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Characterizing how neural network depth, width, and dataset size jointly impact model
quality is a central problem in deep learning theory. We give here a complete solution in
the special case of linear networks with output dimension one trained using zero noise
Bayesian inference with Gaussian weight priors and mean squared error as a negative
log-likelihood. For any training dataset, network depth, and hidden layer widths,
we find nonasymptotic expressions for the predictive posterior and Bayesian model
evidence in terms of Meijer-G functions, a class of meromorphic special functions of a
single complex variable. Through asymptotic expansions of these Meijer-G functions,
a rich new picture of the joint role of depth, width, and dataset size emerges. We
show that linear networks make provably optimal predictions at infinite depth: the
posterior of infinitely deep linear networks with data-agnostic priors is the same as
that of shallow networks with evidence-maximizing data-dependent priors. This yields
a principled reason to prefer deeper networks when priors are forced to be data-
agnostic. Moreover, we show that with data-agnostic priors, Bayesian model evidence
in wide linear networks is maximized at infinite depth, elucidating the salutary role of
increased depth for model selection. Underpinning our results is an emergent notion of
effective depth, given by the number of hidden layers times the number of data points
divided by the network width; this determines the structure of the posterior in the
large-data limit.

deep learning | Bayesian inference | neural networks | linear networks

A central aim of deep learning theory is to understand the properties of overparameterized
networks trained to fit large datasets. Key questions include: How do learned networks
use training data to make predictions on test points? Which neural network architectures
lead to more parsimonious models? What are the joint scaling laws connecting the quality
of learned models to the number of training data points, network depth, and network
width (1–4)?

The present article gives the exact answers to such questions for a class of neural
networks in which one can simultaneously vary input dimension, number of training
data points, network width, and network depth. This is significant because the limits
where these four structural parameters tend to infinity do not commute, causing all prior
work to miss important aspects of how they jointly influence learning. Our results pertain
specifically to deep linear networks

f (x) = W (L+1)
· · ·W (1)x, [1]

with input dimension N0, L hidden layers of widths N`, and output dimension
NL+1 = 1. As a form of learning, we take zero noise Bayesian interpolation starting from
a Gaussian prior on network weights W (`)

∈ RN`×N`−1 and empirical mean squared
error over a training dataset of P examples as the negative log-likelihood. Deep linear
networks, while linear in x, are nonlinear in their parameters and have been extensively
studied as models for learning with neural networks using both gradient-based methods
(5–9) and Bayesian inference (10–12).

Since we are considering an output dimension of 1, we may write f (x) = θT x
for a vector θ ∈ RN0 . What differentiates our work from a classical Bayesian analysis of
Gaussian linear regression is that as soon as L ≥ 1 the components of θ are correlated and
non-Gaussian under the prior. Predictions f (x) on inputs x orthogonal to inputs from
the training data therefore differ under the prior and posterior. Specifically, as shown in
Fig. 1, we may decompose θ = θ|| + θ⊥ into its projections onto directions spanned by
the training data and their complement. By our Bayesian construction, θ|| is responsible
for fitting the training data. Due to the correlations under the prior between θ|| and θ⊥,
however, information from the training data will influence the posterior distribution
of θ⊥. It is precisely this data-dependent extrapolation displayed by deep linear networks
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Fig. 1. The input space RN0 is decomposed into directions Span
{
xi
}

spanned by inputs from the training data and its orthogonal complement.
The minimal `2 norm interpolant is the intersection between the space of
interpolants (i.e., the dashed line showing all � satisfying �T xi = yi for all
i) and Span

{
xi
}
. When generating predictions f (x) = �T x, the parameter

vector � can be decomposed into its projections �|| and �⊥ onto Span
{
xi
}

and
Span

{
xi
}⊥, respectively. When fully trained, �|| will equal �∗. Circles centered

at the origin represent equiprobable lines for the prior over �, which is always
radial but non-Gaussian for any L ≥ 1.

with L ≥ 1 that differentiates them from the linear models
obtained by taking L = 0.

Relation to Prior Work. To put our work in context, we briefly
summarize prior approaches to understanding learning with
neural networks. The neural tangent kernel (NTK) and other
kernel-based models (13–17) reduce neural networks to linear
models. Training by gradient descent or Bayesian inference
consequently does not affect predictions f (x⊥) of test inputs
orthogonal to the training dataset. Moreover, the NTK regime
only considers the limit of infinite width with finite depth
and dataset size. More recent work (18–24) shows that feature
learning emerges when taking depth and width to infinity
simultaneously with the effective prior depth λprior = L/N Eq. 9
determining both the behavior under both gradient descent and
Bayesian inference. Still, such analyses are restricted to finite
dataset size P (or more precisely dataset sizes that are much
smaller than both network depth and width).

Phenomena such as double descent (25, 26) and benign
overfitting (27) appear in linear models when taking width,
dataset size, and dataset dimension to infinity simultaneously
(28–34). However, as mentioned previously, these linear models
do not learn to make data-adaptive predictions in directions not
already present in the training data. Moreover, such approaches
are restricted to studying fixed depth. Other approaches consider
neural networks in the mean-field limit (35–42). In this regime,
networks do make data-adaptive predictions f (x⊥). However,
mean-field limits have only been considered at fixed depth and
recast optimization in terms of complex nonlinear evolution
equations, whose dependence on the training data is typically
difficult to access.

