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1 Introduction

The Markov switching regression models originally introduced in econometrics by Goldfeld

and Quandt (1973) and extended to autoregressive speci�cations by Hamilton (1989a,b) have

been extensively employed by researchers and practitioners for the last few decades because of

their �exibility to capture occasional but recurrent shifts in the dynamics of macroeconomic and

�nancial time series. Early examples included business cycles (Hamilton (1989b) and Lam (1990)),

interest rates (Hamilton (1989a), Evans and Lewis (1995) and Garcia and Perron (1996)), stock

returns (Cecchetti, Lam, and Mark (1990)) and their volatility (Schwert (1989)), exchange rates

(Engel and Hamilton (1996)) or risk aversion in �nancial markets (Turner, Startz, and Nelson

(1989)). These papers assumed an autonomous underlying Markov chain process with constant

transition probabilities but a second generation of models with probabilities that depend on

observable variables also suggested by Goldfeld and Quandt (1973) soon came to the fore in order

to improve the prediction of turning points. Initial contributions include Filardo (1994), Filardo

and Gordon (1996), Diebold, Lee and Weinbach (1996), Gray (1996), Ravn and Solá (1999),

Bekaert, Hodrick and Marshall (2001), Ang and Bekaert (2002a,b), Martínez Peria (2002), and

Simpson, Osborn and Sensier (2001).

The popularity of Markov switching autoregressive models is con�rmed by the enormity of the

literature that studies them. Textbook treatments include Hamilton (1994), Krolzig (1997), Kim

and Nelson (1999) and Frühwirth-Schnatter (2007), while Hamilton (2008, 2016), Guidolin (2011)

and Ang and Timmermann (2012) provide useful surveys of applications in macroeconomics and

�nance. Despite their popularity, though, estimated Markov switching models are hardly ever

subject to speci�cation tests. Part of the reason could be that speci�cation testing does not �t

well with the Bayesian approach that has become common among practitioners. And even though

Hamilton (1996) proposed several moment tests based on the log-likelihood scores to assess correct

model speci�cation, they are seldom used, possibly due to the di¢ culty in intuitively interpreting

the in�uence functions involved, which is important for suggesting the directions on which model

revisions should focus. And yet, in an in�uential recent paper, Pouzo, Psaradakis and Solá (2022)

(PPS henceforth) highlight the inconsistencies that arise from misspecifying the data generating

process in models with covariate-dependent transition probabilities.

For that reason, we discuss in detail the application of the information matrix (IM) test to the

Markov switching autoregressions with transition probabilities that may be functions of lagged

observed variables studied by PPS. As is well known, the original IM test introduced by White

(1982) directly assesses the IM equality, which states that the sum of the Hessian matrix and

the outer product of the score vector should be zero in expectation when the estimated model
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is correctly speci�ed. We use recent results in Amengual, Fiorentini and Sentana (2024a), which

say that in models in which the observations can be viewed as incomplete data, in the sense of

Dempster, Laird and Rubin (1977), the law of iterated expectations implies that the in�uence

functions involved in the IM test coincide with the expected value given the full sample of observed

data of the in�uence functions that would be tested were the latent variables observed.

Exploiting the Expectation - Maximisation (EM) principle in the context of these models is

hardly new. In fact, Hamilton (1990) suggested the EM algorithm for the purposes of computing

the scores and estimating the model parameters, whose �xed-point equations provide rather intu-

itive expressions for the maximum likelihood estimators. In addition, Hamilton (1996) relied on

those expressions to derive score-based speci�cation tests. In turn, Diebold, Lee and Weinbach

(1996) explained how to adapt the same algorithm so that it can be used to tackle models with

dynamic transition matrices (see also Krolzig (1997)). However, none of these authors exploited

in full the potential of the EM principle for testing purposes.

In this respect, we show that the use of the EM principle provides a very intuitive interpre-

tation of the in�uence functions underlying the IM test. Speci�cally, we prove that the in�uence

functions associated to the mean and variance parameters within each regime coincide with the

multivariate version of the ones derived by Hall (1987) for linear regression models in Amengual,

Fiorentini and Sentana (2022), but written in terms of residuals computed as if all observations

came from the kth regime and weighted by the smoothed probability that each observation be-

longs to that regime. Thus, the IM test is e¤ectively testing the unconditional skewness and

kurtosis of those conditionally standardised residuals, as in Jarque and Bera (1980) and Amen-

gual, Fiorentini and Sentana (2024b), as well as their conditional heteroskedasticity given the

lagged dependent variables and their squares and cross-products, as in Sentana (1994), and their

conditional skewness given past observations, as in Bera and Lee (1993). In turn, we show that

the in�uence functions of the IM test associated to the parameters of the transition matrix cor-

respond to the smoothed value given the observed data of the outer-product of what Gouriéroux,

Monfort, Trognon and Renault (1987) called the generalised multinomial logit residuals minus

their conditional covariance matrix times the levels and cross-products of the conditioning vari-

ables that determine the transition probabilities, as in Amengual, Fiorentini and Sentana (2025).

