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Abstract

We study the robust regulation of labour contracts in moral hazard prob-
lems. A firm offers a contract to incentivise production by an agent protected
by limited liability. A regulator chooses the set of permissible contracts to (i)
improve efficiency and (ii) protect the worker. The regulator ignores the agent’s
productive actions and the firm’s costs and evaluates regulation by its worst-
case regret. The regret-minimising regulation imposes a linear minimum wage,
allowing all contracts above this linear threshold. The slope of the minimum
contract balances the worker’s protection – by ensuring they receive a minimal
share of the production – and the necessary flexibility for incentive provision.
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Our problem is to workout in practice those labor standards which will permit
the maximum but prudent employment of our human resources to bring within
the reach of the average man and woman a maximum of goods and of services
conducive to the fulfillment of the promise of American life.

Franklin D. Roosevelt, May 24, 1937, “A fair day’s pay for a fair day’s work”

Firm-worker relationships suffer from unbalanced bargaining power and moral-

hazard (Card, 2022). The contractual solution to the conflict of interest between the

firm and the worker is thus typically inefficient and favours the firm. For example,

in the canonical moral-hazard model (Holmström, 1979), the firm distorts effort to

extract the incentive rent enjoyed by the worker. Therefore, policymakers have long

regulated labour contracts to mitigate inefficiencies and protect the workers. In 1937,

Roosevelt called already for “A fair day’s pay for a fair day’s work,” proposing a

federal minimum wage. While the effect of labour market regulations – particularly

the minimum wage – on employment has been largely debated since (Stigler, 1946;

Card and Krueger, 2016), less attention has been paid to their effects on the inner

workings of the firms. Yet, adopted minimum wage regulations compress the pay

schedule and, hence, may affect workers’ efforts and alter the monitoring structure

and technology chosen by firms (Obenauer and von der Nienburg, 1915; Coviello

et al., 2022). This paper explores the effects of labour contract regulation on firms’

and workers’ incentives and the allocation of economic surplus. To do so, we study

the optimal regulation of contracts as a delegation problem when the firm-worker

relation is subject to moral hazard.

The regulator faces a trade-off between workers’ protection and firms’ flexibility.

The debate on the minimum wage illustrates this tension: while a minimum wage

guarantees a fixed minimal compensation for workers, it may increase firms’ wage

bills and thus jeopardise both firms’ and jobs’ viability (Luca and Luca, 2019; Ha-

rasztosi and Lindner, 2019). Notably, this trade-off stems from the regulator’s lim-

ited information. Indeed, if the regulator had perfect information about firms’ costs

and technologies and could regulate them individually, they would optimally allow
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contracts that (i) induce the firms to produce efficiently and (ii) share the surplus

fairly. However, in practice, policymakers issue regulations that apply identically to

firms with varying costs and technologies (e.g., within a sector or geographic area).

So, any regulation must account for various scenarios or risk creating large ineffi-

ciencies that can harm both firms and workers.

To investigate this trade-off, we consider the problem of a regulator who de-

termines the set of authorized contracts in the canonical moral hazard setting. A

firm (the principal) can offer a contract to a worker (the agent). If the firm hires the

worker, she incurs a fixed cost. If the worker accepts the contract, then he chooses a

productive action. Each action is characterised by a cost (e.g., effort) and an output dis-

tribution. The actions are non-contractible. Hence, a contract specifies the worker’s

remuneration as a function of the output. The worker is protected by limited liability

(i.e., contracts must be non-negative). A regulation is a set of contracts the firm can

offer. The firm and the worker are risk-neutral, and their payoffs are their respective

profit and surplus. The regulator’s payoff is the weighted sum of the firm’s profit

and the worker’s surplus, where the latter has a (weakly) greater weight.

A given set of productive actions together with a fixed cost define a technology.

While the technology is known to the firm and the worker, the regulator has no infor-

mation. We take a non-Bayesian approach and assume that the regulator evaluates

regulations according to their worst-case regret. For a given technology and regula-

tion, the regret is the difference between the regulator’s first-best – had they known

the technology – and their actual payoff given the optimal choices of contract and ac-

tion made by the firm and the worker. The regret measures the waste of opportunity

that the regulator must tolerate because of their lack of information. The worst-case

regret of a regulation is the maximal regret over the possible technologies and the

possible equilibria of the contractual relationship. The regulator chooses a regula-

tion that minimises their worst-case regret. This approach captures the impossibility

for regulators to tailor regulation to each firm-worker relationship in the economy.

Thus they must design it to perform fairly well in every situation.
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Our main result establishes that a linear minimum wage is optimal (Theorem 2).

Namely, the regret-minimising regulation permits every contract above the linear

contract w⋆ : y 7→ α− 1

2α− 1
y, where y is the output and α is the weight on the worker’s

surplus in the regulator’s payoff. This regulation guarantees the worker a minimal

share of the production, thereby protecting his surplus. However, unlike a flat min-

imum wage, the linear minimum wage preserves the firm’s flexibility and ability to

provide incentives while limiting the firm’s motives for distorting production away

from efficiency. It achieves this by combining two features. First, the linear min-

imum wage partially realigns the firm’s incentives toward efficient production. It

incentivises the worker to choose more productive actions, which limits the firm’s

interest in distorting production downward. It also reduces the firm’s incentive to

distort production upward, as greater production must be met with higher compen-

sation for the worker. Hence, the linear minimum wage aligns the firm’s incentives

with the regulator’s preferences for more efficient production. Second, by granting

flexibility above the minimum contract, the optimal regulation limits the risk that the

firm does not produce and wastes the entire surplus. The optimal regulation trades

off the risk of pushing the firm out of business, destroying the entire surplus, with

the regulator’s preference for efficient production and fair allocation of the surplus.

The main challenge to establish the optimality of the linear minimum wage is

the sheer size of the delegation possibility set. Here, the regulator can choose any

subset of the infinite dimensional space of contracts. So, to prove the result, we

first obtain a lower bound on the worst-case regret of any regulation (Theorem 1).

This lower bound is the maximum between two values, each of which reflects the

two forces at work in the regulator’s trade-off. The regret results either from the

regulation being too restrictive, preventing the firm from hiring the worker, or from

the regulation being too permissive, failing to protect the worker’s share. We show

that in both cases, the worst-case scenario involves distortions induced by the firm’s

profit maximisation. The proof of Theorem 2 then shows that Theorem 1 identifies

the binding cases. That is, the lower bound obtained in Theorem 1 is an upper bound
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on the regulator’s regret under the linear minimum wage w⋆ regulation.

A direct implication of Theorem 2 is that the optimal linear minimum wage reg-

ulation becomes more restrictive as the regulator values the worker’s surplus more:

the minimum wage’s slope increases with α. The regret from rent-extraction distor-

tion increases more quickly than that from wasted production as α increases. Hence,

the regulator provides a higher guarantee for the worker at the expense of a greater

risk of pushing the firm out of business. The extreme case where the regulator only

cares about efficiency (α = 1) is of particular interest. When the regulator’s payoff

is the total surplus, laissez-faire is optimal (Corollary 1). In that case, the regulator

has no preferences for the allocation of the surplus. Still, they find the firm’s dis-

tortions to extract the agent’s incentive rent costly, as they waste potential surplus.

Corollary 1 shows that the regulator can never gain from mitigating these distor-

tions. Any regulation jeopardises the firm’s potential profitability. When α = 1,

reducing the risk that the firm does not produce becomes the regulator’s primary

concern, and they address it by granting the firm full flexibility.

Other optimal regulations exist. However, Theorem 3 shows that any optimal

regulation must possess features similar to the optimal linear minimum wage regu-

lation identified in Theorem 2. They must offer a minimum compensation guarantee

to the worker, which is equal to the linear wage w⋆ for large outputs. They must also

grant sufficient flexibility to the firm to limit the risk of missing production oppor-

tunities. Finally, among the optimal regulations that have a minimum wage, the

one identified in Theorem 2 is the least restrictive (in the set-inclusion sense) and,

thus, the firm’s preferred one. Furthermore, the regulation in Theorem 2 is the only

regulation robust to possible misspecifications of the problem.

Finally, in Section 3.1, we compare our approach to traditional labour market

models (in particular, the competitive equilibrium and monopsony models) that

have been used to analyse labour regulations. The textbook models typically view

labour markets as allocation mechanisms. They reduce wage contracts to a sin-

gle number that determines the firm-worker matching and the division of surplus.
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Therefore, they do not develop the ingredients to study the effect of regulation on

incentive provision and mostly abstract away from potential incentive and moral

hazard problems within each firm-worker relationship. Our approach fills this gap.

We open the within-match production’s “black box” to examine how different labour

contract regulations affect incentive provision and the allocation of surplus between

firms and workers.

Related literature. We study the design of regulatory policies in labour markets.

Standard labour markets models only consider wages as prices determining the

firm-worker matching (e.g., Stigler, 1946; Burdett and Mortensen, 1998; Naidu et al.,

2016). As a result, the primary focus of labour market regulation has been on alloca-

tive efficiency: How do regulations distort or improve the match between workers

and firms (Flinn, 2006; Lee and Saez, 2012; Naidu and Posner, 2022)? In contrast,

we focus on the effects of regulation on incentive provision. We discuss more exten-

sively this crucial aspect in Section 3.1.

We build on the canonical principal-agent model with moral hazard (Holmström,

1979; Laffont and Martimort, 2002; Jewitt et al., 2008) to study the regulation of pri-

vate contracting between workers and firms. In particular, we view regulation as

a delegation problem. The delegation literature, starting with Holmstrom (1980),

has focused on aligning a better-informed agent’s behaviour to a principal’s prefer-

ences by constraining the actions the agent can take (Alonso and Matouschek, 2008;

Koessler and Martimort, 2012; Amador and Bagwell, 2013). The delegation frame-

work thus naturally lends itself to the study of regulation. After all, as Laffont (1994)

emphasizes, firms typically know more about the environment than regulators, and

regulators have the power to constrain the firm’s choice. For example, Amador and

Bagwell (2022) have studied the classic Baron and Myerson (1982) monopoly regu-

lation problem in a setting without transfers. Closer to ours are three papers that,

as we do, take a robust non-Bayesian approach to the regulator’s problem: Guo and

Shmaya (2023b), Malladi (2022), and Thomas (2024). Guo and Shmaya (2023b) de-
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rived the regret-minimizing monopoly regulation.1 Malladi (2022) studies the stud-

ies the optimal approval rules for innovation. Finally, Thomas (2024) also studies

labour market regulations as a delegation problem. He shows that combining min-

imum wage, overtime pay, and a cap on hours can help protect the worker and

improve efficiency under different bargaining protocols. However, as the traditional

labour market models, he also abstracts from the effect of regulations on incentive

provision.

One critical difference is our focus on the effect of regulations on firms’ ability

to incentivise effort. Our incentive problem is one of moral hazard, while Guo and

Shmaya (2023b) and Malladi (2022) consider adverse selection and Thomas (2024)

mostly abstract away from incentives problem. As a result, we have to consider a

complex delegation problem: choosing the set of permissible contracts. In our pa-

per, the delegation set is, therefore, a subset of the very large space of all measurable

mappings from output to payments. Instead, in Guo and Shmaya (2023b), Malladi

(2022), or Thomas (2024), but also in the delegated contracting literature that consid-

ers moral hazard (e.g., Hiriart and Martimort, 2012; Iossa and Martimort, 2016), the

regulator determines the set of permissible outcomes or allocations. The delegation

set is, therefore, typically a subset of a finite-dimensional space. Two notable excep-

tions are Bhaskar et al. (2023) and Bhaskar and McClellan (2024). They study two

regulation problems as delegation problems in the space of contracts. In the former,

they examine the optimal regulation of contracts in insurance markets. They look at

a Bayesian framework where the regulated principal-agent interaction suffers from

adverse selection, not moral hazard. In the latter, they study the regulation of wage

contracts in a dynamic labour market. They derive the Bayesian optimal regula-

tion when the sole friction results from search inefficiencies. As in the classic labour

market models, they take the wages to distribute the surplus between the firms and

workers, and do not consider their role in providing incentives. Instead, we show

1See Naidu and Posner (2022) and the Appendix C of Guo and Shmaya (2023b) for a reinterpreta-
tion of Guo and Shmaya’s results in terms of labour market regulation.
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that regulations change the incentive provision problem and can compound exist-

ing distortions. As a result, considering the moral hazard problem highlights a new

trade-off for the regulator between firm autonomy and flexibility and worker pro-

tection, leading to qualitatively different regulations.

Moreover, as already mentioned, we take a robust non-Bayesian approach to

the regulator’s problem to obtain these insights. So, our paper contributes to the

large and growing literature on mechanism design with a non-Bayesian objective,

restarted in economics with Carroll (2015), Garrett (2014), and Chassang (2013). For

a survey, see Carroll (2019). In particular, we follow Wald (1950), Savage (1951), Hur-

wicz and Shapiro (1978), Manski (2012), and Guo and Shmaya (2023a,b) in evaluat-

ing policies by their worst-case regret. The focus of this literature has typically been

on the design of optimal compensation schemes between a principal and an agent or

in a hierarchical organization (Walton and Carroll, 2022).2 We depart by looking at

the regulation problem and show that, as in the incentive provision problem, the ro-

bustness approach gives us sensible and economically meaningful predictions when

the Bayesian problem remains largely intractable.

1 Model

There are three players: a risk-neutral firm (she), a risk-neutral worker (he), and

a regulator (they). The regulator decides which contracts the firm can offer to the

worker. The firm then decides whether to hire the worker to perform a productive

task. She offers the worker a contract, among the ones allowed by the regulator, that

specifies the worker’s payment as a function of the production output. If the worker

accepts the contract, he has to decide which productive action to take.

2Exceptions are Guo and Shmaya (2023b), Malladi (2022), and Thomas (2024). We discussed them
above.
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Technology and Outputs. A technology T = (k,A) ∈ R+ × 2R+×∆(R+) consists in

an operating cost k ∈ R+ and a production set3 A = {(ei, Fi) : i ∈ I} ⊂ R+ × ∆(R+).

The production set A describes the actions available to the worker. An action is a

pair (e, F ), where F ∈ ∆(R+) is a distribution over outputs y ∈ R+ and e ≥ 0 is the

associated cost of production (e.g. effort). The operating cost k captures the firm’s

fixed costs if she hires the worker (e.g., maintenance, utilities, software subscription).

We impose the following assumptions on all technologies T .

Assumption 1. Any production set A is a compact subset of R+ × ∆(R+), and, for all

(e, F ) ∈ A.

Assumption 2. There exists ȳ ≥ 0 such that for any production set A and any action

(e, F ) ∈ A, EF [y] ≤ ȳ.

Assumption 1 is technical. It holds, for example, if all output distributions have

common finite support and in most classic moral-hazard papers. We make it to guar-

antee that the firm’s and the regulator’s optimisation problems (Π) and (Rfb) below

are well-behaved and admit a solution. On the other hand, Assumption 2 is substan-

tial. It guarantees that the maximum expected output for any possible technology is

bounded and at most ȳ. As such, it encompasses a critical piece of information for

the regulator. They need not worry about technologies that are possibly unbounded

output. As a result, it guarantees that the regulator’s regret remains bounded. Both

Assumption 1 and 2 are typically satisfied in the literature. They hold, for instance,

for all technologies considered in Holmström (1979), Grossman and Hart (1983), or

Jewitt et al. (2008). We denote by T the set of all technologies that satisfy Assump-

tion 1 and 2.

Example 1. One important class of technologies for our analysis that satisfies Assumption 1

3∆(R+) is the set of all Radon probability measures on R+. We equip ∆(R+) with the topology
generated by the total variation norm.
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and 2 consists of binary technologies

T =
(
k,A = (ei, Bµi

)i∈I⊂R

)
,

where for any i ∈ I , Bµi
is a binary distribution supported on {0, ȳ} with mean4 µi. Namely,

Bµi
= aδȳ + (1− a)δ0 for some a ∈ [0, 1] such that5 aȳ = µi.

Example 2. In classic moral hazard models (e.g., Jewitt et al., 2008), the agent typically

chooses an effort level e ∈ [0, ē], which costs c(e) and induces the distribution F (·|e) with

density f(·|e). In our notations, it defines the production technology:

A = (c(e), F (·|e))e∈[0,ē] ,

which satisfies Assumption 1 and 2. In particular, the production set is seen to be the graph

of e → (c(e), F (· | e)).

