec(J(0))





 µ̂f (0)

vec(Ĵ(0))

−
 µf (0)

vec(J(0))



′

=

 Vµµ VµJ

VJµ VJJ

 ,

(3)

with Vµµ, VµJ = V ′Jµ and VJJ resp. kf×kf , kf×mkf and mkf×mkf dimensional matrices1.

Assumption 1 is satisfied under mild conditions, see e.g. White (1984). A further as-

sumption that we use later is the one of a Kronecker product structure (KPS) of the joint

covariance matrix V.

Assumption 2: The covariance matrix V has a Kronecker product structure:

V = (Ω⊗Q), (4)

with Ω and Q resp. (m+ 1)× (m+ 1) and Q : kf × kf dimensional matrices.
1The covariance matrix V is not required to be of full rank. Positive semi-definite values of V can, for

example, occur for the moment equations resulting from linear dynamic panel data models.
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The KPS of the covariance matrix results, for example, under homoskedasticity of the

errors in linear IV regression and linear factor models.

When the moment equation is correctly specified, there is an unique, so-called, true value

of θ, say θ0, at which the population moment conditions exactly hold:

µf (θ0) = µf (0) + J(0)θ0 = 0. (5)

The moment vector µf (0) is then spanned by its Jacobian J(0) so (µf (0)
... J(0)) is a kf ×

(m+ 1) dimensional matrix which is at most of rank m :

(µf (0)
... J(0)) = D(−θ0

... Im), (6)

with D a kf ×m dimensional matrix. GMM estimation methods differ with respect to how

they estimate D and consequently θ. For example, the population objective functions of the

abundantly used two steps methods assuming homoskedasticity, like, for example, two stage

least squares and two-pass (generalized) least squares risk premia estimators, use J(0) for

D :

Qhom,2s(y) = µf (y)′Q−1µf (y), (7)

for y a m-dimensional vector, while the population objective function of the continuous

updating estimator (CUE):

QCUE(y) = µf (y)′
[( Ikf

(y⊗Ikf )

)′
V
( Ikf

(y⊗Ikf )

)]−1

µf (y), (8)

however, (implicitly) uses

vec(DCUE(y)) = vec(J(0))−
(

0
Imkf

)′
V
( Ikf

(y⊗Ikf )

) [( Ikf
(y⊗Ikf )

)′
V
( Ikf

(y⊗Ikf )

)]−1

(µf (0) + J(0)y),

(9)

with DCUE(θ) a kf × m dimensional matrix, for D, see Kleibergen (2007) and Kleibergen

7



and Mavroeidis (2009). Under correct specification, the minimizers of (7) and (8) coincide

and equal the true value since it sets the moment condition (5) to zero.

Under misspecification, this is, however, no longer the case because there is no longer

a value of θ which sets the moment condition to zero. The object of interest is then the

minimizer of the population objective function, the so-called, pseudo-true value, which differs

over the estimation methods. Under Assumption 2, an explicit expression of the pseudo-true

value results from the k-class expression2:

θ∗ = −(J(0)′Q−1J(0)− τΩJJ)−1(J(0)′Q−1µf (0)− τωJµ)

= −Ω
− 1
2

JJ (Ω
− 1
2
′

JJ J(0)′Q−1J(0)Ω
− 1
2

JJ − τIm)−1(Ω
− 1
2
′

JJ J(0)′Q−1µf (0)− τΩ
− 1
2
′

JJ ωJµ),
(10)

for Ω =

(
ωµµ
ωJµ

... ωµJ
ΩJJ

)
, with ωµµ, ωJµ = ω′µJ , ΩJJ resp. 1× 1, m× 1 and m×m dimensional

matrices. For τ = 0, the k-class expression provides the pseudo-true value of the two stage

estimator while τ equal to the smallest root, τmin, of the characteristic polynomial

∣∣∣∣τΩ− (µf (0)
... J(0))′Q−1(µf (0)

... J(0))

∣∣∣∣ = 0, (11)

leads to the pseudo-true value of the CUE.

Under correct specification, the smallest root of (11) equals zero so the pseudo-true values

of the two stage estimator and the CUE coincide. Under misspecification and a full rank

value of J(0), the smallest root of (11), however, differs from zero so the pseudo-true values

of the two stage estimator and the CUE are no longer identical. The difference resembles

the behavior of the minimizers of the sample objective functions under correct specification

paired with weak identification where two stage estimators can also deviate considerably

from the CUE. The difference results since under misspecification µf (0) is not fully spanned

by J(0) so (µf (0)
... J(0)) is not a reduced rank matrix unless J(0) is of reduced rank.

2For expository purposes, the expression of the k-class estimator differs from the textbook one for the
linear IV regression model in which ”k” corresponds with τ + 1, see Hausman (1984). The pseudo-true value
of the least squares estimator for the linear IV regression model therefore now results for τ = −1 instead of
”k = 0” and similary for the other estimators.
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Theorem 1 states, under Assumptions 1 and 2, how two stage and continuous updating

estimation procedures differ with respect to minimizing the distance between (µf (0)
... J(0))

and a reduced rank matrix to obtain the respective pseudo-true value/estimator.

Theorem 1: Under Assumptions 1 and 2, the pseudo-true value of the CUE, θ∗CUE, results

from a singular value decomposition (SVD) of Q−
1
2 (µf (0)

... J(0))Ω−
1
2 :

Q−
1
2

(
µf (0)

... J(0)

)
Ω−

1
2 = USV ′ =

Q−
1
2D∗CUE(−θ∗CUE

... Im)Ω−
1
2 +Q

1
2D∗CUE,⊥λ

∗
CUE

(
−θ∗CUE

... Im

)
⊥

Ω
1
2 ,

(12)

with U a kf × kf dimensional orthonormal matrix, V a (m + 1) × (m + 1) dimensional

orthonormal matrix, and S a kf × (m + 1) dimensional diagonal matrix with the singular

values in decreasing order on the main diagonal:

U =

 U11 U12

U21 U22

 , S =

 S1 0

0 S2

 and V =

 V11 V12

V21 V22

 , (13)

where U11, S1, V21 are m ×m dimensional matrices; S2 is a (kf −m) dimensional vector,

V ′11, V22 are m dimensional vectors, U12, U21, and U22 are m × (kf − m), (kf − m) × m

and (kf − m) × (kf − m) dimensional matrices and V12 is a scalar. The kf × (kf − m)

dimensional matrix D∗CUE,⊥ is the orthogonal complement of D∗CUE, D
∗′
CUE,⊥D

∗
CUE ≡ 0,

D
∗′
CUE,⊥QD

∗
CUE,⊥ ≡ Ikf−m; and

(
−θ∗CUE

... Im

)
⊥
is the 1× (m+ 1) dimensional orthogonal

complement of
(
−θ∗CUE

... Im

)
,

(
−θ∗CUE

... Im

)(
−θ∗CUE

... Im

)′
⊥
≡ 0 and

(
−θ∗CUE

... Im

)
⊥

Ω

(
−θ∗CUE

... Im

)′
⊥
≡ 1, so

(
−θ∗CUE

... Im

)
⊥

=
[(

1
θ∗CUE

)′
Ω
(

1
θ∗CUE

)]− 1
2 ( 1

θ∗CUE

)′
.

The specification of the pseudo-true value of the CUE as a function of the elements of the
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SVD is:

CUE: (µf (0)
... J(0)) = D∗CUE(−θ∗CUE

... Im) +QD∗CUE,⊥λ
∗
CUE(−θ∗CUE

... Im)⊥Ω

D∗CUE = Q
1
2U1S1V ′21Ω

1
2
JJ

θ∗CUE = −Ω−1
JJωJµ − Ω

− 1
2

JJ V ′−1
21 V ′11ω

1
2
µµ.J = −Ω−1

JJωJµ + Ω
− 1
2

JJ V22V−1
12 ω

1
2
µµ.J

λ∗CUE =
[
D∗′CUE,⊥QD

∗
CUE,⊥

]−1
D∗′CUE,⊥(µf (0)

... J(0))(θ∗CUE
... Im)′⊥[

(θ∗CUE
... Im)⊥Ω(θ∗CUE

... Im)′⊥

]−1

= (U22U ′22)−
1
2U22S2V ′12(V12V ′12)−

1
2 .

τmin = λ∗′CUEλ
∗
CUE = S ′2S2.

(14)

The expressions of the pseudo-true values of the two stage and least squares estimators, where

the latter results from (10) when τ = −1, as functions of the elements of the SVD read:

2S: θ∗2s = −Ω−1
JJωJµ − Ω

− 1
2

JJ (V21S ′1S1V ′21 + τminV22V ′22)−1

(V21S ′1S1V ′11 + τminV22V ′12)ω
1
2
µµ.J

LS: θ∗ls = −Ω−1
JJωJµ − Ω

− 1
2

JJ (V21S ′1S1V ′21 + τminV22V ′22 + Im)−1

(V21S ′1S1V ′11 + τminV22V ′12)ω
1
2
µµ.J .

(15)

Proof. see the Appendix, which shows the equivalence of (14) with the k-class expression

in (10), and also Kleibergen and Paap (2003).

Equations (14) and (15) show how the pseudo-true values of the two stage estimator

and CUE differ. The difference occurs since the pseudo-true value of the CUE solely results

from the eigenvectors of the singular values while the dependence of the pseudo-true value

of the two stage estimator is mixed and depends on a (traditional) strength of identification

measure compared to a quantity reflecting the (normalized) amount of misspecification.

We reflect the normalized amount of misspecification by the minimal value of the CUE

population objective function while the (traditional) strength of identification is reflected by

the minimal normalized distance of the Jacobian from a reduced rank value. The sample
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analog of the former is the J-statistic which tests for misspecification while the sample analog

of the latter is the commonly used rank test for identification, see e.g. Cragg and Donald

(1997), Kleibergen and Paap (2006) and Robin and Smith (2000). Because the latter results

from constrained minimization of the CUE objective function, it is always larger than or

equal to the former.

Theorem 2: The amount of misspecification reflected by the minimal value of the CUE

population objective function:

MISS = miny∈Rm QCUE(y), (16)

is at most as large as the traditional measure of the identification strength:

IS = minx∈Rm−1 QIS(x)

QIS(x) =
(

1
x

)′
J(0)′

[((
1
x

)
⊗ Ikf

)′
VJJ

((
1
x

)
⊗ Ikf

)]−1

J(0)
(

1
x

)
= min

A∈Rkf×(m−1) QIS(x,A)

QIS(x,A) =

[
vec
(
J(0)− A(−x ... Im−1

)]′
V −1
JJ

[
vec
(
J(0)− A(−x ... Im−1

)]
MISS ≤ IS.

(17)

Under Assumption 2, MISS equals the smallest root of the characteristic polynomial (11):

MISS = τmin = λ∗′CUEλ
∗
CUE = S ′2S2, (18)

while IS equals the smallest root of the characteristic polynomial:

∣∣νΩJJ − J(0)′Q−1J(0)
∣∣ = 0, (19)

which can similarly be expressed as the smallest eigenvalue of Ω
− 1
2
′

JJ J(0)′Q−1J(0)Ω
− 1
2

JJ .

Proof. see the Appendix.
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In correctly specified linear GMM, IS is indicative for the identification of the (pseudo-)

true value. This is, however, no longer so for the pseudo-true value in misspecified linear

GMM. The identification of the pseudo-true value then depends on the difference between

IS and MISS which is by construction always larger than or equal to zero. The identifica-

tion of the pseudo-true value of the CUE breaks down when IS=MISS. Because IS results

from constrained optimization of the CUE objective function of which MISS is the global

uncontrained minimum, when the constrained and unconstrained minimizers are identical,

the global minimum is attained at an infinite value of θ. Hence the pseudo-true value of the

CUE is not identified. We use Assumption 2 to further discuss this non-identified setting.

When IS=MISS, the pseudo-true value of the CUE is not identified because the minimal

value of the CUE objective function results from the Jacobian. For the KPS covariance

matrix setting, this results from the specification of the moments and Jacobian as functions

of the elements of the SVD is:3

µf (0) = J(0)Ω−1
JJωJµ +Q

1
2 (U1S1V ′11 + U2S2V ′12)ω

1
2
µµ.J

J(0) = Q
1
2 (U1S1V ′21 + U2S2V ′22)Ω

1
2
JJ .

(20)

The minimal value of the CUE objective function is associated with the smallest singular

value, S2, resulting from the SVD. When it fully results from the Jacobian, V22V ′22 = 1

which indicates that the eigenvectors associated with the smallest singular value also result

from the Jacobian. Because of the orthonormality of V , we then next have that V12 = 0,

V11V ′11 = 1 and V21 is a singular matrix which lies in the orthogonal complements of V11 and

V22, V11V ′21 = 0, V ′21V22 = 0.4

Because V21 is singular and V12 = 0, the pseudo-true value of the CUE resulting from

3These expressions are obtained in the proof of Theorem 1.
4Because of the orthonormality of V, V ′V = VV ′=Im+1 : V ′11V11 + V ′21V21 = Im, V ′12V12 + V ′22V22 = 1,

V ′11V12 +V ′21V22 = 0, V11V ′11 +V12V ′12 = 1, V21V ′21 +V22V ′22 = Im, V21V ′11 +V22V ′12 = 0, so when V ′22V22 = 1,
V12 = 0, V11V ′11 = 1 and V21 is a singular matrix which lies in the orthogonal complements of V11 and V22
because V21V ′21 +V22V ′22 = Im ⇔ V21V ′21V22 +V22V ′22V ′22 = V22 ⇔ V21V ′21V22 +V22 = V22 (since V ′22V22 = 1)
so V21V ′21V22 = 0 which implies that V ′21V22 = 0. Similarly, V ′11V11 +V ′21V21 = Im, so V ′11V11 +V ′21V21 = Im,
V ′11V11V ′11 + V ′21V21V ′11 = V ′11 ⇔ V ′11 + V ′21V21V ′11 = V ′11 ⇔ V ′21V21V ′11 = 0⇔ V21V ′11 = 0.
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(14) is not identified. The pseudo-true value of the two step estimator is, however, identified,

see also Andrews (2019):

2S: θ∗2s = −Ω−1
JJωJµ − Ω

− 1
2

JJ V22,⊥ (BS ′1S1B
′)−1BS ′1S1V ′11ω

1
2
µµ.J

= −Ω−1
JJωJµ m = 1,

(21)

which results from (15) and because when IS=MISS=τmin : V21 = (V22
... V22,⊥)

(
0
B

)
, with

(V22
... V22,⊥) an orthonormal m ×m dimensional matrix, V22,⊥ a m × (m − 1) dimensional

matrix orthogonal to V22 and B a (m − 1) ×m dimensional matrix.5 When MISS=IS, the

smallest singular value only loads on the Jacobian. The expression of the pseudo-true value

of the two-stage estimator (21) shows that it is not affected by its loadings. For m = 1, when

just the smallest singular value affects the Jacobian, it does not depend on any element of

the SVD and the pseudo-true value equals the bias of the two-step estimator for the correctly

identified setting with IS=0 for which MISS=IS=0.

An identical pseudo-true value of the two-stage estimator for m = 1 results when

IS>MISS and the smallest singular value only happens to load on the (recentered) mo-

ment vector so V12 = 1, and consequently V11 = 0, V22 = 0, V21V ′21 = Im. Using (20),

we then have that the recentered moment vector, Q−
1
2 (µf (0)− J(0)Ω−1

JJωJµ), and Jacobian,

Q−
1
2 (µf (0) − J(0)Ω−1

JJωJµ), are orthogonal6. The pseudo-true values of the CUE and two

5Because V ′21V22 = 0, we have that (V22
... V22,⊥)′V21S ′1S1V ′21(V22

... V22,⊥) =
(
0
B

)
S ′1S1

(
0
B

)′
so (V22

... V22,⊥)′[V21(S ′1S1 − τminIm)V ′21 + τminIm](V22
... V22,⊥) =

(
0
B

)
S ′1S1

(
0
B

)′
+ τmin[Im −(

0
B

) (
0
B

)′
] =

(
τmin
0

0
τminIm−1+B(S′1S1−τminIm)B′

)
= τminIm +

(
0
B

)
(S ′1S1 − τminIm−1)

(
0
B

)′
,

(V22
... V22,⊥)′V21(S ′1S1 − τminIm) =

(
0
B

)
(S ′1S1 − τminIm) =

(
0

B(S′1S1−τminIm)

)
,

so Ω
− 1
2

JJ (V21(S ′1S1 − τminIm)V ′21 + τminIm)
−1 V21(S ′1S1 − τminIm)V ′11ω

1
2

µµ.J = Ω
− 1
2

JJ (V22
...

