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Abstract. This paper characterizes extreme points of the set of incentive-compatible
mechanisms for screening problems with linear utility. Extreme points are exhaustive
mechanisms, meaning their menus cannot be scaled and translated to make additional
feasibility constraints binding. In problems with one-dimensional types, extreme points
admit a tractable description with a tight upper bound on their menu size. In problems with
multi-dimensional types, every exhaustive mechanism can be transformed into an extreme
point by applying an arbitrarily small perturbation. For mechanisms with a finite menu, this
perturbation displaces the menu items into general position. Generic exhaustive mechanisms
are extreme points with an uncountable menu. Similar results hold in applications to
delegation, veto bargaining, and monopoly problems, where we consider mechanisms that
are unique maximizers for specific classes of objective functionals. The proofs involve a novel
connection between menus of extreme points and indecomposable convex bodies, first studied
by Gale (1954).
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1. Introduction

Much of the mechanism design literature assumes that agents’ preferences can be described
by a single dimension of private information. Under this assumption, the theory has delivered
remarkably clean predictions for optimal mechanisms across various applications. However,
in many environments, agents’ preferences are more realistically modeled assuming multi-
ple dimensions of private information, for instance, in allocation problems with multiple
heterogeneous goods or collective decision problems with several alternatives. Despite their
importance, much less is known about multi-dimensional settings. Several results highlight
an inherent complexity of optimal mechanisms in these settings, but explicit descriptions
have not been obtained outside of a few special cases.1

In this paper, we study the structure of optimal mechanisms for a class of mechanism
design problems featuring one- and multi-dimensional types. Specifically, we consider linear
screening problems. A principal makes an allocation that affects their own and an agent’s
utility. Both parties’ utilities are linear in allocations and depend on the agent’s type, where
the allocation space and type space are convex sets in Euclidean space. Linear screening
covers a range of problems with and without transfers, for example, monopoly and bilateral
trade problems or delegation and veto bargaining problems.
Our main results characterize the extreme points of the set of incentive-compatible (IC)

mechanisms for linear screening problems. Since the principal maximizes a linear functional—
their expected utility—over the set of IC mechanisms, an optimal mechanism can always
be found among the extreme points. While every optimal mechanism is a mixture over
optimal extreme points, generic objective functionals are uniquely maximized at an extreme
point.2 Moreover, essentially every extreme point is the unique maximizer of some objective
functional.3 Thus, determining the structure of optimal mechanisms across instances of the
principal’s problem is tantamount to determining the structure of the extreme points.

The extreme-point approach has seen successful applications in a number of other mecha-
nism design settings, but with the sole exception of Manelli and Vincent (2007) (MV), it has
not been applied to settings with multi-dimensional types.4 Although MV laid important
groundwork for the monopoly problem, our characterizations reveal more explicit insights
into the structure of extreme points and apply to a broader class of problems.5

Our main insight is that in every one-dimensional problem, the set of extreme points
admits a tractable description, whereas in every multi-dimensional problem, the set of
extreme points is virtually as rich as the set of all incentive-compatible mechanisms. An
important observation is that every extreme point is exhaustive: the allocations made by
the mechanism—its menu—cannot be scaled and translated to make additional feasibility

1See, for example, Rochet and Choné (1998), Manelli and Vincent (2006, 2007), Hart and Reny (2015),
Daskalakis et al. (2014), Daskalakis et al. (2017), or Hart and Nisan (2019).

2We show that the set of IC mechanisms is norm-compact and convex. The first claim then follows
from Choquet’s theorem. The second claim follows from a theorem by Lau (1976) (where genericity is in a
topological sense).

3This claim follows from a theorem by Straszewicz and Klee (Klee Jr, 1958). More precisely, the mechanisms
that are uniquely optimal for some instance of the principal’s problem, i.e., exposed points, are dense in the
set of extreme points.

4See, for example, Border (1991), Manelli and Vincent (2010), Kleiner et al. (2021), Nikzad (2022, 2024),
or Yang and Zentefis (2024).

5We provide a detailed discussion of our relation to MV in Section 9.
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constraints binding.6 In one-dimensional problems, extreme points admit a tight upper bound
on their menu size on top of exhaustiveness. In contrast, in multi-dimensional problems, every
exhaustive mechanism can be transformed into an extreme point by applying an arbitrarily
small perturbation. For exhaustive mechanisms with a finite menu, this perturbation simply
displaces the menu items into general position. In particular, generic exhaustive mechanisms
are extreme points.

1.1. Discussion. A common explanation for the difficulty with multi-dimensional screening
is that binding incentive constraints depend on the choice of mechanism, making it a priori
unclear which constraints will be binding in an optimal mechanism; our results corroborate
this explanation. The perturbation described in the previous paragraph modifies the binding
incentive constraints of an exhaustive mechanism for an arbitrarily small set of types. Thus,
since exhaustive mechanisms are defined only in terms of binding feasibility constraints, the
qualitative properties that distinguish extreme points from other mechanisms are essentially
only properties of binding feasibility constraints. In contrast, for all one-dimensional problems,
properties of binding incentive constraints impose significant restrictions on the structure of
the extreme points, e.g., by limiting their menu size to no more than a few allocations in
typical applications.
A potential concern is that our results characterize the structure of optimal mechanisms

across all instances of the principal’s problem, i.e., for arbitrary utility functions and beliefs
about the agent’s type, while in some applications, the principal’s utility function is known.
For example, when a monopolist maximizes revenue, certain extreme points are suboptimal
for every belief of the monopolist about the agent’s valuations. Our main insights remain the
same in sample applications where the principal’s utility is fixed and state-independent, such
as in the monopoly problem. In particular, with multi-dimensional types, we show that the
extreme points that are (uniquely) optimal for some belief of the principal are again virtually
as rich as the set of all IC mechanisms.

Our results offer some insights into the capabilities and limitations of the classical mechanism
design paradigm. An important pillar for the success of the theory is that, in many applications,
it makes predictions for optimal mechanisms that are independent of the specific details of
the environment. We confirm that such predictions are obtainable for all one-dimensional
linear screening problems, whereas they are largely unattainable for all multi-dimensional
linear screening problems. When the structure of the optimal mechanism depends too finely
on the model parameters, it is difficult to derive tangible practical guidance and testable
implications from the theory since parameters such as type distributions may be unknown or
unobservable in practice.

We emphasize that we do not provide a full solution to multi-dimensional linear screening
in that we do not identify the optimal mechanism for each instance of the principal’s problem
and show how this mechanism varies across instances. However, given the overwhelming
complexity of the structure of extreme points, it seems implausible that such comparative
statics exercises are feasible in full generality.

1.2. Technical Contributions. We obtain our results by establishing a connection between
extreme points of the set of IC mechanisms and extremal elements of certain spaces of convex
sets. Instead of studying the set of IC mechanisms or the agent’s associated indirect utility

6A feasibility constraint is an affine restriction on the set of feasible allocations, i.e., a halfspace.
3



functions,7 we study the space of all menus that the principal could offer the agent. By the
well-known taxation principle, any IC mechanism is the agent’s choice function from some
menu of allocations and vice versa. Since preferences are linear, offering the agent a menu
is payoff-equivalent to offering the agent the menu’s convex hull. Thus, we can establish
a bijection between payoff-equivalence classes of IC mechanisms and certain convex sets
contained in the allocation space. We show that this bijection preserves convex combinations
(in the sense of Minkowski) and therefore preserves extreme points. Analogous bijections
hold onto the set of indirect utility functions.

The extremal elements of the space of compact convex sets in Euclidean space are relatively
well understood in the mathematical literature and are referred to as indecomposable convex
bodies, first studied by Gale (1954). Most of our results are derived from translating these
mathematical insights into economic insights via the connection between IC mechanisms and
menus in the form of convex sets. Two kinds of complications arise in this translation. First,
feasibility requires that menus are contained in the space of allocations; these constraints
are not generally considered in the literature on indecomposability. Second, certain menus
are equivalent from the agent’s perspective when the type space is restricted, i.e., when the
agent’s preferences are constrained to a subset of all linear preferences.
Indecomposable convex bodies in the plane are points, line segments, and triangles, but

they are so plentiful and complex in higher dimensions that a complete description has not
been obtained and is not to be expected.8 However, what is known in the mathematical
literature is enough to obtain the relevant economic insights we present in this paper. The
complexity of indecomposable convex bodies in two- versus higher dimensions mirrors the
dichotomy between one- and multi-dimensional screening problems since, with linear utility
and up to redundancies, an allocation space of a given dimension always corresponds to a
type space of one dimension less. (Transfers would here be counted as an allocation dimension
of its own.)

1.3. Structure of the Paper. Section 2 introduces relevant notation and mathematical
definitions. Section 3 introduces the model. Section 4 gives a characterization of extreme
points in terms of mechanisms that make an inclusion-wise maximal set of incentive and
feasibility constraints binding. Section 5 clarifies the role of feasibility constraints by defining
and characterizing exhaustive mechanisms. Section 6 presents our core results for one- versus
multi-dimensional problems, along with several supporting results. Section 7 introduces the
relevant mathematical tools and sketches the proof of our core results in the context of a
delegation problem among lotteries over finitely many alternatives, with an emphasis on the
special role of the three-alternative case.9 Section 8 discusses applications to monopolistic
selling and veto bargaining, including essentially complete characterizations of undominated
mechanisms in the sense of Manelli and Vincent (2007) for these settings. Section 9 provides

7For the indirect-utility approach, see e.g. Rochet (1987), Rochet and Choné (1998), Manelli and Vincent
(2006, 2007), and Daskalakis et al. (2017).

8Schneider (2014) writes (p. 166): “Most [(in the sense of topological genericity)] convex bodies in Rd,
d ≥ 3, are smooth, strictly convex and indecomposable. It appears that no concrete example of such a
body is explicitly known. This is not too surprising, since it is hard to imagine how such a body should be
described.” We note that algebraic characterizations of indecomposable polytopes are known; see McMullen
(1973), Meyer (1974), and Smilansky (1987). We provide a characterization along these lines in Appendix B.

9Problems with three alternatives have been considered as the simplest departure from the two-alternative
case often studied in the literature on mechanism design without transfers; see Börgers and Postl (2009).
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an extensive discussion of the related literature, including multi-dimensional screening,
extreme points in mechanism design, delegation and veto bargaining, and the mathematical
foundations underlying this paper. Section 10 concludes.

Appendix A collects several auxiliary results, including the translation between the set of
IC mechanisms and a certain space of convex sets. Appendix B deals with the geometry of
the set of finite-menu mechanisms and provides an algebraic characterization of finite-menu
extreme points (which generalizes the main result in Manelli and Vincent (2007)). Appendix C
provides a complete characterization of extreme points for one-dimensional problems omitted
from the main text for brevity. Appendix D contains the proofs for all results in the main
text.

2. Notation and Mathematical Definitions

Let X be a subset of a topological vector space E. ∆(X) denotes the set of Borel probability
measures on X. intX denotes the interior of X, bndrX denotes the boundary of X, and
clX denotes the closure of X. convX denotes the convex hull, coneX denotes the conical
hull, and affX denotes the affine hull.
Suppose X ⊆ E is convex. extX denotes the set of extreme points of X, i.e., those

x ∈ X for which x = λx′ + (1− λ)x′′ and λ ∈ (0, 1) implies x = x′ = x′′. expX denotes the
set of exposed points of X, i.e., those x ∈ X for which there exists a continuous linear
functional f : E → R such that f(x) > f(x′) for all x′ ∈ X, x ̸= x′. Every exposed point is
extreme, but the converse is not generally true. A face f of X is a convex subset of X such
that for all x ∈ f , x′, x′′ ∈ X, and λ ∈ (0, 1), x = λx′ + (1− λ)x′′ implies x′, x′′ ∈ f . The set
X ⊆ E is a polytope if it is the convex hull of finitely many (extreme) points.

We use the following standard terminology for convex sets in Euclidean space. A convex
body K ⊂ Rd is a non-empty compact convex set. A polyhedron P ⊆ Rd is the finite
intersection of closed halfspaces. A polyhedral cone is a cone that is also a polyhedron.
A polytope in Euclidean space is a bounded polyhedron. Every face f of a polyhedron P
can be represented as f = argmaxa∈P a · θ for some θ ∈ Rd. A face f is proper if f ̸= P . A
vertex v of P is a face of dimension 0, i.e., an extreme point of P .10 A facet F of P is a
face of P such that dimF = dimP − 1. If P ⊆ Rd is d-dimensional, then the facet-defining
hyperplane of F is the unique supporting hyperplane H = {y ∈ Rd | y · nH ≤ cH} of P
such that F ⊆ H, where nH is the outer (unit) normal vector to P on F .

3. Model and Preliminaries

3.1. Allocations and Types. There is a principal and an agent. The principal chooses an
allocation a ∈ A ⊂ Rd, where A is a d-dimensional polytope. The principal’s preferences over
allocations depend on the agent’s private information, their type θ ∈ Θ ⊂ Rd \ {0}, where the
set {λθ | θ ∈ Θ, λ ∈ R+} of all rays through the type space Θ is a d-dimensional polyhedral
cone. We say that the type space is unrestricted if coneΘ = Rd. An agent of type θ ∈ Θ
derives utility a · θ from allocation a ∈ A. Given the agent’s type θ ∈ Θ, the principal derives
utility a · v(θ) from allocation a ∈ A, where v : Θ → Rd is a bounded objective function
that captures the conflict of interest between both parties. There may be a veto allocation

¯
a ∈ extA that the agent can enforce unilaterally.

10The dimension of a convex set X ⊆ Rd, denoted dimX, is the dimension of its affine hull.
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Remark. The model subsumes several screening problems as special cases; see Sections 7 and 8
for examples. In particular, we subsume problems with transferable utility by interpreting
one allocation dimension as a numeraire for which the principal and the agent have a known
marginal utility. That is, Θ = Θ̃× {−1}, v(θ) = (. . . , 1) for all θ ∈ Θ, and A = Ã× [0, κ],
where κ ∈ R is the total endowment of the numeraire.

Since utility is linear, we can identify types on the same ray from the origin because
they have the same preferences over the allocations in A. We select normalized types in
the unit sphere Sd−1 = {y ∈ Rd : ||y|| = 1} as canonical representatives, i.e., Θ ⊆ Sd−1.
In applications, we occasionally make other selections, e.g., when considering transferable
utility. Thus, in our model, a d-dimensional allocation space A always corresponds to a
(d− 1)-dimensional type space Θ.11

3.2. Mechanisms. The principal designs a (direct and measurable) mechanism x : Θ → A
to screen the agent.12 A mechanism asks the agent to report their type θ and then implements
an allocation x(θ). By the revelation principle, it is without loss of generality for the principal
to focus on mechanisms that are incentive-compatible (IC) and individually rational
(IR):

x(θ) · θ ≥ x(θ′) · θ ∀θ, θ′ ∈ Θ; (IC)

x(θ) · θ ≥
¯
a · θ ∀θ ∈ Θ. (IR)

IC means that the agent has no incentive to misreport their type. IR means the agent has
no incentive to veto the principal’s choice. To simplify the analysis, we assume that there
exists a type

¯
θ ∈ Θ for whom the veto allocation is one of their favorite allocations, i.e.,

¯
a ∈ argmaxa∈A a ·

¯
θ. If no veto allocation exists, IR is satisfied by convention.

An optimal mechanism is any solution to the principal’s problem

sup
x:Θ→A

∫
Θ

(x(θ) · v(θ)) dµ

s.t. (IC) and (IR),

(OPT)

where µ ∈ ∆(Θ) is the principal’s belief about the agent’s type. We assume that µ admits a
bounded probability density, i.e., is absolutely continuous.
We say that a set of (IC) and (IR) mechanisms is a candidate set for optimality if it

contains an optimal mechanism for every objective function v and belief µ of the principal.

3.3. Menus and Payoff-Equivalence. Instead of designing a mechanism, the principal
can equivalently offer the agent a menu (or delegation set) M ⊆ A, with

¯
a ∈ M , from which

the agent may choose their favorite allocation. That is,

x(θ) ∈ argmax
a∈M

a · θ

11Contrary to other notions of one-dimensionality in the mechanism design literature (see e.g. Börgers,
2015, Chapter 5.6), a one-dimensional type space need here not imply a linear order on the underlying
preferences. For example, Θ = S1 may be a circle.

12It is without loss of generality to consider deterministic mechanisms: every randomized allocation in
∆(A) can be replaced with its barycenter since both principal and agent have linear utility. In applications,
we may think of the allocation space A as a set of lotteries over an underlying finite set of alternatives. In
this case, a mechanism can be interpreted as a stochastic mechanism.

6



defines an IC and IR mechanism x : Θ → A (if maximizers exist). The value function
U(θ) = θ · x(θ) is the agent’s indirect utility function associated with the mechanism x.

Mechanisms defined by the same menu are payoff-equivalent, i.e., the associated indirect
utility functions are the same. For IC mechanisms, it can be shown that payoff-equivalence
is equivalent to equality almost everywhere (Corollary A.5).13 Thus, payoff-equivalent
mechanisms yield the principal the same expected utility since the belief µ is absolutely
continuous.

We define the (essential) menu

menu(x) = cl
⋂

{x′(Θ) | x′ satisfies (IC) and (IR) and is payoff-equivalent to x}

associated with an IC and IR mechanism as (the closure of) the set of allocations that are
commonly made by all mechanisms in its payoff-equivalence class. For example, if the menu
size |menu(x)| is finite, then the menu simply consists of the allocations that are made by
the mechanism with strictly positive probability (cf. Daskalakis et al., 2017, Definition 7).

We henceforth identify payoff-equivalent mechanisms, i.e., x = x′ if x(θ) = x′(θ) for almost
every θ ∈ Θ, and write X for the set of payoff-equivalence classes of IC and IR mechanisms.14

In Appendix A.2, we show that X is L1-compact and convex. Therefore, a solution to (OPT)
exists and can be found among the extreme points of X (Bauer’s maximum principle).

4. Binding Incentive and Feasibility Constraints

In this section, we provide a characterization of the extreme points of the set of IC and IR
mechanisms in terms of binding incentive and feasibility constraints. Optimal mechanisms
solve a linear optimization problem, and therefore, identifying the binding constraints is
crucial for finding a solution. This perspective will prove useful in the subsequent sections.

An (IC) constraint is represented by a pair of types (θ, θ′) ∈ Θ×Θ, and we define

IC(x) =

{
(θ, θ′) ∈ Θ×Θ

∣∣∣∣∣ argmax
a∈menu(x)

θ′ · a ⊆ argmax
a∈menu(x)

θ · a

}
(1)

as the set of binding IC constraints of mechanism x ∈ X . This definition considers a constraint
as binding if type θ is indifferent to mimicing type θ′ regardless of how θ′ breaks ties.15

To define feasibility constraints, recall that the allocation space A is a polytope. Thus,
there exists a finite set F of facet-defining hyperplanes H = {y ∈ Rn | y · nH = cH} of A.
That is, A =

⋂
{H− : H ∈ F}, where H− = {y ∈ Rn | y · nH ≤ cH} are the associated

halfspaces containing A. Each halfspace corresponds to an affine restriction on the space of
available allocations, and no restriction is redundant given the others; see Figure 1 for an
illustration.

We define
F(x) = {H ∈ F | menu(x) ∩H ̸= ∅} (2)

as the set of binding feasibility constraints of mechanism x.

13Almost everywhere equality is with respect to the spherical measure (since Θ ⊆ Sd−1). For a Borel subset
B ⊆ Sd−1, the spherical measure is proportional to the Lebesgue measure of the set {λθ | θ ∈ B, λ ∈ [0, 1]}.

14See Appendix A.1 for a brief discussion of tie-breaking.
15Since ties are null events, IC(x) coincides for every type θ and almost every deviation θ′ with defining

an IC constraint as binding if x(θ) · θ = x(θ′) · θ. The latter definition of binding constraints is not robust to
tie-breaking.
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H2

H1

H5

H4

H3

A

menu(x)

Figure 1. The menu of a mechanism x ∈ X which is not an extreme point.
The allocation space A is a polytope defined by five facet-defining hyperplanes
F = {H1, . . . , H5}. The four allocations marked with dots are the menu of
the mechanism. The two rightmost allocations in the menu can be translated
horizontally while maintaining the orientation of all dotted lines, keeping the
set of binding constraints unchanged. This is clear for the feasibility constraints,
and can be seen for the incentive constraints because each type—represented
by a direction in R2—still chooses the same menu item(s).

Individual rationality constraints are irrelevant for the formulation of the following result;
see Appendix A.3 for an explanation.

Theorem 4.1. A mechanism x ∈ X with finite menu size is an extreme point of X if and
only if there is no other mechanism x′ ∈ X such that F(x) ⊆ F(x′) and IC(x) ⊆ IC(x′).

Proof. See Appendix D.1. □

Remark. The inclusions F(x) ⊆ F(x′) and IC(x) ⊆ IC(x′) in Theorem 4.1 can equivalently
be replaced by the equalities F(x) = F(x′) and IC(x) = IC(x′).