Finally, we obtain a third group of in�uence functions that assess the conditional independence of

these generalised residuals and the regression residuals, their squares and cross-products given the

observed variables. An additional advantage of explicitly relating the in�uence functions of the

IM test of the complete and incomplete data models is that it is easy to determine which of those

functions is either redundant or spanned by the score vector, which is crucial for determining the
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right number of degrees of freedom, as illustrated in Amengual, Fiorentini and Sentana (2024a).

Classical tests (i.e. Likelihood ratio, Wald and score or Lagrange Multiplier (LM)) for the

number of regimes in a switching regime model are a devilish problem even if one assumes that

the distribution of the shocks is Gaussian (see e.g. Carrasco, Hu and Ploberger (2014), Kasahara

and Shimotsu (2018), Qu and Zhuo (2021) and Amengual, Bei, Carrasco and Sentana (2025)). By

comparison, testing Gaussianity of the underlying components against a more �exible family of

parametric distributions while maintaining that the number of regimes and their transition matrix

is correctly speci�ed would be relatively straightforward if one also relied on the EM principle

to obtain expressions for the scores and information matrix of the model under the alternative

evaluated under the null along the lines of Almuzara, Amengual and Sentana (2019). In this

respect, one advantage of the IM test is that while it is not designed to focus on any particular

aspect of the model speci�cation, it has power to detect misspeci�cation in each of its ingredients,

as we will see below.

The rest of the paper is organised as follows. We start by formally introducing the model

in section 2.1. After a quick review of White�s (1982) original IM test in section 2.2, we derive

its expressions for the complete and incomplete data cases in sections 2.3 and 2.4, respectively.

Next, we present the results of extensive Monte Carlo simulations in section 3, followed by an

application of our tests to the empirical illustration in PPS in section 4. Finally, we conclude by

discussing some interesting extensions in section 5.

2 Theoretical analysis

2.1 The model

We are interested in studying the correct speci�cation of the following model for an observable,

M -variate time series process yt:

yt = �(�t) +A(�t)yt�1 + �
1=2(�t)"

�
t ;

"�t jIt�1;�t : : : � N(0; IM );
�tjIt�1;�t�1 : : : � MC[P(It�1)];

(1)

where It�1 is the information set generated by lagged values of yt and other L strongly exogenous

observed variables zt, �t�1 the information set generated by lagged values of the latent Markov

chain (MC) process with K states �0t = (�1; : : : ; �k; : : : ; �K), which is nothing other than an

exhaustive collection of K mutually exclusive (0-1) random variables, and P(It�1) its transition

matrix, which may depend on both zt�1 and yt�1.1

1Hamilton (1989b) considered a slightly di¤erent version of (1) in which there is no explicit drift �(�t) but yt
and yt�1 are expressed in terms of deviations of the unconditional means of the regime prevailing at times t and
t� 1, respectively. Given that Hamilton (1994) explains how such a model can be equivalently written as a model
with a higher number of regimes, we shall not consider it separely.
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To ensure that P(It�1) is indeed a transition matrix, we follow the previous literature and

model the jth column of the transition matrix using the following multinomial logit parametrisa-

tion:

P (�kt = 1j�jt�1 = 1; It�1;�j) = pkjt(�j) =
e�

0
kjz

a
t�1PK

`=1 e
�0`jz

a
t�1

; k; j = 1; : : : ;K; (2)

which for simplicity of notation we write as a function of zat�1 = (1; z0t�1)
0 only even though in

practice it can depend on yt�1 too, where �j = (�
0
1j ; : : : ;�

0
Kj)

0 collects the intercepts and slope

coe¢ cient vectors associated to the probabilities of transitioning from state j at time t � 1 to

any other state at time t. This ensures that
PK
k=1 pkjt(�j) = 1 for all �j , j and t, which in turn

implies that we can skip one category per column. For identi�cation purposes, we follow the usual

practice of setting �1j = 0 for all j, so that the transition matrix is a function of the stacked

parameter vector � = (�01; : : : ;�
0
K)

0, with �j rede�ned henceforth as (�
0
2j ; : : : ;�

0
Kj)

0 in a slight

abuse of notation. Nevertheless, this arbitrary normalisation is without loss of generality because

Lemma 1 in Amengual, Fiorentini and Sentana (2024a) implies that IM tests are numerically

invariant to bijective reparametrisations.