V22,⊥)
(

0
(τminIm−1+B(S′1S1−τminIm)B′)−1B(S′1S1−τminIm)

)
V ′11ω

1
2

µµ.J .

6From (20), we have that (µf (0) − J(0)Ω−1JJωJµ)′Q−1J(0) = ω
1
2

µµ.JV11S ′1S1V ′21Ω
1
2

JJ +

ω
1
2

µµ.JV12S ′2S2V ′22Ω
1
2

JJ = 0 because V11 = 0 and V22 = 0.
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stage estimator (and least squares) are then all identical, see also Andrews (2019):

CUE=2S: θ∗CUE = −Ω−1
JJωJµ = θ∗2s. (22)

Equations (21) and (22) show that the same pseudo-true value of the two-stage estimator

can result from different settings. In (21), the value of the pseudo-true value of the two-stage

estimator merely results since MISS=IS irrespective of by how much the true underlying

misspecification exceeds IS. It induces the orthogonality of the recentered moment vector

and Jacobian which leads to the pseudo-true value of the two stage estimator. In (22),

IS>MISS and the orthogonality of recentered moment vector and the Jacobian is not a

mere consequence of the strengths of misspecification and identification. These two settings

leading to the same pseudo-true value of the two-stage estimator are thus very different

and show that the mapping to obtain the pseudo-true value of the two stage estimator is

not injective. Furthermore, as we show later, the large sample distribution of the two-stage

estimator when MISS=IS is non-standard and depends on nuisance parameters.

Hence, MISS equal to IS indicates identification issues for both the pseudo-true values

of the two stage estimator and the CUE. For the CUE, IS=MISS means that the pseudo-

true value is not identified while for the two stage estimator it implies an a priori known

pseudo-true value which is identical to one which results from orthogonality of the recentered

moment vector and Jacobian when IS>MISS. Tests of identification in misspecified linear

GMM thus boil down to testing the significance of the difference between IS and MISS,

IS-MISS, while in correctly specified GMM, where MISS=0, it only concerns the significance

of IS.

2.1 Misspecification in sample

The moment equations of every over-identified empirical model estimated by GMM are to

some extend misspecified. Alongside the behavior of the pseudo-true values of different esti-
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mators in population, it is therefore important to understand the behavior of the underlying

estimators in sample to see how representative the behavior of the pseudo-true value is. The-

orem 3 therefore states the limiting behavior of the two-step estimator for a setting of weak

misspecification and identification. Weak misspecification implies that the misspecification

for the over-identified model is minor while weak identification indicates that the Jacobian

is relatively small. The paired combination of weak misspecification and identification re-

flects, for example, the diffi culty in linear IV regression models to have instruments that

are both exogenous and correlated with the right hand side endogenous variable. Similarly

in asset pricing, factors are often weakly correlated with asset returns while their betas do

not fully span the cross-section of asset returns. This shows the empirical relevance of joint

weak misspecification and identification. We model it using the commonly employed drifting

sequences that result in parameters that are functions of the sample size N, see e.g. Staiger

and Stock (1997).

Theorem 3. When Assumptions 1 and 2 hold, m = 1 and under the weak identification

and misspecification assumption:

J = J(0) = 1√
N
Q

1
2CΩ

1
2
JJ , µJ = 1√

N
Q

1
2aω

1
2
µµ.J , (23)

where µJ = µ(0) − JΩ−1
JJωJµ and a =

√
NQ−

1
2µJω

− 1
2

µµ.J and C =
√
NQ−

1
2JΩ

− 1
2

JJ are k-

dimensional vectors of finite non-zero constants, the limiting distribution of the two-stage

estimator is characterized by:

θ̂2S − θ∗2s →
d
−Ω

1
2 ′
JJ (C+ψ∗J )′(ψ∗µ+ψ∗J θ̄2s)ω

1
2
µµ.J

Ω
1
2 ′
JJ (C+ψ∗J )′(C+ψ∗J )Ω

1
2 ′
JJ

− Ω
1
2 ′
JJψ

∗′
J (a+Cθ̄2s)ω

1
2
µµ.J

Ω
1
2 ′
JJ (C+ψ∗J )′(C+ψ∗J )Ω

1
2 ′
JJ

, (24)
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with θ∗2s = −Ω−1
JJωJµ − Ω

− 1
2

JJ θ̄2sω
1
2
µµ.J , θ̄2s = − C′a

C′C , ψ
∗
J and ψ∗µ k-dimensional independent

standard normal random vectors, so when C ′a = 0, we have θ̄2s = 0 and:

θ̂2S + Ω−1
JJωJµ →

d
− Ω

1
2 ′
JJ (C+ψ∗J )′ψ∗µω

1
2
µµ.J

Ω
1
2 ′
JJ (C+ψ∗J )′(C+ψ∗J )Ω

1
2
JJ

− Ω
1
2 ′
JJψ

∗′
J aω

1
2
µµ.J

Ω
1
2 ′
JJ (C+ψ∗J )′(C+ψ∗J )Ω

1
2
JJ

. (25)

Proof. see the Appendix.

The limiting distribution of the two-stage estimator in (24) shows its behavior in deviation

of the pseudo-true value, θ∗2s. It consists of two components. The first component shows the

behavior resulting from the weak identification while, because a+Cθ̄2s = a−C(C ′C)−1C ′a,

the second component shows the component implied by the weak misspecification. When

the latter components exceeds the first one, the limiting behavior of the two-stage estimator

primarily results from the misspecification and we cannot conduct inference using the two-

stage estimator in the usual manner. When C ′a = 0, (25) then shows that the conditions

for standard/non-standard inference are in line with the identification conditions for the

pseudo-true value of the CUE:

MISS=IS=C ′C =⇒ a′a ≥ C ′C, C ′a = 0,

IS > MISS =⇒ C ′C > (a+ Cθ̄2s)
′(a+ Cθ̄2s).

(26)

It shows that when IS equals MISS, the limiting behavior of the t-statistic associated with

the two-stage estimator is non-standard and we cannot conduct inference using it. On

the other hand when IS strongly exceeds MISS, inference using the two stage estimator t-

statistic is feasible for which we do have to correct for the misspecification present when

constructing standard errors, see e.g. Hansen and Lee (2021), Lee (2018) and Kan, Robotti

and Shanken (2013). This all shows that the difference between IS and MISS is as indicative

for interpreting the behavior of the two-stage estimator as it is for the (pseudo-true value of

the) CUE. We therefore next provide a generalization of the traditional tests for identification

in correctly specified GMM, i.e. the sample analog of IS, towards tests for identification in
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possibly misspecified GMM based on the difference between IS and MISS, IS−MISS.

3 Empirical importance of IS−MISS identification mea-

sure

To show the empirical relevance of using IS−MISS to signal identification issues instead of

just IS, Figure 1 shows a scatter plot of MISS (=J) and IS statistics for eight well known

specifications of linear asset pricing models: Fama and French (1993), Jagannathan and

Wang (1996), Yogo (2006), Lettau and Ludvigson (2001), Savov (2011), Adrian, Etula, and

Muir (2014), Kroencke (2017) and He, Kelly, and Manela (2017).7 In line with common

practice, we incorporate a, so-called, zero-beta return while the factors and test assets used

in the eight different specifications are:

1. Fama and French (1993), the prominent three, so-called Fama-French, factors: the

market return Rm, SMB (small minus big), and HML (high minus low). We use

quarterly data from Lettau, Ludvigson, and Ma (2019) over 1963Q3 to 2013Q4, so

T = 202, for the three factors, and the twenty-five size and book-to-market sorted

portfolios as test assets.

2. Jagannathan andWang (1996), three factors: Rm, corporate bond yield spread, and per

capita labor income growth. We use their monthly data from July 1963 to December

1990 so T = 330, while one hundred size and beta sorted portfolios are used as test

assets.

3. Yogo (2006), three factors: Rm, durable and nondurable consumption growth. The

sample period is 1951Q1 to 2001Q4 so T = 204, with twenty-five size and book-to-

market sorted portfolios as test assets.
7We thank the authors of Jagannathan and Wang (1996), Yogo (2006), Lettau and Ludvigson (2001),

Savov (2011), and Kroencke (2017) for sharing their data. For the models of Fama and French (1993),
Adrian, Etula, and Muir (2014), and He, Kelly, and Manela (2017), we use the extended data of risk factors
and test assets as in Lettau, Ludvigson, and Ma (2019).
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4. Lettau and Ludvigson (2001), three factors: (lagged) consumption-wealth ratio, con-

sumption growth, and their interaction. We use quarterly data from 1963Q3 to 1998Q3

so T = 141, while the test assets are the twenty-five Fama-French portfolios.

5. Savov (2011), one factor: garbage growth. We use the same annual data, 1960 - 2006,

while the test assets are the twenty-five Fama-French portfolios augmented by the ten

industry portfolios, as suggested by Lewellen, Nagel, and Shanken (2010).

6. Adrian, Etula, and Muir (2014), one factor: leverage. Following Lettau, Ludvigson,

and Ma (2019), we extend the time period to 1963Q3 - 2013Q4, and use twenty-five

size and book-to-market sorted portfolios as test assets.

7. Kroencke (2017), one factor: unfiltered annual consumption growth. We use the post-

war 1960 - 2014 sample from Kroencke (2017), while thirty portfolios, sorted by size,

value and investment alongside the market portfolio, are used as test assets.

8. He, Kelly, and Manela (2017), two factors: banking equity-capital ratio and Rm. The

data are also taken from Lettau, Ludvigson, and Ma (2019) for the period 1963Q3 -

2013Q4, and twenty-five size and book-to-market sorted portfolios are the test assets.
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Figure 1: Scatter plot of MISS (=J) and IS statistics for different specifications
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Notes: Figure 1 shows MISS and IS statistics for eight specifications of linear asset pricing models.
Their associated factors are: Fama and French (1993): market, SMB, and HML; Jagannathan and
Wang (1996): market, corporate bond yield spread, and per capita labor income growth; Yogo
(2006): market, durable and nondurable consumption growth; Lettau and Ludvigson (2001): con-
sumption growth, (lagged) consumption wealth ratio and their interaction; Savov (2011): garbage
growth; Adrian, Etula, and Muir(2014): leverage; Kroencke (2017): unfiltered consumption growth;
He, Kelly, and Manela (2017): market and the banking equity-capital ratio. All specifications in-
corporate the zero-beta return. For detailed descriptions of the risk factors and test assets, we refer
to the published articles.

Because MISS<IS, all scatter points in Figure 1 are below the 45-degree line but their

proximity to it is striking. For all points, the distance to the 45-degree line, which equals

the IS−MISS identification measure, is much smaller than the value of IS. It shows that IS

overstates the identification strength so it is important to use the IS−MISS identification

measure instead.

Table 1 shows the values of the MISS (=J) and IS statistics for specifications that incorpo-

rate or do no incorporate the zero-beta return, λ0. Removing it adds to the misspecification

MISS but increases the traditional measure of identification IS so the net total effect on

the appropriate misspecification measure IS−MISS varies. For some specifications, like, for
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example, Fama and French (1993) and to a lesser extent Kroencke (2017), the net effect on

IS−MISS is substantial but for most others the effect is rather minor which indicates that

identification has not improved by removing the zero-beta return.

Table 1: MISS and IS statistics

Panel A contains the MISS and IS statistics from Figure 1, for which the zero-beta return,
indicated by λ0, is incorporated. In Panel B, the zero-beta return is removed so λ0 = 0.
Significance at 1%, ***; 5%, **; 10%, *.

(A) Impose λ0 = 0: No (B) Impose λ0 = 0: Yes
MISS IS MISS IS

Fama and French (1993) 59.34*** 106.81*** 87.47*** 974.39***
Jagannathan and Wang (1996) 75.07 103.54 86.46 103.56
Lettau and Ludvigson (2001) 31.11* 31.75* 37.15** 40.90**
Yogo (2006) 17.14 17.34 19.42 19.60
Savov (2011) 134.27*** 140.68*** 268.60*** 296.78***
Adrian, Etula, and Muir (2014) 28.42 31.97 30.41 42.03**
Kroencke (2017) 59.84*** 78.47*** 60.03*** 102.77***
He, Kelly, and Manela (2017) 35.32** 35.88** 44.44*** 59.74***

4 Identification testing in weakly identified and mis-

specified linear GMM

In correctly specified linear GMM, the reliability of traditional inference methods depends

on IS which tests identification of the true value. The sample analog of IS is therefore widely

used to test for it, see e.g. Cragg and Donald (1997), Kleibergen and Paap (2006) and Robin

and Smith (2000). In potentially misspecified linear GMM, it is, however, the difference

between IS and MISS that is indicative for identification of the pseudo-true value of the

parameter of interest. Figure 1 shows that IS then often overstates the identification strength

for well known empirical studies when compared to IS−MISS. It is therefore important to

be able to test the hypothesis of no identification in potentially misspecified linear GMM

based on IS−MISS instead of just IS. We therefore next develop tests of no identification
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using IS−MISS. For expository purposes, we do so for increasingly demanding settings of

the number of elements m of θ, the strength of misspecification and the specification of the

covariance matrix V.

4.1 Homoskedasticity, known covariance, m = 1

When IS=MISS, the pseudo-true value θ∗CUE is not identified in misspecified GMM. To cast

no-identification into a testable hypothesis for m = 1, we use that, see Kleibergen (2007):

IS = limθ→∞QCUE(θ). (27)

Under homoskedasticity, the CUE objective function corresponds with (twice) the concen-

trated log-likelihood that results under normally distributed errors in linear models for µ(0)

and J(0). The sample analog of IS−MISS therefore equals the likelihood ratio (LR) statistic

for testing the hypothesis of an infinite value of θ. Because elements of the different test sta-

tistics might become ill defined for an infinite value of the parameter of interest, we use the

invariance of the CUE population objective function to frame the hypothesis of an infinite

value of θ into one of a zero value of the parameter α in an altered moment equation:

µf (θ) = µ(0) + J(0)θ

H0 : θ = ±∞

⇔
 ηf (α) = J(0) + µ(0)α

H0 : α = 0
(28)

with the accompanying CUE population objective function:

QCUE(a) = ηf (a)′
[((a⊗Ikf )

Ikf

)′
V
((a⊗Ikf )

Ikf

)]−1

ηf (a), so IS = QCUE(a = 0). (29)
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Hence, the difference between the sample analogs of IS and MISS equals the LR statistic for

testing H0 : α = 0 :

LR(α = 0) = ÎS− M̂ISS = Q̂CUE(a = 0)−mina∈R Q̂CUE(a), (30)

with ÎS, M̂ISS and Q̂CUE(a) the sample analogs of IS, MISS and QCUE(a) resp..

In correctly specified homoskedastic linear GMM with m = 1, the (asymptotic) con-

ditional critical value function for the LR statistic testing a point null hypothesis on the

structural parameter against a two-sided alternative, is established by Moreira (2003). An-

drews, Moreira and Stock (2006) show that the resulting conditional LR test is optimal.

We, however, use the LR statistic for testing the equality of IS and MISS so we establish a

conditional critical value function for it under IS=MISS. We do so using the specifications

in Theorem 3 and Equation (26) and by respecifying the limit behavior from Assumption 1

into the independent components used for testing H0 : α = 0 by means of weak identification

robust statistics, see e.g. Kleibergen (2005, 2007).

Assumption 1*: Assumptions 1 and 2 imply that the joint limit behavior of µ̂J(0) =

µ̂(0)− Ĵ(0)Ω−1
JJΩJµ and Ĵ(0) is characterized by:

√
N

 µ̂J(0)− µJ
vec(Ĵ(0)− J)

 →
d

 ψµ.J

ψJ

 ,

 ψµ.J

ψJ

 ∼ N(0, diag(ωµµ.J ,ΩJJ)⊗Q),

(31)

with ψµ.J = ψµ − ψJΩ−1
JJΩJµ, ωµµ.J = Ωµµ − ωµJΩ−1

JJωJµ.