A mechanism with finite menu size is an extreme point if and only if it is the only mechanism
that makes a given inclusion-wise maximal set of constraints binding; Figure 1 illustrates. Of
the two types of constraints, binding feasibility constraints are easier to analyze and will be
treated separately in the next section.
Let us briefly discuss the proof of Theorem 4.1. If x = λx′ + (1 − λ)x′′ is a finite menu

mechanism in X , where λ ∈ (0, 1) and x′, x′′ ∈ X , then IC(x) = IC(x′) ∩ IC(x′′).16 Thus, an
important object for understanding extreme points is the set {x′ ∈ X | IC(x) ⊆ IC(x′)} of
mechanisms that make an inclusion-wise larger set of IC constraints binding than a given
finite-menu mechanism x ∈ X . We show that this set is a polytope and a face of X ; in
particular, x ∈ extX if and only if x ∈ ext{x′ ∈ X | IC(x) ⊆ IC(x′)}. Extreme points of a

16For almost all type pairs, this is immediate from the definition of the (IC) constraints. See Lemma D.1
for a complete argument.
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polytope are uniquely determined by their incident facets, i.e., binding constraints. Thus,
x ∈ extX if and only if x is uniquely determined by its binding feasibility constraints within
the face, which completes the proof.
The result does not extend to mechanisms with infinite menu size because the relevant

face is no longer a polytope.17 All our subsequent results will nevertheless accommodate
mechanisms of infinite menu size.

Remark. The required steps for the proof outlined in the previous paragraph generalize the
main results of Manelli and Vincent (2007, Theorems 17, 19, 20, and 24) about extreme points
of the multi-good monopoly problem to arbitrary linear screening problems; see Appendix B.

5. Exhaustive Mechanisms

In this section, we introduce and characterize exhaustive mechanisms and show that every
extreme point is exhaustive. Exhaustiveness allows us to isolate the role of binding feasibility
constraints in determining which mechanisms are extreme points. Our main results in the
next section will clarify the role of binding incentive constraints.

Definition 5.1. Mechanisms x, x′ ∈ X are positively homothetic if there exists λ ∈ R++

and t ∈ Rd such that x = λx′+t. Mechanisms x, x′ ∈ X are homothetic if they are positively
homothetic or one of them is constant. A mechanism x ∈ X is exhaustive if there does not
exist a mechanism x′ ∈ X positively homothetic to x such that F(x) ⊆ F(x′).

Two mechanisms are (positively) homothetic if one can be obtained from the other by
scaling (with a strictly positive scalar) and translation. In geometric terms, a positive
homothety leaves invariant the “shape” and “orientation” of menus. In economic terms, a
positive homothety leaves invariant the agent’s ordinal preferences over menu items and, in
particular, the binding incentive constraints. Positive homothethy defines an equivalence
relation on X and every equivalence class of positively homothetic mechanisms contains an
exhaustive mechanism, but this mechanism need not be unique; see Figure 2.

Theorem 5.2. Every extreme point x ∈ extX is exhaustive.

Proof. See Appendix D.2. □

For mechanisms with finite menu size, Theorem 5.2 is a corollary of Theorem 4.1. If x
is not exhaustive, then there exists a mechanism x′ ∈ X positively homothetic to x such
that F(x) ⊆ F(x′). IC(x) = IC(x′) follows immediately from the definition of positive
homothety. Therefore, x is not uniquely pinned down by its binding constraints. If x has a
finite menu, then Theorem 4.1 completes the proof by contraposition. In general, the argument
in Appendix D.2 shows that a mechanism that leaves slack in the feasibility constraints can
be decomposed into mechanisms homothetic to itself.
We proceed by characterizing the set of exhaustive mechanisms more explicitly. This

characterization is important since every property of exhaustive mechanisms is also a property

17For example, one can show the existence of strictly incentive-compatible extreme points x, x′ ∈ extX,
i.e., IC(x) = IC(x′) = ∅, that make the same feasibility constraints binding, i.e., F(x) = F(x′). In the
linear delegation problem discussed in Section 7, this amounts to showing that there exist smooth and
indecomposable convex bodies, i.e., extended menus, that touch the same facets of the unit simplex, which
follows by arguments similar to those in the proof of Theorem 6.6; see Schneider (2014, Theorems 2.7.1 and
3.2.18).
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menu(x)

menu(x′)

Figure 2. Two menus of exhaustive mechanisms homothetic to each other.

of extreme points and hence of optimal mechanisms.18 Recall that nH is the normal vector of
the facet-defining hyperplane H ∈ F of the allocation space A.

Theorem 5.3. A mechanism x ∈ X is exhaustive if and only if one of the following holds:
(1) There exists a ∈ extA such that menu(x) = {a}.
(2) (a) span{nH}H∈F(x) = Rd and (b)

⋂
H∈F(x)

H = ∅.

Proof. See Appendix D.2. □

That is, a non-constant mechanism is exhaustive if and only if the facet-defining hyperplanes
corresponding to the binding feasibility constraints satisfy two conditions: (a) their normal
vectors span the ambient space and (b) they have an empty intersection. These conditions
ensure that the mechanism can neither be translated or scaled relative to a point in a way
that would make additional feasibility constraints binding. Figure 3 illustrates.
An equivalent formulation of condition (2) in Theorem 5.3 is that F(x) contains d + 1

hyperplanes of which (a) d intersect in a single point and (b) the last does not. In particular,
if the facet-defining hyperplanes of the allocation space A are in general position, then a
non-constant mechanism x ∈ X is exhaustive if and only if |F(x)| ≥ d+ 1.19 If d = 2, then
the facet-defining hyperplanes are always in general position; thus, a non-constant mechanism
x ∈ X is exhaustive if and only if |F(x)| ≥ 3.
We illustrate the characterization of exhaustiveness and its economic implications with

two examples.

18While every optimal mechanism is a mixture over optimal extreme points, exhaustiveness is not necessarily
preserved under convex combinations. Thus, technically not every optimal mechanism for a given instance
(v, µ) of the principal’s problem need be exhaustive. However, topologically generic linear objective functionals
are uniquely maximized at an extreme point (Lau, 1976). Thus, optimal mechanisms are generically exhaustive.

19The hyperplanes in F are in general position if every subset of more than d hyperplanes in F has an
empty intersection.
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m
en
u(
x)

⋂
H∈F(x′) H

menu(x ′)

Figure 3. Illustrations of conditions (a) and (b) from Theorem 5.3. Left:
condition (a) is violated by a menu touching two parallel facets of a rectangle.
The menu can be translated horizontally until it touches an inclusion-wise
larger set of facets. Right: condition (b) is violated by a menu touching only
two facets of a pentagon. The menu can be scaled relative to the intersection
point of the two facet-defining lines until it touches an inclusion-wise larger set
of facets.

Example 5.4. Let A = {a ∈ Rd
+ |

∑d
i=1 ai ≤ 1} be the d-dimensional unit simplex embedded

in Rd. The unit simplex is the allocation space when considering lotteries over finitely many
alternatives or when dividing time or a budget across a finite set of options (see Sections 7
and 8 for applications). By Theorem 5.3, a non-constant mechanism x : Θ → A is exhaustive
if and only if it makes all d+ 1 feasibility constraints binding.
A facet of the unit simplex, i.e., feasibility constraint, is characterized by those lotteries

in which some alternative is chosen with probability 0. Therefore, in economic terms, a
non-constant exhaustive mechanism must allow the agent to avoid any particular alternative
with probability 1.

Example 5.5. Let A = [0, 1]d be the unit cube in Rd. The unit cube is the allocation space
in a problem with d goods, one of which could be money. For example, consider a bilateral
trade problem where k goods are owned by the principal, d − k goods are owned by the
agent, and the principal proposes a menu of possible trades to the agent. By Theorem 5.3,
a non-constant mechanism x : Θ → A is exhaustive if and only if it makes d non-parallel
feasibility constraints and at least one additional feasibility constraint binding.
A facet of the unit cube, i.e., feasibility constraint, is characterized by those allocations

in which some good is either allocated to the principal with probability 1 or to the agent
with probability 1. Therefore, in economic terms, an exhaustive mechanism must offer the
agent a menu designating at least one good for which the menu contains an option where the
agent receives the good with probability 1 and an option where the principal receives the
good with probability 1. In addition, for every other good, there must be an option where at
least one of the two parties receives the good with probability 1. (The latter condition is
automatically satisfied if the menu must include the status quo in which every agent keeps
their endowment.)
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6. Extreme Points in One- versus Multi-Dimensional Type Spaces

In this section, we show that the extreme points of the set of IC and IR mechanisms have
a simple structure in every problem with one-dimensional types but are virtually as rich as
the set of exhaustive mechanisms in every problem with multi-dimensional types. Recall that,
in our model, a d-dimensional allocation space A always corresponds to a (d− 1)-dimensional
type space Θ. Also recall that F is the set of feasibility constraints defining the allocation
space A.

Theorem 6.1. Suppose d = 2. Then, every extreme point x ∈ extX is exhaustive and
satisfies |menu(x)| ≤ |F|.

Proof. See Appendix D.3. □

Remark. The bound is tight for the unrestricted type space and attained by allocating to
each type one of their most preferred extreme points of the allocation space A.

Theorem 6.1 is the essential insight of a complete characterization of the extreme points
for problems with one-dimensional types (Theorem C.1 in Appendix C): extreme points can
be succinctly described as choice functions from a limited number of menu items, akin to
the well-known posted-price result for the monopoly problem (Myerson, 1981; Riley and
Zeckhauser, 1983). The complete characterization shows that a mechanism x ∈ X is an
extreme point if and only if menu(x) lacks a certain geometric structure, which we call a
flexible chain.
In the multi-dimensional case, the structure of extreme points is fundamentally different

and markedly more complex. To make this point, we equip the set of IC and IR mechanisms
X with the L1-norm

||x|| =
∫
Θ

||x(θ)|| dθ. (3)

We say that a property holds for most elements of a subset of a topological space if it holds
on a dense set that is also a countable intersection of relatively open sets (i.e., a dense Gδ);
this is a standard notion of topological genericity.

Theorem 6.2. Suppose d ≥ 3. Then, every extreme point is exhaustive and most exhaustive
mechanisms are extreme points.

Theorems 6.1 and 6.2 together show that properties of binding incentive constraints further
discipline the set of exhaustive mechanisms if and only if the type space is one-dimensional.
Exhaustiveness is a property of binding feasibility constraints alone. Thus, our results
corroborate the heuristic understanding in the mechanism design literature that the difficulty
with multi-dimensional screening lies in identifying the incentive constraints that are binding
in an optimal mechanism.

6.1. Additional Results. In the remainder of this section, we present additional results
for the multi-dimensional case that further strengthen Theorem 6.2. We separately discuss
extreme points of finite and infinite menu size as well as uniquely optimal mechanisms. All
proofs are in Appendix D.3.
We first provide a genericity condition under which an exhaustive mechanism of finite

menu size is an extreme point. For this, we say that a set of points M ⊆ A is in general
position if every hyperplane in Rd intersects M in at most d points.
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Theorem 6.3. Suppose d ≥ 3. If x ∈ X is exhaustive and menu(x) is finite and in general
position, then x ∈ extX .

That is, every exhaustive mechanism with a finite menu can be transformed into an extreme
point by perturbing its menu into general position. By carrying out such perturbations, we
obtain the following genericity result:

Theorem 6.4. Suppose d ≥ 3. For every k ∈ N, the set of extreme points of menu size k is
relatively open and dense in the set of exhaustive mechanisms of menu size k.20

Thus, extreme points remain prevalent among exhaustive mechanisms even when restricting
attention to mechanisms that make only a limited number of allocations.
It is easy to show that mechanisms with a finite menu size are dense in the set of all

mechanisms. Consequently, we have:

Corollary 6.5. Suppose d ≥ 3. The set of extreme points of finite menu size is dense in the
set of exhaustive mechanisms.

We next turn to mechanisms of infinite menu size.

Theorem 6.6. Suppose d ≥ 3. Most exhaustive mechanisms are extreme points of uncountable
menu size.

Remark. The proof of Theorem 6.6 establishes the stronger claim that most exhaustive
mechanisms are continuous functions (for which the menu is a connected subset of the
allocation space). While examples of extreme points with uncountable menu size have
been documented in the literature (Manelli and Vincent, 2007; Daskalakis et al., 2017), the
existence and prevalence of continuous extreme points is novel.

Exhaustive mechanisms can also be approximated by mechanisms that are uniquely optimal
for some objective and prior of the principal. That is, even the most parsimonious candidate
sets are dense in the set of exhaustive mechanisms. The formal result is a consequence of a
theorem due to Straszewicz and Klee (Klee Jr, 1958), which asserts that the exposed points
of a norm-compact convex set are dense in its extreme points.

Corollary 6.7. Suppose d ≥ 3. For every exhaustive mechanism x ∈ X and every ε > 0,
there exists a mechanism x′ ∈ extX such that ||x − x′|| < ε and such that x′ is uniquely
optimal for some objective function v : Θ → Rd and belief µ ∈ ∆(Θ).

In Section 8, we show that the gist of our results continues to hold if we only consider
those extreme points that are unique maximizers for specific objectives of the principal such
as revenue-maximization. That is, candidate sets remain complex even if the principal’s
objective is a priori known and fixed and only their belief is considered a free parameter.

Remark. We have given an essentially, though not entirely, complete characterization of the
extreme points of the set of IC and IR mechanisms. For example, menus that are not in
general position and allow some affine dependencies among menu items can still be extreme
points. In Appendix B (Theorem B.6), we provide a complete algebraic characterization of
finite-menu extreme points. Using the connection to the relevant mathematical concepts to

20An alternative statement is that the set of extreme points of menu size k is relatively open and dense in
the set of exhaustive mechanisms of menu size ≤ k; see the proof.

13



be established in the next section, the reader can consult the references provided in Section 9
for additional conditions. A complete characterization of all extreme points is not to be
expected (see Footnote 8 in the introduction).

7. Proof Ideas: The Case of Linear Delegation

In this section, we explain the methodology behind our results. Our approach is to
translate between extreme points of the set of (IC) and (IR) mechanisms and extreme points
of the set of all menus. Menus can be identified with convex bodies in allocation space,
allowing us to draw upon a mathematical literature that has characterized extremal—there
called indecomposable—elements of spaces of convex bodies. We illustrate this transfer
of results from mathematics to economics through what we consider to be the simplest
multi-dimensional screening problem; detailed proofs and generalizations are relegated to
Appendices A and D.

7.1. Linear Delegation. We proceed in the context of the linear delegation problem
and discuss the necessary adjustments for other problems at the end of this section:

• A = {a ∈ Rd
+ |

∑d
i=1 ai ≤ 1} is the unit simplex, i.e., the allocation space when

considering lotteries over m = d+ 1 alternatives or when dividing time or a budget
across the alternatives (a lists the probabilities or shares of the first d alternatives);

• Θ = Sd−1 is the unrestricted type space, i.e., the agent can have all possible von
Neumann-Morgenstern preferences over A;

• the principal’s objective function v : Θ → Rd is an arbitrary bounded function, i.e.,
the principal relies on the agent’s information in order to make an informed decision;

• there is no veto alternative
¯
a for the agent.

The linear delegation problem features multi-dimensional types whenever there are m ≥ 4
alternatives and thus differs from classical formulations of delegation problems à la Holmström
(1977, 1984), which assume one-dimensional allocation and type spaces and single-peaked
preferences; see Section 9 for further discussion.
Next to being a natural application of our model, there are two systematic reasons for

considering the linear delegation problem:
(1) In the linear delegation problem, incentive constraints are completely independent

from feasibility constraints in the sense that every mechanism that makes an inclusion-
wise maximal set of incentive constraints binding is an extreme point up to positive
homothety (Lemma 7.1). This independence simplifies our arguments and renders
the connection between extremal menus and indecomposable convex bodies most
transparent.

(2) Every linear screening problem is linear delegation with a restricted type space
(modulo IR constraints). This is because every linear screening problem can be
represented with the unit simplex as its allocation space through an appropriate
type space restriction.21 With such reformulations, however, coneΘ is no longer full-
dimensional, and because of this additional complexity, we do not use reformulations
to linear delegation in our general proofs.

21Consider a problem with allocation space A and type space Θ. Any allocation polytope A ⊂ Rd is the
image of a higher-dimensional simplex S ⊂ Rn under a linear map f : Rn → Rd (Grünbaum et al., 1967,
Chapter 5.1). An appropriate type space in Rn corresponding to the simplex is given by fT (Θ), where fT is
the transpose of f .
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7.2. From Mechanisms to Menus. So far, we have followed the literature in that we have
stated our results in terms of direct mechanisms. However, IC mechanisms can equivalently
be understood as the agent’s choice functions from different (closed) menus M ⊆ A.
We call a closed set M ⊆ A an extended menu if every allocation in A \M is strictly

preferred by at least one type θ ∈ Θ to every allocation in M . In other words, if M is an
extended menu, then there is no allocation that can be added to M without necessarily
changing the agent’s choice function. Since the agent has linear utility and we are considering
the unrestricted type space in this section, every menu M ⊆ A is extended by passing to its
convex hull conv(M), which is a convex body in allocation space.
It is straightforward to show that the map which assigns to every mechanism x ∈ X the

extended menu conv(menu(x)) ⊆ A is a bijection between the space X of (payoff-equivalence
classes of) IC mechanisms and the space M of convex bodies in allocation space.
In Appendix A (Theorem A.2), we show that the bijection between X and M commutes

with convex combinations and, therefore, preserves the linear structure of the underlying
spaces. For convex bodies M,M ′ ⊂ Rd, this linear structure is given by Minkowski addition
and positive scalar multiplication, defined as

λM + ρM ′ = {λa+ ρa′ | a ∈ M,a′ ∈ M ′}, (4)

where λ, ρ ∈ R+. In particular, extreme points of one space map to extreme points of the
other space.
We also show in Appendix A that convergence of extended menus with respect to the

Hausdorff distance implies convergence of the corresponding mechanisms in L1 (Lemma A.7).
Thus, any statement about compactness or denseness in the former space carries over to the
latter.

7.3. Indecomposability and Exhaustiveness. We next explain how extreme points of
the set of extended menus M can be understood in terms of the notion of indecomposability
from the mathematical literature and the notion of exhaustiveness defined in Section 5.
A menu M ∈ M is an extreme point of M if and only if it does not admit either of the

following decompositions:
(1) M = λM ′ + (1− λ)M ′′ for λ ∈ (0, 1) and M ′,M ′′ ∈ M homothetic to M ;
(2) M = λM ′ + (1− λ)M ′′ for λ ∈ (0, 1) and M ′,M ′′ ∈ M not homothetic to M .22

We call (1) a homothetic decomposition and (2) a non-homothetic decomposition.
Lemma D.2 in Appendix D shows that a mechanism x ∈ X is exhaustive if and only if the

associated extended menu M ∈ M admits no homothetic decomposition. We can straightfor-
wardly extend the definition of exhaustiveness to extended menus because exhaustiveness is
solely a property of the feasibility constraints of the allocation space that are intersected by
the menu of a mechanism.

Non-homothetic decompositions are closely related to the notion of decomposability from
the mathematical literature. A convex body K ⊂ Rd is decomposable if there exist convex
bodies K ′, K ′′ ⊂ Rd not homothetic to M such that M = K ′+K ′′. By scaling the summands,
decomposability is equivalent to the existence of convex bodies K ′, K ′′ ⊂ Rd not homothetic
to K such that K = λK ′+(1−λ)K ′′ with λ ∈ (0, 1). A convex body that is not decomposable
is indecomposable.

22The two cases are mutually exclusive: if one of M ′ or M ′′ is homothetic to M , then so is the other.
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If an extended menu M ∈ M is indecomposable, then M has no non-homothetic decompo-
sition. The converse does not generally hold because the summands λM ′ and (1− λ)M ′′ of
a non-homothetic decomposition in our model are required to be subsets of A, i.e., feasible
extended menus.23 However, when the allocation space is a simplex, indecomposability is
necessary and sufficient for the absence of non-homothetic decompositions.

Lemma 7.1. In the linear delegation problem, an extended menu M ∈ M is in extM if
and only if M is indecomposable and exhaustive.

Proof. See Appendix D.4. □

Before proceeding with a characterization of the indecomposable convex bodies, we briefly
discuss the economic meaning of indecomposability. Recall that an extreme point of finite
menu size is determined by its binding incentive and feasibility constraints (Theorem 4.1).
Indecomposability of the associated extended menu ensures that (up to payoff-equivalence)
there is no other, non-constant mechanism that makes an inclusion-wise larger set of incentive
constraints binding; exhaustiveness ensures the same for the feasibility constraints. Thus,
by Lemma 7.1 and in the linear delegation problem, the role of incentive and feasibility
constraints in whether or not a mechanism is an extreme point can be completely separated.
Indeed, in other linear screening problems, extreme points need not make inclusion-wise
maximal sets of incentive constraints binding. (Nevertheless, it is helpful to analyze feasibility
constraints separately from the incentive constraints, as we have done in Section 5.)

7.4. Characterizing Extreme Points. Given Lemma 7.1, it remains to characterize
indecomposable and exhaustive extended menus. Indecomposability has been characterized
in the mathematical literature.

Theorem (Meyer, 1972; Silverman, 1973). A convex body M ⊂ R2 is indecomposable if and
only if it is a point, line segment, or triangle.

Figure 1 depicts the proof idea for convex polygons. The figure shows a quadrilateral and
two deformations of the quadrilateral that translate the right-most, vertical facet-defining line
either to the left or to the right. The resulting deformed quadrilaterals yield a non-homothetic
decomposition of the original quadrilateral. Similar deformations can be found for any
polygon, but triangles are the only polygons for which these deformations yield homotheties
of the triangle. Thus, (degenerate) triangles are the only indecomposable convex polygons.
The extension to all plane convex bodies requires a more involved argument.