The literature most directly related to the present article
studies Bayesian inference with either nonlinear (43–48) or linear
networks (10–12, 49). These works consider only the regime
where depth is either fixed or much smaller than both width and
size of the training dataset. We find, in contrast, that the full
role of depth in model selection and extrapolation can only be
understood in the regime where depth, width, and dataset size
are simultaneously large. Finally, our results characterize zero
temperature Bayesian inference with deep neural networks at any
joint scaling of depth, width, dataset size, and dataset dimension.
In this sense, they can be viewed as giving exact expressions for
the predictive posterior over deep Gaussian processes (50) with
Euclidean covariance in every layer.

Overview of Results. Our first result, Theorem 1 below, gives
exact nonasymptotic formulas for both the predictive posterior
(i.e., the distribution of f (x) jointly for all inputs x when W (`)

are drawn from the posterior) and the Bayesian model evidence
in terms of a class of meromorphic special functions in one
complex variable called Meijer-G functions (51). These results
hold for arbitrary training datasets, input dimensions, hidden
layer widths, and network depth. They represent an enlargement
of the class of priors over θ for which posteriors can be computed
in closed form. In particular, they show that zero noise Bayesian
inference is exactly solvable for deep Gaussian processes (50) with
Euclidean covariances.

To glean insights from the nonasymptotic results in Theorem
1, we provide in Theorem 2 new asymptotic expansions of
Meijer-G functions that allow us to compute expressions for
the Bayesian model evidence and the predictive posterior under
essentially any joint scalings of P, N`, L in the large-data limit
where P → ∞ with P/N0 → α0 ∈ (0, 1). To understand the
role of depth, we consider regimes in which L either stays finite
or grows together with P, N`.

We focus in this article on zero-noise, or interpolating,
posteriors that fit the training data exactly Eq. 6 and the
discussion in Optimal Extrapolation. For parametric models,
interpolation often causes overfitting at large sample sizes. An
important empirical (52) and theoretical (25, 27, 28) observation,
however, is that in many nonparameteric overparameterized
models, such as the deep linear neural networks we study, this
does not occur. Our results therefore give new information about
the joint effects of depth, width, and sample size on the nature
of interpolating models.

What emerges from our analysis is a rich new picture of the
role of depth in linear networks in determining the nature of
extrapolation and Bayesian model selection, given by maximizing
the Bayesian model evidence, i.e., the likelihood of the training
data under the posterior (cf §4, §5 in ref. 53). We present here an
informal explanation of our main results, starting with Theorem3
which implies the following:

Takeaway: Evidence-maximizing priors give the same
Gaussian predictive posterior for any architecture in the
large-data limit.

This distinguished posterior represents, from a Bayesian point of
view, a notion of optimal extrapolation. Indeed, because f (x) is
linear in x, it is natural to decompose

x = x|| + x⊥, x ∈ RN0 ,

where x|| is the projection of x onto directions spanned by inputs
from the training data, and x⊥ is the projection of x onto the
orthogonal complement (like the decomposition of θ in Fig. 1).

2 of 9 https://doi.org/10.1073/pnas.2301345120 pnas.org

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 "
PR

IN
C

E
T

O
N

 U
N

IV
 L

IB
R

A
R

Y
, A

C
Q

U
IS

IT
IO

N
 S

E
R

V
IC

E
 P

E
R

IO
D

IC
A

L
S"

 o
n 

O
ct

ob
er

 1
5,

 2
02

4 
fr

om
 I

P 
ad

dr
es

s 
14

0.
18

0.
24

0.
9.



Predictions under the evidence-maximizing posterior at test
input x are Gaussian and take the form

f (x) ∼ N
(
θT
∗ x||,

||θ∗||
2

α0
||x⊥||2

)
, [2]

where θ∗ is the minimal norm interpolant of the training data (cf.
Fig. 1 and Eq.17). As we explain in Optimal Extrapolation below,
the deterministic mean θT

∗ x|| appears because, by construction,
our posteriors are concentrated on θ that interpolate the training
data (Eq. 6) and thus we must have θ|| = θ∗. The scalar
||θ∗||

2/α0, in contrast, sets a data-dependent variance for making
predictions in directions orthogonal to inputs in the training data.
This particular value for the variance is the most likely given that
our posteriors are necessarily isotropic in directions orthogonal
to the training data. Moreover, the approximate normality of
the evidence-maximizing posterior at large sample sizes is due to
the fact that the coordinates of a spherically symmetric random
vector in high dimensions are approximately Gaussian (see the
discussion just below Eq. 12).

In general, a linear network that maximizes Bayesian evidence,
and hence produces the posterior Eq. 2, may require the prior
distribution over network weights to be data-dependent. In
machine learning contexts, we hope instead to find optimal but
data-agnostic priors. Theorems 6 and 8 (in combination with
Theorem 3) show this is possible in linear networks with large
depth. Informally they give:

Takeaway:Wide linear networks (at comparable depth,
width, number of data points) with data-agnostic priors
give the same predictive posterior as shallow networks
with optimal data-dependent priors.