Instead of using the asymptotically independent components from Assumption 1∗ to con-
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struct the limiting distribution of LR(α = 0) under our null hypothesis of no identification:

H0 : IS=MISS⇔ H0 : C ′a = 0, a′a ≥ C ′C, (32)

we do so instead for the boundary setting:

H∗0 : C ′C − a′a = 0, C ′a = 0. (33)

The boundary setting similarly implies no identification of the pseudo-true value. Theorem

4 states the limiting distribution of LR(α = 0) under H∗0 for known values of Ω and Q.

Theorem 4: When Assumptions 1, 2, m = 1 and the weak identification and misspecifi-

cation assumptions from Theorem 3 and H ∗0 (33) hold:

LR(α = 0) = 1
2

[
Ĉ ′Ĉ − â′â+

√(
Ĉ ′Ĉ − â′â

)2

+ 4(Ĉ ′â)2

]
→
d

1
2

[
(ψ∗J + C)′(ψ∗J + C)− (ψ∗µ.J + a)′(ψ∗µ.J + a)+√(

(ψ∗J + C)′(ψ∗J + C)− (ψ∗µ.J + a)′(ψ∗µ.J + a)
)2

+ 4
(
(ψ∗J + C)′(ψ∗µ.J + a)

)2
]

→
d

1
2

(
ψ∗J
′ψ∗J − ψ∗′µ.Jψ∗µ.J

)
+ C ′ψ∗J − a′ψ∗µ.J+

1
2

√(
ψ∗′J ψ

∗
J + 2C ′ψ∗J − ψ∗′µ.Jψ∗µ.J − 2a′ψ∗µ.J

)2
+ 4

(
ψ∗′J ψ

∗
µ.J + a′ψ∗J + C ′ψ∗µ.J

)2
,

(34)

with â =
√
NQ−

1
2 µ̂J(0)ω

− 1
2

µµ.J , Ĉ =
√
NQ−

1
2 Ĵ(0)Ω

− 1
2

JJ , C
′a = 0, a′a = C ′C, ψ∗J = Q−

1
2ψJΩ

− 1
2

JJ ∼

N(0, Ikf ), ψ
∗
µ.J = Q−

1
2ψµ.Jω

− 1
2

µµ.J ∼ N(0, Ikf ) and independent of ψ
∗
J .

Proof. The first expression results from solving for the smallest root of the (quadratic)

characteristic polynomial, see Moreira (2003). For the remaining part, see the Appendix.

The functional expression of LR(α = 0) (34) shows that it just consists of sample analogs

of the discrepancy of both elements of our hypothesis of interest (33). The limiting distri-

bution of the LR statistic in Theorem 4 is for the setting of joint weak identification and

misspecification stated in Theorem 3 with known values of the covariances Ω and Q. The lim-
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iting distribution differs when incorporating the estimation error resulting from estimating

these covariances which we discuss later.

The LR statistic is an invariant statistic and therefore, as all invariant statistics are, a

function of the maximal invariant which equals the normalized quadratic form of (µ̂J(0)
...

Ĵ(0)), see Andrews et. al. (2006):

MAXINV = N × Ω−
1
2
′(µ̂

... Ĵ(0))′Q−1(µ̂
... Ĵ(0))Ω−

1
2 = (â

... Ĉ)′(â
... Ĉ) =

(
â′â
Ĉ′â

... â′Ĉ
Ĉ′Ĉ

)
.

(35)

The limiting distribution of the maximal invariant only depends on three population para-

meters: a′a, C ′C and C ′a. In Moreira (2003) and Andrews et. al. (2006), the LR statistic

is used to test a null hypothesis which pins down two of the three parameters on which

the maximal invariant depends, C ′C = 0, a′C = 0, while a suffi cient statistic exists for the

remaining parameter, a′a, which is also asymptotically independent of the other components

of the maximal invariant. They can therefore construct the conditional distribution of the

LR statistic given the realized value of this suffi cient statistic from which the conditional

critical value function for the LR test of their hypothesis of interest results.

We construct a conditional critical value function for our LR statistic for the boundary

non-identified setting (33) which equates two of the three parameters of the maximal invari-

ant: a′a = C ′C, and has the remaining one equal to zero, a′C = 0. To obtain a convenient

conditioning statistic, we transform the components of the maximal invariant to:

MAXINV = (Ĉ ′Ĉ − â′â, Ĉ ′â, â′â+ Ĉ ′Ĉ), (36)

which similarly represents the maximal invariant because any invertible transformation of

the maximal invariant is also a maximal invariant. The reasons for the transformation are

two fold:

1. LR(α = 0) in (34) is only a function of the first two elements of the maximal invariant
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in (36), Ĉ ′Ĉ − â′â, Ĉ ′â, and not of the last element, â′â+ Ĉ ′Ĉ.

2. Under H∗0 (33):

Ĉ ′Ĉ − â′â→
d

C ′C − a′a+ 2
(
C
−a
)′( ψ∗J

ψ∗µ.J

)
+
(

ψ∗J
−ψ∗µ.J

)′( ψ∗J
ψ∗µ.J

)
= 2

(
C
−a
)′( ψ∗J

ψ∗µ.J

)
+
(

ψ∗J
−ψ∗µ.J

)′( ψ∗J
ψ∗µ.J

)
Ĉ ′â→

d
(ψ∗J + C)′(ψ∗µ.J + a) =

(
a
C

)′( ψ∗J
ψ∗µ.J

)
+ ψ∗′J ψ

∗
µ.J

Ĉ ′Ĉ + â′â→
d

C ′C + a′a+ 2
(
C
a

)′( ψ∗J
ψ∗µ.J

)
+
(
ψ∗J
ψ∗µ.J

)′( ψ∗J
ψ∗µ.J

)
,

(37)

and
(
C
−a
)′(C

a

)
= 0,

(
a
C

)′(C
a

)
= 0,

(
a
C

)′( C
−a
)

= 0. The dependence between the different

components in (37) then only results from their last elements which are uncorrelated

but not independent. The first two components of MAXINV (36-37) therefore become

independently distributed from the last component for larger values of a′a = C ′C when

the sample size increases and are approximately independently distributed for smaller

values of a′a = C ′C.

The above two reasons show why

rk = â′â+ Ĉ ′Ĉ, (38)

is a convenient conditioning statistic for computing a conditional critical value function for

LR(α = 0). Because of our different hypothesis of interest, this conditioning statistic is

distinct from the one used for the conditional critical value function of Moreira (2003) which

is also a suffi cient statistic for the remaining population parameter while (38) is not.

The algorithm for computing the conditional critical value function is stated in the Ap-

pendix. By sampling â and Ĉ using ψ∗µ.J and ψ
∗
J for a large range of values of a and C

that satisfy H∗0, it computes the conditional distribution of LR(α = 0) given rk= â′â+ Ĉ ′Ĉ.

The conditional critical value function for conducting a 5% significance test of H∗0 using

LR(α = 0) then corresponds with the 95% percentiles of the computed conditional distrib-
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ution of LR(α = 0) given rk.

The figures in Panel 2 show the computed conditional critical value functions for different

numbers of moment equations and the resulting rejection frequencies when we use them for a

5% significance LR test of no identification as a function of IS=MISS. It is striking how close

these rejection frequencies are to 5%. There is only some very minor overrejection for small

values of IS=MISS which could be removed by further calibrating the conditional critical

value function. Because of the computational ease of our algorithm and just the very small

size distortions it leads to, we, for now, refrain from doing so.

Panel 2. Conditional critical value function for testing H∗0 at the 5% signficance

level using LR(α = 0) as function of rk (38) and the resulting rejection

frequencies for kf = 3 (solid), 10 (dash-dotted) and 25 (dashed).
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Figure 2.1. 95% conditional critical Figure 2.2. Rejection frequencies

value function

The figures in Panel 3 show the power surface of the LR test of no identification. The

conditional critical value function is calibrated to the boundary setting of no identification

H∗0 (33) but our main hypothesis of interest is (32). The power surfaces in Panel 3 show the

rejection frequencies with respect to violation of one of the two components in (32) while the
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other one is kept at the hypothesized value. Figure 3.1, and its contourlines in Figure 3.3,

thus show the power surface of the LR test against violations of C ′C ≤ a′a while C ′a = 0,

and Figure 3.2 shows it again for violations of C ′a = 0 while C ′C = a′a.

Figures 3.1 and 3.3 show that when a′a exceeds C ′C that the LR test of no identification

hardly rejects and rejects 5% for the boundary setting for which the conditional critical value

function is computed. The latter is revealed by the contour line at 5% coinciding with the

450 degree line in Figure 3.3. When C ′C exceeds a′a, Figures 3.1 and 3.3 shows that the LR

test has discriminatory power for rejecting these settings. The contour lines in Figure 3.3

are kind of parallel to the 450 degree line. On lines orthogonal to the 450 degree, a′a+C ′C is

constant and so is then, approximately, the conditioning statistic. The contourlines therefore

show that for constant values of a′a+C ′C, the LR test clearly discriminates between settings

for which C ′C > a′a, for which it mostly rejects, or C ′C < a′a, for which it does not reject.

Figure 3.2 similarly shows that the LR test has discriminatory power for detecting values

of C ′a which differ from zero when a′a = C ′C.
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Panel 3. Power of 5% significance conditional LR no identification test, kf = 3

Figure 3.1 Figure 3.2
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Figure 3.3. contourlines of Figure 3.1 at

1, 5, 10, 15, 20, 40, 60, 80 and 99%.

It is interesting to compare the power of the LR no identification test with other tests

that test part of the null hypothesis of no identification. Panel 4 therefore shows the power

of: 5% signficance LR test of no identification, 5% IS test which equals the F-statistic for

testing J = 0 and 5% MISS test which equals the J-statistic.

Figure 4.1 shows power when there is no misspecification. The IS test is then more

powerful than the LR test while the MISS test rejects at most 5% because there is no
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misspecification. Figure 4.2 has an increased level of misspecification for which the power of

the 5% IS test has not changed compared to Figure 4.1. Up to IS equal to 6 there is, however,

no identification. The rejection frequency of the MISS test at IS=6, is 17% while that of the

IS test is 50% and 5% for the LR test. The IS test therefore overstates the identification

strength while the MISS test has diffi culty detecting misspecification. This is further shown

in Figure 4.3 where the level of misspecification has increased to 10. At MISS=10, the

rejection frequency of the IS test is around 80%, while there is no identification, that of the

MISS is around 45% and of the LR test is still approximately 5%. Figure 4.3 is interesting

because the MISS test still mostly not rejects up to IS=10 at which the IS test rejects

around 80%. The combination of these two tests therefore over states the identification

strength and under states the misspecification which shows the importance of a proper test

for no identification which allows for misspecification like the LR test.
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Panel 4. Power of 5% significance conditional LR no identification test (solid),

IS (dashed) and MISS (dash-dotted) tests, kf = 3
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Figure 4.1. MISS=0, C ′a = 0 Figure 4.2. MISS=6, C ′a = 0
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Figure 4.3. MISS=10, C ′a = 0

Figures 5.1 and 5.2 in Panel 5 show the power surface of the DRLM test proposed in

Kleibergen and Zhang (2023). It is a size correct test of H0 : α = 0 when using χ2(m) critical

values. Since the score of the population objective function is zero when C ′a = 0, power

and size of the DRLM test coincide in Figure 5.1 while it has good power, exceeding that

of the LR test, in Figure 5.2. Similar to the IS test in Figure 4.1, it shows that for specific
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settings, the power of tests of just one component of the composite hypothesis H0 (32) can

exceed that of the LR test but these tests have misleading power or no power when the other

component of the composite hypothesis H0 (32) gets violated.

Panel 5. Power of the 95% significance DRLM of H0 : α = 0, kf = 3

Figure 5.1 Figure 5.2

C ′a = 0 C ′C = a′a, C ′a = w
1+w2

C ′C

The figures in Panels 6 and 7 show the power surfaces of 5% significance IS and MISS

tests for identical settings as for the LR test in Figures 3.1 and 3.2. They clearly show that

both tests do not manage to appropriately test all components of the composite hypothesis

H0 (32).

The power surfaces in Panels 3-7 are for kf = 3 but are representative for other values

of the number of moment equations.
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Panel 6. Power of 5% significance IS no identification test, kf = 3

Figure 6.1 Figure 6.2

C ′a = 0 C ′C = a′a, C ′a = w
1+w2

C ′C

Panel 7. Power of 5% significance MISS misspecification test, kf = 3

Figure 7.1 Figure 7.2

C ′a = 0 C ′C = a′a, C ′a = w
1+w2

C ′C

4.2 Homoskedasticity, unknown covariance, m = 1

In empirical settings, the covariance matrices Ω and Q are unknown so we use consistent

estimators for them. To obtain a conditional critical value function for the LR test of no
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identification, we use the estimators:

Ω̂ = 1
N

∑N
i=1

(
ui
Vi

)(
ui
Vi

)′
=

(
ω̂µµ

ω̂Jµ

...
ω̂µJ

Ω̂JJ

)
Q̂ = 1

N

∑N
i=1 ZiZ

′
i,

(39)

with
(
ui
Vi

)
and Zi iid realizations of m+1 and kf dimensional random vectors with mean zero

and covariance matrices Ω and Q resp.. We respecify them as quadratic forms with respect

to (infeasible) normalized covariance matrix estimators using Cholesky decompositions of Ω

and Q :

Ω̂ = Ω
1
2
′Ω̇Ω

1
2 , Ω̂−1 = Ω−

1
2 Ω̇−1Ω−

1
2
′ = Ω̂−

1
2
′Ω̂−

1
2 , Ω̂−

1
2 = Ω̇−

1
2Ω−

1
2
′,

Q̂ = Q
1
2 Q̇Q

1
2
′, Q̂−1 = Q−

1
2
′Q̇−1Q−

1
2 = Q̂−

1
2
′Q̂−

1
2 , Q̂−

1
2 = Q̇−

1
2Q−

1
2 ,

(40)

so Ω̇ = 1
N

∑N
i=1

(
u̇i
V̇i

)(
u̇i
V̇i

)′
=

(
ω̇µµ

ω̇Jµ

...
ω̇µJ

Ω̇JJ

)
, Q̇ = 1

N

∑N
i=1 ŻiŻ

′
i, with

(
u̇i
V̇i

)
= Ω−

1
2
′(ui
Vi

)
, Żi =

Q−
1
2Zi, and hence have identity covariance matrices. We use (40) to express LR(α = 0)

as a function of a, C and normalized components which converge to standardized random

variables.

Theorem 5: When Assumptions 1 and 2, m = 1 and the weak identification and mis-

specification assumptions from Theorem 3 and H 0 (32) apply, LR(α = 0), which uses the

covariance matrix estimators (39)-(40), can be expressed as:

LR(α = 0) = 1
2

[
Ĉ ′Ĉ − â′â+

√(
Ĉ ′Ĉ − â′â

)2

+ 4
(
Ĉ ′â
)2
]
, (41)

33



with

â =
√
NQ̂−

1
2

(
µ̂f (0)− Ĵ(0)Ω̂−1

JJ ω̂Jµ

)
ω̂
− 1
2

µµ.J

= Q̇−
1
2
′
(

(a− CΩ̇−1
JJ ω̇Jµ) +

(
1√
N

∑N
i=1 Żi(u̇i − V̇ ′i Ω̇−1

JJ ω̇Jµ)
))(

ω̇µµ − ω̇µJΩ̇−1
JJ ω̇Jµ

)− 1
2

Ĉ =
√
NQ̂−

1
2 Ĵ(0)Ω̂

− 1
2

JJ

= Q̇−
1
2
′
(
CΩ̇

− 1
2

JJ + 1√
N

∑N
i=1 ŻiV̇

′
i Ω̇
− 1
2

JJ

)
.

(42)

Proof. see the Appendix.