Contracts and Regulation. We assume that the worker is protected by limited li-

ability. A contract is a (measurable) mapping w : R+ −→ R+, which specifies the

payment w(y) ≥ 0 the worker receives for each output level y ∈ [0, ȳ]. As we shall

see below, the agent is risk-neutral, which implies that limited liability is the sole

frictions.6 We denote by C0 the set of all measurable function from R+ to R+ such

that 0 ≤ w(y) ≤ y for all y ≥ 0. A regulation C is a closed subset of allowed contracts

for the product topology on RR+

+ : C ⊂ C0. For any regulation C ⊂ C0 we define the

function wC such that, for all y ≥ 0, wC(y) = inf {w(y) : w ∈ C}.

Example 3. A possible regulation (which we will show is optimal) takes the form of a linear

4Under Assumption 1, assuming that the index set I is a subset of R is without loss of generality
since every compact metric space is a continuous image of the Cantor set.

5For any pair of output distributions F and G and any real number a ∈ [0, 1], we denote as aF +
(1− a)G the output distribution obtained by the usual mixture operation.

6We derive the optimal regulation absent limited liability in Section 3.
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minimum wage:

C⋆ =

{
w ∈ C0 : w(y) ≥ w⋆(y) =

α− 1

2α− 1
y for all y ≥ 0

}
.

The regulation C⋆ authorizes all and only the contracts that exceed the minimum wage con-

tract w⋆ pointwise. In this case, wC is a contract in C⋆ and is equal to w⋆.

Example 4. A widely used regulation consists of a minimum wage m. In our framework, it

is represented by a flat minimum contract:

C = {w ∈ C0 : w(y) ≥ m for all y ≥ 0} .

In this case, wC is also a contract in C⋆ and is equal to the constant contract y 7→ m.

Firm and Worker’s payoffs. The firm and the worker are risk-neutral. Given a

contract w ∈ C0, an action (e, F ) ∈ R+ × ∆(R+), and an operating cost k ∈ R+, the

worker’s, firm’s, and regulator’s payoff are respectively

WS = EF [w(y)]− e,

Π = EF [y − w(y)]− k,

and TS = EF [y − w(y)]− k + α (EF [w(y)]− e) ,

where α ≥ 1 is the weight the regulator places on the worker’s surplus WS. Finally,

we assume that the worker and the firm both have access to an outside option that

gives them a payoff of 0.

Timing. The timing of the game is as follows.

1. The regulator chooses the regulation C ⊂ C0, i.e., the set of permitted contracts.

2. Nature determines the technology T = (k,A), only observed by the firm and

the worker.
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3. The firm decides whether to hire the worker. If she does not, the game ends,

and both players receive their outside option. If the firm hires the worker, she

proposes a contract w ∈ C to the worker.

4. If the worker refuses the firm’s contract, the game ends, and both players re-

ceive their outside option. If the worker accepts the contract, he chooses a

productive action, and the payoffs are realised.

Three remarks are in order at this point. First, behind the scenes, there is an

implicit assumption that the regulator or a third party (for instance, a judge) can en-

force contracts. In particular, this means that the enforcer can detect any violation of

the agreements (e.g., if the firm offers an unauthorized contract or refuses to pay the

worker ex-post) and impose dissuasive punishments on the offender. Second, it does

not matter whether the action chosen by the worker is observed by the firm, given

that the firm takes no action after the contract has been offered. What is important is

that effort is not contractible. The unobservability of effort is a common justification,

but it is not necessary. Finally, the timing of the game gives all the bargaining power

to the firm, who acts as a Stackleberg leader.

The firm’s problem. The firm solves a classical (constrained) moral-hazard prob-

lem. She chooses the contract to offer to maximise profits when the worker best

responds by choosing the action that maximises his payoffs given the offered con-

tract. Given a regulation C ⊂ C0 and a technology T = (k,A) ∈ T, the firm solves the
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following problem:7

Π(C, T ) = max
{
0, max

w∈C,(e,F )∈A
EF [y − w(y)]− k

}
(Π)

s.t. EF [w(y)]− e ≥ 0, (IRW )

and EF [w(y)]− e ≥ EF̃ [w(y)]− ẽ for all (ẽ, F̃ ) ∈ A. (ICW )

The worker’s incentive compatibility and participation constraints (ICW ) and (IRW )

are standard in principal agent problems. They reflect the worker’s optimizing be-

havior. Given a contract w ∈ C, the worker decides whether to participate. He does

so if his payoff is greater than the payoff he derives from taking his outside option,

which we normalized to zero. This is captured by the participation constraint (IRW ).

Second, the worker chooses the action in A that maximises his payoff given the of-

fered contract. This is captured by the incentive compatibility constraint (ICW ). The

interpretation of the maximization problem (Π) is then as follows. As the Stackleberg

leader, the firm can anticipate the worker’s response to any contract. The program

(Π) then takes the equivalent view that the firm directly chooses the worker’s action

taking the optimizing behavior of the worker as a constraint. Finally, as is standard

in principal-agent models, we implicitly assume that the firm can select her preferred

action when the worker is indifferent between several.

Denote by w⋆
(C,T ) the contract optimally chosen by the firm. We say that the firm

implements action (e, F ) ∈ A whenever the optimal contract w⋆
(C,T ) ∈ C incentivises

the worker to choose action (e, F ). The worker’s surplus, WS(C, T , σ), when the

regulation is C, the technology is T , and the worker and firm play the equilibrium

σ = (w⋆
(C,T ), (e, F )), is

WS(C, T , σ) = max
{
0, EF [w

⋆
(C,T )(y)]− e

}
.

7Lemma 11 in Appendix D.1 guarantees the existence of an optimal contract and associated opti-
mal action under mild regularity conditions that are satisfied by all the regulations we consider. Note,
however, that we do not impose these conditions as part of the definition of a regulation, and, thus,
that writing the maximum for an arbitrary C is a small abuse of notations.
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If no contract is signed, the worker takes his outside option and obtains a payoff of

zero 0. Otherwise, the worker takes the action that maximises his payoff given that

the firm optimally offers w⋆
(C,T ). We denote by Σ the set of equilibria of the contracting

game.

Regulator’s objective. The regulator cares about distributional efficiency. If they

knew the technology T ∈ T, they would maximise their payoff, i.e, the sum of the

firm’s profit and the worker’s surplus where the latter is weighted by α ≥ 1. In this

first-best scenario, they solve:8

V (T ) = max
w∈C0,(e,F )∈A

EF [y − w(y)]− k + α
(
EF [w(y)]− e

)
(Rfb)

s.t. EF [y − w(y)]− k ≥ 0, (IRF )

EF [w(y)]− e ≥ 0, (IRW )

EF [w(y)]− e ≥ EF̃ [w(y)]− ẽ for all (ẽ, F̃ ) ∈ A. (ICW )

We refer to any action that solves (Rfb) as the (Rfb)-optimal one. As above, the

worker’s incentive compatibility and participation constraints (ICW ) and (IRW ) re-

flect the worker’s optimizing behaviour. He must be willing to participate and

choose the regulator’s desired action when offered contract w. The firm’s partici-

pation constraint (IRF ) is new. It captures the firm’s optimizing behaviour. She can

always stay out of business and must, therefore, be given a payoff at least as high as

the payoff she gets when taking her outside option. One can then interpret (Rfb) as

follows. The regulator is the Stackleberg leader of the contracting game. They can

anticipate the firm’s and the worker’s responses to any contract. So, (Rfb) takes the

equivalent view that the regulator directly makes the firm’s participation decision

and chooses the worker’s action, taking the optimizing behaviours of the worker

and firm as constraints. Finally, as above, we assume that, in case of indifference, the

8It is easily seen that the regulator does not gain from allowing multiple contracts. A solution
exists by Lemma 11 in Appendix D.1.
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regulator can break ties in their favour in the full information problem.

However, in our problem, when the regulator chooses the regulation C ⊂ C0,

they are fully ignorant of the available technology. We assume that the regulator

minimises the maximal regret they may suffer. Formally, for a given regulation C ⊂ C0,

technology T ∈ T, the regulator’s regret is given by

R(C, T ) = sup
σ∈Σ

{V (T )− [Π (C, T ) + αWS (C, T , σ)]} .

The regulator evaluates a regulation C ⊂ C0 according to its worst-case regret:

WCR(C) = sup
T ∈T

R(C, T )

To compute the worst-case regret, the supremum is taken over all technologies T ∈ T

and all equilibria of the contracting game. The regulator’s information about the

technology is thus fully summarized by Assumption 1 and Assumption 2. This is our

only departure from the Bayesian approach. The Bayesian approach would assign a

prior belief over the characteristics of the available technology: the operating cost k

and the production set A. The regulator would then minimise the expected regret.9

Instead the regulator wishes to find a regulation C ⊂ C0 that minimises the worst-case

regret:

inf
C
WCR(C).

One can interpret the above problem as follows. The regulator selects a regulation

C. Nature then chooses the technology T ∈ T and the equilibrium σ ∈ Σ of the

contracting game. This formulation is quite demanding. When the regulator chooses

a regulation under which there are multiple contracting equilibria for the technology

chosen by Nature, Nature can select the one which yields the highest regulator’s

9Minimizing the regulator’s expected regret is equivalent to maximizing their expected payoff
because the regulator’s complete-information payoff does not depend on the regulation.
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regret. We, therefore, seek a regulation that provides the regulator with a minimal

regret guarantee across all possible technologies and equilibria.

2 Optimal Regulation

Our first main result in Section 2.1 establishes a lower bound on the regulator’s

worst-case regret for any regulation (Theorem 1). Then, Theorem 2 in Section 2.2

shows that this bound is tight and that a regulation consisting of a minimum linear

wage – whose slope depends on the welfare weight α – is optimal. However, this

regulation is not uniquely optimal. In Section 2.3, we derive characteristics that ev-

ery optimal regulation must satisfy in Theorem 3 and show that the linear minimum

wage regulation identified in Theorem 2 is the least restrictive optimal regulation

within the class of minimum wage regulations (Corollary 4).

2.1 Lower Bound on Regret

The regulator wants to limit the firm’s ability to extract surplus from the worker

without discouraging production. Hence, they face a trade-off between (i) protecting

the worker’s surplus and (ii) granting the firm enough flexibility in contract choice

to profitably incentivise some action. Theorem 1 obtains a lower bound on the regu-

lator’s worst-case regret that reflects this trade-off. We define this lower bound

R̄ = min
w∈[0, 12 ȳ]

max
{
αe

2w−ȳ
ȳ−w (ȳ − w), αe−

1
α (ȳ − w)

}
. (1)

Theorem 1 (Lower bound). For all C ⊂ C0, WCR(C) ≥ R̄.

The two terms in the definition of R̄ reflect the trade-off faced by the regulator.

In the remainder of this section, we construct technologies that generate the lower

bound on regrets R̄ and illustrate the two sources of the regulator’s regret: either

the regret stems from the regulation insufficiently protecting the worker’s surplus
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or from the regulation being too restrictive and deterring the firm from hiring the

worker.

2.1.1 Protection of the worker’s surplus

As the firm holds the bargaining power, she chooses a contract to extract as much

surplus from the worker as possible. As a result, there are instances in which the

regulator wished their regulation had been less permissive. The lower bound on the

regulator’s regret resulting from failing to protect the worker is captured by the first

term in Equation (1), αe
2w−ȳ
ȳ−w (ȳ − w). Below, we illustrate how the regulator suffers

from insufficiently protecting the worker’s surplus and why it gives rise to the above

expression with two examples.

Case 1: without moral hazard. When the production set is a singleton, moral haz-

ard has no impact on the contracting relationship. If production happens, it is effi-

cient. So, the only remaining question is that of the distribution of the surplus be-

tween the firm and the worker. In that case, the firm extracts as much of the surplus

as the regulation allows, while the regulator, if they knew the technology, would give

all the surplus to the worker. The regulator’s regret then stems from their inability

to secure enough of the surplus for the worker.

Consider an arbitrary regulation C ⊆ C0. Suppose that the production set only

consists of one riskless action that produces y > 0 at a cost e ≥ 0, and that the firm’s

operational cost is k ≥ 0. So, the technology is T =
(
k, {(e, δ{y})}

)
.10 Let us assume

that production is efficient and denote the total surplus as S = y − k − e > 0. If the

firm produces and obtains a positive profit under the regulation C, there must exist a

contract w ∈ C such that y− k > w(y) ≥ e. In that case, the firm then pays the lowest

possible wage in C that incentivises the worker to work. Denote this wage wC(y). As

a result, the firm captures as much of the worker’s surplus as allowed. On the other

hand, the regulator wants to give the entire surplus to the worker. They can do so

10For any y ∈ R+, the Dirac measure supported on y is denoted δy .
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ȳ

k

y

S

e

w(y)

(y − k − w(y))

wC

Figure 1: Case 1. T =
(
k, {(e, δ{y})}

)
and R(C, T ) = (α− 1) (y − k − w(y)).

by offering the contract w : y′ 7→ 1{y′=y}(y − k). The regulator’s regret is then

R(C, T ) = α (y − k − e)−
[
(y − k − wC(y))− α(wC(y)− e)

]
= (α− 1)

(
y − k − wC(y)

)
.

This is illustrated in Figure 1. The regret is greatest when the operational cost is

null, k = 0 and for the output y that maximises (y − wC . Lemma 3 in Appendix A.1

precisely captures the greatest regret that can arise in such cases. This first exam-

ple highlights the regulator’s concern for protecting the worker: the regret increases

with more permissive regulation. However, it does so in a simple case, absent poten-

tial rent-extraction distortions. The next example considers the case where the firm

distorts production to extract the worker’s incentive rents.

Case 2: with distortions induced by moral hazard. When the production set is

not a singleton, the firm faces a nontrivial moral hazard problem. Incentivising the

agent to take more efficient actions may require the firm to give incentive rents to the

worker. While this increases the total size of the pie, it leaves the agent with a larger

share. Reducing effort away from the efficient level can then be profitable: it induces
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second-order losses in terms of total surplus but first-order gains in profits for the

firm. Thus, the profit-maximizing firm may distort production away from efficiency.

The tension between surplus creation and rent extraction may lead to inefficiencies

in equilibrium. As a result, the regulator would like to impose more restrictions

on the firm to both secure a greater share of the surplus for the worker and realign

the interests of the principal towards efficiency. We illustrate this situation in the

following example.

We focus on binary actions supported on extreme outputs (c.f, Example 1). As-

sume first that the production set contains two binary actions:

A = {(e1, aδȳ + (1− a)δ0), (e2, bδȳ + (1− b)δ0)}.

where 0 < a < b < 1 and e1 < e2. Because actions are binary with common support,

any contract w ∈ C0 is, for all purposes, indistinguishable from the linear contract

y 7→ ℓ · y, where ℓ =
w(ȳ)

ȳ
, which gives the same payoffs to both the principal and

the agent. Hence, we focus linear contracts.11

Consider the technology T = (k,A), where k ≥ 0. We refer to the action with cost

ei as action i and denote its total surplus as Si. We assume that both actions’ surplus

is positive and that action 2 maximises total surplus:

S1 = aȳ − e1 − k < bȳ − e2 − k = S2.

The technology T and the actions’ total surplus are illustrated in Figure 2a. The

dashed line depicts the linear contracts w̃ that incentivises the agent to take action 1

while giving the entire generated surplus to the principal. Without any regulation,

this is the firm’s preferred contract that implements action 1. In this case, her profit

11As Theorem 2 will show, at the optimal regulation, focusing on binary technologies is without
loss to identify the worst-case scenarios.
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is S1. Next, observe that a contract y 7→ ℓ · y implements action 2 if and only if

ℓ · bȳ − e2 ≥ ℓ · aȳ − e1 ⇐⇒ ℓ · ȳ(b− a) ≥ e2 − e1 (2)

⇐⇒ ℓ ≥ e2 − e1
ȳ(b− a)

. (3)

The second inequality in (2) states that the worker’s wage gain from choosing action

2 over action 1 must be greater than the increased effort cost. As a result, the slope

of the contract must be greater than the increase in effort cost over the increase in

average output ratio. Figure 2b illustrates inequality (3). The slope of the dash-

dotted line, θ, is equal to the ratio on the right-hand side of (3). Therefore, any

contract that implements action 2 must must be above the contract represented by

the dashed line, i.e., its slope must exceed θ. In this example, the contract with slope θ

gives a profit equal to the quantity Π2 drawn in Figure 2b. Since Π2 ≤ S1, no contract

that incentivises action 2 increases the firm’s profit. So, absent any regulation, the

firm optimally implements action 1.