Theorem (Shephard, 1963). Let d ≥ 3. The set of indecomposable convex bodies in Rd is
Hausdorff-dense in the set of all convex bodies in Rd.

Shephard identifies a large class of indecomposable polytopes, with the simplest being
the simplicial polytopes, i.e., polytopes of which every proper face is a simplex. Roughly
speaking, a simplicial polytope S is indecomposable because each two-dimensional face
of S is a triangle and any decomposition of S into non-homothetic polytopes would also
have to decompose every face of S individually, which is impossible because triangles are
indecomposable. Simplicial polytopes are Hausdorff-dense in the space of all convex bodies.

23In the absence of feasibility constraints, every convex body trivially has homothetic decompositions, e.g.
through translations into opposite directions. This is why homothetic decompositions are ruled out in the
definition of indecomposability.
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Figure 4. Illustration of how to perturb a polytope into a nearby simplicial
polytope. Left: a pyramid with apex w and base v1-v2-v3-v4. Right: a simplicial
polytope obtained from the pyramid by pulling the vertex v4 to a new vertex
v′4 such that the five vertices are in general position. This procedure can be
iteratively applied to the vertices of any polytope to obtain a nearby simplicial
polytope. (Incidentally, a pyramid is already indecomposable.)

First, every convex body is arbitrarily close to a polytope. (Take the convex hull of a finite set
of points on the body’s boundary that is ε-dense in the boundary.) Second, every polytope
can be transformed into a simplicial polytope by perturbing its vertices into general position;
Figure 4 illustrates.

Exhaustiveness admits a simple economic characterization in the linear delegation problem,
which follows immediately from Theorem 5.3 (recall Example 5.4). We state the characteri-
zation in terms of mechanisms, but it can equivalently be stated in terms of the associated
extended menus:

• A constant mechanism x is exhaustive if and only if it dictates an alternative:
there exists a ∈ extA such that menu(x) = {a}.

• A non-constant mechanism x ∈ X is exhaustive if and only if it grants a strike: for
every alternative k = 1, . . . ,m there exists a lottery a ∈ menu(x) in which alternative
k is chosen with probability 0. That is, the agent is given the option to strike out any
one of the alternatives. Geometrically speaking, this means that menu(x) touches all
facets of the allocation simplex.

The following characterization result follows at once from the previous arguments and the
bijection between the set of mechanisms X and the set of extended menus M.

Theorem 7.2. Consider the linear delegation problem:
(1) With m = 3 alternatives, x ∈ X is in extX if and only if one of the following holds:

(a) x dictates an alternative;
(b) x grants a strike and has menu size at most three.

(2) With m ≥ 4 alternatives, extX is dense in the set of mechanisms that grant a strike.

Thus, the theory predicts simple solutions for linear delegation problems with three alter-
natives, but with four or more alternatives and up to approximation, the only distinguishing
property of extreme points is that they dictate or grant a strike.
We remark that optimality in the linear delegation problem, even when there are only

three alternatives, may require the use of stochastic mechanisms that offer the agent lotteries
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over the alternatives.24 Lotteries can be interpreted as risky courses of action or as budget or
time shares. Optimality may even require lotteries with full support, i.e., interior points of
the simplex. Intuitively, lotteries give the principal more leeway in screening the agent and
make it more difficult for the agent to align the allocation with their own preferences.

7.5. General Linear Screening Problems. We finally discuss the necessary adjustments
to our approach when considering (IR) constraints, allocation spaces different from the
simplex, and restricted type spaces.
In the context of the linear delegation problem, IR would mean that the menu of a

mechanism must contain the veto alternative
¯
a ∈ extA. Any decomposition of a given convex

body that contains
¯
a must also contain

¯
a. Thus, introducing IR constraints simply amounts

to considering extreme points of the set of IC mechanisms that also satisfy IR. The same
conclusion obtains in other linear screening problems; see Appendix A.3.
Suppose the allocation space A differs from the simplex. If an extended menu M ∈ M

is indecomposable, then it does not admit a non-homothetic decomposition. However, the
converse is no longer true. This is inconsequential for the denseness results for multi-
dimensional problems since we only get additional, extremal but decomposable extended
menus. For one-dimensional type spaces, these additional extreme points drive the bound
on the menu size from three up to the number of feasibility constraints of the allocation
space (Theorem 6.1). We provide a complete characterization of extremal extended menus for
one-dimensional type spaces and arbitrary allocation spaces A (Theorem C.1 in Appendix C).
This characterization builds on a mathematical result due to Mielczarek (1998).

Suppose the type space is restricted, i.e. coneΘ ̸= Rd. Extending a menu now entails more
than taking the convex hull because there are certain directions in the allocation space along
which all types are worse off. Geometrically speaking, these directions form the polar cone of
the type space. To prove our result, it is a technical convenience to extend menus beyond
the boundaries of the allocation space and work with closed convex sets that share the polar
cone as a common recession cone. Indecomposability for closed convex sets with a common
recession cone is analogous to indecomposability for convex bodies and has been discussed in
Smilansky (1987).

8. Specific Objectives: Multi-Good Monopoly and Linear Veto Bargaining

Our previous analysis considered candidates for optimality that the principal must a priori
consider when uncertain about both their objective function and the distribution of the agent’s
types; we now fix the principal’s objective, e.g., revenue maximization, and characterize the
mechanisms that remain relevant for optimality as the type distribution varies.

In applications to the multi-good monopoly problem and the linear veto bargaining problem,
to be defined below, we show that the set of mechanisms that are uniquely optimal for some
type distribution is dense in the set of undominated mechanisms. A mechanism is undominated
if there is no other mechanism that yields the principal an unambiguously higher utility. We
provide characterizations of undominated mechanisms, showing that they are almost as rich
as the set of all (IC) and (IR) mechanisms. Thus, the gist of our main results holds when

24See Kováč and Mylovanov (2009) and Kleiner et al. (2021) for a discussion about the optimality of
stochastic mechanisms in the classical one-dimensional delegation model.
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restricting attention to extreme points that are unique maximizers for specific objectives of
the principal. We discuss the two applications after introducing undominated mechanisms.

8.1. Undominated Mechanisms. For multi-dimensional problems, we have identified
exhaustive mechanisms as a reference set in which the extreme points lie dense. However,
with a fixed objective v, not every extreme point remains relevant for optimality. For example,
an extreme point might minimize expected revenue for some type distribution µ. The
appropriate reference set now becomes the set of undominated mechanisms, originally defined
for the multi-good monopoly problem by Manelli and Vincent (2007).

Definition 8.1. A mechanism x ∈ X is dominated by another mechanism x′ ∈ X if
x′(θ) · v(θ) ≥ x(θ) · v(θ) for almost all θ ∈ Θ, with strict inequality on a set of types of
positive measure. A mechanism x ∈ X is undominated if it is not dominated by any other
mechanism x′ ∈ X .

Manelli and Vincent (2007) show for the monopoly problem that every undominated
mechanism is optimal for some belief about the agent’s type. Their benchmark result can be
extended from revenue maximization to arbitrary objectives:

Theorem 8.2. For every undominated mechanism x ∈ X , there exists a type distribution
µ ∈ ∆(Θ) such that x is an optimal mechanism for a principal with belief µ.

Proof. See Appendix D.5. □

Conversely, every mechanism that is optimal for some fully supported type distribution
µ ∈ ∆(Θ) must clearly be undominated.
A priori, not every undominated mechanism is a necessary candidate for optimality.

(Undominated mechanisms need not be extreme or exposed points). However, in the following
applications and as long as types are multi-dimensional, we show that every undominated
mechanism is arbitrarily close to a mechanism that is uniquely optimal for some type
distribution, i.e., arbitrarily close to a mechanism that is a necessary candidate for optimality.

8.2. Multi-Good Monopoly. The multi-good monopoly problem is the following linear
screening problem:

• A = [0, 1]m × [0, κ], where the first m allocation dimensions are the probabilities with
which good i = 1, . . . ,m is sold to the agent, and the last allocation dimension is the
payment by the agent (and κ is some sufficiently large constant, which is without loss
of generality whenever valuations are bounded);

• Θ = [0, 1]m×{−1}, i.e., the consumer has valuations in [0, 1] for each good i = 1, . . . ,m
and money is the numeraire;25

•
¯
a = (0, . . . , 0, 0), i.e., the consumer can leave without paying anything;

25Due to linear utility, we implicitly assume that the goods are neither substitutes nor complements
for the agent. This assumption is made in most papers on the multi-good monopoly problem. We could
incorporate substitutes and complements by allowing the agent to have one valuation for each possible bundle
B ⊆ {1, . . . ,m}. The allocation space is then the unit simplex over 2m deterministic allocations, i.e., all
possible bundles, plus an extra dimension representing money as before. Free disposal, i.e., the agent being
willing to pay weakly more for inclusion-wise larger bundles, and a fixed marginal utility for money can be
modeled as a family of affine restrictions on the type space.
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• v(θ) = v̄ = {0, . . . , 0, 1} for all θ ∈ Θ, i.e., the principal maximizes expected revenue
(and goods can be produced at zero cost).26

In line with standard terminology in mechanism design with transfers, we abuse our language
by referring to a ∈ [0, 1]m as an allocation and t ∈ [0, κ] as the transfer. Instead of probabilities,
allocations can also be interpreted as quantities or as quality-differentiated goods with multiple
attributes (for which the consumer has unit demand).

We next show that a large class of mechanisms in the monopoly problem is undominated.
A pricing function is a continuous convex function p : [0, 1]m → R+ such that p(0) = 0
that assigns a price to each possible allocation.27 The marginal price for good i = 1, . . . , d
at allocation a ∈ [0, 1]m with ai < 1 is the directional derivative ∇eip(a) of p at a in the
coordinate direction ei (which exists by the convexity and continuity of p). The mechanism
x ∈ X obtained from a pricing function is the agent’s choice function from the menu
M = {(a, p(a)) | a ∈ [0, 1]m}.

Lemma 8.3. In the multi-good monopoly problem, every mechanism x ∈ X can be obtained
from a pricing function p with marginal prices in [0, 1]. If a mechanism x ∈ X can be obtained
from a pricing function p with marginal prices ∇eip uniformly bounded away from 0 and 1
for every good i = 1, . . . , d, then it is undominated.

Proof. See Appendix D.5. □

In plain words, a mechanism that, on the margin, prevents low-valuation types from
buying additional quantity while enabling high-valuation types to buy additional quantity
is undominated. Such a mechanism features “no-distortion at the top” (the highest type
receives the efficient allocation) and “exclusion at the bottom” (the lowest type receives
nothing), which are well-known properties of optimal mechanisms in screening problems with
transfers. In particular, such a mechanism features these two properties separately in each
allocation dimension. Not all undominated mechanisms have marginal prices bounded away
from zero and one, but the gap to the mechanisms that do admit this bound is negligible.28

Corollary 8.4. In the multi-good monopoly problem, the set of undominated mechanisms is
dense in the set of all (IC) and (IR) mechanisms.

Proof. See Appendix D.5. □

For a rough intuition for the richness of undominated mechanisms, consider the following
trade-off. When the principal increases the price for some allocations, revenue increases from
those types who continue to choose these allocations. However, some types that have previously
chosen an allocation at the lower price may now opt for a cheaper allocation, decreasing
revenue from the types that switch. This trade-off rules out a dominance relationship between
many mechanisms.

26The literature makes the zero-cost assumption for simplicity. It can easily be relaxed to a constant
marginal cost for each good. With decreasing marginal costs, extreme points also remain the relevant
candidates for optimality (see the discussion in Manelli and Vincent (2007)). With increasing marginal costs,
one has to follow the approach taken by Rochet and Choné (1998).

27Convexity and continuity are without loss of generality because the agent has linear utility. p(0) = 0
reflects the (IR) constraint. See also Hart and Reny (2015, Appendix A.2).

28For an example, see the mechanism depicted in Figure 2 in Manelli and Vincent (2007). In the
bottom-right “market segment,” the marginal price for good one is 1.
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Given the characterization of undominated mechanisms, the same arguments as in Section 7
can be applied to conclude that extreme points are dense in the set of undominated mechanisms
and, therefore, in the set of all mechanisms by Corollary 8.4. In the following result, the first
part is well-known (see, for example, Manelli and Vincent (2007, Lemma 4)).

Theorem 8.5. Consider the multi-good monopoly problem:
(1) With m = 1 good, a mechanism x ∈ X is in extX and undominated if and only if x

is a posted-price mechanism with price p ∈ (0, 1), i.e.,

x(θ) =

{
(1, p) if θ1 ≥ p

(0, 0) otherwise.

(2) With m ≥ 2 goods, the set of mechanisms x ∈ X that are uniquely optimal for some
belief µ ∈ ∆(Θ) is dense in X .

Proof. See Appendix D.5. □

Remark. The proof shows that statement (2) remains true if the belief µ is required to have
full support on Θ.

The second part says that any incentive-compatible and individually rational mechanism
can be turned into a mechanism that is uniquely optimal for some belief of the seller by
applying an arbitrarily small perturbation. The claim about uniquely optimal mechanisms is
not an application of Straszewicz’ theorem upon showing denseness of the extreme points in
the set of undominated mechanisms. While Straszewicz’ theorem guarantees that exposed
points are arbitrarily close to extreme points, these points may be exposed by linear functionals
unrelated to revenue maximization. Our proof modifies the theorem to obtain the desired
result.

8.3. Linear Veto Bargaining. We now discuss the following linear veto bargaining
problem:

• A = {a ∈ Rd
+ |

∑d
i=1 ai ≤ 1} is the unit simplex, i.e., the allocation space when

considering lotteries over m = d+ 1 alternatives or when dividing time or a budget
across the alternatives (a lists the probabilities or shares of the first d alternatives);

• Θ = Sd−1 is the unrestricted domain, i.e., the agent can have all possible von Neumann-
Morgenstern preferences over A;

• there is a veto alternative
¯
a ∈ extA for the agent (e.g., the status quo in a political

context), and we set
¯
a = (0, . . . , 0) without loss of generality;

• the principal’s preferences are given by a Bernoulli utility vector v̄ independently of
the agent’s information, i.e., v(θ) = v̄ for all θ ∈ Θ, and we assume for simplicity that
(1) v̄ ∈ R++, i.e., the veto alternative is the principal’s least preferred alternative, and
(2) argmaxi v̄i is a singleton, i.e., the principal has a unique favorite alternative.

The problem can be seen as a delegation problem with a state-independent objective and
an IR constraint. Therefore, the extreme points of linear veto bargaining are exactly the
extreme points of linear delegation that satisfy IR (Lemma A.9). Linear veto bargaining can
also be seen as a no-transfers analogue of the monopoly problem since both problems feature
state-independent objectives with an IR constraint.

Lemma 8.6. In the linear veto bargaining problem, a mechanism x ∈ X is undominated if and
only if menu(x) contains the veto alternative and the principal’s most preferred alternative.
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Proof. See Appendix D.5. □

The richness of undominated mechanisms in the veto bargaining problem comes from a
trade-off similar to that in the monopoly problem. By adding an alternative to the menu of
a mechanism, some types prefer the new alternative over their previous choice. Among those
who switch, some types will do so in the principal’s favor, i.e., switch away from alternatives
that the principal likes less than the new alternative. Other types will not switch in the
principal’s favor, i.e., switch away from alternatives that the principal likes more than the
new alternative. A similar trade-off arises when removing an alternative from the menu.
These trade-offs prevent a dominance relationship between mechanisms that allocate the
principal’s most preferred alternative.

As before, given the characterization of undominated mechanism above, the same arguments
as in Section 7 can be applied to conclude that the extreme points are dense in the set of
undominated mechanisms whenever there are four or more alternatives. The claim about
uniquely optimal mechanisms again requires additional arguments.

Theorem 8.7. Consider the linear veto bargaining problem:
(1) With m = 3 alternatives, a mechanism x ∈ X is undominated and in extX if and only

if menu(x) contains the veto alternative, the principal’s most preferred alternative,
and at most one other lottery over the alternatives.

(2) With m ≥ 4 alternatives, the set of mechanisms x ∈ X that are uniquely optimal for
some belief µ ∈ ∆(Θ) is dense in the set of undominated mechanisms.

Proof. See Appendix D.5. □

9. Related Literature

This paper relates to several areas of research, including multi-dimensional screening,
extreme points in mechanism design, delegation and veto bargaining, and the mathematical
literature on indecomposability. We will explain the relation to these four areas after first
discussing Manelli and Vincent (2007), whose work most closely relates to ours.

9.1. Manelli and Vincent (2007) (MV). In the context of the multi-good monopoly
problem, MV provide the first—and, prior to this paper, only—analysis of extreme points in
multi-dimensional mechanism design, with two main contributions. First, they provide an
algebraic characterization of finite-menu extreme points in terms of whether or not a certain
linear system associated with a given mechanism has a unique solution. This characterization
is based on auxiliary results about the facial structure of the set of incentive-compatible
mechanisms. Second, they define the notion of undominated mechanisms and show that every
undominated mechanism maximizes expected revenue for some distribution of types.
In comparison to MV, we consider arbitrary linear screening problems with or without

transfers and subsume the multi-good monopoly problem as a special case. We contribute
explicit, non-algebraic extreme-point characterizations (Section 6). These characterizations
reveal the precise structure of the set of extreme points and, therefore, the structure of the
possible solutions to linear screening problems. Along the way, we obtain generalizations of
MVs results in our more general framework; see Appendix B and Theorem 8.2.
In comparison to MV, we also characterize undominated extreme points and uniquely

optimal mechanisms. While MV show for the monopoly problem that all undominated
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mechanisms are potentially optimal, it has not been known which undominated mechanisms
are necessary candidates for optimality, i.e., which extreme points are undominated and
uniquely optimal for some type distribution. A priori, one might conjecture that parsimonious
candidate sets are significantly smaller than the set of undominated mechanisms. We show
that this is not the case: the relevant exposed points are dense in the set of undominated
mechanisms. Moreover, we provide new results about undominated mechanisms, showing
that these mechanisms are themselves virtually as rich as the set of all IC and IR mechanisms.

Finally, we note that MV have shown for the monopoly problem, modulo minor details, that
the extreme points of menu size k ∈ N are relatively open and dense in the IC mechanisms of
menu size k, provided k is smaller than the number of goods for sale plus one (their Remark
25). We show that this substantial qualifier on k is not necessary and that the result holds
for arbitrary multi-dimensional screening problems with linear utility (Theorem 6.4).

9.2. Multi-dimensional Screening and Mechanism Design. The literature on multi-
dimensional screening—and on the multi-good monopoly problem in particular—is much
too large to be summarized here in detail. We focus on recent developments and point to a
survey by Rochet and Stole (2003) for work up to the early 2000s.29

Recent work focuses mostly on the multi-good monopoly problem and can be classified
into several approaches for gaining insights into multi-dimensional screening problems or for
circumventing the severe difficulties associated with their classical formulations:

• provide conditions for the optimality of common mechanisms such as separate sales or
bundling (McAfee et al., 1989; Manelli and Vincent, 2006; Fang and Norman, 2006;
Pavlov, 2011; Daskalakis et al., 2017; Menicucci et al., 2015; Bergemann et al., 2021;
Haghpanah and Hartline, 2021; Ghili, 2023; Yang, 2023);

• provide duality results that can be used to certify the optimality of a given mechanism
(Daskalakis et al., 2017; Kleiner and Manelli, 2019; Cai et al., 2019; Kolesnikov et al.,
2022; Kleiner, 2022);

• identify specific structural properties of optimal mechanisms (e.g., subadditive pricing,
monotonicity, no randomization) and show when such structure arises (McAfee et
al., 1989; Manelli and Vincent, 2006; Hart and Reny, 2015; Babaioff et al., 2018;
Ben-Moshe et al., 2022; Bikhchandani and Mishra, 2022);

• quantify the worst-case performance (approximation ratio) of common mechanisms
or classes of mechanisms (Hart and Nisan, 2017; Hart and Nisan, 2019; Li and Yao,
2013; Babaioff et al., 2017; Rubinstein and Weinberg, 2018; Hart and Reny, 2019;
Babaioff et al., 2020; Ben-Moshe et al., 2022);

• identify mechanisms with the optimal worst-case performance for a mechanism designer
with Knightian uncertainty over the set of type distributions (Carroll, 2017; Deb and
Roesler, 2023; Che and Zhong, 2023);

• derive asymptotic optimality results for a large number of i.i.d. goods (Armstrong,
1999; Bakos and Brynjolfsson, 1999) or for the speed of convergence to first-best as
the principal gains increasingly precise information about the agent’s type (Frick
et al., 2024).

Our paper is orthogonal to these developments. We do not focus on specific properties
and classes of mechanisms or attempt to escape intractabilities. Instead, we shed light on

29A sample of important early work includes Adams and Yellen (1976), Schmalensee (1984), McAfee et al.
(1989), Wilson (1993), Armstrong (1996), and Rochet and Choné (1998).
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where these intractabilities originate and identify the limits of the qualitative predictions
that can be drawn within the standard Bayesian framework. Moreover, to the best of
our knowledge, multi-dimensional screening without transfers has not been studied, with
the exception of Kleiner (2022), whose duality approach to a multi-dimensional delegation
problem is complementary to our extreme points approach.