This result highlights the remarkable role of depth in shaping
the posterior over predictions in directions of feature space
orthogonal to those present in the training data. This can
only happen in nonlinear models such as deep linear networks.
Quantifying how large network depth must be to ensure optimal
extrapolation is explained in Theorem8, which provides universal
scaling laws for Bayesian posteriors in terms of a single parameter
that couples depth, width, and dataset size. Informally, we have
the following:

Takeaway:Consider linear networks in the regime 1�
depth, dataset size� width. With data-agnostic priors,
the posterior depends only on the effective posterior
depth

λpost :=
(network depth)× (dataset size)

network width
.

As λpost → ∞, evidence grows and the posterior
converges to the evidence-maximizing posterior Eq. 2.

Since λpost determines both the bias and the variance of the
posterior, the preceding takeaway can be viewed as a scaling law
relating depth, width, and training set size (1–4). In particular, it
shows that for large linear networks it is λpost, rather than depth,
width, and dataset size separately, that determines the quality of
the learned model.

As the preceding statement suggests, at least with data-
agnostic priors and wide linear networks, maximizing Bayesian
evidence requires large depth, as measured by λpost. Moreover,
evidence maximization is not possible at finite λpost. The
final result we present (Theorem 6) concerns maximization of
Bayesian evidence—a principled method of comparing different
architectures (53)—and is summarized as follows:

Takeaway: With data-agnostic priors and width that
is proportional to dataset size, Bayesian evidence is
maximal in networks with depth equal to a data-
dependent constant times width.

Mis-specification of this constant only results in an order one
decrease in evidence and does not affect the posterior. In
comparison, a network with smaller depth has exponentially
smaller evidence and a suboptimal posterior. The preceding
takeaways give perhaps the first principled Bayesian justification
for preferring neural networks with large depth, albeit in the
restricted setting of linear networks.

Preliminaries

Setup. We fix a training set with P examples

XN0 = (x1,N0 , . . . , xP,N0) ∈ RN0×P , YN0 = (y1, . . . , yP) ∈ RP .

We will assume XN0 has full rank. Since we study zero noise
posteriors supported on the models that minimize the likelihood
Eq. 4, we assume also that 1 ≤ P ≤ N0. Otherwise, the set of
minima of the likelihood consists of a single θ and our posteriors
would have zero variance. A key role in our results will be played
by the minimal `2-norm solution to ordinary linear least squares
regression of YN0 onto XN0 :

θ∗,N0 := arg min
θ∈RN0

||θ ||2 s.t. θT XN0 = YN0 . [3]

Further, we fix N1, . . . , NL ≥ 1 and consider fitting the training
data (XN0 , YN0) by a linear model

f (x) = θT x ∈ R, θ , x ∈ RN0 ,

equipped with quadratic negative log-likelihood

L(θ | XN0 , YN0) :=
1
2
||θT XN0 − YN0 ||

2
2, [4]

and a deep linear prior

θ ∼ Pprior ⇐⇒ θ = W (L+1)
· · ·W (1), [5]

in which

W (`)
∈ RN`×N`−1 , W (`)

ij ∼ N
(

0,
σ 2

N`−1

)
independent,

where σ > 0. Our goal is to study the posterior distribution over
the set of θ ∈ RN0 that exactly fit the training data. Explicitly,
writing dPprior(θ) for the prior density, we study zero noise
posteriors

dPpost
(
θ | L, N`, σ 2, XN0 , YN0

)
:= lim

β→∞

dPprior
(
θ | N0, L, N`, σ 2) exp [−βL(θ | XN0 , YN0)]

Zβ (XN0 , YN0 | L, N`, σ 2)
.

[6]

Writing Epost[·] for the expectation with respect to the
posterior Eq. 6, we describe the posterior by giving exact formulas
for its characteristic function

Epost [exp {−it · θ}] =
Z∞(t)
Z∞(0)

, t, θ ∈ RN0 , [7]
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where Z∞(t) = Z∞(t | L, N`, σ 2, XN0 , YN0) is the zero-
temperature partition function given by taking β →∞ in

Zβ(t) := Aβ
∫

exp

[
−
β

2
∣∣∣∣Y − L+1∏

`=1

W (`)X
∣∣∣∣2

2 − iθ · t

−

L+1∑
`=1

N`−1

2σ 2

∣∣∣∣W (`)
∣∣∣∣2

F

] L+1∏
`=1

dW (`).

[8]

The normalizing constant Aβ cancels in the ratio Eq. 6 and in
any computations involving maximizing ratios of model evidence
(SI Appendix, B).

The denominator Z∞(0) is often called the Bayesian model
evidence and represents the probability of the data (XN0 , YN0)
given the model (i.e., the depth L, layer widths N1, . . . , NL and
prior variance σ 2). As detailed in §4, §5 of ref. 53, maximizing
the Bayesian model evidence is therefore equivalent to maximum
likelihood estimation over the space of models and gives a
principled way to select among different models, all of which
interpolate the training data. Before stating our technical results,
we briefly explain how to compute effective depth and how to
reason about optimal extrapolation in linear networks.