On the other hand, if the regulator knew the technology, they would offer the

contract y 7→ bȳ − k

bȳ
· y, which implements action 2 and gives all the surplus to the

worker. Therefore, the regulator’s regret if the regulation C allows the contract w̃ in

Figure 2a is

R(C, T ) = αS2 − S1. (4)

Instead, if the regulation only allows contracts above the dashed line in Figure 2b,

then the regulator’s regret is

R(C, T ) = αS2 − (Π2 + α(S2 − Π2)) = (α− 1)Π2.

Hence, in (4), the regulator regrets not constraining the firm more. We build on this

example to increase the regret beyond (4), and up to αe
2w−ȳ
ȳ−w (ȳ − w). Suppose first
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that the production set contains a third action that produces ȳ with probability 1.

A′ = A ∪ {(e3, δȳ)}.

Denote this new technology T ′ = (k,A′). Action 3 is the most productive: S3 >

S2 > S1. However, without any regulation, the principal cannot incentivise action 3

while gaining a greater profit than S1 – i.e., her profit from implementing action 1 –

as illustrated in Figure 2c. A contract y 7→ ℓ · y incentivises action 3 if and only if

ℓ ≥ max

{
e3 − e1
ȳ(1− a)

,
e3 − e2
ȳ(1− b)

}
=

e3 − e2
ȳ(1− b)

= θ̃.

Graphically, the dashed line in Figure 2c is the minimal contract incentivising action

3, which yields a profit Π3 ≤ S1. If the regulation allows w̃ ∈ C (Figure 2a), the

regulator’s regret is then even greater than (4):

R(C, T ′) = αS3 − S1. (5)

Adding action 3 increases the regret as the firm’s distortion wastes more of the po-

tential surplus.

Following this logic, we can increase the regulator’s regret by adding more ac-

tions. Consider a new technology whose production set includes action 1 and a

continuum of binary actions indexed by i ∈ [aȳ, ȳ], where i is the average output of

action i, and ci is its cost. Thus, action 1 is now referred to as action aȳ and caȳ = e1.

Let T denote this technology. Assume further that ci is a convex function differen-

tiable on (aȳ, ȳ) such that for any i,

∂c

∂i
=

i− k − S1

i
.

The production set for technology T is depicted in Figure 2d, where Sȳ is the effi-

cient surplus generated by action i = ȳ and the curve draws the cost function ci.
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Observe that the derivative of the cost function pins down the slope of the unique

contract that implements action i such that aȳ ≤ i < ȳ. For any contract with a lower

slope, the agent either does not accept the contract or chooses a less productive ac-

tion. Conversely, for any contract with a greater slope, the agent chooses a more

productive action. Moreover, for any i ∈ [aȳ, ȳ],

(
1− i− k − S1

i

)
i− k = S1.

So, implementing action aȳ, formerly action 1, still maximises the firm’s profit when

the regulation C allows contract w̃, but the maximal total surplus Sȳ is now greater

than S3. The regulator’s regret, therefore, exceeds (5):

R(C, T ) = αSȳ − S1.

We can repeat the same exercise for any possible regulation. First, fix an opera-

tional cost k, then maximise the regret induced by constructing a technology similar

to that in Figure 2d. Namely, choose a technology such that the efficient action pro-

duces ȳ with probability 1, and there is a continuum of actions between the one

preferred by the firm and the efficient one such that, for all those actions, the firm’s

profit from implementing any of them is equal to the profit from implementing the

least productive one. Maximizing the regret over k and the profit level obtained for

the least productive action, we obtain the desired lower bound on the worst-case

regret, as formally shown in Lemma 4 in Appendix A.1.

The following lemma summarizes the observations made in cases 1 and 2.12

Lemma 1. For any regulation C ⊂ C0,

WCR(C) ≥ sup
0≤y≤ȳ

max
{
(α− 1)(y − wC(y)), αe−

1
α

(
y − wC(y)

)}
. (6)

12Recall that, for any regulation C ⊂ C0, we define the function wC by wC(y) = inf {w(y) : w ∈ C}
for all y ≥ 0.
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Proof. See Appendix A.1.

2.1.2 Flexible incentive provision

In the previous cases, the regulator’s regret stemmed from insufficient regulation.

However, this is not the only possibility. A regulation that is too restrictive may

deter the principal from participating. The regulator’s regret is now proportional to

the wasted opportunity of generating surplus and is bounded by the second term in

Equation (1), αe−
1
α (ȳ − w). The next two examples illustrate cases where the regret

results from the regulation not allowing enough flexibility for the firm to provide

incentives, hence destroying the entire surplus.

Case 3: without moral hazard. As in case 1, suppose that absent regulation, the

firm does not distort production to minimise the worker’s incentive rent. A too-

restrictive regulation can prevent the firm from producing. The regulator’s regret

then results from the risk of destroying the entire surplus by preventing production.

Consider an arbitrary regulation C ⊆ C0. Suppose that the production set only

consists of one riskless action that produces y > 0 at a cost e ≥ 0, and that the firm’s

operational cost is k ≥ 0. So, the firm’s technology is T =
(
k, {(e, δ{y})}

)
. The total

surplus is S = y − k − e > 0. Contrary to case 1, suppose that the firm cannot

incentivise production and obtain a positive profit. Under regulation C, the firm’s

minimal implementation cost exceeds her maximal possible revenue: y < k +wC(y).

In this case, the firm takes her outside option; instead, the regulator would optimally

give the entire surplus to the worker by offering the contract w : y′ 7→ 1{y′=y}(y − k).

Figure 3 illustrates this case. The regulator’s regret is then

R(C, T ) = α(y − k − e) = αS. (7)

The regret is decreasing in e and k. Hence, it is greater when e = 0 and y − k is

arbitrarily close to wC(y) from below. In this case, it is equal to αwC . Hence, among
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k, {(e, δ{y})}
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and R(C, T ) = αS.

similar technologies, it is maximal for the output ỹ that maximises wC(ỹ). Lemma 5

in Appendix A.2 collects this observation. In this case, relaxing the regulation – i.e.,

reducing wC(y) – would enable production and reduce the regulator’s regret.

Case 4: with distortions induced by moral hazard. We consider a situation similar

to case 2, where the firm faces a non-trivial moral hazard problem. We previously

stressed that the tension between surplus creation and rent extraction can lead to

inefficiencies in equilibrium when the firm produces. Here, we show that limiting

the firm’s ability to extract surplus also create distortions. Restrictive regulation can

discourage the firm from incentivising production altogether. This is the case if the

regulation prevents the firm from profitably incentivising any action. We illustrate

this possibility below.

Consider first a production set that contains two binary actions:

A = {(e1, aδȳ + (1− a)δ0), (e2, bδȳ + (1− b)δ0)},

where 0 < a < b < 1 and e1 < e2. The technology is T = (k,A), with k ≥ 0. We

assume that both actions’ surplus is positive and that action 2 maximises the total
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surplus:

S1 = aȳ − e1 − k < bȳ − e2 − k = S2.

The technology T and the actions’ surplus are illustrated in Figure 4a. We chose the

technology T so that no contract profitably incentivises action 2. To see this, observe

that a contract y 7→ ℓ · y implements action 2 if and only if

ℓ · bȳ − e2 ≥ ℓ · aȳ − e1 ⇐⇒ ℓ · ȳ(b− a) ≥ e2 − e1 (8)

⇐⇒ ℓ ≥ e2 − e1
ȳ(b− a)

. (9)

This is illustrated in Figure 4a. The slope of the dash-dotted line, θ, is given by

the right-hand side ratio in inequality (9). Therefore, any contract that implements

action 2 must have a slope of at least θ, hence, be above the contract represented by

the dashed line. The dashed line contract with slope θ gives exactly zero profit to

the firm. As a result, it allocates the entire surplus to the worker. Since action 2 is

efficient, the dashed line contract is (Rfb)-optimal.

So, if the regulation does not allow the firm to incentivise action 1 profitably,

the firm decides not to produce in the worst contracting equilibrium. That’s the

case if the regulation C only allows contracts above the dashed line in Figure 4b, for

example. The regulator’s regret is then

R(C, T ) = αS2.

From now on, consider the regulation C that only allows contracts above the

dashed line. We add a third action that produces ȳ with probability 1 to the pro-
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Sȳ

(d) Maximal regret resulting from pre-
venting action 1 to be implemented.

Figure 4: Case 4.

27



duction set:

A′ = A ∪ {(e3, δȳ)}.

Let T ′ = (k,A′) and suppose that S3 > S2. Here, we chose e3 such that action

3 cannot be profitably incentivised. This is illustrated in Figure 4c: only contracts

above the dashed line incentivise action 3, but all such contracts give the firm a

non-positive profit. Moreover, the dashed line contract is the regulator’s preferred

contract. Therefore, their regret is

R(C, T ′) = αS3.

Following the same logic as in case 2, we can fix the operational cost k and action 1

and find a production set with a continuum of binary actions indexed by i ∈ [aȳ, ȳ]

such that:

– i is the average output of action i;

– every action aȳ < i < ȳ is implementable only with the contract y 7→ i− k

i
· y,

where
i− k

i
is the derivative of the cost of actions.

As a consequence, except for action 1, no other action can give the firm a strictly

positive profit. Hence, no contract in the regulation C can lead to a strictly posi-

tive profit, and in the worst-case contracting equilibrium, the firm does not hire the

worker, wasting any opportunity of surplus. On the other hand, the (Rfb)-optimal

action is action ȳ, which is implemented by the contract y 7→ ȳ − k

ȳ
· y, giving the

whole surplus to the worker. The regret is then αSȳ. This case is depicted in Fig-

ure 4d. By maximising over k and the wasted surplus Sȳ, we obtain a lower bound

on the regret in Lemma 6 in Appendix A.2.

The following lemma summarizes the observations made in cases 3 and 4.
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Lemma 2. For any regulation C ⊂ C0,

WCR(C) ≥ sup
0≤y≤ȳ

max

{
αwC(y), αe

2wC(y)−y

y−wC(y) (y − wC(y))1{wC(y)≤ 1
2
y}

}
. (10)

Proof. See Appendix A.2.

Building on Lemmas 1 and 2, we prove Theorem 1 in Appendix A.3. Because

the lower bounds in Equations (6) and (10) are surpremums over y ∈ [0, ȳ], these

inequalities still hold when the right-hand sides are evaluated at ȳ. A fortiori, these

inequalities also hold if we minimise over the minimal compensation w ∈ [0, ȳ] at

the output ȳ. This minimisation reflects the fact that the regulator optimises the

regulation; in particular, they can choose optimally the minimum compensation for

the output ȳ. Note that while both terms in the lower bound in Equation (6) are

decreasing in w, both terms in the lower bound in Equation (10) are increasing in w.

To complete the proof, it suffices to show that fixing w strictly above 1
2
ȳ can never be

optimal and that for w ∈ [0, 1
2
ȳ], the cases with moral hazard distortions (cases 2 and

4) give greater regrets than the two other cases (1 and 3).

2.2 Optimality of Linear Minimum Wage

Our main result, Theorem 2, gives an optimal regulation that addresses the trade-off

highlighted by Theorem 1. This optimal regulation balances contractual flexibility

for the firm to provide incentives and worker protection.

Theorem 2. The regulation C⋆ =
{
w ∈ C0 : w(y) ≥ α−1

2α−1
y for all y ≥ 0

}
is optimal:

WCR(C⋆) = min
C⊂C0

WCR(C) = R̄.

Theorem 2 establishes that the lower bound on the regulator’s regret obtained

in Theorem 1 is attained by the regulation C⋆, which only imposes the minimum

linear wage w⋆ : y 7→ α− 1

2α− 1
y. It guarantees a minimal share of the relationship’s
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product for the worker – as long as the regulator values the worker’s surplus more

than the firm’s profit (α > 1). This minimal revenue-sharing is the only constraint

the regulator imposes on the firm, granting maximum flexibility above the linear

minimum wage.

The optimal regulation C⋆ trades off the risk of pushing the firm out of business,

hence destroying the entire surplus, with the regulator’s preference for more efficient

production and a fairer allocation of the surplus. How does the optimal regulation C⋆

reconcile these conflicting objectives to minimise regret? It combines two features:

(i) a linear minimum wage and (ii) maximal flexibility above the minimum wage.

This equalizes the regulator’s maximal regret from surplus destruction when the

regulation prevents production and from rent-extraction distortions that harm the

worker when the firm produces.13

First, the linear minimum wage w⋆ has a dual benefit to the regulator: it obliges

the firm to share more of the output with the worker, protecting the worker’s sur-

plus, and it better aligns the firm’s and worker’s incentives. Unlike a constant mini-

mum wage that raises the cost of incentives provision uniformly, the linear minimum

wage w⋆ already provides the worker with incentives to choose more productive ac-

tions (Hurwicz and Shapiro, 1978; Holmstrom and Milgrom, 1987; Carroll, 2015).

So, w⋆ limits the firm’s ability to distort production downward. Furthermore, w⋆

is increasing with output. So, w⋆ also limits upward distortions because the firm

has to pay the worker more when he produces more. Therefore, the linear mini-

mum wage limits rent extraction distortions by reducing the firm’s potential gain

from both over- and underproduction. The firm implements an action closer to the

(Rfb)-optimal one, thus reducing the regulator’s regret.

Second, granting the firm flexibility above the minimum wage mitigates the risk

of preventing production. The firm does not produce only if every implementable

action generates a revenue smaller than the firm’s operating cost. The more flexible

13Note that the minimisation in the definition of R̄ leads to the minimiser w =
α− 1

2α− 1
ȳ = w⋆(ȳ).
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a regulation is (i.e., includes more contracts), the more implementable actions for the

firm. Thus, more flexibility limits the risk that the firm does not produce and wastes

the entire surplus. Because the linear minimum wage already realigns the firm’s

and regulator’s motives, the regulator has no gain from restricting further the firm’s

autonomy above the minimum wage.

The proof of Theorem 2 in Appendix B follows the intuitive economic trade-off

highlighted in the previous paragraphs. It treats the cases without (Claim 1) and

with production (Claim 2) separately.

Proof sketch. The proof shows that the regulator’s regret under regulation C⋆ never

exceeds

max

{
αe

w⋆(ȳ)
ȳ−w⋆(ȳ)

−1 (ȳ − w⋆(ȳ)) , αe−
1
α (ȳ − w⋆(ȳ))

}
= R̄. (11)

The first term increases with the minimum wage, while the second decreases. We

chose w⋆ to equalize the regret in each case. Therefore, it minimises the upper bound

in Equation (11), which equals the lower bound on the regret obtained in Theorem 1,

R̄. The regulation C⋆ is thus optimal. We now explain how to obtain the two bounds

on the regulator’s regret in Equation (11).

First, we prove that the regulator’s regret under C⋆ is bounded above by

αe
w⋆(ȳ)

ȳ−w⋆(ȳ)
−1 (ȳ − w⋆(ȳ)) ,

for all technologies such that the firm does not produce (Claim 1). The first term in

the maximum, therefore, captures the regulator’s regret from preventing production.

Second, we show that the regulator’s regret is at most

αe−
1
α (ȳ − w⋆(ȳ)) ,

for all technologies such that the firm produces (Claim 2). So, the second term in
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the maximum captures the regulator’s regret resulting from insufficient worker pro-

tection. Together, Claim 1 and Claim 2 establish that the regulator’s regret under

regulation C⋆ is no greater than the bound in Equation (11). We now state and ex-

plain those two claims, and sketch their proofs.