Besides the implications for optimal mechanism design, we contribute to the literature on
implementability with multi-dimensional type spaces (e.g., Rochet, 1987; Saks and Yu, 2005;
Bikhchandani et al., 2006) by characterizing extreme points of the set of incentive-compatible
mechanisms. By Choquet’s theorem, every non-extreme point can be represented as a mixture
over extreme points.

In general, little is known about optimal multi-dimensional mechanism design with multiple
agents (Palfrey, 1983; Jehiel et al., 1999; Chakraborty, 1999; Jehiel et al., 2007; Kolesnikov
et al., 2022); see the conclusion for further discussion.

9.3. Extreme Points in Mechanism Design. A number of papers have approached
mechanism design problems by studying the extreme points of the set of incentive-compatible
mechanisms. However, aside from the previously discussed work by Manelli and Vincent
(2007), this approach has only been applied to one-dimensional problems. For instance,
Border (1991) uses extreme points—hierarchical allocations—in a characterization of the set
of feasible interim allocation rules. Building on Border’s insights, Manelli and Vincent (2010)
demonstrate the equivalence of Bayesian and dominant strategy incentive-compatibility in
standard auction problems. A similar approach is discussed in Vohra (2011, Chapter 6).

Kleiner et al. (2021) present characterizations of the extreme points of certain majorization
sets and show how these majorization sets naturally arise as feasible sets in many economic
design problems. In the context of mechanism design, their results immediately imply
a characterization of the extreme points of the set of feasible and incentive-compatible
interim allocation rules in one-dimensional symmetric allocation problems, providing a new
perspective on Border’s theorem as well as BIC-DIC equivalence. Their approach is tailored
to one-dimensional problems, elegantly handling both the IC constraints (monotonicity
for one-dimensional types) and the Maskin-Riley-Matthews-Border feasibility constraints
(majorization with respect to the efficient allocation rule).

In subsequent work, Kleiner et al. (2024) characterize certain extreme points of the set
of measures defined on a compact convex subset of Rd that are dominated in the convex
order by a given measure. Their result is a multi-dimensional analogue of results obtained in
Kleiner et al. (2021) about the set of monotone functions that majorize a given monotone
function (see also Arieli et al., 2023). These results apply to information design but have no
obvious applications to mechanism design.

Nikzad (2022, 2024) builds on the majorization approach, allowing for additional constraints
on the majorization sets. These constraints may, for example, correspond to fairness or
efficiency constraints in a revenue-maximization problem. Yang and Zentefis (2024) provide a
complementary analysis to Kleiner et al. (2021) based on characterizations of extreme points
of sets of distributions characterized by first-order stochastic dominance conditions rather
than second-order stochastic dominance conditions (majorization).

Extreme point approaches have also been used in mechanism design without transfers (e.g.,
Ben-Porath et al., 2014; Niemeyer and Preusser, 2024), and several other mechanism design
papers use extreme points as a technical tool (e.g., Chen et al., 2019).
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9.4. Delegation and Veto Bargaining. Much of the literature on optimal delegation has
focused on one-dimensional allocation (action) and type spaces with single-peaked preferences;
see Holmström (1977, 1984), Melumad and Shibano (1991), Martimort and Semenov (2006),
Alonso and Matouschek (2008), Amador and Bagwell (2013), Kolotilin and Zapechelnyuk
(2019), and Kleiner et al. (2021).

The applications of our results to delegation differ from the classical literature in two ways.
First, allocations in our delegation problem are lotteries over finitely many alternatives.30

Second, both the principal and agent have arbitrary vNM preferences over these alternatives;
that is, our problem features an unrestricted rather than single-peaked preference domain and
therefore multi-dimensional types (and allocations). We can allow more general allocation
spaces, provided the agent’s utility remains linear.

A small number of papers consider multi-dimensional type or allocation spaces. Koessler and
Martimort (2012) study optimal delegation in a setting with a one-dimensional type space and
two allocation dimensions across which the principal and the agent have separable quadratic
preferences. Frankel (2016) links multiple independent, one-dimensional delegation problems.
Frankel shows that “halfspace delegation,” i.e., imposing a quota on the weighted average of
actions across problems, is optimal for normally distributed states and approximately optimal
for general distributions as the number of linked problems goes to infinity. See also Frankel
(2014) for a robust mechanism design approach. Kleiner (2022) studies optimal delegation
with both multi-dimensional type and allocation spaces. Kleiner’s duality-based approach is
complementary to our extreme-point approach.
Veto bargaining is a classical problem in political science, originally studied in Romer

and Rosenthal (1978). The case with incomplete information about the agent’s (vetoer’s)
preferences has only recently been studied using a mechanism design approach by Kartik
et al. (2021).31 Their model features one-dimensional private information. Amador and
Bagwell (2022) and Saran (2022) study related one-dimensional delegation problems with IR
constraints where the principal does not necessarily have state-independent preferences.32

Similarly, our model can nest linear delegation problems with IR constraints.

9.5. Mathematical Foundations. Gale (1954) introduced the notion of an indecomposable
convex body and announced the first results about indecomposability. Gale’s results were
later proven and published in Shephard (1963), Meyer (1972)/Silverman (1973), and Sallee
(1972). These and other papers have provided many novel results that go beyond Gale’s
original presentation. McMullen (1973), Meyer (1974), and Smilansky (1987) provide algebraic
characterizations of indecomposable polytopes. Smilansky (1987) discusses indecomposable
polyhedra. Related results characterize extremal convex bodies within a given compact
convex set in the plane (Grzaślewicz, 1984; Mielczarek, 1998); see Theorems 6.1 and C.1
for the application in our paper. Decomposability is related to deformations of polytopes,
which we briefly use in Appendix B; Castillo and Liu (2022, Section 2) provide a concise
treatment. Textbook references on indecomposability include Schneider (2014, Chapter 3.2),
Pineda Villavicencio (2024, Chapter 6), and Grünbaum et al. (1967, Chapter 15).

30Delegation over a finite set of alternatives is also studied in the project selection literature; see Armstrong
and Vickers (2010), Nocke and Whinston (2013), Che et al. (2013a), and Guo and Shmaya (2023).

31See also Ali et al. (2023).
32See also the ”balanced” delegation problem in Kolotilin and Zapechelnyuk (2019).
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Characterizations of indecomposable convex bodies can alternatively be seen, via support
function duality, as characterizations of the extremal rays of the cone of sublinear (i.e.
convex and homogeneous) functions. A subset of the results known in the literature on
indecomposable convex bodies have been independently obtained in studies of the extremal
rays of the cone of convex functions by Johansen (1974) (for two-dimensional domains) and
Bronshtein (1978) (for d-dimensional domains).33

We finally mention a result due to Klee (1959, Proposition 2.1, Theorem 2.2), which
shows that for most (in the sense of topological genericity) compact convex subsets of an
infinite-dimensional Banach space, the extreme points of the set are dense in the set itself.
This follows since such sets have an empty interior, support points are dense in the boundary,
hence in the set itself, and since most such sets are strictly convex, so that every support
point is an extreme point. However, the set of IC mechanisms is a specific compact convex
subset of an infinite-dimensional Banach space, which, in particular, is not strictly convex.
The content of our results is that whenever the type space is multi-dimensional, the extreme
points are nevertheless dense in a certain part of the set.

10. Conclusion

We have characterized extreme points of the set of incentive-compatible (IC) mechanisms
for screening problems with linear utility. For every problem with one-dimensional types,
extreme points admit a simple characterization with a tight upper bound on their menu size.
In contrast, for every problem with multi-dimensional types, we have identified a large set of
IC mechanisms—exhaustive mechanisms—in which the extreme and exposed points lie dense.
Consequently, one-dimensional problems allow us to make predictions that are independent
of the precise details of the environment, whereas such predictions are largely unattainable
for multi-dimensional problems.

One might hope that restricting attention to specific instances of a given multi-dimensional
screening problem allows more robust predictions regarding optimality. We have shown that
such predictions remain elusive in applications to monopoly and veto bargaining problems,
where the principal’s objective is fixed and state-independent and only the principal’s belief
about the agent’s type is considered a free parameter.

While our focus has been on screening problems, where there is only a single (representative)
agent, one should expect implications of our results for multi-agent settings. In multi-agent
settings, Bayesian incentive compatibility of a given multi-agent mechanism is the same as
separately requiring incentive compatibility with respect to each agent’s interim-expected
mechanism (see, e.g., Börgers, 2015, Chapter 6). These interim-expected mechanisms, one for
each agent, must then be linked towards an ex-post feasible mechanism via an appropriate
analogue of the Maskin-Riley-Matthews-Border conditions.34 Thus, if the extreme points
in a multi-agent problem were simpler than the extreme points characterized here for the
one-agent case, then this reduction in complexity would have to come from these additional
conditions. This is not the case for problems with one-dimensional types (see, e.g., Kleiner
et al., 2021) and is not to be expected for problems with multi-dimensional types.

33We thank Andreas Kleiner for pointing us to these references.
34Maskin and Riley (1984), Matthews (1984), Border (1991). Recent treatments include Che et al. (2013b),

Gopalan et al. (2018), and Valenzuela-Stookey (2023); see these papers for further references and discussions
of potential limitations of the reduced-form approach.
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Our main methodological contribution is to link extreme points of the set of incentive-
compatible mechanisms to indecomposable convex bodies studied in convex geometry. This
methodology, where we study incentive-compatible mechanisms by analyzing the space of all
menus from which the agent could choose, is potentially useful in other areas of economic
theory. Examples that come to mind are menu choice à la Dekel et al. (2001) and the random
expected utility (REU) model of Gul and Pesendorfer (2006).
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Appendix A. Preliminaries & Auxiliary Results

This appendix gathers general tools we use throughout the proofs of our results from the
main text. Appendix A.1 shows that there are bijections between mechanisms, menus, and
indirect utility functions that commute with convex combinations (in the sense of Minkowski).
The commutativity with convex combinations is essential for our subsequent analysis because
we will study extremal menus and then translate back to extremal mechanisms, as explained
in Section 7. Appendix A.2 introduces the relevant topological structure for the three sets of
objects. Appendix A.3 discusses how individual rationality (IR) constraints are incorporated
into our analysis.

A.1. Mechanisms, Menus, and Indirect Utility Functions. Recall that we have identi-
fied payoff-equivalent mechanisms and that X is the set of payoff-equivalence classes of (IC)
and (IR) mechanisms.

Let
U = {U : θ 7→ x(θ) · θ | x ∈ X}

denote the set of all indirect utility functions induced by the mechanisms in X . It is a direct
consequence of (IC) that an indirect utility function is HD1 (homogeneous of degree 1) on
coneΘ because types on the same ray from the origin have the same ordinal preferences.
Thus, we extend indirect utility functions U ∈ U to Rd by setting U(λθ) = λU(θ) for all
θ ∈ Θ and λ ≥ 0 and U(z) = ∞ for all z /∈ coneΘ.
A menu is simply a subset M ⊂ A that the principal offers the agent and from which

the agent chooses their favorite allocation. However, different menus can induce payoff-
equivalent choice functions, i.e., payoff-equivalent IC mechanisms, for the agent. Thus, we
define the notion of an extended menu, which is the inclusion-wise largest representative of a
payoff-equivalence class of menus.

To define extended menus, let

Θ◦ = {y ∈ Rd | ∀θ ∈ Θ, y · θ ≤ 0} (5)

denote the polar cone of Θ. The polar cone of type space is the set of all directions in
allocation space A along which no type’s utility ever strictly improves. If coneΘ = Rd, then
the only such direction is the trivial direction 0. By definition, we may add to every menu
M ⊂ A the polar cone Θ◦ and instead offer the agent the Minkowski sum M +Θ◦ without
affecting the agent’s indirect utility. We may also take the closed convex hull of M , which
does not affect indirect utility either since utility is linear. By requiring

¯
a ∈ M , i.e., the veto

allocation is in M , we ensure that the agent does not veto the menu.

Definition A.1. An extended menu is a closed convex set M ⊂ Rd such that M =
conv extM +Θ◦, extM ⊂ A, and

¯
a ∈ M . The set of all extended menus is denoted by M.

If the type space is unrestricted, i.e., coneΘ = Rd, then extended menus are convex
bodies in A; otherwise, they are unbounded closed convex sets. That extended menus offer
infeasible allocations when the type space is restricted has no physical meaning and is merely
a convenient way to identify payoff-equivalent menus. We note that extended menus are
uniquely pinned down by their extreme points.
Figure 5 illustrates the construction of extended menus. The depicted allocation and

type spaces fit a one-good monopoly problem. The horizontal allocation dimension a1 is the
probability of sale, and the vertical allocation dimension a2 is the payment. The type space
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v1

v2

v3

v4

v5

Θ◦

coneΘ

A

M

Figure 5. An example of an extended menu for a restricted type space. The
type cone, coneΘ, is the 45◦ cone, shaded in dark gray. The polar cone Θ◦

is the 135◦ cone, also shaded in dark gray and with extremal rays that are
orthogonal to the extremal rays of coneΘ. The allocation space A is the square.
An exemplary menu {v1, v2, v3, v4, v5} is depicted using dots. Its extension is
the polyhedron M shaded in light gray and with boundary given by the dotted
lines. M is obtained by taking the convex hull of {v1, v2, v3, v4, v5} and adding
the polar cone Θ◦. Here, v2 and v3 “vanish” in the polar cone because v2 and
v3 are dominated by the other three allocations for every type in Θ.

is Θ = [0, 1]× {−1}, where the first component is the agent’s valuation for the good. The
extremal rays of the polar cone Θ◦ are allocation directions in which (1) the agent gets the
good with lower probability for the same payment, and (2) the agent gets the good with
higher probability but for a marginal price that makes the type (1,−1), who is willing to pay
most, just indifferent. The extended menu M corresponds to a mechanism where some types
never transact (v1), some types buy a cheap lottery that sometimes allocates the good (v5),
and all other types buy the good with probability 1 at a more expensive price (v4).

As in Section 7, we equip M with the operations of Minkowski addition and positive scalar
multiplication.

Theorem A.2. The following functions are bijections that commute with convex combinations:
• Φ1 : X → M where x 7→ (convmenu(x) + Θ◦);
• Φ2 : M → U where M → (θ 7→ supy∈M y · θ);
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• Φ3 : U → X where U 7→
∏

θ∈Θ(∂U(θ) ∩ A).35

That is, Φ1 maps (payoff-equivalence classes of) IC and IR mechanisms to the extension of
their menus; Φ2 maps extended menus to their support functions; Φ3 maps indirect utility
functions to their subdifferential.

Proof. Define an auxiliary map Φ′
1 : x 7→ (cl conv x(Θ) + Θ◦), where x : Θ → A is an IC and

IR mechanism, and claim that Φ′
1(x) = M ∈ M. We have

¯
a ∈ M for otherwise there would

exist a type that strictly prefers
¯
a to x(Θ) by the linearity of utility and the definitions of

the closed convex hull and the polar, which contradicts that x satisfies (IR). We also have

extM = ext(cl conv x(Θ) + Θ◦) ⊆ ext(cl conv x(Θ)) ⊂ A,

where the first inclusion follows since Θ◦ is a cone and the second inclusion follows since
x(Θ) ⊆ A and A is compact and convex. Finally, M is closed and convex because it is a sum
of a compact convex set and a closed convex set.
The map Φ2 : M → U is well-defined: for each M ∈ M, its support function supa∈M a · θ

is an indirect utility function in U because argmaxa∈M a · θ is non-empty for all θ ∈ Θ and
every selection from the argmax is an IC and IR mechanism.
We next show that Φ2 ◦ Φ′

1 is the map that assigns to each IC and IR mechanism x its
indirect utility function U ∈ U . Let U ∈ U be the indirect utility function associated with
x ∈ X . As desired, we have

U(θ) =

{
supa∈x(Θ) a · θ = supy∈cl conv x(Θ)+Θ◦ y · θ = supy∈M y · θ if θ ∈ coneΘ

∞ = supy∈M y · θ otherwise.

In the first case, the first equality is (IC) and the second equality follows from the definitions
of the closed convex hull and the polar cone. The second case also follows by definition of
the polar cone.
The map Φ2 : M → U is injective because support functions uniquely determine closed

convex sets (Hiriart-Urruty and Lemaréchal, 1996, Theorem V.2.2.2).
Thus, if x and x′ are payoff-equivalent IC and IR mechanisms, then Φ′

1(x) = Φ′
1(x

′) because
Φ2 is injective and (Φ2 ◦Φ′

1)(x) = (Φ2 ◦Φ′
1)(x

′) (by the definition of payoff-equivalence). Thus,
Φ′

1 can be defined on the set of payoff-equivalence classes X in the obvious way.
Φ′

1 : X → M and Φ2 : M → U are bijective because Φ2 ◦Φ′
1 is bijective and Φ2 is injective.

We next show that Φ1 = Φ′
1. Let x = (Φ′

1)
−1(M) ∈ X be any representative mechanism

from the payoff-equivalence class associated with M ∈ M. Then, expM ⊆ menu(x) since
every mechanism x′ that is payoff-equivalent to x must necessarily allocate to each type
θ ∈ Θ with a uniquely preferred option a ∈ expM that option. Moreover, menu(x) ⊆
cl extM because every type can find a favorite allocation in extM . By Theorem 2.3 in Klee
(1959), extM ⊆ cl expM ⊆ menu(x) since menu(x) is compact. Thus, menu(x) = cl extM .
Consequently, M = convmenu(x) + Θ◦ since M is closed, as desired.
We next verify that the inverse of the composition Φ2 ◦Φ1 : X → U is given by Φ3 : U → X .

Take any (IC) and (IR) mechanism x with associated extended menu M ∈ M and associated

35∂U(θ) denotes the subdifferential of U at θ ∈ Θ. The proof and Corollary A.4 below confirm that the
subdifferential of an indirect utility function U ∈ U is well-defined because U is convex.
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indirect utility function U ∈ U . For all θ ∈ Θ, we have

x(θ) ∈ argmax
a∈x(Θ)

a · θ ⊆ argmax
a∈M

a · θ = ∂U(θ),

where the first step is (IC), the second step is immediate from the definition of M , and the
third step is a property of support functions (Rockafellar and Wets, 2009, Corollary 8.2.5).

It remains to show commutativity with convex combinations. That Φ2 : M → U commutes
with convex combinations is a property of support functions (Hiriart-Urruty and Lemaréchal,
1996, Theorem V.3.3.3).36 That Φ3 : U → X commutes with convex combinations follows
from the linearity of the gradient map, which is almost everywhere well-defined. Thus,
Φ1 : X → M must also commute with convex combinations. □

Theorem A.2 is fundamental to our approach because the bijections between X , U , and
M map extreme points to extreme points.37 We prove our main results by investigating the
extreme points of M. Occasionally, however, we shall work with mechanisms or indirect
utility functions, if this simplifies our arguments.

We say that (x,M,U) are associated if they are isomorphic in the sense of Theorem A.2.
Given Theorem A.2, the definitions of (positive) homothety and exhaustiveness straight-

forwardly extend from X to M and U . For example, if x ∈ X with associated M ∈ M,
then

F(M) := F(x) = {H ∈ F | H ∩ extM ̸= ∅}. (6)

We note a few corollaries of Theorem A.2.

Corollary A.3. Let x ∈ X and M ∈ M be associated. Then, menu(x) = cl extM .

We have proven this claim as part of the proof of Theorem A.2. Note that extM is closed
if extM is finite or d = 2.

The following characterization of indirect utility functions is analogous to the one by Rochet
(1987, Proposition 2) for settings with transfers.

Corollary A.4. U ∈ U if and only if the following conditions are satisfied:
(1) U is sublinear (i.e., convex and HD1).
(2) U is continuous on its effective domain coneΘ = {z ∈ Rn : U(z) < ∞}.
(3) For all θ ∈ coneΘ, U(θ) ≥

¯
a · θ.

(4) For all θ ∈ coneΘ, ext ∂U(θ) ⊂ A.

Proof. By the previous result, U ∈ U is the support function of an extended menu M ∈ M.
Conversely, every closed sublinear function Rd → R∪{∞} is the support function of a closed
convex set. (A sublinear function that is continuous on a closed effective domain is closed.)

It remains to show that the remaining properties hold if and only if M ∈ M. The effective
domain of a sublinear function (in our case: coneΘ) and the recession cone of the associated
closed convex set (in our case: Θ◦) are mutually polar cones (Hiriart-Urruty and Lemaréchal,
1996, Proposition V.2.2.4). Continuity comes for free since coneΘ is polyhedral (Rockafellar,
1997, Theorem 10.2). It is easy to see that (3) holds if and only if

¯
a ∈ M (Hiriart-Urruty

36Remark on the cited theorem: in general, the sum of two closed convex sets need not be closed, but it is
always closed if the two sets have the same recession cone, which is here Θ◦.

37Extreme points are usually only defined for convex subsets of vector spaces, which M is not. However,
we can embed M into a vector space by Theorem A.2, which justifies the use of the term “extreme point.”
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Figure 6. The extended menu M = conv{v2, v3}+Θ◦ of a mechanism x that
can be decomposed pointwise almost everywhere, i.e., up to payoff-equivalence,
but not pointwise everywhere. Define x as follows: assign to each type in the
interior of coneΘ their favorite allocation between v2 and v3 and two the types
on the extremal rays of coneΘ the allocations v1 and v4. M can be decomposed
by translating the vertex v3 horizontally; thus x can be decomposed up to
payoff-equivalence, i.e., pointwise almost everywhere. However, x cannot be
decomposed pointwise everywhere.

and Lemaréchal, 1996, Proposition V.2.2.4). Finally, extM ⊂ A if and only if ext ∂U(θ) ⊂ A
for all θ ∈ Θ follows from Corollary 8.2.5 in Rockafellar and Wets (2009). □

We also note the following sanity check that almost everywhere equivalence indeed coincides
with payoff-equivalence for (IC) and (IR) mechanisms. This justifies modeling the set X of
payoff-equivalence classes of mechanisms in L1.