Effective Depth. The number of layers L does not provide a useful
measure of complexity for the prior distribution over network
outputs f (x) = θT x when θ is drawn from the deep linear prior
Eq. 5. This is true in both linear and nonlinear networks at
large width (e.g., refs. 18, 21, 54 and 23 for a treatment of deep
nonlinear networks). A more useful notion of depth is

λprior = effective depth of prior :=
L∑
`=1

1
N`

, [9]

and it is indeed λprior that plays an important role in our
results. Let us provide a brief justification for why λprior is a
natural measure of complexity for the prior (SI Appendix, B).
With N1 = · · · = NL = N , Theorem 1.2 in ref.
55 shows that when σ 2 = 1, under the prior, the squared
singular values of

(
W (L)

· · ·W (1)
)1/L

converge to the uniform
distribution on [0, 1]. Hence, only the squared singular values of(

W (L)
· · ·W (1)

)1/L
lying in intervals of the form [1−CL−1, 1]

correspond to singular values of W (L)
· · ·W (1) that remain

uniformly bounded away from 0 at large L. At least heuristically,
this implies that W (L)

· · ·W (1) is supported on matrices of rank
approximately λ−1

prior.*

Viewing λ−1
prior as a natural measure of the number of degrees

of freedom in the prior motivates the introduction of a posterior
effective depth

λpost :=
P

λ−1
prior

=
L∑
`=1

P
N`

. [10]

λpost is a ratio between the number of degrees of freedom in
the training data (given by the number of training data points)
and in the prior. We will see in Theorem 8 that it is precisely
λpost that controls the structure of the posterior.

*We do not know this for sure since uniformity for the distribution of singular values at
the right edge of the spectrum does not follow from a result only about the global density
of singular values.

Optimal Extrapolation. This section explains key structural
properties of Bayesian posteriors in linear networks. Consider the
model f (x) = θT x and decompose the parameters θ = θ||+ θ⊥
as in Fig. 1. Since zero noise posteriors fit the training data, we
have

θ ∼ Ppost H⇒ θ|| = θ∗,N0 ,

where θ∗,N0 is the minimum-norm interpolant Eq. 3. Moreover,
the prior over θ is invariant under all orthogonal transformations
and the likelihood is invariant under arbitrary transformations of
θ⊥. Hence, in distribution

θ ∼ Ppost H⇒ θ⊥
d= u · ||θ⊥||, [11]

where u is independent of ||θ⊥|| and is uniformly distributed
on the unit sphere in col(XN0)

⊥
⊆ RN0 . The only degree of

freedom in the posterior is therefore the distribution of the radial
part ||θ⊥|| of the vector θ⊥. Given a test data point x = x||+ x⊥,
we find

θ ∼ Ppost H⇒ f (x) = (θ∗,N0)
T x|| + ‖θ⊥‖ · uT x⊥.

The distribution of ‖θ⊥‖ controls the scale of predictions for data
not spanned by the training set, i.e., for the task of extrapolation.
For example if x = x|| ∈ col(XN0), then f (x) has zero variance
since it is determined completely by the training data. More
generally, by the Poincare–Borel theorem (refs. 56 and 57) we
have for N0, P � 1 that

f (x) ≈ N
(

(θ∗,N0)
T x||, ||θ⊥||2

||x⊥||2

N0 − P

)
. [12]

Indeed, since θ̂⊥ = θ⊥/||θ⊥|| ∈ RN0−P is rotationally
invariant under the posterior, the Poincare–Borel theorem (e.g.,
Theorem 2 in [21] together with the fact that the mixing measure
µ is precisely a point-mass at 1 by (1) in ref. 56) shows that the
joint distribution of any fixed (or even slowly growing) number
of marginals

{
θ̂T
⊥

x1, . . . , θ̂T
⊥

xk
}

is approximately Gaussian when
N0 − P is large. In particular, since predictions under the
posterior are of the f (x; θ) = θT

||
x|| + ||θ⊥||θ̂T

⊥
x⊥ and ||θ⊥||

is independent of θ̂⊥, we see that in the high-dimensional regime
N0, P � 1 the finite-dimensional distributions of the posterior
are approximately normal.

At L = 0, the prior and posterior distributions over ‖θ⊥‖2
are identical, preventing any feature learning from occurring.
For L ≥ 1, all components of θ are correlated under the prior,
allowing information from the training data to be encoded into
θ⊥. We shall see (Theorem 8) that λpost quantifies how much
information the model learns about θ⊥. In particular, increasing
λpost causes the posterior distribution of ‖θ⊥‖2 to be more and
more concentrated around a particular value:

‖θ⊥‖
2
≈ ||θ∗,N0 ||

2(1− α0)/α0.

This special choice of scale maximizes Bayesian evidence, in
accordance with the first takeaway described in the Introduction
section. It corresponds to the natural estimate for the true signal
strength ||v||2 under a zero noise generative process yi = vT xi in
which xi are isotropic, given that one observes only the projection
v|| = θ∗,N0 of v onto directions in the training data.
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Main Results

Nonasymptotic Results. We are now ready to formulate our first
main result (Theorem 1), which expresses the partition function
Z∞(t) defined in Eq. 8 in terms of the Meijer-G function;
this allows the Bayesian evidence and predictive posterior to
be written in exact closed form for any choice of network
depth, hidden layer widths, dataset size, and input dimension.
Compared to prior work using either iterative saddle point
approximations of integrals encoding the Bayesian posterior (10)
or more involved methods such as the replica trick (12), our
method provides a direct representation of the network posterior
via the partition function in terms of a single contour integral
without specializing to limiting cases. Additional quantities, such
as the variance of the posterior, are simply expressed as a ratio
of Meijer-G functions. We shall later recover known limiting
cases and uncover new asymptotic results from expansions of the
Meijer-G function (Theorem 2).