Claim 1. The regulator’s regret under regulation C⋆ is bounded above by

αe
w⋆(ȳ)

ȳ−w⋆(ȳ)
−1 (ȳ − w⋆(ȳ)) = R̄, (12)

for all technologies T = (k,A) such that Π(C⋆, T ) = 0

From Lemma 2, we know that the regulator’s regret is equal to R̄ under the binary

technology:

T np =
(
k∗,Anp = {(ei, Bi)}i∈[ k∗ȳ

ȳ−w⋆(ȳ)
,ȳ]

)
where the firm’s operating cost k∗ > 0 is given in Equation (24) in Appendix B.1,

ei = i− k∗ȳ

ȳ − w⋆(ȳ)
+ k∗

(
ln

(
k∗ȳ

ȳ − w⋆(ȳ)

)
− ln(i)

)
, (13)

and Bi is the binary distribution supported on {0, ȳ} with mean i. Claim 1 implies

that no technology can further increase the regulator’s regret. Proving Claim 1 is

therefore equivalent to proving that T np maximises the regulator’s regret among all

technologies such that the firm does not produce – i.e., among all technologies T

such that Π(C⋆, T ) = 0.

Why does T np maximise the regulator’s regret? When the firm does not produce,

the worker’s incentive rent must raise every action’s implementation cost past the

point of profitability. This allows us to bind the maximal surplus using the firm’s

nonparticipation constraint – i.e., the condition that the firm optimally decides not

to offer a contract to the worker. Were an action too productive, it could be im-

plemented with profit, and the firm would participate. So, the regulator’s regret is
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maximal at the technology that maximises the surplus of the (Rfb)-optimal action

subject to the firm’s nonparticipation constraint. It is helpful to go back to the stan-

dard moral hazard problem to understand why T np is this technology. In the moral

hazard problem, output plays a dual role. It is (i) the firm’s revenue and (ii) the only

informative signal about the worker’s action. Therefore, the firm must use the in-

formation content of output to incentivise any productive action. As in Garrett et al.

(2023), the key observation is that a binary distribution can be viewed as a garbling

of a distribution with the same mean. By the Informativeness Principle (Holmström,

1979), a less informative signal makes incentive provision more expensive. Replac-

ing all actions in the production set by both equally costly and equally productive

actions whose output distributions are binary reduces the informational content of

output. Hence, it increases the firm’s implementation cost, relaxing the nonpartici-

pation constraint while keeping the surplus unchanged. Consequently, there exists

a binary regret-maximizing technology among those that deter production, which is

T np.

The above intuition suggests that only looking at linear contracts suffices to ob-

tain the maximal regret, under regulation C⋆, for a given technology such that the

firm does not produce. Since the firm optimally decides not to produce, no contract

can give her a positive profit. To prove Claim 1, we focus on linear contracts and

study the implications of the firm’s nonparticipation when all linear contracts above

w⋆ are authorized to deduce properties of the firm’s technology. This allows us to

bound the regulator’s regret by Equation (12) when the firm does not produce. The

proof of Claim 1 in Appendix B.1 builds on this idea. We sketch it below.

Sketch of the proof of Claim 1. Consider an arbitrary technology T = (k,A) such

that the firm does not produce. The firm’s nonparticipation constraint implies that

no contract w ∈ C⋆ can implement an action in A and give the firm a positive profit.

In particular, the (Rfb)-optimal action, denoted (eR, FR), cannot be implemented by

the linear contract with slope µR−k
µR

− ϵ, for some small ϵ > 0 (if allowed), where µR

denotes the output mean of FR. For otherwise the firm could make a positive profit.
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So, there must exist another less productive action (e1, F1) with mean µ1 < µR such

that the agent prefers (e1, F1) when offered the linear contract with slope µR−k
µR

− ϵ:

(
µR − k

µR

− ϵ

)
µ1 − e1 >

(
µR − k

µR

− ϵ

)
µR − eR

⇔ eR − e1 >

(
µR − k

µR

− ϵ

)
(µR − µ1) .

Again, the firm’s nonparticipation constraint implies that offering the linear contract

with slope µ1−k
µ1

− ϵ (if allowed) does not give the firm a positive profit. As a result,

there must again exist another less productive action (e2, F2) with mean µ2 < µ1 such

that the agent prefers it to (e2, F2) when offered the linear contract with slope µ1−k
µ1

.

Proceeding inductively, we construct a chain of actions (eR, FR) → (e1, F1) → · · · →

(eN , FN) such that, for all i,

ei−1 − ei >

(
µi−1 − k

µi−1

− ϵ

)
(µi−1 − µi) , (14)

until we reach an action (eN , FN) ∈ A such that the linear contract with slope µN−k
µN

−ϵ

does not belong to C⋆ anymore. The chain of inequalities in Equation (14) yields a

lower bound on the effort cost of the most productive action:

eR ≥ eN +
∑
i≤N

µi − k

µi

(µR − µi) , (15)

and, hence, on the maximal total surplus of any technology satisfying the firm’s

nonparticipation constraint. As the efficient action (eȳ, δ{ȳ}) in Anp maximises out-

put and its associated effort cost is smaller than the right-hand side lower bound

in Equation (15), T np maximises the maximal total surplus when the firm takes her

outside option, hence, the regulator’s regret.

The key property in the proof of Claim 1 is the richness of C⋆.14 It includes a

linear contract with slope µi−k∗

µi
for all actions (ei, Fi) in the chain we constructed,

14Theorem 3.2 in Section 2.3 formalizes this statement.
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independently of the technology T . In particular, the argument we sketched here also

shows that the regulation that allows only the linear contracts above w⋆ does not

exceed R̄ for technologies such that the firm does not produce.

Claim 2. The regulator’s regret under regulation C⋆ is bounded above by

e−
1
α (ȳ − w⋆(ȳ)) = R̄, (16)

for all technologies T = (k,A) such that Π(C⋆, T ) > 0

The intuition behind Claim 2 parallels that for Claim 1. We know from Lemma 1

that the regulator’s regret is equal to R̄ under the binary technology

T p =
(
0,Ap = {(ei, Bi)}i∈[e− 1

α ȳ,ȳ]

)
where the firm’s operating cost is null,

ei = i− e−
1
α ȳ +Π(ln (µF )− ln i) +

w⋆(ȳ)

ȳ
e−

1
α ȳ.

and Bi is the binary distribution supported on {0, ȳ} with mean i. Here Π = α
2α−1

e−
1
α ȳ

is the firm’s profit under the regulation C⋆ when her technology is T p, and µF is the

average of the action implemented by the firm. Claim 2 then implies that no other

technology can further increase the regulator’s regret. That is, proving Claim 2 is

equivalent to showing that T p maximises the regulator’s regret among all technolo-

gies that satisfy the firm’s participation constraint.

Why is T p the regret-maximizing technology upon production? We start with

two observations formally made in Lemma 8. First, uniformly increasing the cost of

effort leaves the regret unchanged as long as the firm still produces but decreases

the worker’s surplus. So, there exists a regret-maximizing technology that gives

no surplus to the worker. Second, when the firm produces, the operating cost en-

ters the regret negatively. So, there exists a regret-maximizing technology with zero
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operating costs. A consequence of these observations and the linearity of the min-

imum wage w⋆ is that the regulator’s preferred action is always more productive

than the profit-maximizing one under the regulation C⋆. The regulator’s maximal

regretis then driven by the potential downward rent-extraction distortions, and it is

bounded above by the incentive rent the worker gets when implementing the (Rfb)-

optimal action. That T p maximises the worker’s incentive rents follows a similar

intuition as in the previous case. The key, again, is that binary distributions can be

viewed as garblings of distributions with the same mean. Thus, the Informativeness

Principle (Holmström, 1979) implies that binary technologies exacerbate the moral

hazard problem by reducing the informational content of outputs. They increase the

worker’s rent while keeping the surplus unchanged.15 Finally, the technology T p

maximises the regret, as it maximises the worker’s incentive rent among all tech-

nologies such that the firm produces.

The above intuition suggests that only looking at linear contracts suffices to ob-

tain the maximal regret, under regulation C⋆, for technologies such that the firm

produces. At the firm’s optimum, no contract can increase her profit, in particular,

no linear contracts. This allows us to bind the regulator’s regret by Equation (16).

We sketch the proof below. The complete proof is in Appendix B.2.

Sketch of the proof of Claim 2. The proof follows similar steps as the proof of

Claim 1. We show that the worker’s incentive rent when implementing the efficient

action is maximised by T b under regulation C⋆. To do so, we bound the maximal

incentive rent the worker gets for an arbitrary such technology T = (0,A) by con-

sidering the firm’s potential deviations to linear contracts. At the firm’s optimum, no

such deviation can increase profits. Let (eR, FR) be the (Rfb)-optimal action, where

µR is its expected value of FR, and Π be the firm’s profit. It cannot be that the linear

15Garrett et al. (2023) build on a similar insight to show that the agent’s preferred production set
in the standard moral hazard contains binary actions. Because binary technologies minimise the
information content of realised outputs, they maximise the agent’s incentive rent, hence his surplus.
The essential difference is that the agent chooses the technology in Garrett et al. (2023). Therefore,
it does not include any action the principal can deviate to to increase her profit. Instead, we are
interested in the adversarial problem. Nature always includes profitable distortions.
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contract with slope µR−Π
µR

− ϵ (if allowed) implements (eR, FR) for some small ϵ > 0.

Otherwise, the firm could increase her profit. Therefore, there must exists a less pro-

ductive action (e1, F1) with mean µ1 ≤ µR such that the workers prefers (e1, F1) to

(eR, FR) when offered the linear contract with slope µR−Π
µR

:

eR − e1 ≥
(
1− µR − Π

µR

+ ϵ

)
(µR − µ1) .

If the linear contract with slope µ1−k
µ1

− ϵ is authorized, offering it again cannot in-

crease the firm’s profit. So, there must again exist another less productive action

(e2, F2) with mean µ2 ≤ µ1 such that the agent prefers it to (e2, F2) when offered

the above linear contract. Proceeding inductively, we construct a chain of actions

(eR, FR) → (e1, F1) → · · · → (eN , FN) such that

ei−1 − ei ≥
(
µi−1 − Π

µi−1

− ϵ

)
(µi−1 − µi) , (17)

for all 1 ≤ i ≤ N until we reach an action (eN , FN) such that µN−Π
µN

≤ α−1
2α−1

, i.e,

such that the linear contract with slope µN−Π
µN

is not permitted anymore. The chain

of inequalities in Equation (17) yields a lower bound on the effort cost of the most

productive action:

eR ≥ eI +
∑
i≤I

µi − Π

µi

(µR − µi) , (18)

and, hence, an upper bound on the surplus µR − eR for all technologies T that give

a profit Π to the principal. The effort cost of the efficient action in technology T b is

smaller than the right-hand side lower bound in Equation (18) for all technologies

and profit levels. So, the regulator’s regret is smaller than their regret when the

firm’s technology is T p:

R (C⋆, T p) = αe−
1
α (ȳ − w⋆(ȳ)) = R̄.
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The two key properties in the proof of Claim 2 are (i) that the minimum wage

is linear and, hence, the regulator prefers a more productive action than the firm,

and (ii) that C⋆ is rich enough so that, for all action (ei, Fi) in the chain such that
µi−k∗

µi
≥ α−1

2α−1
, the linear contract µi−k∗

µi
belongs to C⋆. In particular, the argument

we sketched here also shows that the regulation that allows only the linear contracts

above w⋆ does not exceed R̄ for technologies such that the firm produces.

Optimal regulations in extreme cases. Theorem 2 encompasses the two extreme

cases when the regulator’s sole concern is efficiency (α = 1) or the worker’s surplus

(α → ∞).

In the first case, the surplus allocation is irrelevant to the regulator. Theorem 2

then shows that the regulator cannot gain from regulating.

Corollary 1. When α = 1, the regulator optimally chooses not to regulate, i.e., C0 is optimal.

When α = 1, the regulator aims to maximise the total surplus. Hence, increasing

the firm’s profit at the expense of the worker causes no regret. However, the firm’s

profit-maximizing behaviour does. Distortions aimed at extracting the agent’s in-

centive rent are costly for the regulator as they waste potential surplus. Despite this,

Corollary 1 indicates that any gain from limiting these distortions is outweighed by

the risk of pushing the firm out of business. Indeed, any regulation reduces the firm’s

potential profit and, hence, jeopardizes the firm’s viability. When α = 1, mitigating

this risk becomes the primary objective of the optimal policy, which is achieved by

granting full flexibility to the firm.

At the other extreme, when the regulator only cares about the worker (α → ∞),

any transfer of surplus from the worker to the firm is no better than the destruction

of this surplus. Theorem 2 implies that the optimal regulation protects the worker

by guaranteeing him half of the production output.

Corollary 2. When α → ∞, the optimal regulation converges to C⋆
∞ =

{
w ∈ C0 : w(y) ≥ 1

2
y
}

.
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As explained previously, minimum linear wage partially aligns the firm’s and the

worker’s incentives: when the firm opts to produce, she does not distort production

too much away from efficiency for two related reasons. On the one hand, the linear

minimum wage already provides the worker with incentives to choose a productive

action. On the other hand, it also gives the firm greater motives to incentivise more

productive actions, given that a minimal share of the output must be transferred to

the worker anyway. Therefore, a strongly redistributive regulator (α → ∞) would

like to push this realignment as much as possible. This is achieved by the minimum

wage y 7→ 1

2
y. Imposing a steeper minimum wage would keep aligning the firm

more with worker’s interests. This would, however, be too constraining for the firm,

who would then be disincentivised to produce too often.

Incorporating additional knowledge We derive our main result, Theorem 2, un-

der the stark assumption that the regulator has no information on the firm’s produc-

tion technology. We only impose Assumption 1 and Assumption 2. So, the regulator

only knows that the average production cannot exceed ȳ. We view this minimally-

informed regulator as a natural starting point: it highlights a trade-off relevant to

regulators in practice – the effect of labour contract regulation on incentive provi-

sion – and a potential remedy – to choose a minimum wage that limits potential dis-

tortions by providing workers with strong incentives. However, the regulator may

sometimes know more. We can capture this additional knowledge by restricting

the set of available technologies. For example, economists have typically assumed

that the actions in the production set of a technology are ranked according to the

Monotone Likelihood Ratio Property (see, e.g., Jewitt, 1988; Innes, 1990; Jewitt et al.,

2008). The regulator can then know that all available technologies are such that all

the output distributions are MLRP ranked and that effort is increasing with MLRP.
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To incorporate this additional knowledge, we consider16

TMLRP =
{
T =

(
k,A = {(ei, Fi)}i∈I⊂R+

)
∈ T : i ≥ j ⇒ ei ≥ ej and Fi ≥MLRP Fj

}
.

The regulator chooses C ⊂ C0 to minimise the worst-case regret over all technologies

T ∈ TMLRP :

inf
C⊂C0

sup
T ∈TMLRP

R (C, T ) .

Proposition 1. The regulation C⋆ minimises the regulator’s regret when they know that

T ∈ TMLRP :

max
T ∈TMLRP

R (C⋆, T ) = min
C⊂C0

max
T ∈TMLRP

R (C, T ) = R̄.

Proof. See Appendix D.2.

MLRP is a strong property. Nevertheless, Proposition 1 shows that the linear

minimum wage regulation C⋆ is still optimal when the regulator knows that all the

actions in the production set are ranked according to MLRP. Proposition 1 also im-

plies that C⋆ is also optimal for intermediate levels of additional knowledge.

Corollary 3. For all technology possibility set T′ such that TMLRP ⊂ T′ ⊂ T, the regulation

C⋆ minimises the regulator’s regret when they know that T ∈ T′.

In particular, Corollary 3 implies that the linear minimum wage regulation C⋆

remains optimal under natural additional requirements on the set of possible tech-

nologies. For example, if the regulator knows that the effort cost increases with

the average output or a First-Order Stochastic Dominance shift, they still optimally

choose C⋆.
16To allow for general distributions (e.g., mixtures of absolutely continuous and singular distribu-

tions), we work with the generalized definition of MLRP in Athey (2002) (Definition A.1).
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2.3 Characteristics of Optimal Regulations

The optimal regulation proposed in Theorem 2 achieves the minimum worst-case

regret R̄. Other regulations also minimise the worst-case regret, as suggested by

the proof. For example, a regulation that includes all and only the linear contracts

above the minimum wage w⋆ is also optimal. Still, we argue that all other optimal

regulations share the key features of C⋆. Define k∗ = e
w⋆(ȳ)

ȳ−w⋆(ȳ)
−1 (ȳ − w⋆(ȳ)).