As is well know, when P(It�1) = �(It�1){0K , where {K is a vector of K ones, the MC be-

comes an independent sequence of categorical random variables whose conditional probabilities

are �(It�1), which we will denote by MN [�(It�1)], where MN stands for multinomial.

The model in (1) nests a broad class of simpler models regularly used in empirical work,

including:

1. ytjIt�1;�t; : : : � N(� +Ayt�1;�) (vector autoregressions or Vars)

2. �tjIt�1;�t�1; : : : �MC[P(It�1)] (multinomial logit models and Markov chains with covariate-

dependent transitions)

3. ytjIt�1;�t; : : : � N [�(�t);�(�t)]; �tjIt�1;�t�1; : : : �MN(�) (�nite Gaussian mixtures)

4. ytjIt�1;�t; : : : � N [�(�t) + A(�t)yt�1;�(�t)]; �tjIt�1;�t�1; : : : � MN [�(It�1)] (dynamic

switching regressions with covariate-dependent probabilities)

but it di¤ers from the �rst two because of the hidden regimes and from the last two because

inferences about those regimes require smoothing rather than just �ltering.

Although we will not discuss them in detail in the next subsections, extensions of (1) to

more complex conditional mean and variance speci�cations for the distribution of ytjIt�1;�t; : : :,

including higher-order autoregressions, or higher-order dependence for �tjIt�1;�t�1 : : : are tedious

but otherwise straightforward.
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In principle, a researcher should explicitly specify a joint data generating process (DGP) for

yt and zt, as PPS do. However, we follow the empirical and theoretical literatures in treating zt

as a strongly exogenous process that depends on an additional variation-free vector of parameters

(see Engle, Hendry and Richard (1983)), so that a joint model is not necessary either for obtaining

e¢ cient estimators of the parameters of (1) because of the weak exogeneity of zt or for �ltering

and smoothing purposes because zt is not Granger caused by either yt or �t. Nevertheless, we

explicitly study the power of our proposed tests to detect departures from this assumption in

section 3.

2.2 White�s (1982) original IM test

Let �, with dim(�) <1, denote the vector of model parameters. On the basis of the usual

prediction error decomposition, and ignoring initial conditions, we can write the log-likelihood

function of a sample of size T on yt as

LT (�) =
XT

t=1
ln f(ytjIt�1;�) =

XT

t=1
lt(�); (3)

where f(ytjIt�1;�) denotes the conditional density of yt given its past values and the past values

of zt contained in It�1. Hence, the average score and Hessian will be given by

�sT (�) =
1

T

XT

t=1

@lt(�)

@�
=
1

T

XT

t=1
st(�); (4)

�hT (�) =
1

T

XT

t=1

@2lt(�)

@�@�0
=
1

T

XT

t=1
ht(�): (5)

In what follows, we maintain the regularity conditions that PPS impose on the DGP of yt,

its conditional log density in (3) and its �rst-two derivatives in (4) and (5), which guarantee the

consistency of the maximum likely estimators (MLE) of the model parameters, �̂T , and their

asymptotic normality when we centre them around their true values, �0, and suitably scale them

by
p
T .

In this context, the IM test directly assesses the IM equality, which states that the sum of the

Hessian matrix and the outer product of the score (OPS) vector should be zero in expected value

when the estimated model is correctly speci�ed.

As Newey (1985) and Tauchen (1985) showed, the IM test can be regarded as a moment test

based on the in�uence functions:

vech[ht(�) + st(�)s
0
t(�)]: (6)

In practice, we evaluate these in�uence functions at the MLE of �, �̂T , so we need the

asymptotic covariance matrix of
p
T

T

XT

t=1
vech[ht(�̂T ) + st(�̂T )s

0
t(�̂T )]:
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Chesher (1983) and Lancaster (1984) realised that one can use the generalised information

matrix equality to obtain the expected value of the Jacobian of the in�uence functions with

respect to � from the covariance matrix between them and the score evaluated at the true values

of the parameters. Thus, we simply need the residual covariance matrix from their least squares

projection onto the linear span of st(�0):

R(�0)� U(�0)I�1(�0)U 0(�0);�
R(�0) U(�0)
U 0(�0) I(�0)

�
= V

�
vech[ht(�0) + st(�0)s

0
t(�0)]

st(�0)

�
: (7)

Therefore, the infeasible IM test statistic is the quadratic form

T

�
1

T

XT

t=1
vech0[ht(�̂T ) + st(�̂T )s

0
t(�̂T )]

�
�[R(�0)� U(�0)I�1(�0)U(�0)]�

�
�
1

T

XT

t=1
vech[ht(�̂T ) + st(�̂T )s

0
t(�̂T )]

�
:

A generalised inverse is often necessary because some of the in�uence functions underlying

the IM test may be an exact linear combination of st(�0) or appear multiple times. As a result,

the number of degrees of freedom of the asymptotic �2 distribution under the null of correct

speci�cation is rank[R(�0)� U(�0)I�1(�0)U(�0)], which requires careful derivation, something

that our EM-based procedure helps with, as we illustrate in sections 2.3 and 2.4 below.