Theorem 1 (Predictive Posterior and Evidence). Fix
P, L, N0, . . . , NL ≥ 1, σ 2 > 0 as well as training data XN0 , YN0 .
Fix t ∈ RN0 and write

t = t|| + t⊥, t|| ∈ col(XN0), t⊥ ∈ col(XN0)
⊥.

Define 4M =
∏L
`=0 2σ 2/N` and introduce the following

shorthand for the Meijer-G functions (SI Appendix, A) with
parameters given by layer widths:

GL+1,0
0,L+1

(
||θ∗,N0 ||

2

4M

∣∣∣∣ −
P
2 , N2 + k

)
:=

GL+1,0
0,L+1

(
||θ∗,N0 ||

2

4M

∣∣∣∣ −
P
2 , N1

2 + k, . . . , NL
2 + k

)
.

The partition function Z∞(t) of the predictive posterior defined
in Eq. 8 is

Z∞(t) =
(

4π
||θ∗||2

) P
2

exp
[
−i
〈
θ∗,N0 , t

〉] L∏
`=1

0

(
N`

2

)−1

×

∞∑
k=0

(−1)k

k!
∣∣∣∣t⊥∣∣∣∣2kM kGL+1,0

0,L+1

(
||θ∗,N0 ||

2

4M

∣∣∣∣ −
P
2 , N2 + k

)
.

[13]

In particular, the Bayesian model evidence Z∞(0) equals

(4π)P/2

||θ∗||P
∏L
`=1 0

(
N`
2

)GL+1,0
0,L+1

(
||θ∗,N0 ||

2

4M

∣∣∣∣ −P
2 , N2

)
. [14]

Further, given x ∈ RN0 , the mean of the predictive posterior is

Epost [f (x)] = (θ∗,N0)
T x, [15]

while the posterior variance Varpost [f (x)] is

2M ||x⊥||2
GL+1,0

0,L+1

(
||θ∗,N0 ||

2

4M

∣∣∣∣ −
P
2 , N2 + 1

)
GL+1,0

0,L+1

(
||θ∗,N0 ||

2

4M

∣∣∣∣ −P
2 , N2

) , [16]

where x⊥ is the projection of x onto the orthogonal complement of
the span col(XN0) of the training data.

SI Appendix, C for a proof.

Asymptotic Results. To evaluate the predictive posterior and
evidence in Theorem 1 in the limits where N0, P, N` (and
potentially L) tend to infinity, we require expansions of the
Meijer-G function obtained by the Laplace method. We are
interested in regimes where N0, P grow and will assume a mild
compatibility condition on the training data: for all α0 ∈ (0, 1),
we assume there exists constant ||θ∗|| such that

lim
P,N0→∞

P/N0→α0∈(0,1)

||θ∗,N0 || = ||θ∗||, [17]

where the convergence is in distribution. This assumption is very
generic and is (for example) satisfied for a Gaussian data model
where inputs are Gaussian

XN0 = (xi,N0 , i = 1, . . . , P) , xi,N0 ∼ N (0,6N0) iid,

outputs are linear plus noise

Y = VN0XN0 + εN0 , VN0 ∼ Unif
(
SN0−1) ,

εN0 ∼ N
(
0, σ 2

ε IN0

)
,

and the spectral density of the design matrices 6N0 converges
weakly as N0 → ∞ to a fixed probability measure on R+ with
finite moments.

To minimize notation, we report here the expansions in terms
of a single layer width N = N1 = · · · = NL, but expansions
with distinct N` (and to higher order) are provided in the proof
(SI Appendix, D).

Theorem 2 (Asymptotic Expansions of Meijer-G). Set
N1, . . . , NL = N and define N = (N1, . . . , NL). Suppose that the
training data satisfies Eq. 17. In different limiting cases such that
{P, N } → ∞ with fixed P/N0 = α0, we evaluate the quantities

log G := log GL+1,0
0,L+1

(
||θ∗,N0 ||

2

4M

∣∣∣∣ −
P
2 , N2 + k

)
1(log G)[k] := log GL+1,0

0,L+1

(
||θ∗,N0 ||

2

4M

∣∣∣∣ −
P
2 , N2 + k

)
− log GL+1,0

0,L+1

(
||θ∗,N0 ||

2

4M

∣∣∣∣ −P
2 , N2

)
.

We will see in each case that to leading order log G does not
depend on k while 1(log G)[k] does.

1. Fix L <∞, α, σ 2 > 0. Suppose P, N →∞with P/N → α.
Then,

log G =
Nα
2

[
log
(

Nα
2

)
+ log

(
1 +

z∗
α

)
−

(
1 +

z∗
α

)]
+

NL
2

[
log
(

N
2

)
+ log (1 + z∗)− (1 + z∗)

]
,

[18]

plus an error of size Õ(1) and

1(log G)[k] = kL
[

log
(

N
2

)
+ log(1 + z∗)

]
, [19]

plus an error of size Õ (1/N ), where z∗ > min {−α,−1} is the
unique solution to(

1 +
z∗
α

)
(1 + z∗)L =

||θ∗||
2

σ 2(L+1)α0
. [20]
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2. Fix λprior,α > 0 and suppose L = λpriorN, P, N →

∞, P/N → α, σ 2 = 1. Then,

log G =
λpriorN 2

2

[
log
(

N
2

)
−1
]

+
Nα
2

[
log
(

Nα
2

)
−1
]

+
λpriorN

2

[
− log

(
N
2

)
+ log(2π)

]
+ Õ(1),

[21]

and, up to an error of size Õ (1/N ),

1(log G)[k] = k
[
λpriorN log

(
N
2

)
+ log

(
||θ∗||

2

α0

)]
.