Theorem 3. If a regulation C ⊂ C0 is optimal, then

1. (Minimum guarantee) For all y ≥ 0,

min
{
(y − (ȳ − w⋆(ȳ)))+ , w⋆(y)

}
≤ wC(y) ≤ max {min{y, w⋆(ȳ)}, w⋆(y)} .

2. (Minimal Flexibility) For all y ≥ ȳ, [w⋆(y), y − k∗] ⊂ Im(C)(y).

3. (Robust to gaming) If w(ȳ) = w⋆(ȳ), then conv(w)(ȳ) ≥ w⋆(ȳ).

Proof. See Appendix C.

Theorem 3 shows that, although the details of optimal regulations may vary, the

fundamental elements that ensure optimality are invariant. Specifically, any optimal

regulation must: 1. include a minimum guarantee for the worker, which is ultimately

equal to w⋆ for large outputs; 2. afford the firm a minimum of flexibility, and 3.

prevent gaming by the firm (or Nature). So, any optimal regulation presents the

same key features as C⋆ for the same underlying intuition.

In practice, inflexible regulations have been blamed for reducing firms’ produc-

tivity, resulting in less hiring, shorter working hours, diminished production, and

even, in extreme cases, firms’ shutdowns. Theorem 3.2 echoes this critique. Auton-

omy is essential for the firm to leverage her private information. Optimal regulations

therefore cannot be overly rigid. This is readily seen when the regulation allows one

contract only. Under a singleton regulation, the firm typically fails to incentivise pro-

ductive actions, even when doing so leads to Pareto gains. Consider, for example,
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the singleton regulation {w⋆}. Based on points 1 and 3, this is the only potentially

optimal singleton regulation. When the firm’s technology is T = (0,A), with

A =

{(
e1 =

α− 1

2α− 1
µ, F1 = Bµ

)
,

(
e2 =

(
α− 1

2α− 1
+ ϵ

)
ȳ, F2 = δ{ȳ}

)}
,

and µ < ȳ, the firm then implements the action (e1, F1), and the worker receives no

surplus. Implementing (e2, F2) instead would lead to a Pareto improvement and is

the (Rfb)-optimal action. However, this is impossible when the firm can only offer

w⋆, which would trigger a regret strictly greater than R̄. Theorem 3.2 generalises this

insight to obtain a sharper necessary condition for optimal regulations.17

As previously discussed in Section 2.2, optimal regulations must also constrain

the firm to protect the worker, which Theorem 3.1 and 3.3 demonstrate. The same

logic behind the optimality of the linear minimum wage in Theorem 2 also under-

pins the necessity of a minimum guarantee in Theorem 3.1. Instead, Theorem 3.3

highlights a different concern: optimal regulations must stop the firm (and Nature)

from gaming this minimum guarantee. When, contrary to C⋆, the minimum wage is

not linear, Nature could potentially exploit nonlinearities to increase the regulator’s

regret. For example, noisy technologies relax the constraints imposed by a concave

minimum wage. Theorem 3.3 shows that optimal regulations must address the po-

tential for gaming.

Minimal Regulation. Theorem 3.1 and 3.3 also imply that the linear minimum

wage regulation C⋆ identified in Theorem 2 is the least restrictive optimal regulation

within the class of regulations having a minimum wage.

Definition 1. A regulation C ⊂ C0 has a minimum wage if wC ∈ C.

A regulation has a minimum wage if there is a contract that is point-wise lower

than any permitted contract.

17Our goal is to show any optimal regulation must be sufficiently flexible. There are other ways to
reach this conclusion.
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Corollary 4. If a regulation C ⊂ C0 is optimal and has a minimum wage, then C ⊂ C⋆.

Any other optimal regulation that has a minimum wage must allow less flexi-

bility than C⋆. As a result, C⋆ is the firm’s preferred regulation among the optimal

regulations with a minimum wage. Namely, for any regulation C that is optimal has

a minimum wage, Π(C, T ) ≤ Π(C⋆, T ) for any technology T ∈ T.

Robustness to misspecifications. Another implication of Theorem 3 is that C⋆ is

robust to the regulator’s possible uncertainty about the maximal average output ȳ.

Indeed, both points 1 and 3 imply that a regulation C that is optimal for any ȳ ∈ R+

must have w⋆ as a minimum wage: wC = w⋆ ∈ C. Therefore, Corollary 4 implies that

C⋆ is the most flexible optimal regulation that is robust to possible misspecifications

of the maximal average output ȳ.

3 Discussions

3.1 Beyond the Monopsony Model

Textbook labour markets models largely consist of sorting models (e.g., Stigler, 1946;

Burdett and Mortensen, 1998; Lee and Saez, 2012; Naidu et al., 2016; Naidu and

Posner, 2022). Wages determine the matching between workers and firms and the

distribution of surplus within each match. The firm-level labour supply elasticities

are central, as wages reflect both workers’ productivity and responsiveness to wage

variations. These models predict that wages will be lower in markets in which firms

have monopsony power because workers with fewer employment options are less

elastic to the firm. Wages in monopsonistic markets are below the marginal prod-

uct of labour, resulting in (inefficient) unemployment as the firms optimally ration

their demand for labour. Conversely, competitive markets feature a perfectly elastic

labour supply. Wages then price the marginal product of labour, and sorting is ef-

ficient. Therefore, the merit of an increase in the minimum wage can be evaluated
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through its (dis)employment effect.

If a raise in the minimum wage reduces employment, the minimum wage reform

pushes the marginal cost of labour beyond workers’ marginal product. As a result,

in both competitive and monopsonistic markets, a smaller raise would be less distor-

tionary and preferred by a regulator, except for strongly redistributive preferences

for which the gains for low-paid workers may outweigh the losses. If, instead, in-

creasing the minimum wage has no effect or decreases involuntary unemployment,

the minimum wage reform unambiguously benefits the workers and moves the mar-

ket toward efficiency.

As a result, researchers have largely analysed regulations through their effects

on wages and (dis)employment (Card and Krueger, 1994; Cengiz et al., 2019; Jardim

et al., 2022) and on firm’s profits (Draca et al., 2011; Bell and Machin, 2018), and,

while the debate remains contentious, a growing body of research has concluded that

the employment effects of moderate minimum wage increases are close to zero (Card

and Krueger, 2016; Wolfson and Belman, 2019). Interpreted through the lenses of the

textbook sorting models, this result implies that (i) labour markets are not compet-

itive, and consequently, (ii) moderate raises of the minimum wage benefit workers

and increase the total surplus. Therefore, the regulatory debate (and, in particular,

the debate on the minimum wage) has also focused on the degree of competition in

labour markets and the precise calibration of minimum wage increases (e.g., Dube,

2019; Naidu and Posner, 2022).

However, viewing labour markets primarily as sorting mechanisms reduces firms-

workers relationships to an allocation problem. It mostly overlooks the critical role

of labour contracts for incentive provision. So, the traditional models suggest that,

for a fixed firm-worker match, increasing the minimum wage only shifts the rela-

tionship surplus from the firm to the worker. These models implicitly assume firms

adjust solely through hiring and wage posting decisions. Yet, a growing body of lit-

erature shows that firms adapt by adjusting prices (Aaronson, 2001; MaCurdy, 2015;

Harasztosi and Lindner, 2019), substituting inputs (Lang and Kahn, 1998; Portugal
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and Cardoso, 2006; Giuliano, 2013; Clemens et al., 2021), or changing monitoring and

effort expectations (Coviello et al., 2022; Ku, 2022).18 Moreover, increasing the mini-

mum wage can also affect worker retention and reduce turnover (Portugal and Car-

doso, 2006; Dube et al., 2016). So, reducing the firm-worker relationship to a “black

box” risks ignoring these additional costs and benefits, leaving us with a potentially

incomplete understanding of the empirical findings and the trade-offs the regula-

tor faces. How does a minimum wage change the incentives of firms and workers?

What effects have different regulations on production decisions and the allocation of

surplus within a match? We aim to give a first answer to these questions by opening

the firm’s “black box,” which requires enriching the model. In the textbook labour

market models, all the regulator’s instruments essentially collapse to a price cap

(e.g., a minimum wage). In contrast, we build on the canonical moral-hazard model

to evaluate labour market regulations and their effect on incentive provision. Our

findings in Section 2.2 highlight a new cost for the regulator: minimum wage regula-

tions compress the pay schedule, demotivating effort and compounding rent extrac-

tion distortions. However, they also suggest that linear minimum wage regulations

are a useful regulatory tool when the regulator has redistributive preferences, even

absent sorting effects or extensive margin responses.

Looking at the optimal regulation without the constraint of limited liability offers

one way to account for the importance of incentives. Indeed, in our model, removing

liability for the worker eliminates moral-hazard distortion.

Optimal Regulation without limited liability. Absent limited liability, the firm’s

problem (Π) admits an efficient solution. She sells the firm to the worker at a price

that extracts the entire surplus. The worker becomes the residual claimant of the

surplus and, hence, chooses the efficient action. Theorem 4 below characterizes the

optimal regulation without limited liability constraints.

18Clemens (2021) offers an up-to-date exhaustive review.
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Theorem 4. The regulation CnoLL =
{
w : R+ → R | w(y) = y − S for some S ≤ α

2α−1
ȳ
}

is optimal when the worker is not protected by limited liability. Moreover,

WCR(CnoLL) = α
α− 1

2α− 1
ȳ = R.

Proof. See Appendix D.3.

Absent limited liability, the optimal regulation caps the price the firm can ask the

worker. Conditional on production, it therefore does not create any inefficiency. It,

however, may prevent high-cost firms from producing to guarantee that the workers

employed by more productive firms enjoy some of the surplus created.

Moreover, the regulator’s regret is strictly smaller than their regret when the

worker is protected by limited liability: R̄ > R, pointing to the importance of taking

into account the distortions that arise in the moral hazard problem. The firm’s ability

to always implement an efficient action can be deceiving. It overlooks rent-extraction

distortions and, hence, the regulator’s trade-off between worker protection and con-

tractual flexibility that arises from the moral hazard problem.

3.2 Predistribution vs redistribution

Political scientists distinguish between redistribution and predistribution, two sets of

tools that public policies have long used to tackle inequalities. While the first set

of instruments aims to redistribute the benefits of economic growth ex-post, predis-

tribution aims to “encourage a more equal distribution of economic power and re-

wards” ex-ante (Hacker, 2011). Blanchet et al. (2022) and Bozio et al. (2024) have

shown that predistribution is a determining explanation for the lower levels of in-

equality observed in Europe compared to the United States. Furthermore, not only

is predistribution economically meaningful, but it also matters for political opinions.

Kuziemko et al. (2023) provide evidence that the Democrats’ shift from promoting

predistribution to favouring redistribution in the 1970s explains why less-educated
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voters started turning their backs on their historical party in favour of the Repub-

licans. Yet, while redistribution received a lot of attention both in academic and

public debates (see, for instance, the large literature on optimal taxation: Mirrlees,

1971; Atkinson and Stiglitz, 1976; Saez, 2001; Piketty and Saez, 2013, among many

others), there exists little normative work on the design of predistributive policies

(Lee and Saez, 2012).

This paper contributes to the normative investigation of predistribution by exam-

ining one of its most prevalent instruments: the regulation of labour contracts. This,

however, leaves open the question of the optimality of predistribution in compari-

son to redistribution. We believe our model may pave the way for further research

investigating this question.
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A Omitted Proofs for Section 2.1

A.1 Proof of Lemma 1

Lemma 3. Let C ⊂ C0. For all y ∈ R+, define wC(y) = inf {w(y) : w ∈ C}. Then

WCR(C) ≥ sup
y≤y≤ȳ

(α− 1)(y − wC(y)).

Proof. Let C ⊂ C0. Suppose that the production set A contains a single action produc-

ing the output level 0 ≤ y′ ≤ ȳ with probability 1 at zero cost, A =
{(

0, δ{y′}
)}

, and

that the operational cost k = 0. Given the technology T = (0,A) and the regulation

C, the firm’s profit is

Π(C, T ) = y′ − wC(y′),

where wC(y′) = inf {w(y′) : w ∈ C0}. The associated worker’s surplus is wC(y′). On

the other hand, the regulator would offer the entire surplus to the worker with the

contract wR such that wR(y) = y. Hence, the regulator’s regret is

R(C, T ) = αy′ −
(
y′ − wC(y′) + αwC(y′)

)
= (α− 1)(y′ − wC(y′)).

We obtain the bound in Lemma 3 by taking the supremum over y′.

Lemma 4. Let C ⊂ C0. For all y ≥ 0, define wC(y) = inf {w(y) : w ∈ C}. Then

WCR(C) ≥ αe−
1
α sup

0≤y≤ȳ

(
y − wC(y)

)
(19)

Proof. Let C ⊂ C0. For all y ∈ R+, define wC(y) = inf {w(y) : w ∈ C}. Let 0 ≤ µF ≤

y′ ≤ ȳ and Π =
(
1− wC(y′)

y′

)
µF . Denote by Bi the binary output distribution with
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support {0, y′} and mean i. Define the production set AΠ as

AµF = {(ei, Bi) : i ∈ I = [µF , y
′]} ,

where, for all i ∈ I ,

ei = i− µF +Π(ln (µF )− ln i) +
wC(y′)

y′
µF .

We consider the technology T = (0,AµF ), i.e., we assume that the firm has no oper-

ational cost. For all 0 ≤ µF ≤ y′, the distributions Fi, i ∈ I , are supported on {0, y′}.

Thus, Ak is compact and satisfies Assumption 1 and Assumption 2.

By definition of ei, for all w ∈ C,

∂

∂i
(ℓwi− ei) = ℓw − i− Π

i
≥ 0 ⇔ ℓw ≥ i− Π

i
,

where ℓw = w(y′)
y′

. So, (ei, Bi) with i < y′ is implementable by w ∈ C if and only if

w(y′) =
i− Π

i
y′,

while action i = y′ is implementable by w ∈ C if and only if

w(y′) ≥ y′ − Π

y′
y′.

Next, observe that, for all i, any contract that implements (ei, Bi) gives a profit of at

most Π to the principal, and exactly Π if the inequality holds with equality, since

(
1− i− Π

i

)
EBi

[y] = Π.

Moreover, the contract w(y) = y implements the surplus maximizing action (ey′ , By′)

(since ∂
∂i
ei ≤ 1), and leaves no profit to the firm, hence allocating the entire surplus
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to the worker. So, it is the regulator’s preferred contract.

V (T ) = α (y′ − ey′) .

Since no contract gives the firm a strictly higher profit than Π, in the worst-case sce-

nario, she decides to implement the least productive action, generating the average

output µF . The regulator’s regret is then

R (C, T ) = V (T )− (Π(C, T ) + αWS(C, T )) = α (y′ − ey′ − (µF − eµF
)) + (α− 1)Π.

Plugging in the effort cost, the regret is equal to

α (y′ − ey′ − (µF − eµF
)) + (α− 1)Π = −αΠ(ln (µF )− ln y′) + (α− 1)Π

= α

∫ y′

µF

1− wC(ȳ)
ȳ

µ
µFdµ+ (α− 1)

(
1− wC(ȳ)

ȳ

)
µF .

Since the worst-case regret is obtained by maximising over all possible technologies,

we can obtain a lower bound by taking the supremum of the above expression with

respect to µF ∈ [0, y′], which is achieved for µF = y′e−
1
α . It follows that the regula-

tor’s worst-case regret is bounded below by

WCR(C) = sup
T

R (C, T ) ≥ sup
µF∈[0,y′]

R (C, (0,AµF ))

= αe−
1
α

(
y′ − wC(y′)

)
.

Since y′ was arbitrary, the lower bound in Lemma 4 follows.
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A.2 Proof of Lemma 2

Lemma 5. For any regulation C ⊂ C0,

WCR(C) ≥ sup
0≤y≤ȳ

αwC(y).

Proof. Let C ⊂ C0. Suppose that the production set A contains a single action produc-

ing the output level 0 ≤ y′ ≤ ȳ with probability 1 at zero cost, A =
{(

0, δ{y′}
)}

, and

that the operational cost k is such that 0 ≤ k < y′. Given the technology T = (k,A)

and the regulation C, the maximal revenue the firm can obtain is

y′ − wC(y′),

where wC(y′) = inf {w(y′) : w ∈ C0}. If k > y′−wC(y′), no contract is signed between

the firm and the worker, as the firm strictly prefers her outside option to the best

available contract in C. The regret for the regulator is then

R(C, T ) = α(y′ − k),

since contract wR such that wR(y) = (y − k)1y=y′ implements action
(
0, δ{y′}

)
and

allocates the entire surplus to the worker. Taking the supremum over k ∈ [0, y′ −

wC(y′)), we obtain

WCR(C) ≥ αwC(y′).