The expression for LR(α = 0) in Theorem 5 shows that it under H0 (32) only depends on

the length of a and C, which are identical while they are also orthogonal, and the normalized

components: ω̇µµ, ω̇µJ , Ω̇JJ , Q̇ and 1√
N

∑N
i=1 Żi

(
u̇i
V̇i

)′
, which converge to standardized random

variables when the sample size N increases. Since the population values of ω̇µµ, Ω̇JJ , Q̇ and

ω̇µJ , are, resp., one, the identity matrices of dimensions 1 and kf and zero resp., ω̇µJ converges

to zero at rate
√
N when the sample size N grows. The limiting distribution of LR(α = 0)

therefore changes compared to Theorem 4 when, for example, CΩ̇−1
JJ ω̇Jµ remains relevant

when the sample size gets large. The weak identification and misspecification approximation

of the limiting distribution of LR(α = 0) is then only valid when the length of a and C under

H0 (32) are of a smaller order of magnitude than the sample size so C ′C/N = a′a/N → 0

when the sample size grows because of which also CΩ̇−1
JJ ω̇Jµ becomes negligible.

We compute the conditional critical value function using the same conditioning statistic

as for the known homoskedastic covariance setting:

rk = â′â+ Ĉ ′Ĉ. (43)

The conditional critical value function is computed specifically for the sample size under

consideration so all elements that contribute to LR(α = 0) remain relevant. We calibrate

a conditional critical value function for LR(α = 0) by simulating â and Ĉ for a range of

values of the identical lengths of a and C, while they are also orthogonal, and the respective
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sample size N for the data under consideration. Using simulated standardized iid random

variables u̇i, V̇i and Żi for i = 1, . . . , N, we compute â and Ĉ from (42) and construct the

critical value function given rk (43) using the algorithm discussed previously and stated in

the Appendix.8

Figures 8.1 and 8.2 in Panel 8 show the 95% conditional critical value function of the

conditional LR test of (32) given rk (43) for kf = 3, 10, 25 and N = 250 and the rejection

frequencies of using them for a 5% significance LR test of no identification. Compared to

Figure 2.1, Figure 8.1 shows that the 95% conditional critical values are larger for higher

values of the conditioning statistic. For these values, the assumption that C ′C/N = a′a/N →

0, which validates the critical value function in Figure 2.1, is longer accurate. The rejection

frequencies in Figure 8.2 are all close to 5% which shows that the computed conditional

critical value function controls the size of the test.

Because power surfaces for the estimation covariance matrix setting are very similar to

those for the know covariance matrix setting, we, for reasons of brevity, do not show them.

8The conditional critical value function can similarly be computed by resampling the normalized data
using the bootstrap. It is also possible to construct the conditional critical value function using a higher order
approximation which uses the limiting distributions of the (infeasible) normalized covariance estimators. This
higher order approximation equivalently depends on the sample size N.
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Panel 8. Conditional critical value function for testing H∗0 at the 5% signficance level

using LR(α = 0) as function of rk (38) and the resulting rejection frequencies

for k = 3 (solid), 10 (dash-dotted) and 25 (dashed), N = 250.
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Figure 8.1. 95% conditional critical Figure 8.2. Rejection frequencies

value function

4.3 Homoskedasticity, known covariance, m > 1

Form > 1 and homoskedasticity, which implies the KPS covariance matrix from Assumption

2, the difference between the sample analogs of IS and MISS equals the LR statistic that

tests for a zero value of α in the population moment equation:

ηf (α, γ) = J(0)1 + µ(0)α + J(0)2γ, (44)
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with J(0) = (J(0)1
... J(0)2), J(0)1 : kf × 1, J(0)2 : kf × (m− 1), so

LR(α = 0) = ÎS− M̂ISS = ming∈Rm−1 Q̂CUE(a = 0, g)−mina∈R ming∈Rm−1 Q̂CUE(a, g),

for Q̂CUE(a, g) = η̂f (a, g)′




(a⊗ Ikf )

Ikf

(g ⊗ Ikf )


′

V̂


(a⊗ Ikf )

Ikf

(g ⊗ Ikf )



−1

η̂f (a, g),

η̂f (α, γ) = Ĵ(0)1 + µ̂(0)α + Ĵ(0)2γ.

(45)

The moment equation in (44) is normalized using the first column of J(0). The LR statistic

is invariant with respect to this normalization so an identical value results when normalized

using any other column of J(0).

The expression of the LR statistic in (45) is identical to the subset LR statistic for test-

ing one of multiple structural parameters in the homoskedastic linear IV regression model

analyzed in Kleibergen (2021). In Kleibergen (2021), a conditional critical value function

for it is constructed which makes the subset LR test size correct under weak identification

of any of the structural parameters and optimal under strong identification of the partialled

out endogenous variables. The null hypothesis in Kleibergen (2021) under which the con-

ditional critical value function is constructed, however, differs from the one here. We use

the specification from Theorem 3 to specify our hypothesis of interest as a function of the

population parameters to construct a conditional critical value function for the conditional

LR test of no identification.

Theorem 6: Using the specification from Theorem 3, a suffi cient condition for the hypoth-

esis of no identification is:

H0 : IS=MISS⇔ H0 : U ′C,ma = 0 and b′b ≥ IS = s2
C,m, (46)
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with b = U ′C,2a and which results from a singular value decomposition (SVD) of C :

C = UCSCV
′
C , (47)

where UC = (UC,1
... UC,m

... UC,2) is an orthonormal kf × kf dimensional matrix, UC,1 :

kf × (m − 1), UC,m : kf × 1, UC,2 : kf × (kf − m) dimensional matrices, VC is a m × m

dimensional orthonormal matrix and SC is a kf ×m dimensional matrix with the singular

values, sC,1 . . . sC,m, in decreasing order on the main diagonal.

Proof. see the Appendix.

The population value of MISS equals the smallest root of the characteristic polynomial:

∣∣∣∣λΩ−N
(
µf (0) J(0)

)′
Q−1

(
µf (0) J(0)

)∣∣∣∣ = 0 ⇔∣∣∣∣λIm+1 −
(
a C

)′(
a C

)∣∣∣∣ = 0.

(48)

Theorem 6 lays down the conditions for IS, which is the squared smallest singular value of

C, s2
C,m, to be identical to the smallest root of (48). The boundary condition occurs when b

′b

equals IS and U ′C,ma = 0. It results in both the smallest and second smallest characteristic

roots of (48) to be equal to IS:

H∗0 : λaC,m = λaC,(m+1) = IS, (49)

with λaC,(m+1) and λaC,m the smallest and second smallest root of (48). Compared to the
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boundary setting under m = 1 H∗0 (33), the boundary setting for m larger than one is:

Boundary non-identified setting for m = 1 compared to m > 1 :

m = 1 m > 1

H∗0 : C ′C − a′a = 0 s2
C,m − b′b = 0

C ′a = 0 U ′C,ma = 0

Conditioning statistic Ĉ ′Ĉ + â′â M̂ISS+ λ̂aC,m

Population value conditioning statistic C ′C + a′a b′b+ λaC,m

(50)

The LR statistic, LR(α = 0), equals the difference between IS and MISS:

LR(α = 0) = ÎS− M̂ISS. (51)

Under H∗0 and for m = 1, the smallest two roots of (48) are a′a and C ′C, in either order

because C ′a = 0, and they equal IS which is computed just using C, IS=C ′C. Under H∗0 and

for m larger than one, the smallest two roots of (48) are also both equal to IS. The sample

analog of their sum is similarly approximately independent of the sample analog of their

difference as for Ĉ ′Ĉ + â′â compared to Ĉ ′Ĉ − â′â (37) which we used for the conditioning

statistic when m = 1. We therefore use

rk = M̂ISS+ λ̂aC,m, (52)

with λ̂aC,m the second smallest characteristic root of the sample analog of (48), which equals

the squared second smallest singular value of (â
... Ĉ), as conditioning statistic for larger

values of m.

We compute the conditional critical value function identical to the one structural para-

meter setting, m = 1. The null distribution accords with Theorem 6 where we also use large

values for the second smallest to largest singular values of C. We do so because Kleibergen

(2021) shows that the distribution of LR(α = 0) is a non-decreasing function of them. Fig-
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ure 9.1 shows the 95% conditional critical value function when m = 3 and kf = 5, 10 and

25. Figure 9.2 shows that these conditional critical values control the size of a 5% LR no

identification test because the rejection frequencies are all close to 5%. It shows that the

conditioning statistic (52) and the resulting conditional critical value function work well.

Figure 2 uses large values for the larger singular values of C. Figure 9.3 shows the sensitivity

of the LR no identification test using a conditional critical value function computed for large

values of the second smallest to largest singular value of C when the actual singular values

are (much) smaller. The rejection frequencies in Figure 9.3 are all below 5% so the condi-

tional critical value function also makes the size of the LR no identification test controlled

for smaller singular values of C.
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Panel 9. Conditional critical value function for testing H∗0 at the 5% signficance level

using LR(α = 0) as function of rk (38) and the resulting rejection frequencies

for k = 5 (solid), 10 (dash-dotted) and 25 (dashed), m = 3.
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Figure 9.1. 95% conditional critical value function Figure 9.2. Rejection frequencies

Figure 9.3. Rejection frequency surface as function of

larger singular values of C, m = 3, kf = 10.

The figures in Panel 10 show the power of a 5% significance LR no identification test.

Figure 10.1 shows the power surface when we vary b′b and s2
C,m while U

′
C,ma = 0. Figure 10.2

shows the contour lines of the power surface in Figure 10.1. It shows that the 5% rejection

frequency contour line coincides with the 450 line. Under H0, the population value of the
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conditioning statistic corresponds with b′b+ s2
m whose equivalue lines are orthogonal to the

450 line which further explains the choice of this conditioning statistic. It shows that power

is (locally) maximized along the line of constant values of the conditioning statistic.

Panel 10. Power of 5% significance conditional LR no identification test, m = 3, kf = 10
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Figure 10.1 Figure 10.2

U ′C,ma = 0 contourlines at 1, 5, 10, 15,

20, 40, 60, 80 and 99%.

4.4 Homoskedasticity, unknown covariance, m > 1

For homoskedasticity withm larger than one, we use the covariance matrix estimators in (39)

which we again specify as quadratic forms. We use (40) to express LR(α = 0) as a function

of a, C and normalized components which converge to standardized random variables.

Theorem 7: When Assumptions 1 and 2 and the weak identification and misspecification

assumptions from Theorem 3 and H ∗0 (50) apply, LR(α = 0), which uses the covariance

matrix estimators (39)-(40), can be expressed as:

LR(α = 0) = ÎS− M̂ISS, (53)
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where ÎS and M̂ISS are the smallest characteristic roots of resp.:

∣∣∣λIm − Ĉ ′Ĉ∣∣∣ = 0,∣∣∣∣τIm+1 −
(
â
... Ĉ
)′(

â
... Ĉ
)∣∣∣∣ = 0,

(54)

with

â =
√
NQ̂−

1
2

(
µ̂f (0)− Ĵ(0)Ω̂−1

JJ ω̂Jµ

)
ω̂
− 1
2

µµ.J

= Q̈
1
2

[
(ȧ− SCΩ̈−1

JJ ω̈Jµ)ω̇
− 1
2

µµ.J +
(

1√
N

∑N
i=1 Z̈i(u̇i − V̈iΩ̈−1

JJ ω̈Jµ)ω̇
− 1
2

µµ.J

)
Ĉ =

√
NQ̂−

1
2 Ĵ(0)Ω̂

− 1
2

JJ

= Q̈
1
2

[
SCΩ̈

− 1
2

JJ +
(

1√
N

∑N
i=1 Z̈iV̈

′
i Ω̈
− 1
2

JJ

)]
,

(55)

and ȧ = U ′Ca, Z̈i = U ′CZ̈i, Q̈ = U ′CQ̇UC = 1
N

∑N
i=1 Z̈iZ̈

′
i, Q̈

− 1
2 = Q̇−

1
2UC , V̈i = V ′C V̇i, Ω̈JJ =

V ′CΩ̇JJVC , so Ω̈−1
JJ = (V ′CΩ̇JJVC)−1 = V −1

C Ω̇JJV
′−1
C = V ′CΩ̇JJVC because VC is orthonormal

V −1
C = V ′C , and ω̈Jµ = V ′Cω̇Jµ.

Proof. see the Appendix.

The expressions for â and Ĉ in (55) are similar to those in (42) and differ only because

the normalized covariance matrix estimators involved in (55) are quadratic forms of the

eigenvectors of the singular values resulting from the SVD of C in (47) with respect to the

normalized covariance matrix estimators used in (42). Because these eigenvectors are all

orthonormal, the population value of the normalized covariance matrix estimators in (55)

remains the identity matrix.

Theorem 7 shows that the large sample behavior of LR(α = 0) only depends on ȧ, the m

singular values of C present in SC and the standardized random variables ω̇µµ.J , ω̇Jµ, Ω̇JJ

and ( 1√
N

∑N
i=1 Z̈i(u̇i

... V̈i)′). The boundary setting of no identification H∗0 remains identical

to (50).

For the known homoskedastic covariance matrix setting, we obtained a conditional critical

value function for the LR test of no identification by setting the larger singular values of C,
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(sC,1 . . . sC,m−1), to (very) large numbers, see Figures 9.1-10.2. The known covariance matrix

setting corresponds with values of Q̈, Ω̈JJ and ω̇µµ equal to identity matrices and one resp.,

and ω̈Jµ equal to zero in â and Ĉ in (55). The infeasible covariance estimators converge

to these values at rate
√
N so for the conditional critical values from the known covariance

matrix setting to apply, the larger singular values have to be such that SC/
√
N becomes

negligible and C/
√
N as well. Hence also the larger singular values have to be small relative

to
√
N for the known covariance matrix setting to result in conditional critical values that

lead to a size correct LR test of no identification.

Theorem 7 shows the spill over of the larger singular values of C present in SC to â

which did not occur for the known homoskedastic covariance matrix case. To compute the

conditional critical value function for the empirical application of interest, we therefore need

to estimate the second smallest to largest singular values in SC and U ′C,1a, i.e. the part

of a that is spanned by the eigenvectors of the second smallest to largest singular values.

Hence, we compute SC , U ′C,1a and use the specific sample size N. Next, we generate iid mean

zero, identity covariance matrix realizations of u̇i, V̈i and Z̈i, i = 1, . . . , N, which we use to

compute â and Ĉ for a range of values of b′b = s2
C,m. We then compute conditional critical

values using the algorithm in the Appendix given:

rk = M̂ISS+ λ̂aC,m, (56)

with M̂ISS and λ̂aC,m, the smallest and second smallest characteristic roots of the charac-

teristic polynomial on the bottom line of (54). These are also computed from the simulated

realizations.

For the Fama-French (1993) three factor model with and without the zero-β return using

data from Lettau et al. (2018), Figure 11.1 in Panel 11 shows the 95% conditional critical

value functions that result when incorporating the zero-β return or not. Figure 11.1 shows

that these critical value function are basically identical but differ from the one which would
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result when we ignore the estimation error that results from the covariance matrix estimators.

Figure 11.2 in Panel 11 shows the resulting rejection frequencies which are very close to 5%

for both specifications. Figure 11.2 also shows that usage of the conditional critical value

function that does not incorporate the estimation error from the covariance matrix estimators

leads to considerable size distortion.

Panel 11. Conditional critical value function for testing H∗0 at the 5% signficance level

using LR(α = 0) as function of rk (38) calibrated to Fama-French (1993)

three factor model with zero-β return (solid), without (dash-dotted), kf = 25, m = 3,

N = 201 (solid) and known covariance (dashed) and resulting rejection frequencies
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Panel 12. Power of 5% significance conditional LR no

identification test calibrated to FF93, m = 3, kf = 25, λ0 6= 0
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U ′C,ma = 0 contourlines at 1, 5, 10, 15, 20,

40, 60, 80 and 99%.

The figures in Panel 12 illustrate the power of the LR test of no identification calibrated

to the Fama and French three factor model with the zero-β return and using the Lettau et

al. (2018) data. Figure 12.1 shows the power surface over IS and MISS, while U ′C,ma = 0,

and Figure 12.2 shows the accompanying contour lines. It shows that the contourline at 5%

is very close to the 450 degree line, where IS=MISS, and the equivalue lines of the population

value of the conditioning statistic are orthogonal to it.