[22]

3. Fix λpost > 0. Suppose N, P, L → ∞ with LP/N →

λpost, σ 2 = 1 and L/N → 0. Then,

log G =
P
2

[
log
(

P
2

)
− 1

]
+
λpostN

2
N
P

[
log
(

N
2

)
− 1

]
+

P
2

[
log(1 + t∗)− t∗

(
1 +

λpostt∗
2

)]
+
λpostN

2

[
N
P

(
1 +

P
N

t∗
)

log
(

1 +
P
N

t∗
)
− t∗

]
+ Õ(1), [23]

and

1(log G)[k] = k
[

L log
(

N
2

)
+ λpostt∗

]
+ Õ

(
1
N

)
,

[24]

where t∗ is the unique solution to

eλpostt∗(1 + t∗) = ||θ∗||2/α0. [25]

In all the estimates above, Õ(1) = O(max{log P, log N })
suppresses lower-order terms of order 1, up to logarithmic factors;
similarly, Õ(1/N ) = O(max{log P, log N }/N ). Suppressed terms
are included in SI Appendix, D.

Model Selection and Extrapolation. We combine our nonasymp-
totic formulas for the posterior and evidence from Theorem 1
with the Meijer-G function expansions from Theorem 2 to inves-
tigate two fundamental questions about Bayesian interpolation
with linear networks. Together they give, at least in the restricted
setting of deep linear networks with output dimension 1, a
principled reason to prefer deeper networks.

• Model Selection. How should we choose the prior weight
variance σ 2, model depth L and layer widths N`? Recall that
the Bayesian model evidence Z∞(0) from Eq. 7 represents
the likelihood of observing the data (XN0 , YN0) given the
architecture L, N` and the prior weight variance σ 2. Maxi-
mizing the Bayesian evidence is therefore maximum likelihood
estimation over the space of models and gives a principled
method for model selection. We shall see that data-agnostic
priors maximize the evidence for networks with infinite λpost,
while shallower networks require data-dependent priors.

• Extrapolation. How optimal is the posterior of a linear
network? Predictions on inputs from directions orthogonal
to the training data are determined by the distribution θ⊥. At
λpost = 0, its prior and posterior coincide. As λpost increases,
however, we shall find that information from the training set
mixes into θ⊥ and ultimately maximizes evidence, producing
optimal extrapolation.

For simplicity, we report our results here in terms of a single
hidden layer width N = N1 = · · · = NL. The general form
with generic N`, as well as related results not stated here, are
available by direction application of the general expansions in
SI Appendix, D. For convenience, we define

ν := ||θ∗||2/α0. [26]

As elsewhere, we emphasize that we focus on the regime

P/N0 → α0 ∈ (0, 1),

as P, N0 → ∞. When α0 ≥ 1, Theorem 1 still holds but
immediately yields that θ = θ∗,N0 almost surely since θ⊥ = 0.
As described by Eq. 12 and stated rigorously in SI Appendix, A,
the predictive posterior in the regime P < N0 is Gaussian with
variance determined by ||θ⊥||2, which converges to a constant.
We rewrite this posterior in the form

f (x) → N (µ∗, νc6⊥), x = (xi,N0 , i = 1, . . . , k) ,

for free scalar c, scalar µ∗, and k × k PSD matrix 6⊥ given by

µ∗ :=
〈
θ∗,N0 , x

〉
, 6⊥ =

〈
x⊥i,N0

, x⊥j,N0

〉
N0 − P

,

in the limit P, N0 → ∞ and P/N0 → α0 ∈ (0, 1). The
following results report the Bayesian evidence and value of c
under different join scalings of P, N , and L. First, we observe
that maximizing Bayesian evidence always results in the posterior
corresponding to c = 1 (proven in SI Appendix, E).

Theorem 3 (Universal Maximal Evidence Posterior). Fix L,
N1 . . . , NL ≥ 1, σ 2 > 0, α0 ∈ (0, 1), and consider sequences of
training datasets XN0 ∈ RN0×P , YN0 ∈ R1×P such that

P, N0 →∞, P/N0 → α0,

and Eq. 17 holds. Let Z∞(0) denote the limiting Bayesian model
evidence. The following statements are equivalent:

(a) σ 2 maximizes Z∞(0), and
(b) the posterior over predictions f (x) converges weakly to a Gaussian
N (µ∗, ν6⊥).