Chesher (1983) and Lancaster (1984) suggested a feasible version as T times the R2 in the

regression of a vector of T ones onto st(�̂T ) and vech[ht(�̂T ) + st(�̂T )s
0
t(�̂T )] using an ordinary

least squares routine robust to multicollinearity. The inclusion of st(�̂T ) as additional regressors

makes the statistic robust to the fact that the in�uence functions are evaluated at �̂T .

Nevertheless, this OPS regression has poor �nite sample properties, as stressed by Horowitz

(1994) among many others. Fortunately, the parametric bootstrap o¤ers a simple way of improv-

ing the reliability of the IM test in empirical applications.

2.3 The IM test in the complete data model

The in�uence functions (6) are often di¢ cult to interpret, so empirical researchers typically

regard the IM test as a black-box that o¤ers little guidance on how to improve the model speci�ca-

tion when it is rejected. In the context of microeconometric applications, Chesher (1984) provided

a reinterpretation of the IM test as a score test of unobserved heterogeneity in the model para-

meters, which is a �rst-order concern when dealing with data from individual agents, although

the i:i:d: nature of his alternative reduces its appeal somewhat in time-series contexts (but see

Amengual, Fiorentini and Sentana (2022), who use it to detect random coe¢ cient variation in

vector autoregressive processes).
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Nevertheless, we can provide a very intuitive interpretation of (6) for the Markov switching

model (1) by �rst considering what the IM test would be if the econometrician could observe not

only IT but also �T . In that case, the time-series model would be the combination of a discrete

Markov chain process for �t driven by the dynamic transition matrix P(It�1) and a conditionally

Gaussian Var model for each regime.

In view of the usual prediction error decomposition for time series models under the maintained

assumption that zt is a strongly exogenous process, the contribution from observation t to the

log-likelihood function from yt and �t conditional on the exogenous regressors can be written as

the sum of two components, the conditional log-likelihood function of the Gaussian models for yt

given �t, It�1 and �t�1:

ln f(ytj�t; It�1;�t�1;b;
) =
KX
k=1

�kt ln f(ytj�kt = 1; It�1;�t�1;bk;
k)

=
KX
k=1

�kt

�
�M
2
ln 2� � 1

2
ln j�kj �

1

2
"�0t (bk;
k)"

�
t (bk;
k)

�
; (8)

where "�t (bk;
k) = �
�1=2
k (yt � Bkyat�1), b = (b01; : : : ;b

0
K)

0, bk = vec(Bk) = vec(�k;Ak), 
 =

(
 01; : : : ;

0
K)

0 and 
k = vech(�k), and the marginal log-likelihood function of the �rst-order

Markov chain �t given �t�1 and It�1:

ln p(�tjIt�1;�t�1;�) =
KX
j=1

�jt�1

KX
k=1

�kt ln pkjt(�j): (9)

The multiple sequential cuts on the vector of K[3M(M + 1)=2 + (K � 1)(L+ 1)] parameters

performed by the additive log-likelihood decompositions above allows us to obtain very easily the

score vectors, Hessian matrices, and in�uence functions for the IM test. On that basis, we can

show that:

Proposition 1 1. The IM matrix test of model (1) with transition matrix (2) when �t is
observed coincides with a moment test based on the following groups of in�uence functions:

�ktH2["
�
t (bk;
k)]
 vech(y

a
t�1y

a0
t�1); k = 1; : : : ;K (10)

�ktH3["
�
t (bk;
k)]
 y

a
t�1; (11)

�ktH4["
�
t (bk;
k)]; (12)

�jt�1(vech[ujt(�j)u
0
jt(�j)�fdiag[ptj(�j)]�ptj(�j)p0tj(�j)g])
vech(zat�1za0t�1) (13)

�kt�jt�1

�
H1["

�
t (bk;
k)]
 yat�1
H2["

�
t (bk;
k)]

�

 [ujt(�j)
 zat�1] (14)

for k; j = 1; : : : ;K, where yat�1 = (1;y
0
t�1)