Table 2 shows the results of the LR no identification test for the Fama-French three factor

model using data from Lettau et al. (2018). Both for the specifications with and without the

zero-β return, the IS and MISS statistics are strongly significant which gives the impression

that the risk premia are identified in either specification while they are also misspecified. For

the specification which includes the zero-β return, the proper LR no-identification test is,

however, not significant at the 5% level but just at the 10% level. It shows that we can not

reject no identification with 5% significance. For the specification which does not include

the zero-β return, the risk premia are well identified as reflected by the very large value of

the LR statistic.
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Table 2: LR test of no identification for Fama-French (1993) data with

market, HML and SMB factors. Significance at 1%,***; 5%,**; 10%,*

λ0 6= 0 λ0 = 0

ÎS 106.8∗∗∗ 974.4∗∗∗

M̂ISS 59.3∗∗∗ 87.8∗∗∗

LR(α = 0) = ÎS− M̂ISS 47.5∗ 887∗∗∗

Conditioning statistic: M̂ISS+ λ̂aC,m 182.3 1109

95% conditional critical value 50.3 215.8

5 General covariance, m = 1

We next analyze how we can reflect the null hypothesis of equal values of MISS and IS as

a function of the population parameters for a setting with a general covariance structure,

weak identification and misspecification and one structural parameter of interest, so m = 1.

We aim to pin down the setting of the parameters in Assumptions 1 and 1∗ that lead to

equality of IS and MISS in order to establish a limiting distribution of the different statistics

under our hypothesis of interest. No identification of θ implies that both the derivative and

Hessian of the CUE population objective function are equal to zero at α = 0. Theorem 6

states them at the hypothesized value of the parameter of interest, H0 : α = 0.

Theorem 8: When Assumption 1 holds, m = 1 and using an extension of the weak iden-

tification and misspecification assumption (23):

J = J(0) = 1√
N
V

1
2
JJC, µJ = 1√

N
V

1
2
µµ.Ja ⇔

C =
√
NV

− 1
2

JJ J, a =
√
NV

− 1
2

µµ.JµJ =
√
NV

− 1
2

µµ.Jµ(0)− V −
1
2

µµ.JVµJV
− 1
2
′

JJ C
(57)
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for µJ = µ(0) − VµJV −1
JJ J(0), Vµµ.J = Vµµ − VµJV −1

JJ V
′
µJ , VJJ.µ = VJJ − VµJV −1

µµ VJµ, and C

and a finite non-zero k-dimensional vectors, we can express the first order condition and

(scaled) Hessian at H 0 : α = 0 as:

N
2
∂
∂α
QCUE(α = 0) = a′V

1
2
′

µµ.JV
− 1
2
′

JJ C = a′B′C = a∗′SBC
∗ = 0

N
2

∂2

(∂α)2
QCUE(α = 0) = a′V

1
2
′

µµ.JV
−1
JJ V

1
2
µµ.Ja− C ′V

− 1
2

JJ Vµµ.JV
− 1
2
′

JJ C − 2a′V
1
2
′

µµ.JV
−1
JJ V

′
µJV

− 1
2
′

JJ C

= a′B′Ba− C ′BB′C − 2a′B′D′B′C

= a∗′S2
Ba
∗ − C∗′S2

BC
∗ − 2a∗′SBU

′
BVDSDU

′
DVBSBC

∗

= (SBa
∗ − U ′BVBSDU ′DVBSBC∗)′(SBa∗ − U ′BVBSDU ′DVBSBC∗)−

C∗′SBV
′
BUD(Ikf + S2

D)U ′DVBSBC
∗

(58)

with B = V
− 1
2

JJ V
1
2
µµ.J = UBSBV

′
B, D = V

− 1
2

µµ.JVµJV
− 1
2

JJ = UDSDV
′
D, a

∗ = V ′Ba, C
∗ = U ′BC, with

UB, UD, VB, VD orthonormal kf × kf dimensional matrices and SB and SD the kf × kf

dimensional diagonal matrix with the singular values of B and D in decreasing order on the

main diagonal.

Proof. see the Appendix.

The specification of the first order condition and Hessian in Theorem 8 shows the diffi culty

of pinning down the population parameter setting(s) where the Hessian equals zero when

the covariance matrix does not have a KPS structure. When the covariance matrix has

a KPS structure, so Vµµ = ωµµQ, VJJ = ωJJQ, VµJ = ωµJQ, Vµµ.J = ωµµ.JQ, ωµµ.J =

ωµµ − ωµJω−1
JJω

′
µJ , the first order condition at α = 0,

(ωµµ.J
ωJJ

) 1
2a′C = 0, further implies that

the Hessian at α = 0 corresponds with:

N
2

∂2

(∂α)2
QCUE(α = 0) =

ωµµ.J
ωJJ

(
a− ωµJ√

ωµµ.JωJJ
C
)′ (

a− ωµJ√
ωµµ.JωJJ

C
)
−

ωµµ.J
ωJJ

C ′C
(

1 +
ω2µJ

ωµµ.JωJJ )

)
=

ωµµ.J
ωJJ

(a′a− C ′C),

(59)

so a zero value of the derivative and Hessian imply that a′C = 0 and a′a = C ′C. Hence, the
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first order condition and Hessian at α = 0 can be expressed as functions of the small number

of parameters on which the maximal invariant depends: a′C, a′a and C ′C, which similarly

applies to the condition that IS equals MISS. The population value of the conditioning

statistic equals a′a + C ′C so it provides an (almost asymptotically independent) estimator

of the remaining nuisance parameter, (double) the length of a′a and C ′C.

For a non-KPS covariance matrix, we have to use the data at hand to obtain the nuisance

parameters appearing in (58): B and D which can equivalently be represented by SB, UB,

VB and SD, UD, VD.We can then set a value of a∗ and solve for the value of C∗ which makes

(58) hold. Using these, we can simulate data and obtain realized values of M̂ISS and ÎS,

while the sample analog of

rk= (SBa
∗ − U ′BVBSDU ′DVBSBC∗)′(SBa∗ − U ′BVBSDU ′DVBSBC∗)+

C∗′SBV
′
BUD(Ikf + S2

D)U ′DVBSBC
∗,

(60)

could serve as a conditioning statistic. This all shows that while the extension to more general

covariance matrices is empirically very relevant, it is also faces considerable challenges which

we leave for important future work.

6 Conclusions

The widely employed Jacobian rank tests do not test the appropriate hypothesis of no-

identification of the structural parameters in potentially misspecified linear GMM. We pro-

pose a conditional LR test of no-identification which does. For applications, alongside its

conditioning statistic, the conditional critical value function depends on the sample size at

hand and a few consistently estimable nuisance parameters. When applying the conditional

LR no-identification test for linear asset pricing, we find that for some well known specifica-

tions the hypothesis of no-identification can not be rejected at the 5% signficance level.

The conditional critical value function is constructed for a setting of homoskedasticity.
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In future work, we plan to extend it to more general covariance structure. Because the

null distribution then depends on more parameters, for reasons of brevity, we refrained from

doing so in the current paper.
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Appendix

Proof of Theorem 1: We first specify:

U1S1V ′1 = (U1S1V ′11

... U1S1V ′21) = Q−
1
2D∗

(
−θ∗ ... Im

)
Ω−

1
2 ,

so using a Cholesky decomposition of Ω−
1
2 : ω
− 1
2

µµ.J 0

−Ω−1
JJωJµω

− 1
2

µµ.J Ω
− 1
2

JJ

 ,

with ωµµ.J = ωµµ − ωµJΩ−1
JJωJµ, from which the specifications of D∗ and θ∗ result:

U1S1V ′21 = Q−
1
2D∗Ω

− 1
2

JJ ⇔
D∗ = Q

1
2U1S1V ′21Ω

1
2
JJ

U1S1V ′11 = Q−
1
2D∗(−θ∗ − Ω−1

JJωJµ)ω
− 1
2

µµ.J ⇔
U1S1V ′11 = U1S1V ′21Ω

1
2
JJ(−θ∗ − Ω−1

JJωJµ)ω
− 1
2

µµ.J ⇔
Ω

1
2
JJ(θ∗ + Ω−1

JJωJµ)ω
− 1
2

µµ.J = −V ′−1
21 V ′11 ⇔

θ∗ = −Ω
− 1
2

JJ V ′−1
21 V ′11ω

1
2
µµ.J − Ω−1

JJωJµ

= −Ω−1
JJωJµ + Ω

− 1
2

JJ V22V−1
12 ω

1
2
µµ.J

since V ′11V12 + V ′21V22 = 0, so −V ′−1
21 V ′11 = V22V−1

12 , −V11V−1
21 = V−1′

12 V ′22.

We next specify:

U2S2V ′2 = Q
1
2D∗⊥λ

(
−θ∗ ... Im

)
⊥

Ω
1
2 ,

so using

U =

(
U11 U12

U21 U22

)
, and V =

(
V11 V12

V21 V22

)
,

where U11, V21 are m×m dimensional matrices; V ′11, V22 are m× 1 dimensional vectors, U12,

U21, and U22 are m× (kf −m), (kf −m)×m and (kf −m)× (kf −m) dimensional matrices

and V12 is a scalar, U1 =
(U11
U21

)
, U2 =

(U12
U22

)
. A convenient specification of D∗⊥, which also
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satisfies D
∗′
⊥QD

∗
⊥ ≡ Ikf−m, is:

D∗⊥ = Q−
1
2

(
−U ′−1

11 S−1
1 V−1

21 Ω
− 1
2

JJ Ω
1
2
JJV21S1U ′21

Ikf−m

)
( −U ′−1

11 S−1
1 V−1

21 Ω
− 1
2

JJ Ω
1
2
JJV21S1U ′21

Ikf−m

)′
(
−U ′−1

11 S−1
1 V−1

21 Ω
− 1
2

JJ Ω
1
2
JJV21S1U ′21

Ikf−m

)]− 1
2

= Q−
1
2

(
−U ′−1

11 U ′21

Ikf−m

)( −U ′−1
11 U ′21

Ikf−m

)′(
−U ′−1

11 U ′21

Ikf−m

)− 1
2

= Q−
1
2

(
U12U−1

22

Ikf−m

)( U12U−1
22

Ikf−m

)′(
U12U−1

22

Ikf−m

)− 1
2

= Q−
1
2

(
U12U−1

22

Ikf−m

)
(Ikf−m + U−1′

22 U ′12U12U−1
22 )−

1
2

= Q−
1
2

(
U12

U22

)
U−1

22 (U−1′
22 (U ′12U12 + U ′22U22)U−1

22 )−
1
2

= Q−
1
2

(
U12

U22

)
U−1

22 (U−1′
22 U−1

22 )−
1
2

= Q−
1
2

(
U12

U22

)
U−1

22 (U22U ′22)
1
2

= Q−
1
2U2U−1

22 (U22U ′22)
1
2

since U ′11U12 + U ′21U22 = 0 (because of the orthogonality of U), U12U−1
22 = −U ′−1

11 U ′21, and

U ′12U12 + U ′22U22 = Ikf−m.

Similarly, since
(
−θ∗ ... Im

)
⊥

=
[(

1
θ∗

)′
Ω
(

1
θ∗

)]− 1
2 ( 1

θ∗

)′
, so

(
−θ∗ ... Im

)
⊥

Ω

(
−θ∗ ... Im

)′
⊥

=

1, and using that

Ω
1
2 =

 ω
1
2
µµ.J ωµJΩ

− 1
2

JJ

0 Ω
1
2
JJ

 ,

54



we have that(
−θ∗ ... Im

)
⊥

Ω
1
2 =

[(
1
θ∗

)′
Ω
(

1
θ∗

)]− 1
2 ( 1

θ∗

)′
Ω

1
2

=
[(

1
θ∗

)′
Ω
(

1
θ∗

)]− 1
2

(1
...− ω

1
2
µµ.JV11V−1

21 Ω
− 1
2

JJ − ωµJΩ−1
JJ) ω

1
2
µµ.J ωµJΩ

− 1
2

JJ

0 Ω
1
2
JJ


=

[(
1
θ∗

)′
Ω
(

1
θ∗

)]− 1
2
ω
1
2
µµ.J(1

... − V11V−1
21 )

=

[
(1
... − V11V−1

21 )(1
... − V11V−1

21 )′
]− 1

2

(1
... − V11V−1

21 )

=

[
(1
... V−1′

12 V ′22)(1
... V−1′

12 V ′22)′
]− 1

2

(1
... − V−1′

12 V ′22)

= (V−1′
12 (V ′12V12 + V ′22V22)V−1

12 )−
1
2V−1′

12

(
V ′12

... V ′22

)
= (V−1′

12 V−1
12 )−

1
2V−1′

12

(
V ′12

... V ′22

)
Ω−

1
2

= (V12V ′12)
1
2V−1′

12 V ′2

since V ′11V12 +V ′21V22 = 0, so −V ′−1
21 V ′11 = V22V−1

12 , −V11V−1
21 = V−1′

12 V ′22, and V ′12V12 +V ′22V22 =

1, from which it then results that

λ = (U22U ′22)−
1
2U22S2V ′12(V12V ′12)−

1
2 .

We show the equivalence with the k-class expression for the pseudo-true value θ∗ :

θ∗ = (J(0)′Q−1J(0)− τΩJJ)−1(J(0)′Q−1µf (0)− τωJµ)

= Ω
− 1
2

JJ (Ω
− 1
2
′

JJ J(0)′Q−1J(0)Ω
− 1
2

JJ − τIm)−1(Ω
− 1
2
′

JJ J(0)′Q−1µf (0)− τΩ
− 1
2
′

JJ ωJµ)

where τ = 0 leads to the two stage estimator and τ equal to the smallest root, τmin, of the

characteristic polynomial∣∣∣∣τΩ− (µf (0)
... J(0))′Q−1(µf (0)

... J(0))

∣∣∣∣ = 0,

provides the CUE. The singular value decomposition of (µf (0)
... J(0)) shows that τmin =

S ′2S2 = λ′λ.
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According to the singular value decomposition:

Q−
1
2

(
µf (0)− J(0)Ω−1

JJωJµ
)
ω
− 1
2

µµ.J = US
(
V11 V12

)′
⇔

Q−
1
2µf (0) = Q−

1
2J(0)Ω−1

JJωJµ + US
(
V11 V12

)′
ω
1
2
µµ.J ⇔

µf (0) = J(0)Ω−1
JJωJµ +Q

1
2 (U1S1V ′11 + U2S2V ′12)ω

1
2
µµ.J

Q−
1
2J(0)Ω

− 1
2

JJ = US
(
V21 V22

)′
⇔

= U1S1V ′21 + U2S2V ′22

Ω
− 1
2
′

JJ J(0)′Q−1J(0)Ω
− 1
2

JJ = V21S ′1S1V ′21 + V22S ′2S2V ′22

= V21S ′1S1V ′21 + τminV22V ′22 ⇔
= V21(S ′1S1 − τminIm)V ′21 + τmin(V21V ′21 + V22V ′22) ⇔
= V21(S ′1S1 − τminIm)V ′21 + τminIm,

Ω
− 1
2
′

JJ J(0)′Q−1J(0)Ω
− 1
2

JJ + Im = V21(S ′1S1 − τminIm)V ′21 + (τmin + 1)Im

since V21V ′21 +V22V ′22 = Im, which shows that when V21 is of reduced rank, like, for example,

zero, τmin is one of the characteristic roots/eigenvalues of Ω
− 1
2
′

JJ J(0)′Q−1J(0)Ω
− 1
2

JJ .