We emphasize that Theorem 3 holds for any choice of depth
and hidden layer widths. At finite depth, we shall see that
identifying the evidence-maximizing priorσ 2

∗ requires knowledge
of the data-dependent parameter ν. In contrast, infinite-depth
networks have evidence maximized by σ 2

∗ = 1, allowing them
to successfully infer ν from training data despite a data-agnostic
prior. We proceed to consider different joint scalings of P, N , and
L in Theorems 4, 6 and 8, which follow directly from writing the
partition function in terms of the Meijer-G function (Theorem 1)
and applying the suitable asymptotic expansion (Theorem 2).
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Finite depth. We present here a characterization of the infinite-
width posterior and model evidence for networks with a fixed
number of hidden layers.
Theorem 4 (Posterior and Evidence at Finite L). For each
N0, P ≥ 1, consider training data XN0 , YN0 satisfying Eq. 17.
Fix constants L ≥ 0, σ 2 > 0 and suppose that

P, N0, N →∞, P/N0 → α0 ∈ (0, 1), P/N → α ∈ (0,∞).

In this limit, the posterior over predictions f (x) converges weakly
to a Gaussian

N
(
µ∗, ν6⊥

(
1 +

z∗
α

)−1
)

,

where z∗ is the unique solution to
ν

σ 2(L+1)
=
(

1 +
z∗
α

)
(1 + z∗)L , z∗ > max {−1,−α} .

[27]
Additionally, we have the following large-P expansion of the

Bayesian model evidence

log Z∞(0) →
P
2

[
log
(

P
2

)
+ log

(
1 +

z∗
α

)
−

(
1 +

z∗
α

)
− log

(
||θ∗||

2

4π

)]
+

NL
2

[log (1 + z∗)− z∗]

+ O(max
{
log P, log N

}
).

In regimes where z∗ tends to zero, the posterior will converge
to the evidence-maximizing posterior independent of the archi-
tecture and prior. By Eq. 27, this occurs for instance in the
limit of infinite depth with σ = 1 or when ν = σ 2(L+1). This
last condition corresponds to maximizing the Bayesian evidence
Z∞(0) at finite L.

Corollary 5 (Bayesian Model Selection at Finite L). In the
setting of Theorem 4 the Bayesian evidence Z∞(0) satisfies:

σ 2
∗ = arg max

σ

Z∞(0) = ν
1

L+1 [28]

L∗ = arg max
L

Z∞(0) =
log(ν)

log(σ 2)
− 1. [29]

In particular, given a prior variance with sgn (ν − 1) =
sgn

(
σ 2
− 1

)
satisfying |σ 2

− 1| ≤ ε, the optimal depth network
satisfies L∗ ≥ | log(ν)|/ε.

To put this Corollary into context, note that in the large-
width limit of Theorem 4 there are only two remaining model
parameters, L and σ 2. Model selection can therefore be done in
two ways. The first is an empirical Bayes approach in which one
uses the training data to determine a data-dependent prior σ 2

∗

given by Eq. 28. The other approach, which more closely follows
the use of neural networks in practice, is to seek a universal,
data-agnostic value of σ 2 and optimize instead the network
architecture. The expression Eq. 28 shows that the only way
to choose σ 2, L to (approximately) maximize model evidence for
any fixed ν is to take σ 2

≈ 1 with sgn
(
σ 2
− 1

)
= sgn (ν − 1)

and L → ∞. Hence, restricting to the data-agnostic prior
σ 2 = 1 naturally leads to a Bayesian preference for infinite-
depth networks, regardless of the training data. This motivates
us to consider large-N limits in which L tends to infinity, which
we take up in the next two sections.

Infinite depth. We fix σ 2 = 1 and investigate extrapolation and
model selection in regimes where N, L, P →∞ simultaneously.

Theorem 6 (Posterior and Evidence at Fixed �prior). For each
N0, P ≥ 1, consider training data XN0 , YN0 satisfying Eq. 17.
Moreover, fix λprior,α ∈ (0,∞), α0 ∈ (0, 1). Suppose that N1 =
· · · = NL = N and that

P, N`, L→∞, P/N0 → α0, P/N → α, L/N → λprior.

In this limit, the posterior over predictions f (x) converges weakly
to a Gaussian

N (µ∗, ν6⊥) ,

which is independent of α, λprior. Additionally, the evidence admits
the following asymptotic expansion:

log Z∞(0) =
P
2

[
log
(

P
2

)
− 1− log

(
||θ∗||

2

4π

)]
+ O(max

{
log P, log N

}
).

This result highlights the remarkable nature of data-driven
extrapolation in deep networks.

Corollary 7 (Optimal Learning by Deep Networks). In the
setting of Theorem 6, the posterior distribution over regression weights
θ is the same in the following two settings:

• We fix L ≥ 0, take the data-dependent prior variance σ∗ that
maximizes the Bayesian model evidence as a function of the
training data and network depth as in Eq. 28, and send the
network width N to infinity.

• We fix λprior > 0, take a data-agnostic prior σ 2 = 1, and send
both the network depth L := λprior ·N and network width N to
infinity together.

This corollary makes precise the statement that infinitely deep
networks with data-agnostic priors performs as optimally finite
depth networks with fine-tuned data-dependent priors.

In SI Appendix, F, we find that the ratio of model evidence
at fixed depth to the model evidence at infinite depth vanishes
like exp[−O(N )]. In comparison, mis-specifying the value of
constant λprior only results in an O(1) ratio of model evidences,
and it does not affect the posterior to leading order. We conclude
that, at σ 2 = 1, wide networks with depth comparable to width
are robustly preferred to shallow networks.
Scaling laws for optimal learning. To emphasize the similarity
between dataset size and depth, we take the limit of L, P, N →
∞ while holding LP/N constant. This results in a scaling law
for feature learning that only depends on λpost, as seen in the
following theorem.