Finally, we obtain the bound in Lemma 5 by taking the supremum over 0 ≤ y′ ≤

ȳ.

Lemma 6. For any regulation C ⊂ C0,

WCR(C) ≥ α sup
0≤y≤ȳ

e
2wC(y)−y

y−wC(y) (y − wC(y))1{wC(y)≤ 1
2
y}. (20)
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Proof. Let C ⊂ C0. For all 0 ≤ y ≤ ȳ, define wC(y) = inf {w(y) : w ∈ C} and YIC ={
y ∈ Y : wC(y) ≤ 1

2
y
}

. If YIC = ∅, we are done since, by definition, the regret is non

negative. So, suppose that YIC ̸= ∅, and let y′ ∈ YIC .

Let the operational cost k be (strictly) smaller than y′ − wC(y′). Denote by Bi the

binary output distribution with support {0, y′} and mean i. Define i = y′
k

y′ − wC(y′)
and the production set Ak as

Ak = {(ei, Bi) : i ∈ I = [i, y′]} ,

where, for all i ∈ I ,

ei = i− ky′

y′ − wC(y′)
+ k

(
ln

(
ky′

y′ − wC(y′)

)
− ln(i)

)
.

For all 0 ≤ k < y′ − wC(y′), the distributions Fi, i ∈ I , are supported on {0, y′}. Thus,

Ak is compact and satisfies Assumption 1 and Assumption 2.

By definition of ei, for all w ∈ C,

∂

∂i
(ℓwi− ei) = ℓw − i− k

i
≥ 0 ⇔ ℓw ≥ i− k

i
,

where ℓw = w(y′)
y′

. So, (ei, Bi) with i < i < y′ is implementable by w ∈ C if and only if

w(y′) =
i− k

i
y′;

action i is only implementatble by wC ; and action i = y′ is implementable by w ∈ C if

and only if

w(y′) ≥ y′ − k

y′
y′.

Next, observe that, for all i, any contract that implements (ei, Bi) gives a profit of

at most zero to the principal. As a result, the contract that implements (ey′ , By′) is
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the regulator’s preferred contract. It maximises the total surplus since ∂
∂i
ei ≤ 1, and

allocates all of it to the worker:

V (T ) = α (y′ − k − ey′) .

However, since no contract gives the firm a strictly positive payoff, the worst-case

scenario for the regulator is if the firm chooses her outside option. The regulator’s

regret is then

R (C, T ) = V (T ) = α (y′ − k − ey′) .

Plugging in the effort cost, the regret is equal to

α (y′ − k − ey′) = α

(
y′ − k − y′ +

ky′

y′ − wC(y′)
− k

(
ln

(
ky′

y′ − wC(y′)

)
− ln(y′)

))
= αk

(
y′

y′ − wC(y′)
− ln

(
k

y′ − wC(y′)

)
− 1

)
.

Since the worst-case regret is obtained by maximizing over all possible technologies,

we can obtain a lower bound by taking the supremum of the above expression with

respect to k ∈ [0, y′ − wC(y′)). Since the function k → α (y′ − k − ey′) is continuous

on [0, y′ − wC(y′)], its supremum over k ∈ [0, y′ − wC(y′)) is equal its maximum over

k ∈ [0, y′ − wC(y′)]. Taking derivatives with respect to k, obtain

∂

∂k

(
αk

(
y′

y′ − wC(y′)
− ln

(
k

y′ − wC(y′)

)
− 1

))
≥ 0

⇔ y′

y′ − wC(y′)
− ln

(
k

y′ − wC(y′)

)
− 2 ≥ 0

⇔ k ≤ e
2wC(y′)−y′

y′−wC(y′)
(
y′ − wC(y′)

)
.
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So, α (y′ − k − ey′) is maximised over k ∈ [0, y′ − wC(y′)] at

k = e
2wC(y′)−y′

y′−wC(y′)
(
y′ − wC(y′)

)
.

It follows that the regulator’s worst-case regret is bounded below by

WCR(C) = sup
T

R (C, T ) ≥ sup
k∈[0,y′−wC(y′))

R
(
C,
(
k,Ak

))
= αe

2wC (y′)−y′

y′−wC(y′) (y′ − wC(y′)).

Since y′ ∈ YIC was arbitrary, the lower bound in Lemma 6 follows.

A.3 Proof of Theorem 1

By Lemmas 1 and 2, for all C ⊂ C0, WCR(C) is bounded below by

sup
0≤y≤ȳ

max

{
αwC(y), (α− 1)(y − wC(y)), αe

2wC(y)−y

y−wC(y) (y − wC(y))1{wC(y)≤ 1
2
y}, αe

− 1
α

(
y − wC(y)

)}
,

which is bounded below by the function whose supremum is taken, evaluated at ȳ,

max

{
αwC(ȳ), (α− 1)(ȳ − wC(ȳ)), αe

2wC(ȳ)−ȳ

ȳ−wC(ȳ) (ȳ − wC(ȳ))1{wC(ȳ)≤ 1
2
ȳ}, αe

− 1
α

(
ȳ − wC(ȳ)

)}
,

which itself is greater than

min
0≤w≤ȳ

max
{
αw, (α− 1)(ȳ − w), αe

2w−ȳ
ȳ−w (ȳ − w)1{w≤ 1

2
ȳ}, αe

− 1
α (ȳ − w)

}

Noting that w = e
2w−ȳ
ȳ−w (ȳ − w) when w = 1

2
ȳ, the next lemma establishes that this

equals R̄, hence showing Theorem 1.

Lemma 7. 1. For any α ≥ 1 and w ∈ [1
2
ȳ, ȳ], w > e−

1
α (ȳ − w).

2. For any w ∈ [0, 1
2
ȳ], e

2w−ȳ
ȳ−w (ȳ − w) ≥ w.
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Proof. 1. For any α ≥ 1 and w ∈ [0, ȳ],

e−
1
α (ȳ − w) ≥ w ⇐⇒ w ≤ e−

1
α

1 + e−
1
α

ȳ <
1

2
ȳ.

2. Define f : [0, 1
2
ȳ] → R by f(w) = e

2w−ȳ
ȳ−w (ȳ − w)− w. Observe that

f

(
1

2
ȳ

)
= e2

ȳ−ȳ
ȳ (ȳ − 1

2
ȳ)− 1

2
ȳ = 0.

Moreover, f is nonincreasing on its domain, since

∂f

∂w
=

ȳ

ȳ − w
e

2w−ȳ
ȳ−w − e

2w−ȳ
ȳ−w − 1 =

w̄

ȳ − w
e

2w−ȳ
ȳ−w − 1 ≤ 0.

Therefore, for all w ∈ [0, 1
2
ȳ],

f(w) ≥ f

(
1

2
ȳ

)
= 0 ⇔ e

2w−ȳ
ȳ−w (ȳ − w) ≥ w.

B Proof of Theorem 2

To prove that C⋆ =
{
w ∈ C0 : w(y) ≥ α−1

2α−1
y for all y ≥ 0

}
⊂ C0 is optimal, we show

that the associated regulator’s worst-case regret is

WCR (C⋆) ≤ R̄. (21)

Since R̄ is a lower bound on the regulator’s regret for any regulation C ⊂ C0, the

result then follows: 1) the regulation C⋆ is optimal, and 2) the worst-case regret is R̄.
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Finally Equation (21) holds since

WCR (C⋆) = sup
T ∈T

R (C⋆, T )

= max

{
sup

T ∈T : Π(C⋆,T )=0

R (C⋆, T ) , sup
T ∈T : Π(C⋆,T )>0

R (C⋆, T )

}

≤ max

{
e

w⋆(ȳ)
ȳ−w⋆(ȳ)

−1 (ȳ − w⋆(ȳ)) , αe−
1
α (ȳ − w⋆(ȳ))

}
= R̄,

where the inequality follows from Claim 1 and Claim 2, which proofs are in Appen-

dices B.1 and B.2 below.

B.1 Proof of Claim 1

Let T =
(
k,A = {(ei, Fi)}i∈I

)
be a technology such that Π(C⋆, T ) = 0. For all i ∈ I ,

we write µi for EFi
[y]. Denote by (eR, FR) the action implemented by the regulator

under complete information (i.e., the action that solves (Rfb)). Since Π(C⋆, T ) = 0,

we can assume that firm takes her outside option, as it maximises regret among all

possible contracting equilibria. We distinguish two cases:

a) if EFR
[y] = µR ≤ k

1−w⋆(ȳ)
ȳ

, we show that

R (C⋆, T ) ≤ αw⋆(ȳ);

b) if EFR
[y] = µR > k

1−w⋆(ȳ)
ȳ

, we show that

R (C⋆, T ) ≤ αe
w⋆(ȳ)

w⋆(ȳ)−ȳ
−1 (ȳ − w⋆(ȳ)) .
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The claim then follows since

αw⋆(ȳ) ≤ αe
w⋆(ȳ)

w⋆(ȳ)−ȳ
−1 (ȳ − w⋆(ȳ)) = R̄,

where the inequality is proved in point 2 of Lemma 7. Start with case a).

a) If µR ≤ k

1−w⋆(ȳ)
ȳ

, then

µR − k ≤ w⋆(ȳ)

ȳ
µR.

Therefore, the regulator’s regret is bounded above by

R (C⋆, T ) ≤ α (µR − eR − k)

≤ α

(
w⋆(ȳ)

ȳ
µR − eR

)
≤ αw⋆(ȳ).

b) If µR > k

1−w⋆(ȳ)
ȳ

, then

µR − k

µR

>
w⋆(ȳ)

ȳ

So, the linear contract y → µR−k−ϵ1
µR

· y belongs to the regulation C⋆ for ϵ1 > 0 small.

Since Π(C⋆, T ) = 0, there exists i1 ∈ I such that

(
1− µR − ϵ1 − k

µR

)
µi1 − k ≤ 0 <

(
1− µR − ϵ1 − k

µR

)
µR − k ⇒ µi1 < µR,
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and19

µR − ϵ1 − k

µR

µi1 − ei1 ≥
µR − ϵ1 − k

µR

µR − eR

⇐⇒ (eR − ei1) ≥
µR − ϵ1 − k

µR

(µR − µi1) .

If there exists multiple such actions in A, take (ei1 , Fi1) to be the action with small-

est mean that meet the above criteria.20 If µi1 ≤ k

1−wC(ȳ)
ȳ

, we stop here. Otherwise,

we proceed inductively, always selecting the smallest such action, to construct a se-

quence {ij}j∈N such that, for all j ∈ N, µij+1
< µij , 0 < ϵj+1 ≤ 1

2
ϵj , and

−(eij − eij+1
) ≤ −

(
1−

k + ϵij
µij

)
(µij − µij+1

), (22)

until we reach an action (eiN , FiN ) such that µiN ≤ k

1−w⋆(ȳ)
ȳ

. If no such N ∈ N exists,

recall that, by Assumption 1, A is compact. So, passing to a subsequence and rela-

belling if necessary, the sequence converges to some action (ei∞ , Fi∞) ∈ A such that

µi∞ < µij for all j ∈ N.

We claim that

µi∞ ≤ k

1− w⋆(ȳ)
ȳ

.

Suppose not for a contradiction, i.e., µi∞ > k

1−w⋆(ȳ)
ȳ

. Then the linear contract y →
µi∞−ϵ∞−k

µi∞
µi∞y belongs to C⋆ for ϵ∞ > 0 small. Since Π(C⋆, T ) = 0, there exists i ∈ I

such that

(
1− µi∞ − ϵ∞ − k

µi∞

)
µi − k ≤ 0 <

(
1− µi∞ − ϵ∞ − k

µi∞

)
µi∞ − k ⇒ µi < µ∞,

19That y → µR−k−ϵ1
µR

· y does not implement (eR, FR) implies the strict inequality. The weak in-
equality holds a fortiori.

20We can always find such action since A is compact by Assumption 1.
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and

µi∞ − ϵ∞ − k

µi∞

µi − ei >
µi∞ − ϵ∞ − k

µi∞

µi∞ − ei∞

⇐⇒ ei∞ − ei >
µi∞ − ϵ∞ − k

µi∞

(µi − µi∞) .

So the sequence (eij , Fij)j∈N we constructed does not converge to (ei∞ , Fi∞): a con-

tradiction. Therefore,

µi∞ ≤ k

1− w⋆(ȳ)
ȳ

.

Summing the inequalities in Equation (22) over the j’s, we obtain

−eR ≤ −eR + ei∞ = −
∞∑
j=0

(eij − eij+1
)

≤ ϵ1 −
∞∑
j=0

(
1− k

µij

)
(µij − µij+1

)

≤ ϵ1 −
∫ µR

k

1−w⋆(ȳ)
ȳ

(
1− k

µ

)
dµ.

Since ϵ1 > 0 was arbitrary, it follows that

R (C⋆, T ) = α (µR − eR − k)

≤ α

(
k

w⋆(ȳ)
ȳ

1− w⋆(ȳ)
ȳ

− k

(
ln

(
k

1− w⋆(ȳ)
ȳ

)
− ln (µR)

))
. (23)

The supremum of the upper bound in Equation (23) with respect to µR ∈ [0, ȳ] and

k ∈
[
0, µR

(
1− w⋆(ȳ)

ȳ

)]
ia obtained for µ∗

R = ȳ and

k∗ = e
w⋆(ȳ)

ȳ−w⋆(ȳ)
−1 (ȳ − w⋆(ȳ)) . (24)
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It follows that

R(C⋆, T ) ≤ αe
w⋆(ȳ)

ȳ−w⋆(ȳ)
−1 (ȳ − w⋆(ȳ))

 w⋆(ȳ)
ȳ

1− w⋆(ȳ)
ȳ

−

ln

e
w⋆(ȳ)

ȳ−w⋆(ȳ)
−1 (ȳ − w⋆(ȳ))

1− w⋆(ȳ)
ȳ

− ln (ȳ)


= αe

w⋆(ȳ)
ȳ−w⋆(ȳ)

−1 (ȳ − w⋆(ȳ)) .

This concludes the proof of Claim 1.

B.2 Proof of Claim 2

Let T =
(
k,A = {(ei, Fi)}i∈I

)
be a technology such that Π(C⋆, T ) > 0. For all i ∈ I ,

we write µi for EFi
[y]. Denote by (eR, FR) the action implemented by the regulator

under complete information (i.e., the action that solves (Rfb)) and by (eF , FF ) the

action optimally implemented by the firm. By Lemma 8, we can assume that (i)

k = 0, (ii) the firm optimally implements (eF , FF ) by offering the linear minimum

wage contract w⋆, and (iii) the worker’s surplus WS (C, T ) = EFF
[w⋆(y)]−eF is zero.

We show that

R (C⋆, T ) ≤ max
{
(α− 1) (ȳ − w⋆(ȳ)) , αe−

1
α (ȳ − w⋆(ȳ))

}
. (25)

Lemma 9 below shows that (α−1) (ȳ − w⋆(ȳ)) ≤ αe−
1
α (ȳ − w⋆(ȳ)). Therefore, Claim 2

follows from Equation (25).

To prove the inequality in Equation (25), first observe that the worker’s incentive

compatibility constraint (ICW ) implies that, for all (e, F ) ∈ A,

EF [w⋆(y)]− e ≤ EFF
[w⋆(y)]− eF = WS(C⋆, T ) = 0.

In particular,

eR ≥ EFR
[w⋆(y)] = w⋆(µR). (26)
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Since k = 0, the total surplus is maximised by the (Rfb)-optimal action (eR, FR) –

as the contract y 7→ y implements it. So, µF − eF ≤ µR − eR. As a result, either a)

µR−eR = µF −eF , or b) µR−eR > µF −eF . We treat the two cases a) and b) separately.

a) Suppose that the action implemented by the firm maximises the total surplus:

µR − eR = µF − eF . Equation (26) then implies that µR − eR ≤ µR − EFR
[w⋆(y)] =

EFR
[y − w⋆(y)]. The regulator’s regret is then bounded above by

R (C⋆, T ) ≤ (α− 1) (µR − eR)

= (α− 1)EFR
[y − w⋆(y)]

≤ (α− 1) (ȳ − w⋆(ȳ)) ,

where the last inequality follows since w⋆(·) is sublinear.

b) Suppose that the firm does not implement an efficient action: µR − eR > µF − eF .