0,

Hr("
�) =

26664
Hr;0;��� ;0("�)
Hr�1;1;��� ;0("�)

...
H0;��� ;0;r("�)

37775 =
26664

Hr("
�
1)

Hr�1("�1)H1("
�
2)

...
Hr("

�
M )

37775
7



is the
�
M+r�1

r

�
vector containing the distinct multivariate Hermite polynomials of order r

of a standardised random vector "�, and

ujt(�j) = [u2jt(�j); : : : ; uKjt(�j)]
0 = (�2t � p2jt(�j); : : : ; �Kt � pKjt(�j)]0; (15)

is the vector of generalised residuals associated to the non-normalised elements of the jth

column of the transition matrix

pjt(�j) = [p2jt(�j); : : : ; pKjt(�j)]
0:

2. The asymptotic covariance matrices of those in�uence functions evaluated at the MLE cor-
rected for the sampling uncertainty in estimating the model parameters is the residual covari-
ance matrix in the multivariate regression of (10)-(14) onto the following in�uence functions

�ktH1["
�
t (bk;
k)]
 y

a
t�1; (16)

�ktH2["
�
t (bk;
k)]; (17)

�jt�1ujt(�j)
 zat�1: (18)

for k; j = 1; : : : ;K.

3. The asymptotic distribution of the IM test under correct speci�cation will be a �2 random
variable with degrees of freedom equal to

K

(
M(M+1)

�
11M2+35M+14

�
24

+
K(K�1)(L+1)(L+2)

4
+
3M(M+1)(K�1)(L+1)

2

)
: (19)

Proposition 1 allows us to provide a very intuitive interpretation to the in�uence functions

underlying the IM test. In particular, (10) can be regarded as the multivariate counterpart to

White�s (1980) heteroskedasticity test, while (11) is a multivariate version of what Bera and Lee

(1993) called a test for conditional �heterocliticity� in linear regression models, and (12) the

multivariate analogue to the Kiefer and Salmon (1983) version of the kurtosis component of the

Jarque and Bera (1980) test.

In turn, (13) is e¤ectively testing the conditional mean independence of the conditionally

demeaned outer product of the generalised residuals associated to the jth column of the transition

matrix with respect to the elements of zt�1. Thus, it also resembles a multivariate version of

White�s (1980) test for residual conditional heteroskedasticity, which in turn con�rms Chesher�s

(1984) reinterpretation of the IM test as a score test for neglected unobserved heterogeneity.

Finally, (14) assesses the conditional independence �given yt�1 and zt�1 �between the stan-

dardised innovations of the regimes, their squares and cross-products and the generalised residuals

of the multinomial logit models determining the transition matrix. These in�uence functions arise

because the model implicitly assumes that the parameters of the conditional mean and covariance

matrices of each regime at time t do not depend on the regime that prevailed at time t� 1.

In contrast, there are no IM in�uence functions associated to the cross-products of the mean

and variance parameters across regimes because the Hessian is block diagonal and the cross-

products of the score vectors (16) and (17) for di¤erent k0s are identically 0. For analogous
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reasons, there are no IM in�uence functions for the cross-products of the parameters of the

multinomial logit models for di¤erent columns of the transition matrix either. Consequently,

rank[R(�0)� U(�0)I�1(�0)U(�0)] is substantially lower than the dimension of (6).

In summary, the IM test for the entire model coincides with the combination of the IM matrix

test for linear Var(1) models in Amengual, Fiorentini and Sentana (2022) for each of the K

regimes, the IM test for multinomial logit models in Amengual, Fiorentini and Sentana (2025)

for each of the K columns of the transition probability matrix, and some additional cross-model

terms related to the independence of the residuals of those two types of models.

Importantly, when the transition matrix is constant so that zat�1 = 1 for all t, a linear combi-

nation of some of the elements of (14) can be spanned by the scores (16) and (17) because

KX
j=1

�kt�jt�1

�
H1["

�
t (bk;
k)]
 yat�1
H2["

�
t (bk;
k)]

�



8>>>>>><>>>>>>:

26666664
�2t � p2j(�j)

...
�kt � pKj(�j)

...
�Kt � pKj(�j)

37777775

9>>>>>>=>>>>>>;
= �kt

�
H1["

�
t (bk;
k)]
 yat�1
H2["

�
t (bk;
k)]

�

 [ek � pj(�j)];

where ek is a (K � 1) vector of 0�s except for a 1 in position k � 1, since �kt�lt = I(k = l) andPK
j=1 �jt�1 = 1. In that case, therefore, we should eliminate all the elements of (14) corresponding

to one column of the transition matrix, say the �rst one.