Corollary A.5. Let x and x′ be mechanisms that satisfy (IC) and (IR). Then, x and x′ are
payoff-equivalent if and only if x = x′ almost everywhere.

Proof. If x and x′ are payoff-equivalent, then there exists an indirect utility function U ∈ U
such that x, x′ ∈ ∂U by Theorem A.2. Thus, x = x′ almost everywhere since the subdifferential
of a convex function is almost everywhere a singleton. Conversely, suppose x = x′ almost
everywhere. Let x ∈ ∂U and x′ ∈ ∂U ′. Then, ∇U = ∇U ′ almost everywhere. Thus,
U = U ′ + c for c ∈ R, and c = 0 because U and U ′ are sublinear. Thus, x and x′ are
payoff-equivalent. □
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Remark. We briefly comment on a subtle difference between extreme points of the set of
payoff-equivalence classes of IC and IR mechanisms, i.e., extX , versus extreme points of
the set of IC and IR mechanisms themselves. For the former, a mechanism is an extreme
point if it does not coincide with a convex combination of two other mechanisms up to
payoff-equivalence, i.e., for almost every type. For the latter, a mechanism is an extreme point
if it does not coincide with a convex combination of two other mechanisms for every type.
For an extremal equivalence class with associated indirect utility function U ∈ extU , every
element of

∏
θ∈Θ ext(∂U(θ) ∩A) is an extreme point of the set of (IC) and (IR) mechanisms.

There can exist additional extreme points of the set of (IC) and (IR) mechanisms such
that their payoff-equivalence classes are not extreme points of the set of payoff-equivalence
classes X . These additional extreme points can only exist if the type space Θ is restricted
and only if types on the boundary of coneΘ break ties to the boundary of A; see Figure 6
for an example. Since we assume that the prior distribution µ is absolutely continuous, these
additional extreme points are irrelevant for optimality.

A.2. Topologies and Compactness. We now define topologies on the three sets, X , M,
and U , discuss the relation between these topologies, and show that the three sets are compact
under their respective topologies.

We equip the set X of payoff-equivalence classes of mechanisms with the L1-norm

||x|| =
∫
Θ

||x(θ)|| dθ. (7)

We equip the set U of indirect utility functions with the sup-norm

||U || = sup
θ∈coneΘ: ||θ||≤1

U(θ). (8)

We equip the set M of extended menus with the Hausdorff distance

d(M,M ′) = inf {ε > 0 : M ⊆ M ′ + εB and M ′ ⊆ M + εB} , (9)

where B = {z ∈ Rd : ||z|| ≤ 1} is the unit ball in Rd.
Thus, (X , || · ||) and (U , || · ||) are normed spaces.38 We also have:

Lemma A.6. (M, d) is a metric space and d(M,M ′) ≤ d(conv extM, conv extM ′).

Proof. We have

d(M,M ′) = inf {ε > 0 : M ⊆ M ′ + εB and M ′ ⊆ M + εB}

= inf

{
ε > 0 :

conv extM +Θ◦ ⊆ conv extM ′ +Θ◦ + εB and

conv extM ′ +Θ◦ ⊆ conv extM +Θ◦ + εB

}
≤ inf

{
ε > 0 :

conv extM ⊆ conv extM ′ + εB and

conv extM ′ ⊆ conv extM + εB

}
= d(conv extM, conv extM ′),

where the inequality is because Z1 ⊆ Z2 implies Z1 + Z3 ⊆ Z2 + Z3 for Z1, Z2, Z3 ⊂ Rd.
It remains to show that (M, d) is a metric space. Since conv extM, conv extM ′ ⊆ A, we

have d(M,M ′) ≤ d(conv extM, conv extM ′) < ∞. Thus, d is a metric on M since extended

38For (X , || · ||), recall that payoff-equivalent mechanisms are almost everywhere equal by Corollary A.5.
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menus are closed and since the Hausdorff distance is an extended metric on the space of all
closed subsets of Rn. □

The topologies on U and M are equivalent and finer than the topology on X .

Lemma A.7. Consider sequences (xn)n∈N ⊂ X , and (Mn)n∈N ⊂ M, (Un)n∈N ⊂ U such that
(xn,Mn, Un) are associated for all n ∈ N. Then, the following hold:

(1) Mn → M if and only if Un → U .
(2) If Un → U , then xn → x.

Proof. Claim (1) is Theorem 6 in Salinetti and Wets (1979). For claim (2), let Dn ⊂ coneΘ
be the set of points where Un is differentiable and let D ⊂ coneΘ be the set of points where
U is differentiable. Let D∗ = D∩

⋂
n∈N Dn. Indirect utility functions are convex and therefore

almost everywhere differentiable. Moreover, the countable union of nullsets is null; thus
coneΘ \D∗ is null. Theorem VI.6.2.7 in Hiriart-Urruty and Lemaréchal (1996) implies that
∇Un(θ) → ∇U(θ) for all θ ∈ coneΘ \ D∗. Moreover, by Theorem A.2, xn → x pointwise
almost everywhere. The Dominated Convergence Theorem implies convergence in L1. □

The following lemma is crucial to apply Bauer’s maximum theorem, Choquet’s theorem,
and the Straszewicz-Klee theorem, and hence for the interpretation of our results about
extreme points.

Lemma A.8. X , M, and U are compact and convex.

Proof. Convexity of X is immediate because (IC) and (IR) are linear constraints and because
A is convex. By Theorem A.2, M and U are also convex.

For compactness, consider any sequence {Mn}n∈N ⊂ M. By Blaschke’s selection theorem,
{cl conv extMn}n∈N has a convergent subsequence {cl conv extMnk

}k∈N with compact convex
limit K ⊆ A. Let M = K + Θ◦. It is readily verified that M ∈ M. By Lemma A.6, the
subsequence {Mnk

}k∈N convergences to M ∈ M. Thus, M is compact. By Lemma A.7, X
and U are also compact. □

A.3. Individual Rationality (IR). The following result is an analogue of the familiar
observation in mechanism design with transfers that if IR holds for “the lowest type,” then
IR holds for every type. In our setting, however, a “lowest type” need not exist and is instead
a type

¯
θ ∈ Θ who likes the veto allocation most, i.e.,

¯
a ∈ argmaxa∈A a ·

¯
θ.

Lemma A.9. Suppose x = λx′ + (1 − λ)x′′ almost everywhere, where x, x′, x′′ are (IC)
mechanisms and λ ∈ (0, 1). If x satisfies (IR), then x′ and x′′ satisfy (IR).

Thus, the extreme points of the set of (IC) and (IR) mechanisms are simply the extreme
points of the set of (IC) mechanisms that satisfy (IR).

Proof. Let
Θ∗ = {θ ∈ Θ |

¯
a ∈ argmax

a∈A
a · θ}

be the set of types who like the veto allocation most. We have assumed in Section 3 that Θ∗

is non-empty.
Let

f ∗ =
⋂
θ∈Θ∗

argmax
a∈A

a · θ.
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Since A is a polytope, f ∗ is a face of A. If x is an (IC) and (IR) mechanism, then x(Θ)∩f ∗ ̸= ∅.
Since f ∗ is a face of A, if x = λx′ + (1− λ)x′′ for (IC) mechanisms x′, x′′ and λ ∈ (0, 1),

then x′(Θ) ∩ f ∗ ̸= ∅ and x′′(Θ) ∩ f ∗ ̸= ∅.
For the sake of contradiction, suppose x′ does not satisfy (IR). Then,

¯
a · θ > x′(θ) · θ

for some θ ∈ Θ. By (IC), x′(θ) · θ ≥ a∗ · θ for a∗ ∈ x′(Θ) ∩ f ∗. Thus,
¯
a · θ > a∗ · θ, which

contradicts the definition of f ∗. Thus, x′ satisfies (IR). Analogously, x′′ satisfies (IR). □

Appendix B. Extreme Points of Finite-Menu Mechanisms and Deformations

This appendix characterizes for any given IC mechanism with finite menu size the set of
all IC mechanisms that make an inclusion-wise larger set of IC constraints binding. This
set is important in our analysis: whenever an IC mechanism can be written as a convex
combination of two other IC mechanisms, then these two mechanisms must make at least the
same incentive constraints binding as the given mechanism.
We use this characterization to prove Theorem 4.1 and Theorem C.1. Moreover, we can

use the characterization to generalize results by Manelli and Vincent (2007, Theorems 17, 19,
20, and 24) (MV) to arbitrary linear screening problems. In particular, we get an algebraic
characterization of finite-menu extreme points (Theorem B.6). We discuss the exact relation
to MV at the end of this section.
Throughout this section, we restrict attention to extended menus M ∈ M of finite size,

i.e., | extM | < ∞. Let MFin ⊂ M denote the set of all extended menus of finite size. These
are polyhedra since they can be written as the convex hull of their extreme points plus the
polar of the type space (which is a polyhedral cone). In light of Lemma A.9, we can ignore
IR constraints. We make two closely connected definitions.

Definition B.1. The normal fan NM of an extended menu M ∈ MFin is the collection
{NCf} of the normal cones

NCf = {θ ∈ coneΘ | f ⊆ argmax
a∈M

a · θ}

to the faces f of M . The normal fan NM ′ is coarser than the normal fan NM , denoted
NM ′ ≼ NM , if each normal cone in NM ′ is a union of some set of normal cones in NM .

Since the agent has linear utility, the set of each type’s most preferred alternatives is a
face of M . The normal fan hence summarizes which types’ most preferred alternatives lie on
which faces of the extended menu. The normal fan yields a polyhedral subdivision of the
type space; the cells of maximal dimension have been called market segments by MV in the
context of the monopoly problem.39

For the next definition, we define the set of facet-defining hyperplanes of an extended menu
M ∈ MFin, which requires some care when M is not d-dimensional. For each facet Fi of
M , there is a unique outer normal vector ni ∈ (affM − a), where a ∈ M is arbitrary, and a
constant ci ∈ R such that Fi = M ∩Hi and M ⊆ Hi,−, where Hi = {z ∈ Rd : z · ni = c} is
the facet-defining hyperplane and Hi,− = {z ∈ Rd : z · ni ≤ ci} is the facet-defining halfspace.

39Subdivisions obtained from normal fans of polyhedra have appeared elsewhere in economic design as
power diagrams (Frongillo and Kash, 2021; Kleiner et al., 2024) and as regular polyhedral complexes (Baldwin
and Klemperer, 2019; Tran and Yu, 2019; Bedard and Goeree, 2023). They are also relevant in the context of
the random expected utility model (Gul and Pesendorfer, 2006). See Doval et al. (2024) for another recent
application.
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Let HM be the union of the set of facet-defining hyperplanes of M with an arbitrary finite
set of hyperplanes with corresponding halfspaces whose intersection is affM . For brevity, we
refer to HM as the set of facet-defining hyperplanes of M (although some of these define the
improper face M).

Definition B.2. An extended menu M ′ ∈ M is a deformation of M ∈ MFin with
HM = {H1, . . . , Hk} if there exist a deformation vector c′ = (c′1, . . . , c

′
k) ∈ Rk such that

the following two conditions are satisfied:
(1) M ′ = ∩k

i=1H
′
i,−, where H ′

i,− = {z ∈ Rd : z · ni ≤ c′i}.
(2) If ∩i∈IHi = {a} for I ⊆ {1, . . . , k} and a ∈ extM , then there exists a′ ∈ extM ′ such

that ∩i∈IH
′
i = {a′}.

Let Def(M) ⊂ M denote the set of deformations of M .

That is, (1) M ′ can be defined by translates of the facet-defining halfspaces of M , not
all of which necessarily remain facet-defining, and (2) if some subset of the facet-defining
hyperplanes of M defines a vertex of M , then the translated hyperplanes also define a vertex
of M ′. See Figure 1 for an illustration, where the right-most facet-defining hyperplane of the
menu is translated horizontally, yielding two deformations. (The left panel of Figure 7 in
Appendix D.3 is another illustration). This definition of deformations is due to Castillo and
Liu (2022, Definition 2.2), except here adapted to polyhedra rather than polytopes.

Remark. There is a bijection between deformations M ′ ∈ Def(M) and deformation vectors c′

given by
c′i = max

a∈M ′
ni · a, ∀i = 1, . . . , k

since every hyperplane H ′
i in the definition of M ′ must support M ′ by condition (2). By

condition (1), this bijection commutes with convex combinations.

Lemma B.3. Let x, x′ ∈ X be finite menu mechanisms with associated extended menus
M,M ′ ∈ MFin. The following are equivalent:

(1) IC(x) ⊆ IC(x′).
(2) NM ′ ≼ NM .
(3) M ′ is a deformation of M .
(4) There exists a surjective map φ : extM → extM ′ such that for every edge40 ab of M

there exists λab ∈ R+ such that λab(a− b) = φ(a)− φ(b).

The lemma says that coarsening the normal fan is the geometric analogue of making
inclusion-wise more incentive constraints binding. Deformations are exactly the operations
on extended menus that coarsen the normal fan. The fourth condition is an equivalent
formulation of deformations in terms of parallel edges and more readily reveals the algebraic
nature of deformations.

Proof. For the proof, we will need the following basic observation about normal cones. For
an extended menu M ∈ MFin with HM = {H1, . . . , Hk} and a face f of M , let If = {1 ≤
i ≤ k | f ⊆ Hi} denote the set of facet-defining hyperplanes of M containing the face f . For
every face f of M , we have:

NCf = cone{ni}i∈If . (10)

In particular, dimNCf = d− dim f .

40One-dimensional face. ab = conv{a, b}.
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We define

NCθ := NCargmaxa∈M a·θ

NC ′
θ := NCargmaxa∈M′ a·θ.

NCθ and NC ′
θ are the inclusion-wise smallest normal cones of M and M ′, respectively, to

which θ belongs. By definition, NM = {NCθ}θ∈Θ and NM ′ = {NC ′
θ}θ∈Θ.

We also make the following preliminary observation: for all θ, θ̃ ∈ int coneΘ,

(θ, θ̃) ∈ IC(x) ⇐⇒ argmax
a∈M

a · θ ⊇ argmax
a∈M ′

a · θ ⇐⇒ NCθ ⊆ NCθ̃ (11)

because menu(x) = extM and menu(x′) = extM ′ (Corollary A.3), a bounded face of
polyhedron is the convex hull of some set of its extreme points, every type θ ∈ int coneΘ is
normal to a bounded face of M and M ′, and normal cones are dual to faces and, therefore,
reverse the inclusion.
(1) =⇒ (2). By (10), if IC(x) ⊆ IC(x′) and θ, θ̃ ∈ int coneΘ, then NCθ ⊆ NCθ̃ implies

NC ′
θ ⊆ NC ′

θ̃
. In particular, θ ∈ NCθ̃ implies θ ∈ NC ′

θ̃
. Thus, every cone in NM that meets

int coneΘ is a subset of a cone in NM ′ . Every cone in NM that is contained in the boundary
of coneΘ is also a subset of a cone in NM ′ because it is a subset of a full-dimensional cone in
NM , which meets int coneΘ. That the cones in NM are subsets of the cones in NM ′ implies
NM ′ ≼ NM (Lu and Robinson, 2008, Proposition 2).

(2) =⇒ (3). We first show condition (1) in the definition of a deformation, i.e., M ′ can be
defined using translates of the facet-defining halfspaces of M . First, since every cone in NM

contains the orthogonal complement of affM − a, where a ∈ M is arbitrary, the same must
be true for the cones in NM ′ . Thus, affM ′ must be contained in a translate of affM and
therefore the same normal vectors used to define affM can be used to define affM ′. Second,
NM ′ ≼ NM implies that the cones in NM ′ corresponding to the facets of M ′ are also cones in
NM because these cones can only be written as the trivial union of themselves. Every such
cone contains a unique normal vector in affM − a, for arbitrary a ∈ M . Thus, the same
normal vectors used to define M can be used to define M ′, as desired.
We now show condition (2) in the definition of a deformation. Suppose ∩i∈IHi = {a}

for I ⊆ {1, . . . , k} and a ∈ extM . By (10), cone{ni}i∈I ⊆ NC{a}. Since NC{a} is full-
dimensional and NM ′ ≼ NM , there exists a′ ∈ extM ′ such that NC{a} ⊆ NC{a′}. Thus,
cone{ni}i∈I ⊆ NC{a′}. Consequently, for all i ∈ I, there exists c′i = maxa∈M ′ ni · a such
that the hyperplane H ′

i with normal ni and constant c′i supports M ′ at a′. In particular,
∩i∈IH

′
i = {a′}, as desired.

(3) =⇒ (4). It is immediate from condition (2) in the definition of deformations that
there is a surjective map φ : extM → extM ′. Moreover, by condition (2), φ must map
each edge e of M either to an edge e′ of M ′ that is parallel to e or to a vertex of M ′. This
is because the hyperplanes of M defining e must intersect for M ′ in a translate of the line
containing e.
(4) =⇒ (1). Suppose M,M ′ ∈ MFin have the properties stated in (4). Recall that

menu(x) = extM and menu(x′) = extM ′ by Corollary A.3. To show that (θ, θ̃) ∈ IC(x)
implies (θ, θ̃) ∈ IC(x′), it suffices to show that

argmax
a∈extM ′

a · θ = φ

(
argmax
a∈extM

a · θ
)

(12)
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for all θ ∈ Θ.
Suppose ã ∈ argmaxa∈extM a · θ. Fix any â ∈ extM . By the simplex algorithm, there

exists a sequence (a0, a1, . . . , an−1, an) such that a0 = â, an = ã, aiai−1 is an edge of M
for all i = 1, . . . , n, and (ai − ai−1) · θ ≥ 0 for all i = 1, . . . , n. Condition (4) implies that
(φ(ai)−φ(ai−1)) · θ ≥ 0 for all i = 1, . . . , n. Since â ∈ extM was arbitrary, φ(ã) · θ ≥ φ(a) · θ
for all a ∈ A. That is, φ(ã) ∈ argmaxa∈extM ′ a · θ.
Suppose ã /∈ argmaxa∈extM a · θ. By the simplex algorithm, there exists a sequence

(a0, a1, . . . , an−1, an) such that a0 = ã, an ∈ argmaxa∈extM a · θ, aiai−1 is an edge of M for all
i = 1, . . . , n, and (ai − ai−1) · θ > 0 for all i = 1, . . . , n. Condition (4) implies that either
φ(ã) · θ < φ(an) · θ or φ(ã) = φ(an). In the first case, φ(ã) /∈ argmaxa∈extM ′ a · θ. In the
second case, repeat the argument with an in place of ã. Since | extM | < ∞, either the
procedure terminates and φ(ã) /∈ argmaxa∈extM ′ a · θ or | extM ′| = 1, in which case (12)
holds trivially. □

We note (12) as a separate corollary for later use.

Corollary B.4. Suppose M ′ ∈ Def(M). Then, there exists a surjective function φ : extM →
extM ′ such that

argmax
a∈extM ′

a · θ = φ

(
argmax
a∈extM

a · θ
)

(13)

for all θ ∈ Θ.

We can translate the definition of deformations into a polyhedral characterization of
Def(M). For each vertex a ∈ extM , let Ia = {1 ≤ i ≤ l | a ∈ Hi} denote the set of indices
of facet-defining hyperplanes in HM = {H1, . . . , Hk} intersecting a. Under any feasible
deformation and for each a ∈ extM , the hyperplanes in Ia still need to intersect in a single
point φa ∈ A. Thus, we have the following linear system with variables (φa)a∈extM ∈ Rd×| extM |

corresponding to the points in extM ′ and variables c′ ∈ Rk corresponding to the deformation
vector of M ′:

φa · ni = c′i ∀a ∈ extM, ∀i ∈ Ia (14)

φa · ni ≤ c′i ∀a ∈ extM, ∀i ∈ {1, . . . , k} \ Ia (15)

φa · nH ≤ cH ∀a ∈ extM, ∀H ∈ F . (16)

Let us parse these (in)equalities. The inequalities in (16) capture the requirement that
M ′ is a feasible extended menu, i.e., extM ′ ⊂ A. (Recall that F is the set of facet-defining
hyperplanes of A.) The (in)equalities in (14) and (15) are jointly equivalent to condition
(2) in the definition of a deformation. (Condition (1) is satisfied by construction: we use
the facet-defining hyperplanes of M to define M ′.) (14) ensures that the facet-defining
hyperplanes of M intersecting a ∈ extM still intersect in a single point φa ∈ extM under the
deformation vector c′. (15) ensures that φa ∈ extM ′, i.e, the facet-defining halfspaces of M
still contain φa under the deformation vector c′. In economic terms, recalling the equivalence
between M ′ ∈ Def(M) and the corresponding mechanisms x and x′ satisfying IC(x) ⊆ IC(x′)
(Lemma B.3), (14) and (15) are tantamount to IC(x) ⊆ IC(x′). If none of the constraints
in (15) are binding for M ′ (which is the case for M by definition of the index sets Ia), then
IC(x) = IC(x′).