Theorem 8 (Posterior and Evidence at Fixed �post). For each
N0, P ≥ 1, consider training data XN0 , YN0 satisfying Eq. 17.
Moreover, fix constants λpost > 0, α0 ∈ (0, 1), σ 2 = 1. Suppose
that N1 = · · · = NL = N and suppose that

P, N`, L→∞,
P

N0
→ α0,

P
N
→ 0,

L
N
→ 0,

LP
N
→ λpost.

In this limit, the posterior over predictions f (x) converges weakly
to a Gaussian N

(
µ∗, ν6⊥(1 + t∗)−1), where t∗ is the unique

solution to

ν = (1 + t∗)eλpostt∗ , t∗ > −1.
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Additionally, we have the following asymptotic expansion for the
Bayesian model evidence

log Z∞(0) =
P
2

(
log
(

P
2

)
− 1

)
−

P
2

log
(
||θ∗||

2

4π

)
+

P
2

[
log(1 + t∗)− t∗ −

1
2
λpostt2

∗

]
+ Õ(max

{
log P, log N, log L

}
).

In the limit λpost → ∞, Theorem 8 implies that optimal
feature learning is rapidly approached—specifically, like the
harmonic mean of 1 and λpost/ log ν. Bayesian model selection
also drives λpost to infinity.

Corollary 9 (Bayesian Model Selection at Fixed �post). In the
setting of Theorem 8, the Bayesian evidence Z∞(0) is monotonically
increasing in λpost. Specifically,

∂ log Z∞(0)
∂λpost

=
Pt2
∗

4
≥ 0. [30]

These results provide simple scaling laws that apply indepen-
dently of the choice of dataset, demonstrating the behavior of the
predictor’s posterior distribution and model evidence in terms of
λpost. The coupling of depth and dataset size in λpost provides
an interpretation of depth as a mechanism to improve learning
in a manner similar to additional data: Larger datasets and larger
depths contribute equally toward aligning the prior σ 2 = 1
toward the correct posterior.

Properties of Deep Linear Networks. We relate our work to
prior results in the literature: variance-limited scaling laws (3)
and sample-wise double descent (12, 25, 26). To make the
discussion concrete, we shall focus on the architecture introduced
in Theorem 6, where depth, width, and dataset size scale linearly
with each other to produce a posterior that exhibits optimal
feature learning given prior σ 2 = 1.
Variance-limited scaling laws. We examine the scaling behavior of
model error in the infinite-width or infinite-dataset limits. The
work of (3) shows that the difference between the finite-size loss
and the infinite-size loss scales like 1/x for x = N or P while
the other parameter is held fixed (P or N , respectively). Here,
we demonstrate an analogous scaling law when N ∝ P ∝ L.
Similarly to the results of ref. 3, this scaling law is independent
of the choice of dataset and consequently provides a universal
insight into how performance improves with larger models or
more data. The proof is found in SI Appendix, G.

Theorem 10 (Variance-Limited Scaling Law). For each N0 ≥ 1
consider training data XN0 , YN0 satisfying Eq. 17. Fix constants
λprior > 0,α > 0, σ 2 = 1. Suppose that N1 = · · · = NL = N ,
that L = λpriorN and number of data points satisfies P = Nα.
Then, as N →∞,

Varpost [f (x)] = lim
N→∞

Varpost [f (x)] +
C
N

+ O
(

log N
N 2

)
,

where C ∈ R is a universal constant.

Double descent. We demonstrate double descent in α0 = P/N0
consistent with previous literature (12). As a concrete example,
we shall consider a Gaussian data model and evaluate double
descent for the posterior of optimal feature learning; this posterior
is achieved by, for example, deep networks with σ 2 = 1
(Theorem 6), or finite-depth networks with data-tuned priors
σ 2
∗ (Theorem 4). The proof is found in SI Appendix, H.

Theorem 11 (Double Descent in �0). Consider generative data
model

xi ∈ RN0 ∼ N (0, I), yi = V0xi + εi, εi ∼ N (0, σ 2
ε ), ||V0||

2

= 1,

and posterior distribution N (µ∗, ν6⊥). We have error

Ex,X,ε

[〈
f (x)− V0x

〉2] =

{
1
α0
− α0 + 1

1−α0
σ 2
ε , α0 < 1

1
α0−1σ

2
ε , α0 ≥ 1

,

which diverges at α0 = 1.

Discussion

Neural networks are nonlinear functions of their parameters,
making an analytic understanding of their properties difficult.
Here, we adopted the simplification of studying linear neural
networks, which remain nonlinear in their parameters but are
more tractable. To conclude, we emphasize three limitations
of our work. First, we consider only linear networks, which
are linear as a function of their inputs. However, they are
not linear as a function of their parameters, making learning
by Bayesian inference nontrivial. Second, we study learning by
Bayesian inference and leave extensions to learning by gradient
descent to future work. Finally, our results characterize the
predictive posterior, i.e., the distribution over model predictions
after inference. It would be interesting to derive the form of the
posterior over network weights as well.
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