2.4 The IM test in the incomplete data model

Let

wktjT (�) = P (�kt = 1jIT ;�) (20)

denote the smoothed probability of the marginal event �kt = 1, and

wkjtjT (�) = P (�kt = 1; �jt�1 = 1jIT ;�) (21)

the corresponding smoothed probability for the joint event �kt = 1; �jt�1 = 1. Importantly, Kim�s

(1994) smoother, which computes (20) from (21), is exact in this context because zt is strongly

exogenous.2

We can then show that

2Chapter 16 of Hamilton (1994) provides recursive expressions for these quantities, while Friedmann (1994) and
Yang (2001) provide non-recursive ones.
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Proposition 2 1. The IM matrix test of model (1) with transition matrix (2) when �t is
unobserved coincides with a moment test based on the following groups of in�uence functions:

wktjT (�) �H2["
�
t (bk;
k)]
 vech(y

a
t�1y

a0
t�1); (22)

wktjT (�) �H3["
�
t (bk;
k)]
 y

a
t�1; (23)

wktjT (�) �H4["
�
t (bk;
k)]; (24)

for k = 1; : : : ;K,

f[wkjtjT (�)� pkjt(�j)wjt�1jT (�)][1�2pkjt(�j)]g
vech(zat�1za0t�1) (25)

f[wkjtjT (�)�pkjt(�j)wjt�1jT (�)]p`jt(�j)+[w`jtjT (�)�p`jt(�j)wjt�1jT (�)]pkjt(�j)g

vech(zat�1za0t�1) (26)

for j = 1; : : : ;K, k = 2; : : : ;K and ` = 3; : : : ;K, with k > `, and

�
H1["

�
t (bk;
k)]
 yat�1
H2["

�
t (bk;
k)]

�



8>>>>>><>>>>>>:
wkjtjT

26666664
�p2jt(�j)

...
1� pkjt(�j)

...
�pKjt(�j)

37777775
 z
a
t�1

9>>>>>>=>>>>>>;
(27)

for k; j = 1; : : : ;K.

2. The asymptotic covariance matrices of the (scaled) sampling averages of (22)-(27) evaluated
at the MLE corrected for the sampling uncertainty in estimating the model parameters is the
covariance matrix of the residuals in the limiting least squares projections of those (scaled)
sample averages onto the linear span of the (scaled) sample averages of the following in�u-
ence functions

wktjT (�)H1["
�
t (bk;
k)]
 y

a
t�1; (28)

wktjT (�)H2["
�
t (bk;
k)]; (29)

for k = 1; : : : ;K and
[wkjtjT (�)� pkjt(�j)wjt�1jT (�)]
 zat�1 (30)

for j = 1; : : : ;K and k = 2; : : : ;K.

3. The asymptotic distribution of the IM test will be a �2 random variable with the same number
of degrees of freedom (19) as in Proposition 1.

It is straightforward to see that the sum of the in�uence functions (28) over t from 1 to

T constitutes a basis for the scores of bk obtained by means of the EM principle in Hamilton

(1990), while the corresponding sum of (29) is the basis for the scores for 
k obtained in the

same manner. In turn, the analogous sum of the in�uence functions (30) e¤ectively coincide with

the scores derived by Diebold, Lee and Weinbach (1996) for the parameters characterising the

transition probability matrix using again the EM principle. Intuitively, the sum of (28) coincides

with the average of the usual orthogonality conditions for the regression parameters of the kth

10



regime weighted by the smoothed probability that yt belongs to that regime. Similarly, the sum

of (29) forces the covariance matrix of the standardised residuals of the kth multivariate regression

to be the identity matrix once we weight them again by the smoothed probability that yt belongs

to that regime. Finally, the sum of (30) imposes that the di¤erences between the smoothed

probability of the joint event �kt = 1; �jt�1 = 1 and the product of the smoothed probability

of �jt�1 = 1 multiplied by the probability from transitioning from state j to state k should be

orthogonal to the lagged values of the observed variables that determine the probability of this

transition.

In addition, we can interpret (22) as the expected value of the in�uence functions that underlie

the multivariate test for heteroskedasticity in the regression residuals of the kth regime weighted

again by the smoothed probability that yt belongs to that regime. Entirely analogous comments

apply to (23) in relation to testing for conditional heterocliticity in those residuals, and (24) as far

as their unconditional kurtosis in concerned. In turn, we can interpret (25) as the expected value

given the observed data of the IM in�uence functions related to the multinomial logit probability

that the Markov chain will sojourn in regime k for one additional period, while (26) corresponds

to analogous conditional expected value of the IM in�uence functions associated to the probability

that it will transit from regime j at time t � 1 to either regime k or regime ` at t. Finally, we

can interpret the cross-model in�uence functions (27) as checking the conditional independence

�given yt�1 and zt�1 �between the standardised innovations of the regimes, their squares and

cross-products and the generalised residuals of the multinomial logit models.