Lemma B.5. Def(M) is a polytope and a face of M. In particular, M ∈ extM if and only
if M ∈ extDef(M).
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Proof. Note that (14) to (16) define a polytope in Rd×| extM | × Rk: (14) to (16) is a linear
system with bounded solutions since A is bounded. The projection onto the second factor
c′ ∈ Rk is also a polytope. By construction, there is an affine bijection between the projected
polytope and Def(M) given by the deformation vectors c′ ∈ Rk. Thus, Def(M) is a polytope,
i.e., the convex hull of finitely many extended menus.
To show that Def(M) is a face of M, first observe that if M ∈ MFin, M ′,M ′′ ∈ M

and M = λM ′ + (1 − λ)M ′′ for some λ ∈ (0, 1), then M ′,M ′′ ∈ Def(M). This is because
the normal fan of the Minkowski sum of polyhedra is finer than the normal fans of each
summand.41 It is immediate that M ∈ extM if and only if M ∈ extDef(M).
To complete the proof that Def(M) is a face of M, consider any M̃ ∈ Def(M). If

M̃ = λM ′ + (1− λ)M ′′ for M ′,M ′′ ∈ M, then M ′,M ′′ ∈ Def(M̃) by the previous paragraph.
Observe that “deformation of” is a transitive relation, henceM ′,M ′′ ∈ Def(M), as desired. □

The polyhedral characterization of Def(M) immediately translates into an algebraic char-
acterization of finite-menu extreme points: by Lemma B.5, M ∈ extM if and only if
there is a non-zero direction (t, s) ∈ Rd×| extM | × Rk such that the two candidate solutions
((a± ta)a∈extM , (c± s)) solve the linear system (14) to (16).

Using condition (4) in Lemma B.3, we can state an equivalent algebraic characterization
of finite-menu extreme points that needs only minimal information about the underlying
mechanism. For a mechanism x ∈ X , let

E =

{
(a, b) ∈ menu(x)×menu(x)

∣∣∣∣∣ ∃θ ∈ Θ : {a, b} = argmax
ã∈menu(x)

ã · θ

}
(17)

denote the set of pairs (a, b) of menu items for which there exists a type whose favorite
allocations are {a, b}. These are exactly the edges of the extended menu associated with x.
For an allocation a ∈ menu(x), also define

F(a) = {H ∈ F | a ∈ H}. (18)

Theorem B.6. Let x ∈ X have finite menu size. Then x ∈ extX if and only if all solutions

((φa)a∈menu(x), (λab)(a,b)∈E) ∈ Rd×|menu(x)| × R|E|
+ to

λab(a− b) = φa − φb ∀(a, b) ∈ E (19)

φa · nH = cH ∀a ∈ menu(x), H ∈ F(a) (20)

φa · nH ≤ cH ∀a ∈ menu(x), H /∈ F(a) (21)

are the trivial solutions where {φa}a∈menu(x) = extM and λab = 1 for all (a, b) ∈ E.

Remark. If ab and a′b′ are not parallel for all (a, b), (a′, b′) ∈ E, then the trivial solution is
unique.

Proof. Let M ∈ MFin be the extended menu associated with the finite-menu extreme point
x ∈ extX . By Corollary A.3, menu(x) = extM . By Lemma B.5, M ∈ extDef(M). An
extreme point of a polytope in Euclidean space is uniquely determined from its incident facets,
i.e., binding constraints. If φa = a for all a ∈ extM and c′ = c, then the constraints (15)
are all slack by the definition of the index sets Ia. Thus, ((a)a∈extM , c) must be the unique
solution to (14), (15), (20) and (21). By Lemma B.3, there exist (λab)(a,b)∈E ∈ R|E| such that

41An explicit reference for polyhedra is Maclagan and Sturmfels (2021, Equation 2.3.1).
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((φa)a∈extM , (λab)(a,b)∈E) solve (19) if and only if there exists a permutation ξ : extM → extM
and c′ ∈ Rk such that ((φξ(a))a∈extM , c′) solve (14) and (15). □

B.1. Relation to MV. We summarize here, for readers of MV, how our results generalize
their findings about the facial structure of IC mechanisms and their algebraic characterization
of finite-menu extreme points to arbitrary linear screening problems.
Our Lemmas B.3 and B.5 generalize Theorems 17, 19, and 20 in MV. MV show for

the multi-good monopoly problem that the decomposing summands of a finite-menu IC
mechanism must have a coarser market segmentation (in our language: normal fan) than
the mechanism itself (Theorem 17). In their Definition 18, MV then define the set of all IC
mechanisms with a coarser market segmentation than a given IC mechanism that also satisfy
an analogue of (20), i.e., have at least the same binding feasibility constraints as the given
mechanism. This set is the analogue of our deformation polytope Def(M), modulo (20). MV
show that the set is a face of the set of IC mechanisms (Theorem 19). We further show that
the set is a polytope, which immediately gives us MV’s key technical result (Theorem 20): a
finite-menu IC mechanism is an extreme point if and only if it is the singleton element of
their set (i.e., Def(M) plus (20)).
Our polyhedral characterization (14) to (16) of Def(M) immediately translates into the

algebraic characterization of finite-menu extreme points given in Theorem B.6, generalizing
Theorem 24 in MV. In our result, (19) generalizes condition (13) in MV; (20) generalizes
condition (14) in MV; (21) generalizes the condition “0 ≤ za ≤ 1” in MV (which is feasibility
for the monopoly problem); in our model, za = φa. Theorem B.6 amends a minor oversight
in MV in that multiple solutions of (19) to (21) can correspond to the same extreme point
x ∈ extX because there need not be a unique assignment of the variables (φa)a∈menu(x) to
the menu items whenever the menu has parallel edges.

Appendix C. Extreme Points for One-Dimensional Type Spaces

We deduce Theorem 6.1 from a general characterization of the extreme points for one-
dimensional linear screening problems. We state the characterization in terms of extended
menus. By Theorem A.2, we could equivalently state it in terms of menus of mechanisms.
The key concept in the characterization—a flexible chain—requires some notation to be
defined. Let us first state the result, then define the concept, and then give the proof.

Theorem C.1. Let d = 2 and M ∈ M. Then M ∈ extM if and only if
(1) | extM | ≤ 2 and M is exhaustive, or
(2) 3 ≤ | extM | < ∞ and M has no flexible chain.

Remark. The theorem is an extension of a result due to Mielczarek (1998, Theorem 3.1).
The result characterizes extremal convex bodies (extM) contained in a given convex body
in the plane (A). If coneΘ = R2 is unrestricted, then we can use Mielczarek’s Theorem.42

Otherwise, if coneΘ ̸= R2 is restricted, we have to make a minor modification to the result
because we consider closed convex sets M ∈ M with extreme points in A. In any case, the

42Specifically, in Mielczarek’s theorem,
• condition 1◦ is equivalent to condition (1) above;
• if V (M) ̸= ∅, then conditions 2◦ and (i) are equivalent to the absence of a flexible chain;
• if V (M) = ∅, then conditions 2◦ and (ii) are equivalent to the absence of a flexible chain.

Condition (iii) in Mielczarek’s theorem never applies if A (Q in the statement) is a polytope.
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Figure 7. An illustration of flexible chains and their connection to extreme
points. Left: an extended menu M , depicted as the shaded area, with a flexible
chain S = (v2, v3, v4, v5) and two deformations of M , depicted with dotted
lines, that decompose M . Right: an extended menu M , depicted as the shaded
area, with a chain S = (v1, v2, v3, v4) that is not flexible because it violates the
symmetry condition (23) on the angles (αk)k and (βk)k. Intuitively, the start-
and endpoints of a candidate deformation coincide only under the symmetry
condition.

original presentation of the result and its proof are notationally tedious, so we have restated
and shall reprove most of the result for the reader’s convenience.

To get a first sense of a flexible chain, recall Figure 1 (Section 4). This figure illustrates a
non-extreme point that can be deformed by horizontally translating the right-most vertical
edge in its menu. The two vertices of this edge form a flexible chain in the sense of Theorem C.1.
However, a menu may lack an edge that can be flexibly translated in both normal directions,
yet the corresponding mechanism may still not be an extreme point. This is because multiple
edges could potentially be translated jointly, which is the idea captured by a flexible chain.
The formal definition of a flexible chain requires some new notation.

For the following definitions, let d = 2 and fix an extended menu M ∈ M of finite menu
size | extM | < ∞. Recall that M is a polyhedron that satisfies M = conv extM +Θ◦. The
vertices of any polyhedron in the plane can be ordered clockwise and adjacent vertices in the
ordering are connected by an edge. If M ∈ M is unbounded, i.e., coneΘ ̸= R2, we designate
a placeholder ∗ as the first and last vertex in the ordering (which can be thought of as a
vertex at infinity).

We define four disjoint subsets V (M), I(M), B1(M), B2(M) ⊆ extM such that

extM = V (M) ∪ I(M) ∪B1(M) ∪B2(M). (22)

V (M) = extM ∩ extA. I(M) = extM ∩ intA. B1(M) is the set of vertices a ∈ extM ∩
(bndrA \ extA) such that there is no other vertex b ∈ extM for which ab ⊂ bndrA.
B2(M) = (bndrA \ extA) \ B1(M) is the set of vertices a ∈ extM ∩ (bndrA \ extM) for
which such a vertex b ∈ extM does exist.
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Example C.2. We illustrate the definition of these subsets with several examples. In the
left panel of Figure 7, v1 ∈ V (M), v2 ∈ B2(M), v3, v4 ∈ B1(M), and v5 ∈ I(M). In the
right panel of Figure 7, all vertices are in B1(M). In Figure 5, v1 ∈ V (M), v5 ∈ I(M), and
v4 ∈ B1(M).

We define the following angles formed by the edges of M with the edges of the allocation
polytope A. Let v ∈ B1(M). Let u and w be the vertices preceding and succeeding v in the
clock-wise ordering, respectively. Let ab be the edge of A on which v lies, where a preceeds
b in the clock-wise ordering. Let αk be the measure of the angle ∠uva, and let βk be the
measure of the angle ∠wvb; see the right panel in Figure 7 for an illustration.43

Definition C.3. A sequence S = (v1, . . . , vn) of vertices of M that are adjacent in the
clock-wise ordering is a flexible chain if S ∩ V (M) = ∅ and one of the following holds:

(1) v1, vn ∈ I(M) ∪B2(M) ∪ {∗}, and if n = 2, then v1vn ̸⊂ bndrA;
(2) S = extM = B1(M), coneΘ = R2, n is even, and

n∏
k=1

sinαk =
n∏

k=1

sin βk. (23)

Example C.4. We illustrate the definition of a flexible chain with several examples. In the left
panel of Figure 7, S = (v2, v3, v4, v5) forms a flexible chain. In the right panel of Figure 7,
S = (v1, v2, v3, v4) does not form a flexible chain because the symmetry condition (23) is
violated. In contrast, the vertices of a 45◦ rotation of the allocation square would form a
flexible chain. In Figure 5, (∗, v4, v5) forms a flexible chain. Indeed, the extended menu
depicted there for the one-good monopoly problem has menu size 3. It is well-known that the
corresponding mechanism cannot be an extreme point, i.e., the extended menu must have
deformations that decompose it. This observation is generalized in Theorem C.1.

Proof of Theorem C.1. Suppose | extM | ≤ 2. If extM is a singleton, then M ∈ extM if and
only if M is exhaustive. Suppose conv extM is a line segment and M = λM ′ + (1− λ)M ′′

for M ′,M ′′ ∈ M and λ ∈ (0, 1). Then, M ′ and M ′′ are homothetic to M because they must
be deformations of M by Lemma B.5. Using Theorem 5.2, M ∈ extM if and only if M is
exhaustive.
Thus, suppose | extM | ≥ 3. We first show that if M ∈ extM, then | extM | < ∞. Let

U ∈ U be the indirect utility function associated with M (i.e., the support function of M).
For the sake of contradiction, suppose | extM | = ∞. Since A has only finitely many edges

and on each edge of A there can be at most two vertices of M , | extM ∩ intA| = ∞. In
particular, there must exist an open cone C ⊆ coneΘ such that extM ∩ C ⊂ intA and
| extM ∩ C| = ∞. Let L be an open line segment such that coneL = C. Let γ : (0, 1) → L
be a bijective isometry. Consider the convex function U ◦ γ : (0, 1) → R, which completely
determines U on C by 1-homogeneity.
Suppose there exist convex functions U1, U2 : (0, 1) → R such that U ◦ γ = 1

2
U1 +

1
2
U2,

U1(t) = U2(t) = U(t) for all t /∈ [ε, 1 − ε], where ε > 0 is sufficiently small, and the right-
derivatives of U ◦ γ, U1, and U2, respectively, are the same at ε, and the left-derivatives of
U ◦ γ, U1, and U2, respectively, are the same at 1− ε. Then, U1 and U2 can be extended to
sublinear functions on coneΘ such that U = 1

2
U1 +

1
2
U2 by first extending the functions to C

43That is, αk = cos−1
(

(u−v)·(a−v)
||u−v||||a−v||

)
and βk = cos−1

(
(w−v)·(b−v)
||w−v||||b−v||

)
.
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by 1-homogeneity and then to coneΘ by setting U |coneΘ\C = U1|coneΘ\C = U2|coneΘ\C . If U1

and U2 are sufficiently close to U ◦ γ, then their extensions are in U because ∂U(L) ⊂ intA.
We now show that the convex functions U1, U2 : (0, 1) → R from the previous paragraph

exist, contradicting that U ∈ extU . Consider the set G of convex functions g : [ε, 1− ε] → R
such that (1) g(ε) = (U ◦ γ)(ε), (2) g(1− ε) = (U ◦ γ)(1− ε), (3) g′+(ε) = (U ◦ γ)′+(ε), where
g′+ is the right-derivative, and (4) g′−(1− ε) = (U ◦ γ)′−(1− ε), where g′− is the left-derivative.
By combining a well-known result due to Blaschke and Pick (1916) about extremal convex
functions on R and a result due to Winkler (1988) about the extreme points of convex sets
obtained from a given convex set by imposing finitely many affine restrictions, one can show
the the extreme points of G are piecewise-affine with at most three pieces. Thus, U /∈ extU
and M /∈ extM since | extM ∩ cone(γ([ε, 1− ε]))| can be made arbitrarily large by choosing
ε > 0 small enough.
Suppose coneΘ ̸= R2 or extM ̸= B1. By Theorem 4.1 and Lemma B.5, M /∈ extM and

| extM | < ∞ if and only if M has a deformation M ′ ∈ Def(M) such that F(M) = F(M ′).
Thus, it suffices to show that M has a deformation M ′ ∈ Def(M) such that F(M) = F(M ′)
if and only if M has a flexible chain.
By Lemma B.5, M ′ ∈ Def(M) if and only if the facet-defining hyperplanes (lines) of M ′

are parallel translates of the facet-defining hyperplanes of M and there is a surjective map
φ : extM → extM ′. By taking a convex combination εM ′ + (1− ε)M for ε > 0 sufficently
small, we may assume that φ : extM → extM ′ is bijective.

For F(M) = F(M ′) to hold, (v, φ(v)) must lie on the same face of A. In particular, φ(a) = a
for all a ∈ V (M), φ(I(M)) = I(M ′), φ(B1(M)) = B1(M

′), and φ(B2(M)) = B2(M
′).

We observe that if v ∈ B1(M) and v ̸= φ(v), then the two facet-defining hyperplanes of
M intersecting in v must both be translated in M ′ for otherwise (v, φ(v)) cannot lie on a
common edge of A.
Consider a deformation M ′ ∈ Def(M) such that F(M) = F(M ′); we construct a flexible

chain of M . Find a sequence S = (v1, . . . , vn) of vertices in extM \ φ(extM) that are
adjacent in the clock-wise ordering and such that no other vertex in extM \ φ(extM) is
adjacent to a vertex in S. S ∩ V (M) = ∅ follows since φ(a) = a for all a ∈ V (M). If

n = 2, then v1vn ̸⊂ bndrA for otherwise the edge φ(v1)φ(vn) is not in bndrA, contradicting
F(M) = F(M ′). If v1, vn ∈ B1(M), then, by the previous paragraph, v1 and vn cannot be
the first or last vertex in the sequence, contradicting the construction of S.

Conversely, suppose M ∈ M has a flexible chain (v1, . . . , vn). We carry out the construction
illustrated in Figure 7. Without loss of generality, we may assume v2, . . . , vn−1 ∈ B1(M) for
otherwise, (v1, . . . , vn) has a subsequence of adjacent vertices that is a flexible chain with the
desired property. Let (H1, . . . , Hn−1) be the hyperplanes such that Hi defines the facet vivi+1

for all i = 1, . . . , n− 1.
Suppose v1 ≠ ∗. Let H0 be the other hyperplane of M intersecting v1. Translate H1 by a

sufficiently small amount, and let φ1 be the intersection of H ′
1 and H0. Since v1 ∈ intA ∪B2,

φ1 lies on the same face of A as v1. If v1 = ∗, translate H1 by a sufficiently small amount to
obtain H ′

1.
Let φ2 be the intersection of H ′

1 with the edge of A on which v2 lies. (This intersection is
non-empty as long as all translations are sufficiently small.) Let H ′

2 be the translate of H2

that intersects φ2.
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Iterate the construction in the previous paragraphs to obtain a sequence of points
(φ1, . . . , φn) and hyperplanes (H ′

1, . . . , H
′
n−1). Since vn ∈ intA ∪ B2 ∪ {∗}, the hyperplane

Hn ̸= Hn−1 intersecting vn need not be translated to meet φn. Define M ′ as the polyhe-
dron whose edges are defined by (H ′

1, . . . , H
′
n−1) and by the facet-defining hyperplanes of M

different from (H1, . . . , Hn−1). By construction, M ′ ∈ Def(M) and F(M) = F(M ′).
It remains to consider the case where extM = B1(M) and coneΘ = R2. We refer the

reader to Lemmas 9, 17, and 18 in Mielczarek (1998) for the formal proof that M /∈ extM if
and only if the symmetry condition (23) holds. We illustrate the idea in the right panel of
Figure 7: if (23) were to hold, then the dotted chain of line segments would have the same
start- and endpoints, i.e., would become a deformation of the depicted extended menu. □

Appendix D. Proofs

This appendix gathers the proofs for the results in the main text in the order of appearance.
By Theorem A.2, we may prove all results either for the set of IC and IR mechanisms X , the
set of extended menus M, or the set of indirect utility functions U .

D.1. Proofs for Section 4. We note the following observation.

Lemma D.1. Suppose x = λx′+(1−λ)x′′ for x, x′, x′′ ∈ X of finite menu size and λ ∈ (0, 1).
Then, IC(x) = IC(x′) ∩ IC(x′′) and F(x) = F(x′) ∩ F(x′′).

Proof. Let M,M ′,M ′′ ∈ M be the extended menus associated with x, x′, and x′′, respectively.
M = λM ′ + (1− λ)M ′′ by Theorem A.2. For Z ⊂ Rd, let Top(Z, θ) = argmaxa∈Z a · θ.
By Corollary A.3, menu(x) = extM . Thus, (θ, θ′) ∈ IC(x), i.e., Top(menu(x), θ′) ⊆

Top(menu(x), θ), if and only if Top(extM, θ′) ⊆ Top(extM, θ).
We first show IC(x) ⊇ IC(x′) ∩ IC(x′′). Suppose (θ, θ′) ∈ IC(x′) ∩ IC(x′′). Then,

Top(extM ′, θ′) ⊆ Top(extM ′, θ)

Top(extM ′′, θ′) ⊆ Top(extM ′′, θ).

Thus,
Top(λ extM ′ + (1− λ) extM ′′, θ′) ⊆ Top(λ extM ′ + (1− λ) extM ′′, θ).

Since extM ⊆ λ extM ′ + (1− λ) extM ′′, we conclude

Top(extM, θ′) ⊆ Top(extM, θ)

or, equivalently, (θ, θ′) ∈ IC(x).
We next show IC(x) ⊆ IC(x′)∩IC(x′′). By interchanging the roles of x′ and x′′, it suffices to

show that (θ, θ′) /∈ IC(x′) implies (θ, θ′) /∈ IC(x). Assume Top(extM ′, θ′)\Top(extM ′, θ) ̸= ∅,
i.e., (θ, θ′) /∈ IC(x′). Then,

Top(λ extM ′ + (1− λ) extM ′′, θ′) \ Top(λ extM ′ + (1− λ) extM ′′, θ) ̸= ∅.
Since conv extM = conv(λ extM ′ + (1− λ) extM ′′) and utility is linear, we conclude

Top(extM, θ′) \ Top(extM, θ) ̸= ∅
or, equivalently, (θ, θ′) /∈ IC(x).
F(x) = F(x′) ∩ F(x′′) is immediate. If one summand is bounded way from a hyperplane,

then the the convex combination must also be bounded away from the hyperplane. Conversely,
if both summands make allocations on the same hyperplane, then so does their convex
combination. □
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The following proof uses the polyhedral characterization of Def(M) given by (14), (15),
and (16) in Appendix B. The proof idea is described right after the statement in the main
text.