Then µF < µR, since eR ≥ w⋆(µR) and eF = w⋆(µF ). The regulator’s regret is

R (C, T ) = α (µR − eR)−
(
1− w⋆(ȳ)

ȳ

)
µF . (27)

Claim:

eF − eR ≤ −
∫ µF

µP

1−
1− wC(ȳ)

ȳ

µ
µF

 dµ.

Proof of the Claim: For all µ > µF ,

1−
1− w⋆(ȳ)

ȳ

µ
µF >

w⋆(ȳ)

ȳ
.

Therefore µR > µF implies that the linear contract

y 7→

(
1− ϵR −

1− w⋆(ȳ)
ȳ

µR

µF

)
· y
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belongs to the regulation C⋆ for ϵR > 0 small. Firm’s optimality implies that offering

this linear contract cannot increase the firm’s profit. So, it cannot implement (eR, FR),

and there exists an action (e1, F1) ∈ A with µ1 < µR such that

1− ϵR −
1− wC(ȳ)

ȳ

µR

µF

µ1 − e1 >

1− ϵR −
1− wC(ȳ)

ȳ

µR

µF

µR − eR

⇔ eR − e1 >

1− ϵR −
1− wC(ȳ)

ȳ

µR

µF

 (µR − µ1) .

If µ1 ≤ µF , then the above also holds for the profit maximizing action (eF , µF ). In

that case, choose (e1, F1) = (eF , FF ) and stop here. If, instead, µ1 > µF , we proceed

inductively. Since µ1 > µF , the linear contract

y 7→

(
1− ϵ1 −

1− w⋆(ȳ)
ȳ

µ1

µF

)
· y

belongs to the regulation C⋆ for 1
2
ϵR ≥ ϵ1 > 0 small. Firm’s optimality implies that

offering this linear contract cannot increase the firm’s profit. So, there exists an action

(e2, F2) ∈ A with µ2 < µ1 such that

1− ϵ1 −
1− wC(ȳ)

ȳ

µ1

µF

µ2 − e2 >

1− ϵ1 −
1− wC(ȳ)

ȳ

µ1

µF

µ1 − e1

⇔ e1 − e2 >

1− ϵ1 −
1− wC(ȳ)

ȳ

µ1

µF

 (µ1 − µ2) .

If µ1 ≤ µF , then the above also holds for the profit maximizing action (eF , µF ). In

that case, choose (e1, F1) = (eF , FF ) and stop here. If, instead, µ2 > µF , we continue

our construction until we can choose (eN , FN) = (eF , FF ). So, we obtain a sequence

{(ej, Fj)}0≤j≤N≤∞, where (e0, F0) = (eR, FR), such that, for all 1 ≤ j ≤ N−1, µj+1 < µj
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and

ej − ej+1 >

(
1− ϵ1 −

1− w⋆(ȳ)
ȳ

µj

µF

)
(µj − µj+1) , (28)

for some 0 < ϵj < 1
2
ϵj−1. If N = ∞, passing to a subsequence and relabeling if nec-

essary, we can assume that the sequence {(ej, Fj)}0≤j≤N=∞ converges to some action

(e∞, F∞) ∈ A with mean µ∞ since A is compact by Assumption 1. By construction,

µF ≤ µ∞ ≤ µj for all j ≥ 0. We show that µ∞ = µF . Suppose not for a contradiction

– i.e., µ∞ > µF . Then the linear contract

y →

(
1− ϵ∞ −

1− w⋆(ȳ)
ȳ

µ∞
µF

)
· y

belongs to C⋆ for some ϵ∞ > 0 small. Then there exists m ∈ I such that µm < µ∞ and

(
1− ϵ∞ −

1− w⋆(ȳ)
ȳ

µ∞
µF

)
µm − em >

(
1− ϵ∞ −

1− w⋆(ȳ)
ȳ

µi

µP

)
µ∞ − e∞.

But, then, the sequence {(ej, Fj)}0≤j≤∞ does not converge to (e∞, F∞) : a contradic-

tion. So, µF = µ∞. Finally, if µF = µ∞, Equation (26) implies that eF ≤ e∞. So,

eF − eR ≤ e∞ − eR.

Multiplying the inequalities in Equation (28) by −1 and summing over the j’s,
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we have

eF − eR =
N∑
j=0

(ej+1 − ej)

≤ ϵR(µR − µF )−
∞∑
i=0

(
1−

1− w⋆(ȳ)
ȳ

µij

µF

)
(µj − µj+1)

= ϵR(µR − µF )−
N∑
j=0

∫ µj

µj+1

(
1−

1− w⋆(ȳ)
ȳ

µij

µF

)
dµ

≤ ϵR(µR − µF )−
N∑
j=0

∫ µj

µj+1

(
1−

1− w⋆(ȳ)
ȳ

µ
µF

)
dµ

= ϵR(µR − µF )−
∫ µR

µF

(
1−

1− w⋆(ȳ)
ȳ

µ
µF

)
dµ.

Since ϵR was arbitrary, this proves the claim. ■

As a result, we can bound the regret in Equation (27) from above:

R (C, T ) ≤ α

(
µR − µF −

∫ µR

µF

(
1−

1− w⋆(ȳ)
ȳ

µ
µF

)
dµ

)
+ (α− 1)

(
1− w⋆(ȳ)

ȳ

)
µF

≤ α

∫ µR

µF

1− w⋆(ȳ)
ȳ

µ
µFdµ+ (α− 1)

(
1− w⋆(ȳ)

ȳ

)
µF .

Maximizing the right-hand side with respect to µF ≤ µR, we obtain

R (C, T ) ≤ αe−
1
α (ȳ − w⋆(ȳ)).

Therefore,

R (C⋆, T ) ≤ αe−
1
α (ȳ − w⋆(ȳ)

Combining cases a) and b) concludes the proof of Claim 2.
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B.3 Supporting Lemmas for the proof of Theorem 2

Lemma 8. Let C⋆ =
{
w ∈ C0 : w(y) ≥ α−1

2α−1
y
}

. For all technology T such that Π(C, T ) >

0, there exists an alternative technology T 0 = (k0,A0) such that (i) k0 = 0, (ii) the

firm optimally offers the contract w⋆, (iii) the worker’s surplus WS (C, T 0) is zero, (iv)

Π(C, T 0) = Π (C, T ) and (v)

R (C, T ) ≤ R
(
C, T 0

)
.

Proof. Let C ⊂ C0 and T =
(
k,A = {(ei, Fi)}i∈I

)
be a technology such that Π(C, T ) >

0. Define the alternative technology

T 0 =
(
k0 = 0,A0 =

{(
e0i = ei +WS(C, T ), Fi

)}
i∈I

)
.

We claim that T 0 satisfies properties (iii)-(v). Property (i) holds by definition: k0 = 0.

To see that property (iii) and (iv) are satisfied, note that the firm implements the

action (e0F , F
0
F ) = (eF+WS(C, T ), FF ) by offering the same contract wF , when solving

the profit maximization problem (Π) under technology T 0. So, Π(C, T ) = Π(C, T 0)

and WS(C, T 0) = EF 0
F

[
wF (y)

]
− e0F = WS(C, T ) − WS(C, T ) = 0, and properties

(iii) and (iv) hold. Finally, the regulator can offer the contract wR(y) = y in problem

(Rfb), which induces the worker to take an action that maximises the total surplus.

So,

µ0
R − e0R ≥ µR − eR +WS(C, T ).

where (e0R, F
0
R) is the action implemented by the regulator under complete informa-
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tion under technology T 0. Therefore,

R(C, T 0) = α
(
µ0
R − e0R

)
− Π(C, T 0)

≥ α (µR − eR)− (Π(C, T ) + αWS(C, T ))− (α− 1)k

= R(C, T ).

So, property (v) holds.

There remains to show that property (ii) holds. If wF = wC , we are done. Other-

wise, consider the alternative technology T̃ 0 =
(
0,A0 ∪

{(
w⋆(y∗), δ{y∗}

)})
where y∗

solves

Π
(
C⋆, T 0

)
= y∗ − w⋆(y∗).

Offering contract wC implements action
(
w⋆(y∗), δ{y∗}

)
since

Eδ{y∗} [w
⋆(y)]− w⋆(y) = 0 = EF 0

F
[wF (y)]− e0F ≥ EF [w

F (y)]− e ≥ EF [w
⋆(y)]− e

for all (e, F ) ∈ A0. The first inequality follows from the worker incentive com-

patibility constraint (ICW ) since wF implements (e0F , F
0
F ), and the second inequal-

ity follows from the definition of C⋆. Moreover, by definition, implementing action(
w⋆(y∗), δ{y∗}

)
maximises the firm’s profit when her technology is T̃ 0 and

Π
(
C⋆, T̃ 0

)
= Π

(
C⋆, T̃ 0

)
.

So, the profit and worker surplus are the same under regulation C⋆ when the firm’s

technology is T 0 and when the firm’s technology is T̃ 0. Hence, R(C, T 0) = R(C, T̃ 0).

As a result, technology T̃ 0 satisfies properties (i)-(v). This concludes the proof.

Lemma 9. For any α ≥ 1 and w ∈ [0, ȳ], αe−
1
α (ȳ − w) ≥ (α− 1)(ȳ − w).
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Proof. If w = ȳ, this holds as an equality. For any w ∈ [0, ȳ),

αe−
1
α (ȳ − w) ≥ (α− 1)(ȳ − w) ⇐⇒ αe−

1
α − (α− 1) ≥ 0

⇐⇒ e−
1
α − 1 +

1

α
≥ 0

Define the function f(α) = e−
1
α − 1 + 1

α
. Then, for α ̸= 0,

f ′(α) =
1

α2

(
e−

1
α − 1

)
≥ 0

⇐ e−
1
α − 1 ≥ 0

⇐⇒ α ≤ 0

So, f is decreasing for α ≥ 1. Furthermore, f(1) = e−1 > 0 and lim∞ f = 0. Therefore,

f(α) ≥ 0 for any α ≥ 1.

C Proof of Theorem 3

Fix a regulation C ⊂ C0.

Proof of point 1. We prove the contrapositive. First, Lemmas 1 and 2 imply that, if

wC(y) < (y − (ȳ − w⋆(ȳ)))+ or wC(y) > y ∧ w⋆(ȳ) for some 0 ≤ y < ȳ, then

WCR (C) > R̄,

Hence, C is not optimal. The following lemma deals with the case where y > ȳ.

Lemma 10. If wC(y) ̸= α−1
2α−1

y for some y > ȳ, then C is not optimal.

Proof. Let C ⊂ C0 be a regulation such that wC(y′) > α−1
2α−1

y′ for some y′ > ȳ. We show

that WCR(C) > R̄.
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The proof adapts the argument made in the proof of Lemma 6. Assume that

the operational cost k is such that k < ȳ − wC(y′)
y′

ȳ. Denote by Bi the binary output

distribution with support {0, y′} and mean i. Define the production set Ak as

Ak =

{
(ei, Bi) : i ∈ I =

[
ȳ

k

ȳ − wC(y′)
y′

ȳ
, ȳ

]}
,

where, for all i ∈ I ,

ei = i− kȳ

ȳ − wC(y′)
y′

ȳ
+ k

(
ln

(
kȳ

ȳ − wC(y′)
y′

ȳ

)
− ln i

)
.

By definition of ei, for all w ∈ C,

∂

∂i
(ℓwi− ei) = ℓw − i− k

i
≥ 0 ⇔ ℓw ≥ i− k

i
,

where ℓw = w(y′)
y′

. So, (ei, Bi) with i < ȳ is implementable by w ∈ C if and only if

w(y′) =
i− k

i
y′,

while action i = ȳ is implementable by w ∈ C if and only if

w(y′) ≥ ȳ − k

ȳ
y′.

Next, observe that, for all i, any contract that implements (ei, Bi) gives a profit of at

most zero to the principal, and exactly zero if the inequality holds with equality. As

a result, the contract that implements (eȳ, Bȳ) is the regulator’s preferred contract. It

maximises the total surplus since ∂
∂i
ei ≤ 1, and allocates all of it to the worker:

V (T ) = α (ȳ − k − eȳ) .

However, since no contract gives the firm a strictly positive payoff, taking her out-
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side option maximises her payoff. The regulator’s regret is then

R (C, T ) = V (T ) = α (ȳ − k − eȳ) .

Plugging in the effort cost, the regret is equal to

α (ȳ − k − eȳ) = α

(
ȳ − k − ȳ +

kȳ

y′ − wC(y′)
− k

(
ln

(
kȳ

ȳ − wC(y′)
y′

ȳ

)
− ln ȳ

))

= αk

(
ȳ

ȳ − wC(y′)
y′

ȳ
− ln

(
k

ȳ − wC(y′)
y′

ȳ

)
− 1

)
.

As in the proof of Lemma 6, taking

k =


e

wC(y′)
y′

1−wC(y′)
y′

−1 (
1− wC(y′)

y′

)
ȳ if wC(y′)

y′
≤ 1

2
,

ȳ − wC(y′)
y′

ȳ if wC(y′)
y′

> 1
2
,

we get

WCR(C) ≥ R
(
C,
(
k,Ak

))
= αe

wC(y′)
y′

1−wC(y′)
y′

−1

(1− wC(y′)

y′
)ȳ1{

wC(y′)
y′ ≤ 1

2

} + α
wC(y′)

y′
ȳ1{

wC(y′)
y′ > 1

2

}.

Since wC(y′)
y′

> α−1
2α−1

by assumption, the right-hand side is strictly greater than R̄.

Therefore C is not optimal.

The proof for the case wC(y) < w⋆(y) for some y ≥ ȳ follows similar steps, by

adapting the proof of Lemma 4, and, hence, is omitted.

Proof of point 2. We prove the contrapositive. Let C ⊂ C0 and suppose that there exists

y ≥ ȳ such that [w⋆(y), y − k∗] ̸⊂ Im(C)(y). By Point 1 of Theorem 3, if wC(y) ̸= w⋆(y)

for some y ≥ ȳ, C is not optimal and we are done. So, suppose that wC(y) = w⋆(y)

for all y ≥ ȳ. Then, there exists y1, y2 ∈ [w⋆(y), y − k∗] such that y1 < y2 and (y1, y2) ∩

Im (C) (y) = ∅.
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Recall that the technology constructed in Lemma 6 was T =
(
k∗,Ak∗

)
where

k∗ = e
2wC(y)−y

y−wC(y)
(
y − wC(y)

)
.

and

Ak∗ =

{
(ei, Bi) : i ∈ I =

[
y

k∗

y − wC(y)
, y

]}
,

where, for all i ∈ I ,

ei = i− k∗y

y − wC(y)
+ k∗

(
ln

(
k∗y

y − wC(y)

)
− ln i

)
.

Under this technology, Lemma 6 shows that the regret is

R (C, T ) = V (T ) = α (ȳ − eȳ − k∗) = αe
2wC (y′)−y′

y′−wC(y′) (y′ − wC(y′)) = R̄

where the last equality holds because wC(y) = w⋆(y).

Consider then the modified technology T̃ =
(
k∗, Ãk∗

)
, where

Ak∗ =

{
(ẽi, Bi) : i ∈ I =

[
y

k∗

y − wC(y)
, y

]}
,

where, for all i ∈ I , ẽi = ei if i−k∗

i
< y2

y
and ẽi = ei +

y1
y
(y2 − y1) + ey1 − ey2 , where

y1−k∗

y1
= ℓ1 and y2−k∗

y1
= y2

y
= ℓ2. Direct computations yield that y1

y
(y2−y1)+ey1−ey2 < 0

(or noting that the effort is strictly convex and that ∂ey1
∂i

= y1
y
(y2 − y1)). Moreover,

by construction, no productive action yields a positive profit for the firm under T̃ .