Naturally, the results in section 2.3 imply that in the incomplete data case there are no IM

in�uence functions either associated to the cross-products of the mean and variance parameters

across regimes or the cross-products of the parameters of the multinomial logit models associated

to di¤erent columns of the transition matrix. Those results also imply that if the transition

matrix is constant, then we should once again eliminate one column of (27) to avoid that a linear

combination of these in�uence functions be spanned by the score vector. In turn, if there are

only two regimes, we should use (25) for the second regime and (26) for the �rst one given our

normalisation.

The calculation of the asymptotic covariance matrices is more involved than in the observed

case. The source of the problem is that the smoothed values of the state variables are serially

correlated, which in turn implies that both (22)-(27) and (28)-(30) will be serially correlated too.

From a practical point of view, there are three possible solutions. The �rst one draws inspira-

tion from Hamilton (1996), who in a univariate model with constant transition matrix e¤ectively

used the �rst di¤erences of the cumulative sums of (28), (29) and (30) to obtain the contributions

11



to the scores from the conditional distribution of yt given It�1. Given that such contributions

evaluated at the true parameter values constitute a martingale di¤erence sequence under correct

speci�cation, their sample covariance matrix provides a consistent OPS estimator of the informa-

tion matrix.

For the purposes of the IM test, though, we need to prove that the martingale di¤erence

property holds not only for the scores, but also for the in�uence functions underlying it. To

understand why this is indeed the case, let us consider the mean parameters for the sake of

brevity. The �rst di¤erence of the cumulative sum of (28) up to observation t is

tX
s=1

wksjt(�)H1["
�
s(bk;
k)]
 y

a
s�1 �

t�1X
s=1

wksjt�1(�)H1["
�
s(bk;
k)]
 y

a
s�1

= wktjt(�)H1["
�
t (bk;
k)]
 y

a
t�1 +

t�1X
s=1

[wksjt(�)� wksjt�1(�)]H1["
�
s(bk;
k)]
 y

a
s�1:

Given the orthogonality properties of conditional expectations, updates in the smoothed proba-

bilities

[wksjt(�)� wksjt�1(�)]

are necessarily mean independent of It�1, which e¤ectively makes the second term non-linearly

unpredictable from the point of view of t� 1. In addition,

wktjt(�)H1["
�
t (bk;
k)] = Ef�ktH1["

�
t (bk;
k)]jIt�1g

= E[Ef�ktH1["
�
t (bk;
k)]j�kt; It�1gjIt�1] = 0

because the inner expectation is either 0 when �kt = 0 with probability 1 � P (�kt = 1jIt�1) or

EfH1["
�
t (bk;
k)]j�kt = 1; It�1g = 0 when �kt = 1 with probability P (�kt = 1jIt�1), which means

that the �rst term is also non-linearly unpredictable from the same point of view. Importantly,

exactly the same arguments apply to (22)-(27), so the �rst di¤erences of their cumulative sums

will also be martingale di¤erence sequences under correct speci�cation. Intuitively, the conditional

version of the information matrix equality ensures the martingale di¤erence nature of those in�u-

ence functions. Consequently, we can follow Chesher (1983) and Lancaster (1984) in regressing

a vector of T ones onto the �rst di¤erences of the cumulative sums of all the in�uence functions

that appear in Proposition 2.

The second practical approach exploits Corollary 1 in Amengual, Fiorentini and Sentana

(2024a), which expresses the theoretical covariance matrix of the IM in�uence functions and the

scores as the di¤erence between the unconditional covariance matrix of the analogous in�uence

functions in the complete data model and the mean of their covariance matrix conditional on the

observed variables. The �rst element of this expression coincides with the covariance matrix of
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the in�uence functions that appear in Proposition 1. The conditional covariance matrix of their

sum given IT is trickier because �t is serially correlated. Nevertheless, we can exploit the following

expressions in Krolzig (1994) to compute their conditional autocovariances:

V (�tjIT ;�) = diag[wtjT (�)]�wtjT (�)w0tjT (�);

Cov(�t+1; �tjIT ;�) = P(It)V (�tjIT ;�)�wt+1jT (�)w0tjT (�);

Cov(�t+2; �tjIT ;�) = P2(It)V (�tjIT ;�)�wt+2jT (�)w0tjT (�);

etc., where wtjT = [w1tjT (�); : : : ; wKtjT (�)g0. On this basis, we can tediously obtain the condi-

tional autocovariances of all the in�uence functions that appear in Proposition 2, whose doubly

in�nite sum will give us the required long-run covariance matrix of the sample average of those

in�uence functions. Although we cannot obtain closed-form expressions for the matrix of autoco-

variance generating functions evaluated at 1, we can follow a procedure analogous to the one in

Almuzara, Amengual and Sentana (2019), which e¤ectively truncates the sum once the e¤ect of

including additional autocovariances is numerically negligible.