Proof of Theorem 4.1. The remark following Theorem 4.1 is immediate from Lemma D.1: for
x ∈ X , if another x′ ∈ X satisfies IC(x) ⊆ IC(x′) and F(x) ⊆ F(x′), then x′′ = εx′+(1−ε)x
for 0 < ε < 1 satisfies IC(x) = IC(x′′) and F(x) = F(x′′).
Necessity is also immediate from Lemma D.1: if x /∈ extX , then the summands in the

decomposition make weakly more constraints binding.
For sufficiency, suppose IC(x) = IC(x′) for x, x′ ∈ X of finite menu size. Let M,M ′ ∈ M

be the associated extended menus. By Lemma B.3, M and M ′ are mutual deformations. In
particular, there is a bijection φ : extM → extM ′.
As an intermediate observation, we claim that F(x) = F(x′) implies, for all a ∈ menu(x)

and H ∈ F , a ∈ H if and only if φ(a) ∈ H. In words, each menu item of x makes
the same feasibility constraints binding as the corresponding menu item in x′. We have
H ∈ F(M) = F(x) if and only if maxa∈extM a · nH = cH , where nH is the normal vector and
cH the right-hand side constant of the hyperplane H ∈ F . Analogously, H ∈ F(M ′) = F(x′)
if and only if max

a∈extM ′
a · nH = cH . The proof of the claim is completed using Corollary B.4,

which gives
argmax
a∈extM ′

a · nH = φ(argmax
a∈extM

a · nH). (24)

We complete the proof of Theorem 4.1 using the polyhedral characterization of Def(M)
given by (14), (15), and (16). Let c and c′ denote the deformation vectors associated with M
and M ′, respectively. By the previous paragraph, F(x) = F(x′) if and only if the variables
(φa = φ(a))a∈extA make the same constraints in (16) binding as the variables (a)a∈extA.
IC(x) = IC(x′) if and only if the variables (c, (a)a∈extM ) and (c′, (φa)a∈extM ) both satisfy the
constraints in (14) and make none of the constraints in (15) binding. (See the explanation
of the constraints in Appendix B.) Thus, F(x) = F(x′) and IC(x) = IC(x′) if and only if
(c, (a)a∈extM) and (c′, (φa)a∈extM) make the same constraints of Def(M) binding. The latter
is equivalent to M,M ′ /∈ extDef(M) because Def(M) is a polytope by Lemma B.5. Finally,
M,M ′ /∈ extDef(M) if and only if x, x′ /∈ extX . □

D.2. Proofs for Section 5. Recall that by Theorem A.2, the definitions of homothety and
exhaustiveness translate straightforwardly to extended menus M ∈ M, where F(M) ⊆ F
was defined to be the set of facet-defining hyperplanes of A intersected by extM . Also
recall that M = λM ′ + (1− λ)M ′′ is a homothetic decomposition of M if λ ∈ (0, 1) and
M ′,M ′′ ∈ M are homothetic to but distinct from M .

Lemma D.2. M ∈ M is exhaustive if and only if M has no homothetic decomposition.

Proof. Suppose extM = {a} is a singleton. If a /∈ extA, then there exists a′ ∈ A on the
same faces of A as a. Thus, F(a′ +Θ◦) = F(M) and a′ +Θ◦ is homothetic to M . Thus, M
is not exhaustive. Conversely, if M is not exhaustive, then there exists M ′ homothetic to M ,
i.e., M ′ = t+ λ(M +Θ◦) = t+ λa+Θ◦, such that t+ λa meets an inclusion-wise larger set
of hyperplanes in F than a, which implies a /∈ extA.

Suppose extM = {a} is not a singleton. As an intermediate step, we will show that the set

HC(M) = {(λ, t) ∈ R+ × Rd | ext(λM + t) ⊂ A}
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of all (parameters of) homotheties of M is a polytope. HC(M) is bounded because A is
bounded. Therefore, we show that HC(M) is the intersection of finitely many halfspaces. For
this, let

HC−(M,H) = {(λ, t) ∈ R+ × Rd | ext(λM + t) ⊂ H−},
where H− = {z ∈ Rd : z · nH ≤ cH} is the halfspace that contains A and is bounded by the
facet-defining hyperplane H ∈ F of A. Let HC(M,H) denote the associated hyperplane.
Equivalently,

HC−(M,H) =

{
(λ, t) ∈ R× Rd

∣∣∣∣ λ max
a∈extM

a · nH + t · nH ≤ cH

}
.

That is, HC−(M,F ) is a halfspace in Rd+1 with normal (maxa∈extM a · nH , nH). Thus,

HC(M) = HC+ ∩
⋂
H∈F

HC−(M,H)

is a polytope, where HC+ = R+ × Rd.
We complete the proof by showing that M is exhaustive if and only if (λ, t) = (1, 0) ∈

extHC(M). Note that (1, 0) does not lie on the boundary of HC+. Every other halfspace
HC−(M,H) of HC(M) corresponds to a facet-defining hyperplane H of A. Thus, M is
determined by its binding feasibility constraints F(M) up to homothety, i.e., exhaustive, if
and only if (1, 0) lies on an inclusion-wise maximal set of facet-defining hyperplanes of HC(M).
The latter condition is what it means for a point to be an extreme point of a polytope. □

Proof of Theorem 5.2. Immediate from Lemma D.2. □

Proof of Theorem 5.3. By Lemma D.2, M ∈ M is not exhaustive if and only if M has
a homothetic decomposition, i.e., there exist M ′,M ′′ ∈ M homothetic to M such that
M = 1

2
M ′ + 1

2
M ′′.

Suppose extM = {a} is a singleton. Then M has a homothetic decomposition if and only
if a /∈ extA. Thus, for the remainder of the proof, assume that extM is not a singleton.

M has a homothetic decomposition if and only if one of the following holds:
(1) There exists a point z ∈ Rn and ε > 0 such that z + (1 + ε)(extM − z) and

z + (1− ε)(extM − z) are both subsets of A (dilation with center z).
(2) There exists a direction t ∈ Rn \ {0} such that extM + t and extM − t are both

subsets of A (translation).
The reason is that any homothety is itself either a dilation or translation.44

If (1) is true and a ∈ H ∩ extM for some H ∈ F(M), then z ∈ H, for otherwise
z + (1 + ε)(a − z) or z + (1 − ε)(a − z) is not in A. Thus, if (1) is true,

⋂
H∈F(M)H ≠ ∅.

Conversely, if
⋂

H∈F(M) H ≠ ∅, choose any z ∈
⋂

H∈F(M) H. For ε > 0 sufficiently small,

z + (1 + ε)(extM − z) and z + (1 − ε)(extM − z) are both subsets of A. This is because
extM is uniformly bounded away from facet-defining hyperplanes H /∈ F(M) and because
a ∈ H ∈ F(M) implies (z + (1± ε)(a− z)) ∈ H by the definition of z, i.e., all facet-defining
inequalities of A remain satisfied.
If (2) is true, then t is orthogonal to all the normals of the hyperplanes in F(M) for

otherwise there is a point a ∈ extM ∩ H, for some H ∈ F(M), such that a + t /∈ H or

44Specifically, suppose M = 1
2M

′ + 1
2M

′′ and M ′ = z + (1 + ε)(M − z). Plugging in and rearranging for

M ′′ yields M ′′ = z + (1− ε)(M − z).
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a−t /∈ H, which contradicts that extM+t and extM−t are subsets of A. Hence the spanning
condition span{nH}H∈F(M) = Rd is violated. Conversely, if the spanning condition is violated,
there is a direction t ∈ Rd \ {0} such that t is orthogonal to all the facet normals in F(M).
As in the previous paragraph, extM + t and extM − t will still satisfy the facet-defining
inequalities of A for ||t|| sufficiently small, i.e. extM + t, extM − t ⊂ A.
The statement of the of Theorem 5.3 is the contraposition of what we have shown. □

D.3. Proofs for Section 6. We use Theorem C.1 in Appendix C and the notation introduced
for this result in the following proof.

Proof of Theorem 6.1. Let M ∈ extM be the extended menu associated with a mechanism
x ∈ extX . Recall that menu(x) = extM by Corollary A.3 (since d = 2); thus, we show
| extM | ≤ |F|.
If coneΘ ̸= R2, then V (M) ̸= ∅ for otherwise M ∈ extM has a flexible chain. If

coneΘ = R2 and V (M) = ∅, then M can only not have a flexible chain if extM = B1(M).
In this case, | extM | ≤ |F|.Thus, we assume V (M) ̸= ∅ going forward.
Consider any vertex v ∈ V (M) such that the sequence of subsequent vertices S =

(v1, . . . , vn) in the clockwise ordering of extM satisfies S ∩ V (M) = ∅ and such that vn is
adjacent to a vertex v′ ∈ V (M). Since v, v′ ∈ extA, let (e1, . . . , ek) be the sequence of edges
traversed when moving from v to v′ clockwise on the boundary of A. (If v = v′, then all
edges are traversed.)
We show that n ≤ k − 1. Since M ∈ extM , S does not contain a flexible chain. Thus,

|(B2(M) ∪ I(M)) ∩ S| = 1. On every edge i = 2, . . . k − 1, there lies at most one vertex in
extM , for otherwise |B2(M)| ≥ 2. Moreover, since v and v′ lie on e1 and ek, respectively,
there can be at most one vertex in extM \ {v, v′} on e1 ∪ en. (This vertex would have to be
in B2(M)). Thus, n ≤ k − 1.

By applying the previous argument to every v ∈ V (M), we conclude that | extM | ≤ |F|. □

Proof of Theorem 6.2. Immediate from Theorem 6.6 below. □

Proof of Theorem 6.3. Let x ∈ X be exhaustive and such that menu(x) is finite and in general
position. Let M ∈ M be the associated extended menu. By Corollary A.3, extM = menu(x).
M = conv extM +Θ◦ is a polyhedron because extM is finite and Θ◦ is a polyhedral cone.
Since extM is in general position, all proper bounded faces of M are simplices. Smilansky
(1987, Theorem 5.1) shows that a polyhedron M of which every bounded face is a simplex
cannot be represented as a convex combination of polyhedra with the same recession cone as
M that are not homothetic to M . Therefore, M has no non-homothetic decomposition. By
Lemma D.2, M has no homothetic decomposition because M is exhaustive. Thus M ∈ extM,
and x ∈ extX by Theorem A.2. □

We may define exhaustiveness for arbitrary subsets S of A: F(S) ⊆ F are the facets of A
intersected by S, and S is exhaustive if there is no S ′ ⊂ A positively homothetic to S such
that F(S) ⊆ F(S ′). Theorem 5.3 applies as before. Recall that an extended menu M ∈ M
is exhaustive if extM is exhaustive.

We use the following simple consequence of Theorem 5.3 in the proof of Theorem 6.4.

Corollary D.3. If S ⊂ A is exhaustive, then there exists an exhaustive S ′ ⊂ S such that
|F(S ′)| ≤ d+ 1.
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Proof. By Theorem 5.3, span{nH}H∈F(S) = Rd. Thus, there exists a subset F ′ ⊂ F(S)
with |F ′| = d such that span{nH}H∈F ′ = Rd. Moreover, by Theorem 5.3, there must exist
a hyperplane H ′ ∈ F(S) \ F ′ such that

⋂
H∈F(S) H ∩ H ′ ≠ ∅. Select S ′ ⊂ S such that

F(S ′) = F ′ ∪ {F ′}. (Clearly, at most d+ 1 points in S suffice.) Theorem 5.3 completes the
proof. □

Proof of Theorem 6.4. Let x ∈ X be exhaustive with associated extended menu M ∈ M and
such that menu(x) = extM is finite. We first construct a menu M̃ ∈ extM of finite menu
size that is arbitrarily close to M in the Hausdorff distance and satisfies | extM | = | ext M̃ |.
This suffices to show the denseness claim in the statement of Theorem 6.4 by Lemma A.7.

Select an inclusion-wise minimal subset V ⊆ extM such that V is exhaustive and
¯
a ∈ V .

By Corollary D.3, |V | ≤ d + 1. (If
¯
a ∈ V , then |V | = 2 suffices.) If |V | ≤ d, then V is

trivially in general position (i.e., no more than d points lie on any hyperplane in Rd). Suppose
|V | = d + 1. Then every vertex in V touches exactly one of the d + 1 facets in F(V ) by
construction of V . Select an arbitrary vertex v ∈ V and move v to a nearby point v′ in the
same facet of A touched by v that is not in the affine hull of V \ {v} (which meets the facet
of A touched by v in a (d− 2)-dimensional convex set). Let W = V \ {v} ∪ {v′}.
Now consider one-by-one v ∈ extM \ V . Perturb v to a point v′ ∈ A arbitrarily close

to v such that v does not lie in any hyperplane spanned by any subset of d points in W .
(This is possible since there are only finitely many such hyperplanes.) Update W = W ∪ {v′}
and V = V ∪ {v}. Proceed iteratively until V = extM . The resulting set of points W is in
general position and exhaustive by construction.
Define M̃ = convW +Θ◦. By construction, M̃ is a polyhedron in M. As long as all of

the finitely many perturbations carried out are sufficiently small, W is in convex position,
i.e., no point in W is in the convex hull of the other points, because extM was in convex
position. Moreover, for all v, v′ ∈ W , v /∈ v′ +Θ◦ because Θ◦ is closed and the same holds for
all v, v′ ∈ extM . Thus, ext M̃ = W and M̃ is exhaustive because W is exhaustive.

M̃ ∈ extM by Theorem 6.3 and | ext M̃ | = |W | = | extM | by construction, proving
denseness.
For openness, every polytope in a sufficiently small Hausdorff-ball around a simplicial

polytope conv extM is simplicial since the vertices remain in general position (see e.g.
Grünbaum et al., 1967, Theorems 5.3.1 and 10.1.1). By Lemmas A.6 and A.7, the claim
follows. □

Remark. An alternative statement of Theorem 6.4 is that the set of extreme points of menu
size k is relatively open and dense in the set of exhaustive mechanisms of menu size ≤ k.
This is because the set of exhaustive extended menus of menu size k is relatively open and
dense in the set of exhaustive extended menus of menu size ≤ k.

Proof of Corollary 6.5. Take an arbitrary exhaustive extended menu M ∈ M. Select a finite
set of vertices V ⊆ extM , including

¯
a (if

¯
a exists) as well as points on the same facets of

A as extM , such that for every point of extM there is a selected point in V at most ε > 0
away. By construction, V is an exhaustive set and

¯
a ∈ V . Thus, M̃ = conv V + Θ◦ ∈ M

is exhaustive, has finite menu size, and is arbitrarily close to M for ε sufficiently small. By
Theorem 6.4, M̃ is arbitrarily close to an element of extM with finite menu size, which
completes the proof. □
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The proof of Theorem 6.6 proceeds with Baire-category type arguments, for which we need
a few definitions:

• exhM ⊂ M is the set of exhaustive extended menus;
• Ak ⊂ exhM is the set of exhaustive extended menus M such that M = 1

2
M ′ + 1

2
M ′′

for M ′,M ′′ ∈ M with d(M ′,M ′′) ≥ 1
k
;

• Bk ⊂ exhM is the set of exhaustive extended menus M that have a bounded face f
with diam(f) ≥ 1

k
and outer unit normal vector nf ∈ Θ such that d(nf , bndr coneΘ) ≥

1/k (which is satisfied by convention if bndr coneΘ = ∅, i.e., coneΘ = Rd).45

We note that extM = exhM\
⋃∞

k=1Ak. Moreover, define exhMsc := exhM\
⋃∞

k=1 Bk.

Lemma D.4. Let x ∈ X be a mechanism associated with an extended menu M ∈ exhMsc.
Then, x : Θ → A is continuous on int coneΘ. In particular, menu(x) is uncountable whenever
it is not a singleton.

Proof. For any M ∈ exhMsc and θ ∈ int coneΘ, argmaxa∈M θ · a is a singleton for otherwise
the boundary of M would contain a line segment connecting two extreme points of M . In
particular, x(θ) is uniquely determined by M on int coneΘ. Therefore, the associated indirect
utility function U is differentiable on int coneΘ. By Rockafellar (1997, Corollary 25.5.1), U
is continuously differentiable and therefore x = ∇U is continuous on int coneΘ. □

Lemma D.5. Ak and Bk are closed subsets of exhM for all k ∈ N.

Proof. Consider any convergent sequence {Mi}i∈N ⊂ Ak with limit M ∈ exhM. We show
M ∈ Ak. Selecting a subsequence, if necessary, we may assume that the associated sequences
{M ′

i}i∈N ⊂ M and {M ′′
i }i∈N ⊂ M, where Mi =

1
2
M ′ + 1

2
M ′′, converge in M by Blaschke’s

selection theorem and Lemma A.6. Let M ′ and M ′′ denote the respective limits. We have
d(M ′,M ′′) ≥ 1

k
since d(M ′

i ,M
′′
i ) ≥ 1

k
for all i ∈ N. Moreover, M = 1

2
M ′ + 1

2
M ′′ since

Mi =
1
2
M ′

i +
1
2
M ′′

i for all i ∈ N and M is convex, so 1
2
M ′ + 1

2
M ′′ ∈ M. Thus, M ∈ Ak.

Consider any convergent sequence {Mi}i∈N ⊂ Bk with limit M ∈ exhM. We show M ∈ Bk.
By definition, for each i ∈ N, there exists a line segment Li ⊆ bndrMi of length ≥ 1

k
with

normal vector ni ∈ Θ such that d(ni, bndr coneΘ) ≥ 1
k
. Selecting a subsequence, if necessary,

we may assume that the line segments {Li}i∈N and the normal vectors {ni}i∈N converge
to limits L∗ ⊂ A and n∗ ∈ Θ, respectively, because Θ ⊆ Sd−1 and A are compact. It is
routine to verify that L∗ ⊆ bndrM , L∗ has length ≥ 1

k
, n∗ is normal to L∗ on bndrM , and

d(n∗, bndr coneΘ) ≥ 1
k
. Thus, M ∈ Bk. □

Proof of Theorem 6.6. We show that extM∩ exhMsc is a dense Gδ in exhM. This implies
the statement by Lemma D.4.
The proof uses the Baire category theorem. For this, note that exhM is a compact metric

space, hence a Baire space, because exhM is a closed subset of the compact metric space M
(Lemmas A.6 and A.7). The set exhM is closed because every extended menu in a sufficiently
small neighborhood of a non-exhaustive extended menu M ∈ M intersects a weakly smaller
set of facets of A than M and is hence also non-exhaustive by Theorem 5.3. Thus, it suffices

45The diameter of a set S ⊆ Rn, denoted diam(S), is defined as:

diam(S) = sup{∥a− b∥ : a, b ∈ S}.
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to show that extM and exhMsc are each a dense Gδ in exhM. For extM, this follows
immediately from Corollary 6.5 and Lemma D.5.
We complete the proof by showing that exhMsc is a dense Gδ in exhM. By Lemma D.5,

exhMsc is a Gδ in exhM. To show denseness, consider the set exhM\Bk for some arbitrary
k ∈ N. By Lemma D.5, exhM\Bk is relatively open in exhM. Moreover, exhM\Bk is dense
in exhM because every extended menu M ∈ exhM can be approximated by a polyhedron in
exhM whose bounded faces have diameter < 1

k
. We have that exhMsc =

⋂∞
k=1(exhM\Bk)

is a countable intersection of relatively open and dense sets in a Baire space. Thus, by the
Baire category theorem, exhMsc is dense in exhM. □

Proof of Corollary 6.7. Corollary 6.5 shows that the extreme points of X are dense in the
set of exhaustive mechanisms. The Straszewicz-Klee theorem (Klee Jr, 1957, Theorem 2.1)
implies that the exposed points of X are also dense in the set of exhaustive mechanisms. The
Riesz representation theorem (Diestel and Uhl, 1977, Theorem IV.1) implies that, for every
exposed point x ∈ expX , there exists an objective v and prior µ such that x is uniquely
optimal. □

D.4. Proofs for Section 7.

Proof of Lemma 7.1. It remains to show that in the linear delegation problem, the indecom-
posability of an extended menu M ∈ M is necessary for the non-existence of a non-homothetic
decomposition. We show the converse. Assume that there exists an extended menu M ∈ M
that is decomposable; that is, there exist convex bodies K ′, K ′′ ⊂ Rd, not homothetic to M ,
such that M = K ′ +K ′′.
We aim to construct from these summands K ′ and K ′′ a non-homothetic decomposition of

M into extended menus. To achieve this, we will identify λ ∈ (0, 1) and t ∈ Rd such that the
scaled and translated sets M ′ = 1

λ
(K ′ + t) and M ′′ = 1

1−λ
(K ′′ − t) are extended menus, i.e.,

subsets of the unit simplex A = ∆. This will complete the proof since M = λM ′+(1−λ)M ′′.
Since M ⊆ A = ∆, M satisfies the following constraints:
(1) Positivity: mina∈M ai ≥ 0 for all i ∈ {1, . . . , d};
(2) Size: maxa∈M

∑d
i=1 ai ≤ 1.

We will now define t and λ such that the above constraints are binding for M ′. This
ensures that the constraints are satisfied by M ′′ because they are satisfied by M and M is a
convex combination of M ′ and M ′′. We set

ti = −min
a∈K′

ai.

This ensures min
a∈K′+t

ai = 0 for all i ∈ {1, . . . , d}; hence M ′ satisfies the positivity constraint

with equality, irrespective of our choice of λ.
Next, for any convex body K ⊂ Rd, define:

|K|∆ = max
a∈K

d∑
i=1

ai −
d∑

i=1

min
a∈K

ai.