We first construct the expression for the pseudo-true value of the two stage estimator

θ∗2s :

J(0)′Q−1µf (0) =
[
Q−

1
2J(0)

]′ [
Q−

1
2µf (0)

]
= J(0)′Q−1J(0)Ω−1

JJωJµ + Ω
1
2
JJ [U1S1V ′21 + U2S2V ′22]′

[U1S1V ′11 + U2S2V ′12]ω
1
2
µµ.J

= J(0)′Q−1J(0)Ω−1
JJωJµ + Ω

1
2
JJV21S ′1S1V ′11ω

1
2
µµ.J+

Ω
1
2
JJV22S ′2S2V ′12ω

1
2
µµ.J

= J(0)′Q−1J(0)Ω−1
JJωJµ + Ω

1
2
JJV21S ′1S1V ′11ω

1
2
µµ.J+

τminΩ
1
2
JJV22V ′12ω

1
2
µµ.J

= J(0)′Q−1J(0)Ω−1
JJωJµ + Ω

1
2
JJV21(S ′1S1 − τmin)V ′11ω

1
2
µµ.J

θ∗2s = −(J(0)′Q−1J(0))−1J(0)′Q−1µf (0)

= −Ω−1
JJωJµ−

Ω
− 1
2

JJ (V21(S ′1S1 − τminIm)V ′21 + τminIm)−1 V21(S ′1S1 − τmin)V ′11ω
1
2
µµ.J

= −Ω−1
JJωJµ − Ω

− 1
2

JJ (V21S ′1S1V ′21 + τminV22V ′22)−1 (V21S ′1S1V ′11 + τminV22V ′12)ω
1
2
µµ.J

since V21V ′11 + V22V ′12 = 0, so V22V ′12 = −V21V ′11.
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The pseudo-true value of CUE can be specified as

θ∗CUE = −Ω
− 1
2

JJ (Ω
− 1
2
′

JJ J(0)′Q−1J(0)Ω
− 1
2

JJ − τminIm)−1(Ω
− 1
2
′

JJ J(0)′Q−1µf (0)− τΩ
− 1
2
′

JJ ωJµ)

= −Ω
− 1
2

JJ (Ω
− 1
2
′

JJ J(0)′Q−1J(0)Ω
− 1
2

JJ − τminIm)−1[
Ω
− 1
2

JJ J(0)′Q−1

(
J(0)Ω−1

JJωJµ + US
(
V11 V12

)′
ω
1
2
µµ.J

)
− τminΩ

− 1
2
′

JJ ωJµ

]
= −Ω

− 1
2

JJ (Ω
− 1
2
′

JJ J(0)′Q−1J(0)Ω
− 1
2

JJ − τminIm)−1
(

Ω
− 1
2

JJ J(0)′Q−1J(0)Ω
− 1
2

JJ − τminIm

)
Ω
− 1
2
′

JJ ωJµ−

Ω
− 1
2

JJ (Ω
− 1
2
′

JJ J(0)′Q−1J(0)Ω
− 1
2

JJ − τminIm)−1Ω
− 1
2

JJ J(0)′Q−
1
2US

(
V11 V12

)′
ω
1
2
µµ.J

= −Ω−1
JJωJµ − Ω

− 1
2

JJ

[
(U1S1V ′21 + U2S2V ′22)′ (U1S1V ′21 + U2S2V ′22)− τminIm

]−1

(U1S1V ′21 + U2S2V ′22)′ (U1S1V ′11 + U2S2V ′12)ω
1
2
µµ.J

= −Ω−1
JJωJµ − Ω

− 1
2

JJ [V21S ′1S1V ′21 + V22S ′2S2V ′22 − τminIm]−1 (V21S ′1S1V ′11 + V22S ′2S2V ′12)ω
1
2
µµ.J

= −Ω−1
JJωJµ − Ω

− 1
2

JJ [V21(S ′1S1 − τminIm)V ′21 + τmin(V21V ′21 + V22V ′22 − Im)]−1

(V21S ′1S1V ′11 + V22S ′2S2V ′12)ω
1
2
µµ.J

= −Ω−1
JJωJµ − Ω

− 1
2

JJ [V21(S ′1S1 − τminIm)V ′21]−1 (V21S ′1S1V ′11 + V22S ′2S2V ′12)ω
1
2
µµ.J

= −Ω−1
JJωJµ − Ω

− 1
2

JJ V−1′
21 (S ′1S1 − τminIm)

(
S ′1S1V ′11 + V−1

21 V22S ′2S2V ′12

)
ω
1
2
µµ.J

= −Ω−1
JJωJµ − Ω

− 1
2

JJ V−1′
21 (S ′1S1 − τminIm)

(
S ′1S1V ′11 − τminV ′11V ′−1

12 V ′12

)
ω
1
2
µµ.J

= −Ω−1
JJωJµ − Ω

− 1
2

JJ V−1′
21 (S ′1S1 − τminIm)(S ′1S1 − τminIm)V ′11ω

1
2
µµ.J

= −Ω−1
JJωJµ − Ω

− 1
2

JJ V−1′
21 V ′11ω

1
2
µµ.J = −Ω−1

JJωJµ + Ω
− 1
2

JJ V22V−1
12 ω

1
2
µµ.J ,

since V21V ′21 + V22V ′22 = Im and V21V ′11 + V22V ′12 = 0, so V−1
21 V22 = −V ′11V ′−1

12 .

The pseudo-true value of the least squares estimator, which results from the expression

of the k-class estimator (10) when τ = −1, reads:

θ∗ls = −(J(0)′Q−1J(0) + ΩJJ)−1(J(0)′Q−1µf (0) + τωJµ)

= −Ω
− 1
2

JJ (Ω
− 1
2
′

JJ J(0)′Q−1J(0)Ω
− 1
2

JJ + Im)−1(Ω
− 1
2
′

JJ J(0)′Q−1µf (0) + Ω
− 1
2
′

JJ ωJµ)

= −Ω
− 1
2

JJ (Ω
− 1
2
′

JJ J(0)′Q−1J(0)Ω
− 1
2

JJ + Im)−1(Ω
− 1
2
′

JJ J(0)′Q−1J(0)Ω
− 1
2

JJ + Im)Ω
− 1
2
′

JJ ωJµ+

−Ω
− 1
2

JJ (Ω
− 1
2
′

JJ J(0)′Q−1J(0)Ω
− 1
2

JJ + Im)−1(Ω
− 1
2
′

JJ J(0)′Q−
1
2 (U1S1V ′11 + U2S2V ′12)ω

1
2
µµ.J

= −Ω−1
JJωJµ − Ω

− 1
2

JJ (Ω
− 1
2
′

JJ J(0)′Q−1J(0)Ω
− 1
2

JJ + Im)−1

[U1S1V ′21 + U2S2V ′22]′ [U1S1V ′11 + U2S2V ′12]ω
1
2
µµ.J

= −Ω−1
JJωJµ − Ω

− 1
2

JJ (Ω
− 1
2
′

JJ J(0)′Q−1J(0)Ω
− 1
2

JJ + Im)−1

(V21S ′1S1V ′11 + V22S ′2S2V ′12)ω
1
2
µµ.J

= −Ω−1
JJωJµ − Ω

− 1
2

JJ (Ω
− 1
2
′

JJ J(0)′Q−1J(0)Ω
− 1
2

JJ + Im)−1

(V21S ′1S1V ′11 + τminV22V ′12)ω
1
2
µµ.J

= −Ω−1
JJωJµ − Ω

− 1
2

JJ (V21(S ′1S1 − τmin)V ′21 + (τmin + 1)Im)−1V21(S ′1S1 − τminIm)V ′11ω
1
2
µµ.J
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When the smallest singular value only loads on the Jacobian: V ′22V22 = 1. The ortho-

normality of V states that V ′V = VV ′=Im+1 : V ′11V11 + V ′21V21 = Im, V ′12V12 + V ′22V22 = 1,

V ′11V12 + V ′21V22 = 0, V11V ′11 + V12V ′12 = 1, V21V ′21 + V22V ′22 = Im, V21V ′11 + V22V ′12 = 0, so

when V ′22V22 = 1, V12 = 0, since V12 is a scalar which next implies V11V ′11 = 1 and that

V21 is a singular matrix which lies in the orthogonal complements of V11 and V22 because

V21V ′21 + V22V ′22 = Im ⇔ V21V ′21V22 + V22V ′22V22 = V22 ⇔ V21V ′21V22 + V22 = V22 (since

V ′22V22 = 1) so V21V ′21V22 = 0 which implies that V ′21V22 = 0. Similarly, V ′11V11 +V ′21V21 = Im,

so V ′11V11+V ′21V21 = Im, V ′11V11V ′11+V ′21V21V ′11 = V ′11 ⇔ V ′11+V ′21V21V ′11 = V ′11 ⇔ V ′21V21V ′11 =

0⇔ V21V ′11 = 0.

We next define the orthonormal m × m dimensional matrix (V22
... V22,⊥), with V22,⊥

a m × (m − 1) dimensional matrix orthogonal to V22 and B a (m − 1) × m dimensional

matrix such that V21 = (V22
... V22,⊥)

(
0
B

)
. Because V ′21V22 = 0, we then have that (V22

...

V22,⊥)′V21S ′1S1V ′21(V22
... V22,⊥) =

(
0
B

)
S ′1S1

(
0
B

)′
and (V22

... V22,⊥)′[V21S ′1S1V ′21+τminV22V ′22](V22

... V22,⊥) =
(

0
B

)
S ′1S1

(
0
B

)′
+ τmin

(
1
0

) (
1
0

)′
] =

(
τmin

0
0

BS′1S1B′

)
.

Also (V22
... V22,⊥)′(V21S ′1S1V ′11 + τminV22V ′12)ω

1
2
µµ.J =

(
0
B

)
S ′1S1V ′11ω

1
2
µµ.J + τmin

(
1
0

)
V ′12ω

1
2
µµ.J .

Combining, we obtain:

[V21S ′1S1V ′21 + τminV22V ′22]−1(V21S ′1S1V ′11 + τminV22V ′12)

= (V22
... V22,⊥)

(
(V22

... V22,⊥)′[V21S ′1S1V ′21 + τminV22V ′22](V22
... V22,⊥)

)−1

(V22
... V22,⊥)′(V21S ′1S1V ′11 + τminV22V ′12)

= (V22
... V22,⊥)

(
τmin

0
0

BS′1S1B′

)−1 ((
0
B

)
S ′1S1V ′11 + τmin

(
1
0

)
V ′12

)
= V22V ′12 + V22,⊥ (BS ′1S1B

′)−1BS ′1S1V ′11

= V22,⊥ (BS ′1S1B
′)−1BS ′1S1V ′11

because V12 = 0, since V ′22V22 = 1, and V ′22V21 = 0, which leads to the expression of θ∗2s (21).

Also (V22
... V22,⊥)′V21(S ′1S1 − τminIm) =

(
0
B

)
(S ′1S1 − τminIm) =

(
0

B(S′1S1−τminIm)

)
, so

Ω
− 1
2

JJ (V21(S ′1S1 − τminIm)V ′21 + τminIm)−1 V21(S ′1S1−τminIm)V ′11ω
1
2
µµ.J = Ω

− 1
2

JJ (V22
... V22,⊥)

(
τmin

0
0

BS′1S1B′

)−1 (
0

B(S′1S1−τminIm)

)
V ′11ω

1
2
µµ.J =

Ω
− 1
2

JJ V22,⊥(BS ′1S1B
′)−1B(S ′1S1 − τminIm)V ′11ω

1
2
µµ.J . Hence

θ∗LS = −Ω−1
JJωJµ − Ω

− 1
2

JJ V22,⊥(BS ′1S1B
′)−1B(S ′1S1 − τminIm)V ′11ω

1
2
µµ.J .

Proof of Theorem 2: Can be adapted from other paper, see also Kleibergen and Zhan

(2023).
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The CUE population objective function:

QCUE(y) = µf (y)′
[( Ikf

(y⊗Ikf )

)′
V
( Ikf

(y⊗Ikf )

)]−1

µf (y),

(µf (0) + J(0)y)′
[( Ikf

(y⊗Ikf )

)′
V
( Ikf

(y⊗Ikf )

)]−1

(µf (0) + J(0)y)

results from a step-wise optimization of the generalized reduced rank objective function:

QCUE(y,D) =

[
vec
(
µf (0)

... J(0)) +D

(
−y ... Im

))]′
Σ−1

[
vec
((

µf (0)
... J(0)

)
+D

(
−y ... Im

))]
,

with Σ =Var
(√

T

(
µ̂f (0)′

... vec(Ĵ(0))′
)′)

, and

QCUE(y) = min
D∈Rkf×m QCUE(y,D).

This results since

D(y) = arg min
D∈Rkf×m QCUE(y,D)

= −
[((

−y ... Im
)′
⊗ Ikf

)′
Σ−1

((
−y ... Im

)′
⊗ Ikf

)]−1

((
−y ... Im

)′
⊗ Ikf

)′
Σ−1vec

(
µf (0)

... J(0)

)
,

so when we substitute D(y) in QCUE(y,D):

QCUE(y,D(y))) =

[
vec
(
µf (0)

... J(0)) +D(y)

(
−y ... Im

))]′
Σ−1[

vec
(
µf (0)

... J(0)) +D(y)

(
−y ... Im

))]
=

(
Σ−

1
2vec

(
µf (0)

... J(0)

))′
M

Σ−
1
2

(−y ... Im)′⊗Ikf

(

Σ−
1
2vec

(
µf (0)

... J(0)

))

=

(
Σ−

1
2vec

(
µf (0)

... J(0)

))′
P

Σ
1
2

(1
... y
)′
⊗Ikf


(

Σ−
1
2vec

(
µf (0)

... J(0)

))

= (µf (0) + J(0)y)′
[( Ikf

(y⊗Ikf )

)′
V
( Ikf

(y⊗Ikf )

)]−1

(µf (0) + J(0)y),

with MH = IN − PH , PH = H(H ′H)−1H ′, for H a kf × n dimensional full rank matrix and
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we used that for H⊥ : kf × (kf −m) dimensional defined such that H ′⊥H ≡ 0, MH = PH⊥ .

For H = Σ−
1
2

((
−y ... Im

)′
⊗ Ikf

)
, a specification for H⊥ is:

H⊥ = Σ
1
2

((
1
... y
)′
⊗ Ikf

)
,

which we substituted in the above.

The minimal value of QCUE(y,D) when minimizing with respect to (y, D) equals the

minimal value of

QCUE(g, A) =

[
vec
((

µf (0)
... J(0)

)
+ A(Im

... − g)

)]′
V −1

[
vec
((

µf (0)
... J(0)

)
+ A(Im

... − g)

)]
,

when minimizing with respect to (g, A), with A kf×m matrix and g m×1. This results since

D(−y ... Im) and A(Im
... −g) are equivalent representations of an kf × (m + 1) dimensional

matrix of rank m (except for a measure zero space). Restricting the top element of g = (g1
... g′2)′, with g1 a scalar and g2 a (m − 1)-dimensional vector, to zero, so g1 = 0, does not

decrease the minimal value of the above function. The resulting restricted specification reads

QCUE(g1 = 0, g2, A) =

[
vec
((

µf (0)
... J(0)

)
+ A(Im

... − g)

)]′
(

V −1
µµ.J −V −1

µµ.JVµJV
−1
JJ

−V −1
JJ VJµV

−1
µµ.J V −1

JJ + V −1
JJ VJµV

−1
µµ.JVµJV

−1
JJ

)
[
vec
((

µf (0)
... J(0)

)
+ A(Im

... − g)

)]
=

[
µf (0) + a1 − VµJV −1

JJ vec
(
J(0) + A2

(
Im−1

... − g2

))]′
V −1
µµ.J[

µf (0) + a1 − VµJV −1
JJ vec

(
J(0) + A2

(
Im−1

... − g2

))]
+[

vec
(
J(0) + A2

(
Im−1

... − g2

))]′
V −1
JJ

[
vec
(
β + A2

(
Im−1

... − g2

))]
,

where we used that A = (a1
... A2), a1 N × 1, A2 N × (K − 1) matrices and the partitioned

inverse of V :

V =

(
Vµµ VµJ

VJµ VJJ

)
, V −1 =

(
V −1
µµ.J −V −1

µµ.JVµJV
−1
JJ

−V −1
JJ VJµV

−1
µµ.J V −1

JJ + V −1
JJ VJµV

−1
µµ.JVµJV

−1
JJ

)
,
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with Vµµ.J = Vµµ − VµJV −1
JJ VJµ.