Therefore the regulator’s regret under C is

R
(
C, T̃

)
= V (T̃ ) = α (y − ẽy − k∗)

= αe
2wC (y′)−y′

y′−wC(y′) (y′ − wC(y′))− α

(
y1
y
(i2 − i1) + ei1 − ei2

)
> R̄.
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Proof of point 3. We prove the contrapositive. Suppose that there exists w ∈ C such

that w(ȳ) = w⋆(ȳ) and conv(w)(ȳ) < w⋆(ȳ).

If there exists w ∈ C such that w(ȳ) < w⋆(ȳ), the result follows from Lemma 4. So,

suppose not. The rest of the argument follows from the idea of the proof of Lemma 4.

Since conv(w)(ȳ) < w⋆(ȳ), there exists a two point distribution with support on

{y1, y2} with y1 < ȳ < y2 such that py1+(1−p)y2 = ȳ and pw(y1)+(1−p)w(y2) < w⋆(ȳ).

Let wF ∈ C be the contract that minimises

pw̃(y1) + (1− p)w̃(y2).

Let ℓ = pwF (y1)+(1−p)wF (y2)
ȳ

, ℓ = w⋆(ȳ)
ȳ

and observe that ℓ < ℓ. Finally, let µF ∈ [0, ȳ],

Π = (1− ℓ)µF , Π̄ = (1− ℓ)µF , and ∆Π = Π̄− Π > 0. Define the production set

AµF =
{(

Ey1,y2
BµF

[
wF (y)

]
, By1,y2

µF

)}
∪ {(ei, Bi) : i ∈ I = [µF , ȳ]} ,

where, for all i ∈ I ,

ei = i− µF +Π(i) (ln (µF )− ln i) + ℓµF ,

where Π : [µF , ȳ] → [Π, Π̄] is a twice differentiable function such that Π(ȳ) = Π̄,

Π(µF ) = Π, Π is nondecreasing, Π′(µF ) = Π′(ȳ) = 0, and ei is convex. We consider

the technology T = (0,AµF ), i.e., we assume that the firm has no operational cost.

For all 0 ≤ µF ≤ ȳ, all outputs’ distributions in AµF are supported on {0, y1, ȳ, y2}.

Thus, AµF is compact and satisfies Assumption 1 and Assumption 2.

By definition of ei, for all w ∈ C,

∂

∂i
(ℓwi− ei) ≥ 0 ⇔ ℓw ≥ i− Π(i)

i
− Π′(i) (ln(µF )− ln(i)) ,
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where ℓw = w(y′)
y′

. So, (ei, Bi) with i < ȳ is implementable by w ∈ C if and only if

w(ȳ) =
i− Π(i)

i
ȳ − Π′(i) (ln(µF )− ln(i)) ȳ,

while action i = ȳ is implementable by w ∈ C if and only if

w(ȳ) ≥ ȳ − Π(ȳ)

ȳ
ȳ.

Next, observe that, for all i, any contract that implements (ei, Bi) gives a profit of at

most

(
1− i− Π(i)

i
+Π′(i) (ln(µF )− ln(i))

)
EBi

[y] ≤ Π(i),

which is less than Π̄ for all i. Moreover, the contract wF implements both actions(
eµF

, By1,y2
µF

)
and (eµF

, BµF
). It yields profit Π̄ in the first case and Π in the second. In

both cases the worker’s payoff is zero.

Finally, the contract w(y) = y implements the surplus maximizing action (eȳ, Bȳ)

(since ∂
∂i
ei ≤ 1), and leaves no profit to the firm, hence allocating the entire surplus

to the worker. So, it is the regulator’s preferred contract.

V (T ) = α (y′ − ey′) .

The regulator’s regret is then

R (C, T ) = α (ȳ − eȳ)− Π̄.

Plugging in the effort cost and the definition of Π̄, the above is equal to

R (C, T ) = α
(
µF −

(
1− ℓ

)
µF (ln(µF )− ln(ȳ))− ℓµF

)
− (1− ℓ)µF

= α(1− ℓ)µF + (1− ℓ)µF

(
α ln

(
ȳ

µF

)
− 1

)
.
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Since the worst-case regret is obtained maximizing over all possible technologies, we

can obtain a lower bound by taking µF = ȳe−
1
α
−x for some x > 0. It follows that the

regulator’s worst-case regret is bounded below by

WCR(C) = sup
T

R (C, T ) ≥ α(1− ℓ)e
1
α ȳe−x

(
1 +

1− ℓ

1− ℓ
x

)
= R̄e−x

(
1 +

1− ℓ

1− ℓ
x

)
.

The result then follows if there exists x > 0 such that

e−x

(
1 +

1− ℓ

1− ℓ
x

)
> 1

⇔ 1 +
1− ℓ

1− ℓ
x > ex,

which holds for x small enough by Taylor’s expansion theorem, since ℓ < ℓ.

D Online Appendix

D.1 Existence of an optimal contract

Lemma 11. Suppose that either

(i) the regulation C ⊂ C0 is compact in the topology associated with the product topology

on RR+ , or

(ii) the regulation C satisfies the following richness condition: w ∈ C ⇒ w1{y∈A} +

wC1{y ̸∈A} ∈ C for all Borel set A ⊂ R+.

Then the regulator’s problem under complete information (Rfb) and the firm’s problem (Π)

admit a solution.

Proof. We prove the existence of a solution to the firm’s problem (Π). The proof

of existence for the regulator’s problem (Rfb) follows the same steps. Hence it is

omitted.
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(i)+(ii). Let T = (k,A) be a technology and C ⊂ C0 be a regulation that satisfies

condition (i) or (ii). It is enough to show the existence of a solution to

P (C, T ) = sup
w∈C,(e,F )∈A

EF [y − w(y)]− k (P )

s.t. EF [w(y)]− e ≥ 0, (IRW )

EF [w(y)]− e ≥ EF̃ [w(y)]− ẽ, for all (ẽ, F̃ ) ∈ A. (ICW )

Consider a maximizing sequence (wn, (en, Fn))n∈N. The value of the above program,

P (C, T ), is finite by Assumption 1. So, there exists N ∈ N such that, for all n ≥ N ,

∫
wn(y)dFn(y) < sup

(e,F )∈A
EF [y]− P (C, T ) + 1.

Relabelling if necessary, we can assume that N = 1. Moreover, since wn implements

(en, Fn), the incentive compatibility constraint implies that, for all (e, F ) ∈ A,

∫
wn(y)dF (y) ≤

∫
wn(y)dFn(y) + e− en ≤ sup

(e,F )∈A
{EF [y]} − P (C, T ) + 1 + sup

(e,F )∈A
{e− en} .

So, by Assumption 1, there exists a constant K > 0 such that

sup
n∈N

sup
(e,F )

∫
wn(y)dF (y) < K < ∞. (29)

Moreover, since A is compact in the topology associated with the total variation

norm by Assumption 1, there exists a finite dominating measure ν on R+ such that,

for all n ∈ N, Fn << ν by Theorem 4.6.3 in Bogachev (2007). The compactness of A

also implies that, passing to a subsequence if necessary, (en, Fn) → (e∗, F ∗) ∈ A, and,

thus, that dFn

dν
→ dF ∗

dν
in L1(ν). Passing again to a subsequence if necessary, we can

finally assume that dFn

dν
→ dF ∗

dν
ν-almost surely.

If C is compact, then there exists a subsequence of (wn)n∈N that converges to some

w⋆ ∈ C. Otherwise, by the Dunford-Pettis Theorem (Theorem 4.7.18 in Bogachev
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(2007)) and (29), there exists a subsequence of (wn)n∈N that converges weakly in

L1(F ∗) to some w⋆. (29) implies that we can invoke Komlós’ Subsequence Theorem

(Theorem 4.7.24 in Bogachev (2007)). Therefore, there exists a further subsequence

such that every subsubsequences Césaro converges to w⋆ F ⋆-almost surely. Since

A, is compact, by a diagonal argument, we can extract a further subsequence such

that every subsubsequences Césaro converges ν-almost surely to w⋆ invoking again

Komlós’ Theorem.

Finally, note that we can modify w⋆ so that it is equal to wC on on dν << 0 the

ν-almost sure convergence. Our richness assumption then guarantees that there is a

version of w⋆ in C.

Summarizing, we can choose the maximizing sequence (wn, (en, Fn)) such that it

converges to some (w⋆, (e∗, F ∗)) ∈ C × A, where the wn’s convergence is understood

to be Césaro ν-almost surely and the Fn’s convergence is understood to be the ν-

almost sure convergence of their Radon-Nykodym derivatives.

We are now ready to prove that (w⋆, (e∗, F ∗)) maximises (P ). We first show that

w⋆ implements (e∗, F ∗). Observe that

(∑n
i=1wi(y)

n

)
dFn(y)

dν
→ w⋆(y)

dF ∗(y)

dν
, ν-almost surely.

Equation (29) and Vitali’s convergence Theorem (Theorem 4.5.4 in Bogachev (2007))

then implies that, for all (e, F ),

∫ ∑n
i=1wi(y)

n
dF (y) →

∫
w⋆(y)dF (y) and

∫ (∑n
i=1 wi(y)

n

)
dFn(y) →

∫
w⋆(y)dF ⋆(y).

It follows that

∫
w⋆(y)dF ⋆(y)− e∗ ≥ max

{∫
w⋆(y)dF (y)− e, 0

}
for all (e, F ) ∈ A.
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Therefore w⋆ implements (e∗, F ∗). To conclude, there remains to show that

∫ (
y −

∑n
i=1wi(y)

n

)
dFn(y) →

∫
(y − w⋆(y)) dF ∗(y).

This again follows from Vitali convergence theorem since the sequence

((
y −

∑n
i=1wi(y)

n

)
dFn(y)

dν

)
n∈N

is uniformly bounded by (29) and converges ν-almost surely to (y − w⋆(y)) dF ∗(y)
dν

.

D.2 Proof of Proposition 1

By Theorem 2,

R̄ = WCR (C⋆) ≥ sup
T ∈TMLRP

R (C⋆, T ) .

So, it is enough to show that

sup
T ∈TMLRP

R (C⋆, T ) = R̄. (30)

to prove Proposition 1. But, Equation (30) holds if the technologies identified in

Lemmas 1 and 2 belong to TMLRP . The technologies considered in Lemmas 3 and 5

are such that #A = 1. So, they vacuously belong to TMLRP . There remains to show

that the technologies considered in Lemmas 4 and 6 also belong to TMLRP . Both

cases are similar, so the proof for the former is omitted.

Recall that the technology constructed in Lemma 6 was T =
(
k∗,Ak∗

)
where

k∗ = e
2w⋆(ȳ)−ȳ)
ȳ−w⋆(ȳ) (ȳ − w⋆(ȳ)) .
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and

Ak∗ =

{
(ei, Bi) : i ∈ I =

[
ȳ

k∗

ȳ − w⋆(ȳ)
, ȳ

]}
,

where, for all i ∈ I ,

ei = i− k∗ȳ

ȳ − w⋆(ȳ)
+ k∗

(
ln

(
k∗ȳ

ȳ − w⋆(ȳ)

)
− ln i

)
.

First, note that i ≥ j ⇒ ei ≥ ej , so the effort cost is increasing in i. Second, we verify

that i ≥ j ⇒ Bi ≥MLRP Bj according to Defintion A.1 in Athey (2002); i.e.,

dBi(y
′)

dCij(y′)

dBj(y)

dCij(y)
≥ dBj(y

′)

dCij(y′)

dBi(y)

dCij(y)
(31)

for all i ≥ j ∈ I and all y′ ≥ y in the support of Cij(·) = 1
2
Bi(·) + 1

2
Bj(·). By direct

calculations, Equation (31) is equivalent to

i

ȳ

(
1− j

ȳ

)
≥ j

ȳ

(
1− i

ȳ

)
,

which holds since i ≥ j. So, i ≥ j ⇒ Bi ≥MLRP Bj and T ∈ TMLRP .

D.3 Proof of Theorem 4

We first show that no regulation can achieve a regret smaller than R. The proof

follows that of Lemma 3 and Lemma 5.

Let C be a regulation unconstrained by limited liability. Suppose that the produc-

tion set A contains a single action: A =
{(

0, δ{ȳ}
)}

. Let 0 ≤ k < ȳ. The technology

T = (k,A) satisfies Assumption 1 and Assumption 2. Under the regulation C, the

maximal revenue the firm can obtain is

ȳ − w,
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where w = inf {w(ȳ) : w ∈ C, w(ȳ) ≥ 0} ∧ ȳ. If k > ȳ − w, no contract is signed

between the firm and the worker, as the firm strictly prefers her outside option to

the best available contract in C. The regret for the regulator is then

R(C, T ) = α(ȳ − k).

Maximizing over k ∈ [0, ȳ − wC(ȳ) ∨ 0), we obtain

WCR(C) ≥ αwC(ȳ) ∨ 0.

Next, suppose that the production set A contains a single action A =
{(

0, δ{ȳ}
)}

,

and that the operational cost is k = 0. The technology T = (0,A) satisfies Assump-

tion 1 and Assumption 2. Under the regulation C, the firm’s profit is bounded above

Π(C, T ) = ȳ − w,

where w = inf {w(ȳ) : w ∈ C, w(ȳ) ≥ 0} ∧ ȳ. The associated worker’s surplus is w.

On the other hand, the regulator would grant the entire surplus to the worker. The

regulator’s regret is therefore

R(C, T ) = (α− 1)(ȳ − w).

Summarizing, for all regulations C unconstrained by limited liability,

WCR (C) ≥ min
0≤w≤ȳ

max {αw, (α− 1)(ȳ − w)} = R.

Second, we prove that the regulation CnoLL =
{
w : R+ → R : w(y) = y − S with S ≤ α

2α−1
ȳ
}

is optimal. To do so, it is enough to show that the regulation CnoLL achieves the uni-
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form lower bound on regret we computed above:

WCR
(
CnoLL

)
= R.

Let T = (k,A) ∈ T be a technology, and assume that V (T ) > 0 (otherwise, the regret

is 0). Define

P (CnoLL, T ) = max
w∈CnoLL,(e,F )∈A

EF [y − w(y)] ,

subject to (IRW ) and (ICW ). Distinguish two cases:

1. k ≥ P (CnoLL, T ), and

2. k ≤ P (CnoLL, T ).

1. Suppose that k ≥ P (CnoLL, T ). Then the firm opts not too produce and, for all

w ∈ CnoLL that implements some action (ew, Fw) ∈ A,

EFw [y − w(y)] ≤ k.

Denote the efficient action by (ē, F̄ ) ∈ arg max
(e,F )∈A

{EF [y]− e− k}.

Claim: k ≥ α
2α−1

ȳ.

Proof of the Claim: Suppose for a contradiction that k < α
2α−1

ȳ. Then, the firm can

offer the contract w(y) = y− k− ϵ, which belongs to CnoLL for ϵ > 0 small enough. A

best response by the worker is to choose (ē, F̄ ), which gives him a payoff of

EF̄ [y − k]− ē− ϵ > 0,

for ϵ > 0 small enough, since V (T ) > 0. Therefore, there exists w ∈ CnoLL that gives

a strictly positive profit to the firm, which contradicts k ≥ P (CnoLL, T ).
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Thus, k ≥ α
2α−1

ȳ, and

R
(
CnoLL, T

)
= V (T )

= α (EF̄ [y]− ē− k)

≤ α

(
EF̄ [y]− α

2α− 1
ȳ

)
≤ α

α− 1

2α− 1
ȳ

= R.

2. Observe that all w ∈ CnoLL implement an efficient action. Denote by (ē, F̄ ) the effi-

cient action optimally implemented by the firm, and not that we can always assume

that the regulator implements the same action. The regulator’s regret is therefore

R(CnoLL, T ) = V (T )−
(
P
(
CnoLL, T

)
− k + αWS

(
CnoLL, T

))
= (α− 1)

(
P
(
CnoLL, T

)
− k
)
.

Since for all y ≥ 0 and w ∈ CnoLL, y − w(y) ≤ α
2α−1

ȳ,

P
(
CnoLL, T

)
≤ α

2α− 1
ȳ,

Thus,

R(CnoLL, T ) = (α− 1)
(
P
(
CnoLL, T

)
− k
)

≤ (α− 1)

(
α

2α− 1
ȳ − k

)
≤ R.

We showed that, for all technologies T ∈ T,

R
(
CnoLL, T

)
≤ R,
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and, hence, that CnoLL is optimal. This concludes the proof.
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