Note that | · |∆ commutes with positive scalar multiplication and Minkowski addition; that is,
|αK|∆ = α|K|∆ and |K1 +K2|∆ = |K1|∆ + |K2|∆.
Set

λ = |K ′|∆.
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Since K ′ and K ′′ are not singletons (otherwise, the decomposition would be homothetic),
we have |K ′|∆, |K ′′|∆ > 0, hence λ > 0. Since |M |∆ ≤ 1, we have |K ′|∆ < 1 and |K ′′|∆ < 1,
hence λ ∈ (0, 1).

We can now compute

max
a∈M ′

d∑
i=1

ai = |M ′|∆ =
1

λ
|K ′ + t|∆ =

1

λ
|K ′|∆ = 1

and hence M ′ satisfies the size constraint with equality. Hence, M ′′ ⊆ A by the earlier
argument, which completes the proof. □

D.5. Proofs for Section 8.

D.5.1. Undominated Mechanisms. We begin by establishing an important result for the
proofs of Theorems 8.5 and 8.7, namely that uniquely optimal mechanisms are dense in the
undominated extreme points when considering two mechanisms as being “close” when they
are “close” with respect to the induced principal’s utility functions. Theorem 8.2 will be
proved along the way.

To state the result, let

V = {θ 7→ x(θ) · v(θ) | x ∈ X}
denote the set of the principal’s utility functions induced by the set of (IC) and (IR)
mechanisms. This set of functions Θ → R is convex and L1-compact because it is a
continuous image of the compact convex set X .
We say that a principal utility function V ∈ V is undominated if there exists an

undominated mechanism x ∈ X such that V (θ) = x(θ) · v(θ).
We also define the following subsets of V :

• undV ⊂ V is the set of undominated principal utility functions;
• undV ⊂ undV is the set of undominated principal utility functions that are strictly
suboptimal for every probability density f ∈ L∞(Θ) that is uniformly bounded away
from 0;

• exp+ V ⊂ V is the set of principal utility functions that are uniquely optimal for
some probability density f ∈ L∞(Θ) that is uniformly bounded away from 0. Note
exp+ V ⊂ undV ∩ extV .

As usual, we write ⟨V, f⟩ =
∫
Θ
V (θ)f(θ) dθ.

Proposition D.6. exp+ V is dense in extV ∩ undV.

We proof the result in three steps. The argument for the first Lemma is inspired by the
argument for Theorem 9 in Manelli and Vincent (2007); note the correction in Manelli and
Vincent (2012).

Lemma D.7. undV ⊆ cl conv(exp+ V).

Proof. Fix any V ∈ undV. We show the claim by constructing a convergent sequence of
points in V that are convex combinations of points in exp+ V with limit V .
For ε ≥ 0, let

Fε = {f ∈ L∞(Θ) | ε ≤ f ≤ 1}.
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Up to renormalization, these functions are essentially bounded probability densities that are
uniformly bounded away from zero. By the Banach-Alaoglu theorem, Fε is weak*-compact
because it is a weak*-closed subset of the dual unit ball.46

Recall that V ∈ undV, i.e., V is strictly suboptimal for every density f ∈ L∞(Θ) that is
uniformly bounded away from 0. Thus, for every f ∈ Fε, there exists Vf ∈ V such that

⟨Vf , f⟩ > ⟨V, f⟩.
By the continuity of the evaluation (see e.g. Aliprantis and Border, 2007, Corollary 6.40), for
every f ∈ Fε, there exists a weak*-open neighborhood Of of f such that for all f ′ ∈ Of ,

⟨Vf , f
′⟩ > ⟨V, f ′⟩.

Thus, {Of : f ∈ Fε} is a weak*-open cover of Fε.
By compactness, the open cover {Of : f ∈ Fε} has a finite subcover {Om : m = 1, . . . ,M}.

The functionals f ∈ Fε that expose a point in V are norm-dense in Fε (see e.g. Lau (1976) and
note that Fε has non-empty interior). Thus, for every m = 1, . . . ,M , there exists f ′ ∈ Om

such that Vm := Vf ′ ∈ expV .
Let

G = {(⟨V1 − V, f⟩, . . . , ⟨Vm − V, f⟩) | f ∈ Fε} ⊂ RM .

The set G is
• convex (because Fε is convex);
• compact (because it is the continuous image of a weak*-compact set);
• and satisfies G ∩ RM

− = ∅ (by construction of the open cover {Om : m = 1, . . . ,M}),
where RM

− is the negative orthant.
By the Separating Hyperplane Theorem, there exists a vector α ∈ RM

+ \ {0}, such that

α · y > 0 for all y ∈ G. Renormalize
∑M

i=1 αi = 1.
Define

Ṽε =
M∑
i=1

αiVi.

Note Ṽε ∈ V since V is convex. For all f ∈ Fε,

⟨Ṽε, f⟩ − ⟨V, f⟩ = α · (⟨V1 − V, f⟩, . . . , ⟨Vm − V, f⟩) > 0.

Now consider a sequence εn → 0 and the corresponding sequence of Ṽεn constructed above.
Since V is norm-compact, a subsequence of (Ṽεn) converges to some Ṽ ∈ V .
We show Ṽ = V , which proves the claim. Recall that V is undominated and suppose

Ṽ ̸= V . Then there exists a set Θ̃ ⊂ Θ of non-zero (spherical) measure such that V (θ) > Ṽ (θ)
for all θ ∈ Θ̃. Thus, any density f concentrated on Θ̃ is such that

⟨V, f⟩ > ⟨Ṽ, f⟩.
By norm-norm continuity of the evaluation, there exists a strictly positive density f ′ and
some Ṽεn for n large enough such that

⟨V, f⟩ > ⟨Ṽεn , f
′⟩,

a contradiction. □
46Recall that by the Riesz representation theorem, every continuous linear functional on L1(Θ) can be

represented by a function in L∞(Θ).
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Proof of Theorem 8.2. Follows from the proof for Lemma D.7 with ε = 0. □

We now extend Lemma D.7 to cover all undominated mechanisms.

Lemma D.8. undV ⊆ cl conv(exp+ V).

Proof. Suppose not, i.e., V ∈ undV \ cl conv(exp+ V). By Lemma D.7, V /∈ undV , i.e., V is
optimal for some density f ∗ ∈ L∞(Θ) that is uniformly bounded away from 0.
Since cl conv(exp+ V) is a closed subset of the norm-compact set V, it is norm-compact.

By the Hahn-Banach Separation Theorem, there exists f ∈ L∞(Θ) such that

⟨V, f⟩ > max
V ′∈cl conv(exp+ V)

⟨V ′, f⟩.

f̃ = εf + (1− ε)f ∗ is still uniformly bounded away from 0 for ε ∈ (0, 1) small enough and,
moreover, for ε ∈ (0, 1) small enough

⟨V, f̃⟩ > max
V ′∈cl conv(exp+ V)

⟨V ′, f̃⟩.

by norm-norm continuity of the evaluation and Berge’s maximum theorem (for the RHS). By

the result of Lau (1976) used in Lemma D.7, there is another density f̂ arbitrarily close to f̃

and therefore also uniformly bounded away from ε that exposes a point V̂ ∈ V. Again by
continuity and Berge’s maximum theorem,

⟨V, f̂⟩ > max
V ′∈cl conv(exp+ V)

⟨V ′, f̂⟩.

By definition, ⟨V̂, f̂⟩ > ⟨V, f̂⟩. Thus, the point V̂ exposed by f̂ cannot be in exp+ V, a
contradiction. □

We complete the proof of Proposition D.6.

Proof of Proposition D.6. The claim is a consequence of Milman’s theorem (see e.g. Klee
Jr, 1957, Theorem 1.1.). The theorem implies that ext cl conv(exp+ V) ⊆ cl exp+ V since
cl conv(exp+ V) is compact and convex. In particular, by Lemma D.8, every undominated
extreme point of V must be in cl conv(exp+ V). But since cl conv(exp+ V) is a convex subset
of V , every undominated extreme point of V must also be in ext cl conv(exp+ V) and therefore
arbitrarily close to a point in exp+ V . □

D.5.2. Multi-Good Monopoly. We proceed with the multi-good monopoly problem. To
follow the standard terminology in mechanism design with transfers, we abuse language and
refer to elements of [0, 1]m as types and allocations, and consider mechanisms and indirect
utility functions as functions defined on [0, 1]m. In line with standard notation, we also
write (x, t) ∈ X to separate the “allocation component” of a mechanism from the “transfer
component.”

We use the following lemma about undominated mechanisms in the upcoming arguments.

Lemma D.9 (Manelli and Vincent, 2007, Lemma 11). Suppose (x′, t′) ∈ X and (x, t) ∈ X
with indirect utility functions U ′ and U , respectively, are such that t′ ≥ t almost everywhere.
Then, for all θ ∈ [0, 1]m and λθ ∈ [0, 1]m with λ > 1,

(1) U ′(θ) > U(θ) =⇒ U ′(λθ) > U(λθ);
(2) U ′(θ) ≥ U(θ) =⇒ U ′(λθ) ≥ U(λθ).
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Proof of Lemma 8.3. Is is without loss of generality to consider only pricing functions with
marginal prices in [0, 1] because types are in [0, 1]m.
Now consider a pricing function p with marginal prices in [δ, 1− δ] for some δ > 0. Let

(x, t) ∈ X be the mechanism obtained from p, and let U be the associated indirect utility
function. For the sake of contradiction, suppose (x′, t′) ∈ X dominates (x, t), and let U ′ be
the associated indirect utility function.
Since marginal prices are in [δ, 1 − δ], we have U ′(θ) ≥ U(θ) = 0 for all θ ≤ (δ, . . . , δ).

By Lemma D.9, we have U ′ ≥ U . Thus, there is a type θ ∈ [0, 1]m such that U ′(θ) > U(θ)
(otherwise x and x′ are payoff-equivalent). By the continuity of indirect utility functions, we
may assume θ ∈ (0, 1)m.
Let λ1 > 1 be the largest scalar such that θ1 = λ1θ ∈ [0, 1− δ

2
]m, and let i = 1, . . . ,m be

such that θ1i = 1− δ
2
. Without loss of generality, suppose i = 1. By Lemma D.9, we have

U ′(θ1) > U(θ1).
Consider the subspace H1 = {θ ∈ [0, 1]m | θ1 = 1 − δ

2
}. Up to an arbitrarily small

translation of H1 in coordinate direction ±e1, we may assume by Fubini’s Theorem that
x′(θ) · θ ≥ x(θ) · θ for almost every θ ∈ H1 (with respect to m − 1-dimensional Lebesgue
measure) because U ′ ≥ U and t′ ≥ t almost everywhere. For all θ ∈ H1, we have xi(θ) = 1
since θi > 1 − δ and marginal prices are in [δ, 1 − δ]. Together with dominance, we have
x′(θ) · (0, θ−1) ≥ x(θ) · (0, θ−1) for almost every θ ∈ H1.
Now let λ2 > 1 be the largest scalar such that θ2 = (θ11, λ

2θ1−1) ∈ [0, 1 − δ
2
]m, and let

i = 2, . . . ,m be such that θ2i = 1− δ
2
. Without loss of generality, suppose i = 2. By the same

arguments as for the proof of Lemma D.9, we have U ′(θ2) > U(θ2).
Iteratively proceed with this argument, constructing a sequence of affine subspaces

(H1, . . . , Hm) and types (θ1, . . . , θm), where θik = 1 − δ
2
for all i = 1, . . . ,m and k ≤ i,

such that U ′(θi) > U(θi) for all i = 1, . . . ,m and xi
k = 1 for all i = 1, . . . ,m and k ≤ i.

Finally, U ′(θm) > U(θ)m implies U ′(θ) = x′(θ) · θ − t′(θ) > x(θ) · θ − t(θ) = U(θ) for all
θ ∈ B(θm) by continuity, where B(θm) is a sufficiently small ball around θm. We also have
x(θ) = (1, . . . , 1) for all θ > (1 − δ, . . . , 1 − δ) since marginal prices are in [δ, 1 − δ]. Thus,
t′(θ) < t(θ) for all θ ∈ B(θm), a contradiction with dominance. □

Proof of Corollary 8.4 . Take any pricing function p with marginal prices in [0, 1]. Then,
for ε > δ > 0 small enough, the pricing function p′(a) = (1 − ε)p(a) + δa has marginal
prices uniformly bounded away from 0 and 1. Moreover, the epigraphs epi p and epi p′ of
p and p′, respectively, are arbitrarily close in the Hausdorff distance. Thus, the extended
menus M = epi p+Θ◦ and M ′ = epi p′ +Θ◦ are arbitrarily close in the Hausdorff distance
(Lemma A.6). By Lemma A.7, the associated mechanisms x and x′, respectively, are arbitrarily
close in L1. By Lemma 8.3, x′ is undominated. □

Proof of Theorem 8.5. The argument for why the undominated extreme points are dense
in the set of (IC) and (IR) mechanisms when m ≥ 2 is analogous to the arguments in the
proofs for Section 6 in Appendix D.3. By Corollary 8.4, for every (x, t) ∈ X , find (x′, t′) ∈ X
arbitrarily close to (x, t) with marginal prices bounded away from 0 and 1. Then follow
the construction for Corollary 6.5 and then the construction for Theorem 6.4. As long as
all perturbations are small enough, the constructed extreme point still has marginal prices
bounded away from 0 and 1 and is hence undominated.
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We complete the the proof by showing that the mechanisms that are uniquely optimal for
some type distribution are dense in the undominated mechanisms.
We first show that if (x, t), (x′, t′) ∈ X are undominated and t = t′ almost everywhere,

then x = x′ almost everywhere. It is easy to show (e.g., using Euler’s homogenous function
theorem) that x − x′ is constant on almost every ray from the origin, i.e., HD0 up to tie-
breaking. It therefore suffices to show that for every undominated mechanism (x, t) ∈ X ,
limθ→0 x(θ) = 0 (independently of the choice of sequence). Let p denote the pricing function
associated with x and assume, for the sake of contradiction, that limθ→0 x(θ) = a∗ ̸= 0. Then,
p(a) = 0 for all a ≤ a∗. Define a mechanism (x′, t′) ∈ X by letting the agent buy from
another pricing schedule

p′(a) =

{
p(a+ a∗) if a+ a∗ ∈ [0, 1]m;

maxa∈menu(x) p(a) + ε otherwise,

where ε > 0. By construction, p′(0) = 0; thus, (x′, t′) is IC and IR. Since p′ is obtained
from p by translation of the graph of p in direction −a∗ with a new price maxa∈[0,1]m p(a) + ε
for the grand bundle a = 1, almost every type either buys the same allocation as under p
translated by −a∗ or the grand bundle. Thus, t′ ≥ t almost everywhere. For all sufficiently
small ε > 0, a positive measure of types will buy the grand bundle. Thus, (x′, t′) dominates
(x, t), a contradiction.

We next claim that extV∩undV is dense in undV , where V is the set of IC transfer functions.
If (x, t) ∈ extX is undominated, then t ∈ extV . To see this, suppose t = 1

2
t′+ 1

2
t′′ /∈ extV for

t′, t′′ ∈ V . Define x̃ = 1
2
x′ + 1

2
x′′ ∈ X , where x′, x′′ ∈ X induce transfer t′ and t′′, respectively.

By definition, x and x̃ both induce t. Thus, x = x̃ by the previous paragraph, so x /∈ extX .
The claim now follows because the undominated mechanisms in extX are dense in the
undominated mechanisms in X .
Fix any undominated mechanism (x, t) ∈ X . By Proposition D.6 and the previous

paragraph, there exists a sequence of transfer functions (tn)n∈N ⊂ exp+ V, each uniquely
optimal for some type distribution µ, converging to t in L1. We have shown above that the
associated sequence of allocation rules (xn)n∈N is uniquely determined. Since X is compact,
up to taking a subsequence, (xn, tn)n∈N converges in L1 to some (x′, t) ∈ X . But (x, t) is
undominated, hence x = x′, as desired. □

D.5.3. Linear Veto Bargaining. We proceed with the linear veto bargaining problem.

Proof of Lemma 8.6. We first show that the conditions given in the statement are necessary.
For this, fix any mechanism x ∈ X . It is clear that

¯
a ∈ menu(x) for otherwise x does not

satisfy (IR) since there is a type
¯
θ for which

¯
a is their (unique) most preferred alternative

in A. Next suppose menu(x) does not contain the principal’s (unique) favorite alternative
a∗ ∈ extA. Obtain a new mechanism x′ ∈ X by letting the agent choose from menu(x)∪{a∗}.
Thus, for all θ ∈ Θ, either x′(θ) = x(θ) or x′(θ) = a∗. Since a∗ ∈ extA, there is a positive
measure of types for which a∗ is their most preferred allocation in A. Thus, x′ dominates x.

For sufficiency, let a∗ ∈ extA be the principal’s favorite alternative and suppose x, x′ ∈ X
are such that a∗ ∈ menu(x),menu(x′) and x(θ) · v̄ ≥ x′(θ) · v̄ for almost all θ ∈ Θ. We show
that x = x′ almost everywhere. We extend both mechanisms to coneΘ = Rd by letting each
type chose their favorite allocation in menu(x) and menu(x′) (x and x′ are constant along
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almost every ray from the origin). Let U and U ′ be the agent’s indirect utility functions
associated with x and x′, respectively.
We claim that for all θ ∈ coneΘ and λ ∈ R,

ϕθ(λ) := U(θ + λv̄) = U(θ) +

∫ λ

0

⟨x(θ + zv̄), v̄⟩ dz

and analogously for ϕ′
θ, x

′, and U ′. Recall that x(θ) = ∂U(θ) and x′(θ) = ∂U ′(θ) (Theo-
rem A.2). ϕθ(λ) is the restriction of a continuous convex function to a line, hence continuous
and convex. It is easy to verify that ⟨x(θ+λv̄), v̄⟩ as a function of λ is a subgradient of ϕθ(λ).
Hence the envelope formula follows (Rockafellar, 1997, Theorem 24.2).
By Fubini’s theorem, ϕθ(λ) − ϕ′

θ(λ) is non-decreasing for almost all θ ∈ coneΘ because
x(θ + λv̄) · v̄ ≥ x′(θ + λv̄) · v̄ for almost all θ ∈ coneΘ and all λ ∈ R.

For all sufficiently large λ > 0, we have x(θ + λv̄) = x′(θ + λv̄) = a∗ since a∗ ∈ extA is the
principal’s, i.e., type v̄’s, (unique) favorite alternative in A and thus the favorite alternative
of type θ + λv̄. Thus, ϕθ(λ)− ϕ′

θ(λ) = 0 for all sufficiently large λ > 0.
Similarly, for all sufficiently small λ < 0, we have x(θ + λv̄) = x′(θ + λv̄) =

¯
a since

¯
a is,

by assumption, the principal’s (unique) least preferred alternative and the principal’s and
agent’s preferences are sufficiently aligned.
Thus, for almost every θ ∈ coneΘ and every λ ∈ R, we have ϕθ(λ) = ϕ′

θ(λ) since
ϕθ(λ)− ϕ′

θ(λ) is non-decreasing. Put differently, U = U ′ almost everywhere. By continuity,
U = U ′. Consequently, x = x′ almost everywhere. □

Proof of Theorem 8.7. The argument for statement (1) is immediate from Theorem 7.2 and
Lemma 8.6. We proceed with statement (2).
The argument for why the undominated extreme points are dense in the undominated

mechanisms when m ≥ 4 is completely analogous to the proofs of Corollary 6.5 and Theo-
rem 6.4 when making sure that

¯
a, a∗ ∈ V , where a∗ is the principal’s favorite alternative and

V is the set of vertices constructed in the proof of Theorem 6.4.
We complete the the proof by showing that the mechanisms that are uniquely optimal for

some type distribution are dense in the undominated mechanisms.
The proof of Lemma 8.6 shows that if x, x′ ∈ X are undominated and such that x(θ) · v̄ =

x(θ) · v̄ for almost every θ ∈ Θ, then x = x′ almost everywhere. Thus, an undominated
principal utility function uniquely determines an undominated mechanism.
We claim that extV∩undV is dense in undV . If x ∈ extX is undominated, then the induced

principal utility function V ∈ V is in extV . To see this, suppose V = 1
2
V ′ + 1

2
V ′′ /∈ extV for

V ′, V ′′ ∈ V . Define x̃ = 1
2
x′ + 1

2
x′′ ∈ X , where x′, x′′ ∈ X induce V ′ and V ′′, respectively. By

definition, x and x̃ both induce v. Thus, x = x̃ by the previous paragraph, so x /∈ extX .
The claim now follows because the undominated mechanisms in extX are dense in the
undominated mechanisms in X .
Fix any undominated mechanism x ∈ X . Let V ∈ V be the associated principal utility

function. By Proposition D.6 and the previous paragraph, there is a sequence (Vn)n∈N ⊂
exp+ V of uniquely optimal undominated principal utility functions converging to V . Let
(xn)n∈N ⊂ extX be the sequence of mechanisms that is uniquely determined by (Vn)n∈N. (By
definition, each mechanism in the sequence is uniquely optimal for some type distribution.)
By compactness of X , up to taking a subsequence, xn → x′ ∈ X . By continuity of the map
that assigns to each mechanism in X a principal utility function in V , x′ must induce V since
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Vn → V . Therefore, x′ is undominated. Thus, x = x′ almost everywhere, which completes
the proof. □
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