Stepwise minimization of QCUE(g1 = 0, g2, A) = QCUE(g1 = 0, g2, a1, A2) now results in:

a1(g1 = 0, g2, A2) = arg mina1∈RN QCUE(g1 = 0, g2, a1, A2)

= −
[
µf (0)− VµJV −1

JJ vec
(
J(0) + A2

(
Im−1

... − g2

))]
so

QCUE(g1 = 0, g2, A2) = min
a1∈Rkf QCUE(g2, a1, A2)

=

[
vec
(
J(0) + A2

(
Im−1

... − g2

))]′
V −1
JJ

[
vec
(
β + A2

(
Im−1

... − g2

))]
=

[
vec(J(0)) +

((
Im−1

... − g2

)′
⊗ IN

)
vec(A2)

]′
Σ−1

β̂β̂[
vec(β) +

((
Im−1

... − g2

)′
⊗ IN

)
vec(A2)

]
.

When we next optimize QCUE(g1 = 0, g2, A2) over A2 :

vec(A2(g1 = 0, g2)) = arg min
A2∈Rkf×(m−1) QCUE(g1 = 0, g2, A2)

= −
[((

Im−1
... − g2

)′
⊗ Ikf

)′
V −1
JJ

((
Im−1

... − g2

)′
⊗ Ikf

)]−1

((
Im−1

... − g2

)′
⊗ Ikf

)′
V −1
JJ vec(J(0)),

so we obtain:

QCUE(g1 = 0, g2) = min
A2∈Rkf×(m−1) QCUE(g2, A2)

=

[
vec(J(0)) +

((
Im−1

... − g2

)′
⊗ Ikf

)
vec(A2(g1 = 0, g2))

]′
V −1
JJ[

vec(J(0)) +

((
Im−1

... − g2

)′
⊗ Ikf

)
vec(A2(g1 = 0, g2))

]
= vec(J(0))′V

− 1
2

JJ M
V
− 12
JJ

(Im−1 ... −g2)′⊗Ikf
V

− 1
2

JJ vec(J(0))

=
(
g2
1

)′
J(0)′

[((
g2
1

)
⊗ Ikf

)′
VJJ

((
g2
1

)
⊗ Ikf

)]−1

J(0)
(
g2
1

)
,

which used our previous result that MH = PH⊥ . The specification of QCUE(g1 = 0, g2) is

identical to that of QIS(ϕ) in (17). IS equals the minimal value of QCUE(g1 = 0, g2) with
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respect to g2 or QIS(ϕ) with respect to ϕ :

IS = ming2∈R(m−1) QCUE(g1 = 0, g2) = minϕ∈Rm−1 QIS(ϕ).

The minimizer of the population generalized reduced rank objective function QCUE(y,D)

and QCUE(g, A) is invariant with respect to the specification of the involved lower rank

matrix. Optimizing over either (y, D) or (g, A), we then obtainD∗(−y∗ ... Im) = A∗(Im
... −g∗)

which implies D∗ = A∗
(

0
Im−1

... − g∗
)
so, since −D∗y∗ = a∗1, −A∗

(
0

Im−1

... − g∗
)
y∗ = a∗1,

which can be written as A∗(g∗1l
∗
K

... −y∗1 +g∗2y
∗
m

... . . .
...−y∗m−1 +g∗my

∗
m)′ = a∗1. This can be solved

for when g∗1 6= 0. Since IS equals the minimized value of the population objective function

when g∗1 is restricted to zero, IS equals the minimal value of the population objective function

when θ∗ is not identified. Hence, when IS and the minimal value of the population objective

function coincide, g∗1 = 0 so θ∗ is not identified. The difference between IS and the minimal

value of the population objective function thus provides a measure of the identification of

θ∗.

Proof of Theorem 3: We construct the limit behavior of the two-stage estimator under

homoskedasticity, weak misspecification and identification for m = 1. It results from the

joint limit behavior of its two different elements:

√
N

(
µ̂− µ
Ĵ − J

)
→
d

(
ψµ

ψJ

)
,

where µ̂ = µ̂(0), µ = µ(0), Ĵ = Ĵ(0), J = J(0) and (ψ′µ
... ψ′J)′ ∼ N(0,Ω⊗Q). To focus on a

setting where both the misspecification and Jacobian are small and perhaps just borderline

significant, we use the weak identification and misspecification assumption:

J = JN = 1√
N
Q

1
2CΩ

1
2
JJ , µJ = 1√

N
Q

1
2aω

1
2
µµ.J ,

with µJ = µ − JΩ−1
JJωJµ, C and a are k-dimensional vectors of constants. Under the small

misspecification and Jacobian assumption, the limit behavior of the least squares estimator

Ĵ and µ̂J = µ̂− ĴΩ−1
JJωJµ are characterized by:

√
NĴ →

d
Q

1
2 (C + ψ∗J)Ω

1
2
JJ ,
√
Nµ̂J →

d
Q

1
2 (a+ ψ∗µ)ω

1
2
µµ.J ,
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where ψ∗J = Q−
1
2ψJΩ

− 1
2

JJ ∼ N(0, Ik), ψ
∗
µ = Q−

1
2 (ψµ − ψJΩ−1

JJωJµ)ω
− 1
2

µµ.J ∼ N(0, Ik), and

independent of ψ∗J .

We next characterize the behavior of the two-stage estimator:

θ̂2S = − Ĵ ′Q̂−1µ̂
Ĵ ′Q̂−1Ĵ

= − Ĵ ′Q̂−1(µ̂J+ĴΩ−1JJωJµ)

Ĵ ′Q−1Ĵ
= −Ω−1

JJωJµ −
Ĵ ′Q̂−1µ̂J
Ĵ ′Q̂−1Ĵ

= −Ω−1
JJωJµ −

Ĵ ′Q̂−1[µ̂J−µJ+µJ ]

Ĵ ′Q̂−1Ĵ

so for small values of the Jacobian and misspecification:

θ̂2S + Ω−1
JJωJµ = − (

√
NĴ)′Q̂−1[

√
Nµ̂J ]

(
√
NĴ)′Q̂−1(

√
NĴ)

→
d

Ω
− 1
2

JJ θ̄2sω
1
2
µµ.J −

Ω
1
2 ′
JJ (C+ψ∗J )′

[
(C+ψ∗J )Ω

1
2
JJΩ

− 12
JJ θ̄2s+ψ

∗
µ.J+a

]
ω
1
2
µµ.J

Ω
1
2 ′
JJ (C+ψ∗J )′(C+ψ∗J )Ω

1
2 ′
JJ

= Ω
− 1
2

JJ θ̄2sω
1
2
µµ.J −

Ω
1
2 ′
JJ (C+ψ∗J )′[ψ∗µ+a+(C+ψ∗J )θ̄2s]ω

1
2
µµ.J

Ω
1
2 ′
JJ (C+ψ∗J )′(C+ψ∗J )Ω

1
2 ′
JJ

= Ω
− 1
2

JJ θ̄2sω
1
2
µµ.J −

Ω
1
2 ′
JJ (C+ψ∗J )′(ψ∗µ+ψ∗J θ̄2s)ω

1
2
µµ.J

Ω
1
2 ′
JJ (C+ψ∗J )′(C+ψ∗J )Ω

1
2 ′
JJ

− Ω
1
2 ′
JJψ

∗
J
′(a+Cθ̄2s)ω

1
2
µµ.J

Ω
1
2 ′
JJ (C+ψ∗J )′(C+ψ∗J )Ω

1
2 ′
JJ

,

with θ̄2s = − C′a
C′C so C

′(a+ Cθ̄2s) = 0. When C ′a = 0, we have θ̄2s = 0 and:

θ̂2S + Ω−1
JJωJµ →

d
− Ω

1
2 ′
JJ (C+ψ∗J )′ψ∗µω

1
2
µµ.J

Ω
1
2 ′
JJ (C+ψ∗J )′(C+ψ∗J )Ω

1
2
JJ

− Ω
1
2 ′
JJψ

∗′
J aω

1
2
µµ.J

Ω
1
2 ′
JJ (C+ψ∗J )′(C+ψ∗J )Ω

1
2
JJ

.

Proof of Theorem 4: The expression of the LR statistic follows along the lines of Moreira

(2003). Imposing C ′a = 0, C ′C = a′a then yields:

LR(α = 0) =
1
2

[
NΩ−1

JJ Ĵ(0)′Q−1Ĵ(0)−Nω−1
µµ.J µ̂J(0)′Q−1µ̂J(0)+√(

NΩ−1
JJ Ĵ(0)′Q−1Ĵ(0)−Nω−1

µµ.J µ̂J(0)′Q−1µ̂J(0)
)2

+ 4
(
NΩ

− 1
2

JJ Ĵ(0)′Q−1µ̂J(0)ω
− 1
2

µµ.J

)2
]

→
d

1
2

[
(ψ∗J + C)′(ψ∗J + C)− (ψ∗µ.J + a)′(ψ∗µ.J + a)+√(

(ψ∗J + C)′(ψ∗J + C)− (ψ∗µ.J + a)′(ψ∗µ.J + a)
)2

+ 4
(
(ψ∗J + C)′(ψ∗µ.J + a)

)2
]

→ 1
2

[
ψ∗J
′ψ∗J + 2C ′ψ∗J − ψ∗′µ.Jψ∗µ.J − 2a′ψ∗µ.J+

d√(
ψ∗J
′ψ∗J + 2C ′ψ∗J − ψ∗′µ.Jψ∗µ.J − 2a′ψ∗µ.J

)2
+ 4

(
ψ∗′J ψ

∗
µ.J + a′ψ∗J + C ′ψ∗µ.J

)2
]

→
d

1
2

(
ψ∗J
′ψ∗J − ψ∗′µ.Jψ∗µ.J

)
+ C ′ψ∗J − a′ψ∗µ.J+

1
2

√(
ψ∗J
′ψ∗J + 2C ′ψ∗J − ψ∗′µ.Jψ∗µ.J − 2a′ψ∗µ.J

)2
+ 4

(
ψ∗′J ψ

∗
µ.J + a′ψ∗J + C ′ψ∗µ.J

)2
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with ψ∗J = Q−
1
2ψJΩ

− 1
2

JJ , ψ
∗
µ.J = Q−

1
2ψµ.Jω

− 1
2

µµ.J .

Algorithm to compute initial estimate of the conditional critical value function

of the LR test of H∗0 The algorithm to compute the critical value function of the LR test

of H∗0 (33) uses the entier function, [..], and the first and second columns of Ik indicated by

e1,k and e2,k resp.:

• Set all elements of the array "sum" to zero and for a range of values of c from 0...cmax,

a =
√
ce1,k, C =

√
ce2,k and set up the two-dimensional array Z :

1. Generate ψ∗J and ψ
∗
µ.J from independent N(0, Ik) distributions

2. Compute â = a+ ψ∗µ.J , Ĉ = C + ψ∗J

3. Compute LR(α = 0) = 1
2

[
Ĉ ′Ĉ − â′â+

√(
Ĉ ′Ĉ − â′â

)2

+ 4(Ĉ ′â)2

]
4. Compute conditioning statistic: rk= â′â+ Ĉ ′Ĉ and i = [rk]

5. sumi =sumi + 1

6. Set: Z(i, sumi) =LR(α = 0)

• Sort Z(i, :) in ascending order

• cv(r, α) equals (1− α)× 100-th percentile of sorted Z(r, :)

Proof of Theorem 5: We specify the covariance matrix estimators Ω̂ and Q̂ as

Ω̂ =

(
ω̂µµ ω̂µµ

ω̂V µ Ω̂V V

)
= Ω

1
2
′Ω̇Ω

1
2 , Ω̂−1 = Ω−

1
2 Ω̇−1Ω−

1
2
′ = Ω̂−

1
2
′Ω̂−

1
2 , Ω̂−

1
2 = Ω̇−

1
2Ω−

1
2
′,

Q̂ = Q
1
2 Q̇Q

1
2
′, Q̂−1 = Q−

1
2
′Q̇−1Q−

1
2 = Q̂−

1
2
′Q̂−

1
2 , Q̂−

1
2 = Q̇−

1
2Q−

1
2 ,

so Ω̇ = 1
N

∑N
i=1

(
u̇i
V̇i

)(
u̇i
V̇i

)′
=

(
ω̇µµ

ω̇Jµ

...
ω̇µJ

Ω̇JJ

)
, Q̇ = 1

N

∑N
i=1 ŻiŻ

′
i, with

(
u̇i
V̇i

)
= Ω−

1
2
′(ui
Vi

)
, Żi =

Q−
1
2Zi,with Ω

1
2 =

 ω
1
2
µµ.J

Ω
− 12
JJ ωJµ

...
0

Ω
1
2
JJ

 , Ω̇ =

(
ω̇µµ

ω̇Jµ

...
ω̇µJ

Ω̇JJ

)
, so for

(
µf (0)

... J(0)

)
= 1√

N
Q

1
2 (a

... C)Ω
1
2 , µf (0) = 1√

N
Q

1
2aω

1
2
µµ.J + 1√

N
Q

1
2CΩ

− 1
2

JJ ωJµ, J(0) = 1√
N
Q

1
2CΩ

1
2
JJ , µJ(0) = µf (0) −
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J(0)Ω−1
JJωJµ = 1√

N
Q

1
2aω

1
2
µµ.J . The different elements of the covariance matrix estimator Ω̂

can then be expressed as:

ω̂µµ = ωµµ.J ω̇µµ + ωµJΩ
− 1
2
′

JJ ω̇Jµω
1
2
µµ.J + ω

1
2
µµ.J ω̇µJΩ

− 1
2

JJ ωJµ + ωµJΩ
− 1
2
′

JJ Ω̇JJΩ
− 1
2

JJ ωJµ

ω̂Jµ = Ω
1
2
′

JJ ω̇Jµω
1
2
µµ.J + Ω

1
2
′

JJΩ̇JJΩ
− 1
2

JJ ωJµ

ω̂µJ = ω̂′Jµ

Ω̂JJ = Ω
1
2
′

JJΩ̇JJΩ
1
2
JJ

Ω̂−1
JJ = Ω

− 1
2

JJ Ω̇−1
JJΩ

− 1
2
′

JJ

−Ω̂−1
JJ ω̂Jµ = −Ω

− 1
2

JJ Ω̇−1
JJΩ

− 1
2
′

JJ

(
Ω

1
2
′

JJ ω̇Jµω
1
2
µµ.J + Ω

1
2
′

JJΩ̇JJΩ
− 1
2

JJ ωJµ

)
= −Ω

− 1
2

JJ Ω̇−1
JJ ω̇Jµω

1
2
µµ.J − Ω−1

JJωJµ

ω̂µµ.J = ωµµ.J ω̇µµ + ωµJΩ
− 1
2
′

JJ ω̇Jµω
1
2
µµ.J + ω

1
2
µµ.J ω̇µJΩ

− 1
2

JJ ωJµ + ωµJΩ
− 1
2
′

JJ Ω̇JJΩ
− 1
2

JJ ωJµ−(
ω
1
2
µµ.J ω̇µJΩ

1
2
JJ + ωµJΩ

− 1
2
′

JJ Ω̇JJΩ
1
2
JJ

)(
Ω
− 1
2

JJ Ω̇−1
JJ ω̇Jµω

1
2
µµ.J + Ω−1

JJωJµ

)
= ωµµ.J ω̇µµ + ωµJΩ

− 1
2
′

JJ ω̇Jµω
1
2
µµ.J + ω

1
2
µµ.J ω̇µJΩ

− 1
2

JJ ωJµ + ωµJΩ
− 1
2
′

JJ Ω̇JJΩ
− 1
2

JJ ωJµ−
ω
1
2
µµ.J ω̇µJΩ̇−1

JJ ω̇Jµω
1
2
µµ.J − ω

1
2
µµ.J ω̇µJΩ

− 1
2
′

JJ ωJµ − ωµJΩ
− 1
2
′

JJ ω̇Jµω
1
2
µµ.J−

ωµJΩ
− 1
2
′

JJ Ω̇JJΩ
− 1
2

JJ ωJµ

= ωµµ.J

(
ω̇µµ − ω̇µJΩ̇−1

JJ ω̇Jµ

)
.

Q̂−
1
2 = Q̇−

1
2Q−

1
2 .

For
Ω̇ =

(
ω̇µµ

ω̇Jµ

ω̇µJ

Ω̇JJ

)
= 1

N

∑N
i=1

(
u̇i
V̇i

)(
u̇i
V̇i

)′
Q̇ = 1

N

∑N
i=1 ŻiŻ

′
i,
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with u̇i, V̇i and Zi, resp. one, m and kf dimensional iid random variables with mean zero

and identity covariance matrices, we then have:(
µ̂f (0)

... Ĵ(0)

)
=

(
µf (0)

... J(0)

)
+Q

1
2

(
1
N

∑N
i=1 Żi

(
u̇i
V̇i

)′)
Ω

1
2

√
N

(
µ̂f (0)

... Ĵ(0)

)
= Q

1
2

[
(a
... C) +

(
1√
N

∑N
i=1 Żi

(
u̇i
V̇i

)′)]
Ω

1
2

â =
√
NQ̂−

1
2

(
µ̂f (0)− Ĵ(0)Ω̂−1

JJ ω̂Jµ

)
ω̂
− 1
2

µµ.J

= Q̇−
1
2

(
(a
... C) +

(
1√
N

∑N
i=1 Żi

(
u̇i
V̇i

)′)) ω
1
2
µµ.J

Ω
− 12
JJ ωJµ

0

Ω
1
2
JJ

( 1

−Ω
− 1
2

JJ Ω̇−1
JJ ω̇Jµω

1
2
µµ.J − Ω−1

JJωJµ

)
ω
− 1
2

µµ.J(
ω̇µµ − ω̇µJΩ̇−1

JJ ω̇Jµ

)− 1
2

= Q̇−
1
2

(
(a
... C) +

(
1√
N

∑N
i=1 Żi

(
u̇i
V̇i

)′))( 1

−Ω̇−1
JJ ω̇Jµ

)
(
ω̇µµ − ω̇µJΩ̇−1

JJ ω̇Jµ

)− 1
2

= Q̇−
1
2

(
(a− CΩ̇−1

JJ ω̇Jµ) +
(

1√
N

∑N
i=1 Żi(u̇i − V̇ ′i Ω̇−1

JJ ω̇Jµ)
))

(
ω̇µµ − ω̇µJΩ̇−1

JJ ω̇Jµ

)− 1
2

Ĉ =
√
NQ̂−

1
2 Ĵ(0)Ω̂

− 1
2

JJ

= Q̇−
1
2

(
C + 1√

N

∑N
i=1 ŻiV̇

′
i

)
Ω

1
2
JJΩ

− 1
2

JJ Ω̇
− 1
2

JJ

= Q̇−
1
2

(
CΩ̇

− 1
2

JJ + 1√
N

∑N
i=1 ŻiV̇

′
i Ω̇
− 1
2

JJ

)
.

√
NQ̂−

1
2

(
µ̂f (0)

... Ĵ(0)

)
Ω̂−

1
2 =

√
NQ̂−

1
2

(
µ̂f (0)

... Ĵ(0)

) ω̂
− 1
2

µµ.J 0

−Ω̂−1
JJ ω̂Jµω̂

− 1
2

µµ.J Ω̂
− 1
2

JJ


= Q̇−

1
2

[
(a
... C) +

(
1√
N

∑N
i=1 Żi

(
u̇i
V̇i

)′)]
Ω̇−

1
2 ,

with Ω̇−
1
2 =

(
ω̇
− 12
µµ.J

−Ω̇−1JJ ω̇Jµω̇
− 12
µµ.J

0

Ω̇
− 12
JJ

)
.

Proof of Theorem 6: Our hypothesis of interest corresponds with a value of IS equal to

MISS. Using the specfication from Theorem 3, IS and MISS are defined by:

IS = smallest root of the characteristic polynomial: |τIm − C ′C| = 0

MISS = smallest root of the characteristic polynomial:

∣∣∣∣λIm − (a
... C)′(a

... C)

∣∣∣∣ = 0.
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To specify the hypothesis of no identification, H0 :IS=MISS, more explicitly as a function of

a and C, we first conduct a SVD of C :

C = UCSCV
′
C ,

with UC and VC kf × kf and m × m dimensional orthonormal matrices and SC a kf × m
dimensional matrix with the singular values in decreasing order on the main diagonal. The

SVD enables us to respecify the characteristic polynomial of which MISS is the smallest root:∣∣∣∣λIm − (a
... C)′(a

... C)

∣∣∣∣ = 0 ⇔∣∣∣∣∣λIm −
(

a′a a′UCSCV
′
C

VCS
′
CU
′
Ca VCS

′
CSCV

′
C

)∣∣∣∣∣ = 0 ⇔∣∣∣∣∣∣λIm −
(

1 0

0 VC

)′(
a′a a′UCSC

S ′CU
′
Ca S ′CSC

)(
1 0

0 VC

)∣∣∣∣∣∣ = 0 ⇔∣∣∣∣∣τIm −
(

a′a a′UCSC

S ′CU
′
Ca S ′CSC

)∣∣∣∣∣ = 0.

When IS=MISS, IS, which equals the squared smallest singular value of C, s2
C,m, is also the

smallest root of the above characteristic polynomial so for UC = (UC,1
... UC,m

... UC,2), with

UC,1 : kf × (m− 1), UC,m : kf × 1, UC,2 : kf × (kf −m), it implies that:

U ′C,ma = 0 and the smallest characteristic root of:

∣∣∣∣∣ρIm −
(

a′a a′UC,1SC,1

S ′C,1U
′
C,1a S ′C,1SC,1

)∣∣∣∣∣ = 0,

is larger than or equal to s2
C,m (=IS) for SC =


SC,1 0

0 sC,m

0 0

 ,

with SC,1 : (m − 1) × (m − 1), sC,m : 1 × 1. We note that, because U ′C,ma = 0, the matrix

in the above characteristic polynomial comprises of the matrix in the previous characteristic

polynomial with the rows and columns associated with the smallest singular value of C, scm,

removed.

We next construct a bounding expression for the smallest root of the above charac-

teristic polynomial. This smallest root is larger than or equal to the one which results

when we replace all singular values in SC,1 by its smallest element on the diagonal, so

SC,1 = sC,(m−1)

(
Im−1

0

)
, with sC,(m−1) the (m− 1)-st element on the main diagonal of SC,1, see
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Theorem 7 in Kleibergen (2007). The resulting characteristic polynomial reads:∣∣∣∣∣ρIm −
(

a′a a′UC,1
(
Im−1

0

)
sC,(m−1)

sC,m−1

(
Im−1

0

)′
U ′C,1a s2

C,(m−1)Im−1

)∣∣∣∣∣ =

(ρ− s2
C,(m−1))

m−2(ρ2 − τ(a∗′a∗ + b′b+ s2
C,(m−1)) + s2

C,(m−1)b
′b),

with a∗ = U ′C,1a, b = U ′C,2a. Kleibergen (2007) shows that the smallest root results from the

second part of the above polynomial which is quadratic so we have the closed form solution:

ρmin = 1
2

(
a∗′a∗ + b′b+ s2

C,(m−1) −
√

(s2
C,(m−1) + a∗′a∗ − b′b)2 + 4a∗′a∗b′b

)
≥ b′b.

Hence, b′b is a sharp lower bound on the smallest root of the characteristic polynomial∣∣∣∣∣ρIm −
(

a′a a′UC,1SC,1

S ′1U
′
C,1a S ′C,1SC,1

)∣∣∣∣∣ = 0 so a suffi cient condition for IS=MISS is:

U ′C,ma = 0 and b′b ≥ s2
C,m = IS.

Proof of Theorem 7: Using the proof of Theorems 5 and the SVD from Theorem 6:

√
NQ̂−

1
2

(
µ̂f (0)

... Ĵ(0)

)
Ω̂−

1
2

= Q̇−
1
2

(
(a
... C) +

(
1√
N

∑N
i=1 Żi

(
u̇i
V̇i

)′))
Ω̇−

1
2

= Q̇−
1
2

[
(a
... UCSCV ′C) +

(
1√
N

∑N
i=1 Żi

(
u̇i
V̇i

)′)]
Ω̇−

1
2

= Q̇−
1
2UC

[
(U ′Ca

... SC) +
(

1√
N

∑N
i=1 Z̈i

(
u̇i

V ′C V̇i

)′)]( 1 0

0 V ′C

)
Ω̇−

1
2

= Q̈−
1
2

[
(ȧ
... SC) +

(
1√
N

∑N
i=1 Z̈i

(
u̇i

V ′C V̇i

)′)]( ω̇
− 12
µµ.J

−V ′CΩ̇−1JJ ω̇Jµω̇
− 12
µµ.J

0

V ′CΩ̇
− 12
JJ

)

= Q̈
1
2

[
(ȧ
... SC) +

(
1√
N

∑N
i=1 Z̈i

(
u̇i

V ′C V̇i

)′)]( ω̇
− 12
µµ.J

−(V ′CΩ̇JJVC)−1VC ω̇Jµω̇
− 12
µµ.J

0

(VCΩ̇JJV
′
C)−

1
2

)

= Q̈
1
2

[
(ȧ
... SC) +

(
1√
N

∑N
i=1 Z̈i

(
u̇i
V̈i

)′)]( ω̇
− 12
µµ.J

−Ω̈−1JJ ω̈Jµω̇
− 12
µµ.J

0

Ω̈
− 12
JJ

)
= Q̈

1
2

[
(ȧ− SCΩ̈−1

JJ ω̈Jµ)ω̇
− 1
2

µµ.J +
(

1√
N

∑N
i=1 Z̈i(u̇i − V̈iΩ̈−1

JJ ω̈Jµ)ω̇
− 1
2

µµ.J

)
SCΩ̈

− 1
2

JJ +
(

1√
N

∑N
i=1 Z̈iV̈

′
i Ω̈
− 1
2

JJ

)]
,
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for ȧ = U ′Ca, Z̈i = U ′CZ̈i, Q̈ = U ′CQ̇UC = 1
N

∑N
i=1 Z̈iZ̈

′
i, Q̈

− 1
2 = Q̇−

1
2UC , V̈i = V ′C V̇i, Ω̈JJ =

V ′CΩ̇JJVC , so Ω̈−1
JJ = (V ′CΩ̇JJVC)−1 = V −1

C Ω̇JJV
′−1
C = V ′CΩ̇JJVC because VC is orthonormal so

V −1
C = V ′C , and ω̈Jµ = V ′Cω̇Jµ.

Proof of Theorem 8: For m = 1, the population CUE objective function is:

QCUE(α) = (J + µα)′
[
VJJ + α(VµJ + V ′µJ) + α2Vµµ

]−1
(J + µα),

with J = J(0) and µ = µ(0). The derivative of QCUE(α) then becomes:

1
2
∂
∂α
QCUE(α) = µ′

[
VJJ + α(VµJ + V ′µJ) + α2Vµµ

]−1
(J + µα)−

(J + µα)′
[
VJJ + α(VµJ + V ′µJ) + α2Vµµ

]−1 [1
2
(VµJ + V ′µJ) + αVµµ

][
VJJ + α(VµJ + V ′µJ) + α2Vµµ

]−1
(J + µα)

=
(
µ− [VµJ + αVµµ]

[
VJJ + α(VµJ + V ′µJ) + α2Vµµ

]−1
(J + µα)

)′[
VJJ + α(VµJ + V ′µJ) + α2Vµµ

]−1
(J + µα).

To construct the Hessian, we use that:

∂
∂α

(
µ− [VµJ + αVµµ]

[
VJJ + α(VµJ + V ′µJ) + α2Vµµ

]−1
(J + µα)

)
= − [VµJ + αVµµ]

[
VJJ + α(VµJ + V ′µJ) + α2Vµµ

]−1
µ−

Vµµ
[
VJJ + α(VµJ + V ′µJ) + α2Vµµ

]−1
(J + µα)+

[VµJ + αVµµ]
[
VJJ + α(VµJ + V ′µJ) + α2Vµµ

]−1 [
(VµJ + V ′µJ) + 2αVµµ

][
VJJ + α(VµJ + V ′µJ) + α2Vµµ

]−1
(J + µα)
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so the Hessian becomes:

1
2

∂2

(∂α)2
QCUE(α) =

{
− [VµJ + αVµµ]

[
VJJ + α(VµJ + V ′µJ) + α2Vµµ

]−1
µ−

Vµµ
[
VJJ + α(VµJ + V ′µJ) + α2Vµµ

]−1
(J + µα)+

[VµJ + αVµµ]
[
VJJ + α(VµJ + V ′µJ) + α2Vµµ

]−1 [
(VµJ + V ′µJ) + 2αVµµ

][
VJJ + α(VµJ + V ′µJ) + α2Vµµ

]−1
(J + µα)

}′[
VJJ + α(VµJ + V ′µJ) + α2Vµµ

]−1
(J + µα)−(

µ− [VµJ + αVµµ]
[
VJJ + α(VµJ + V ′µJ) + α2Vµµ

]−1
(J + µα)

)′[
VJJ + α(VµJ + V ′µJ) + α2Vµµ

]−1 [
(VµJ + V ′µJ) + 2αVµµ

][
VJJ + α(VµJ + V ′µJ) + α2Vµµ

]−1
(J + µα)+(

µ− [VµJ + αVµµ]
[
VJJ + α(VµJ + V ′µJ) + α2Vµµ

]−1
(J + µα)

)′[
VJJ + α(VµJ + V ′µJ) + α2Vµµ

]−1
µ.

For the minimum of QCUE(α) to be at α = 0, the first order condition has to apply at α = 0

so:
1
2
∂
∂α
QCUE(α = 0) = 0 ⇔(

µ− VµJV −1
JJ J

)′
V −1
JJ J = 0 ⇔

µ′JV
−1
JJ J = 0,

with µJ = µ− VµJV −1
JJ J. The Hessian at α = 0 is:

1
2

∂2

(∂α)2
QCUE(α = 0) =

{
−VµJV −1

JJ µ− VµµV −1
JJ J + VµJV

−1
JJ

[
VµJ + V ′µJ

]
V −1
JJ J

}′
V −1
JJ J−(

µ− VµJV −1
JJ J

)′
V −1
JJ (VµJ + V ′µJ)V −1

JJ J +
(
µ− VµJV −1

JJ J
)′
V −1
JJ µ

=
{
−VµJV −1

JJ (µ− VµJV −1
JJ J)− (Vµµ − VµJV −1

JJ V
′
µJ)V −1

JJ J
}′
V −1
JJ J−(

µ− VµJV −1
JJ J

)′
V −1
JJ V

′
µJV

−1
JJ J +

(
µ− VµJV −1

JJ J
)′
V −1
JJ (µ− VµJV −1

JJ J)

= µ′JV
−1
JJ µJ − J ′V −1

JJ (Vµµ − VµJV −1
JJ V

′
µJ)V −1

JJ J − 2µ′JV
−1
JJ V

′
µJV

−1
JJ J.

If we next define

J = J(0) = 1√
N
V

1
2
JJC, µJ = 1√

N
V

1
2
µµ.Ja,

for Vµµ.J = Vµµ − VµJV −1
JJ V

′
µJ , we can express the first order condition and (scaled) Hessian

as:

N
2
∂
∂α
QCUE(α = 0) = a′V

1
2
′

µµ.JV
−1
JJ V

1
2
JJC = a′V

1
2
′

µµ.JV
− 1
2
′

JJ C

N
2

∂2

(∂α)2
QCUE(α = 0) = a′V

1
2
′

µµ.JV
−1
JJ V

1
2
µµ.Ja− C ′V

1
2
′

JJV
−1
JJ Vµµ.JV

−1
JJ V

1
2
JJC − 2a′V

1
2
′

µµ.JV
−1
JJ V

′
µJV

−1
JJ V

1
2
JJC

= a′V
1
2
′

µµ.JV
−1
JJ V

1
2
µµ.Ja− C ′V

− 1
2

JJ Vµµ.JV
− 1
2
′

JJ C − 2a′V
1
2
′

µµ.JV
−1
JJ V

′
µJV

− 1
2
′

JJ C.
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