Finally, there is a third solution that combines aspects of the previous two. Given that

the parametric model is fully speci�ed, one can compute the elements of (7) evaluated at the

maximum likelihood estimates to any desired degree of accuracy using the �rst method but in

a single simulated sample of size Ts, where Ts is much larger than T , with the true parameter

values set to the estimated ones, as explained in Mencía and Sentana (2012).

3 Monte Carlo simulations

As stated in Proposition 2, the asymptotic distribution of our proposed IM test is �2 with

degrees of freedom equal to (19). Similarly, each group of in�uence functions for the IM test that

appear in Proposition 2 also gives rise to moments tests whose limiting distributions are �2, with

degrees of freedom equal to 1
4KM

2(M + 1)(M + 3) (conditional heteroskedasticity), 16K(M +

2)(M + 1)M2 (conditional heterocliticity given yt�1 only), 16K(M + 2)(M + 1)M (unconditional

skewness), 1
24K(M + 3)(M + 2)(M + 1)M (unconditional kurtosis), 14K

2(K � 1)(M + 1)(M + 2)

(multinomial logit conditional heteroskedasticity) and 3
2KM(M+1)(K�1)(L+1) (independence

between regression residuals and generalised ones). However, these asymptotic approximations

might not be very reliable in �nite samples. For that reason, we conduct some Monte Carlo

experiments to study the rejection rates under the null of correct speci�cation in sample sizes of

T = 250 and T = 1; 000. To do so, we simulate data from the following conditional model:
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ytjIt�1;�t � N(��t + a�t;1yt�1; 

2
�t
)

P (�t = 1j�t�1 = 1; It�1;�t�1) =
1

1 + e�
0
21z

a
t�1

(31)

P (�t = 2j�t�1 = 2; It�1;�t�1) =
e�

0
22z

a
t�1

1 + e�
0
22z

a
t�1

; (32)

where zat�1 = (1; zt�1)
0, and zt�1 is the term spread variable in the empirical application in section

4, which we treat as �xed in repeated samples given its assumed strongly exogenous nature under

the null.3 We borrow some of the true parameter con�gurations from the related Monte Carlo

experiments in PPS for the design in which the correlations between the standardised shocks to

yt within each regime and the regressor zt are 0.

We consider three di¤erent versions of this model to assess the di¤erent components of our

proposed IM test in practice:

1. A model with a constant transition matrix, so that �21;2 = �22;2 = 0.

As for the 8 free parameters, we set �1 = �1, �2 = 1, a11 = a21 = 0:9, 
21 = 
22 = 1, and

�21;1 and �22;1 such that P (�t = 1j�t�1 = 1; It�1;�t�1) = p = 0:76 and P (�t = 2j�t�1 =

2; It�1;�t�1) = q = 0:93. In this case, the IM test is exclusively based on (22), (23), (24)

and (27) for each of the regimes, as the sample means of (25) and (26) are identically equal

to 0 at the maximum likelihood estimators. Consequently, the IM test follows a �2 with 16

degrees of freedom in large samples despite (6) having 36 di¤erent in�uence functions.

2. A model without dynamics within regimes, so that a1;1 = a2;1 = 0, in which the transitions

between regimes are governed by the logit models (31) and (32). As for the remaining

8 free parameters, we set �1 = �10, �2 = 10, 
21 = 
22 = (1 � :92)�1, and �21;1 = �2,

�21;2 = �0:5, �22;1 = 2 and �22;2 = 0:5. Relative to the previous case, one needs to add the

in�uence function (25) and (26) for the second and �rst regime, respectively, but eliminate

the in�uence functions (22) for each of the regimes and only preserve the component of (23)

related to the constant, which e¤ectively checks unconditional skewness. Consequently, the

joint IM test has 26 degrees of freedom rather than 36, which are the number of di¤erent

elements of (6) in this case.

3. The combination of the previous two, which requires a total of 10 parameters. The IM test

now includes all the in�uence functions and therefore has 40 degrees of freedom rather than

3For T = 250, we downloaded updated data for the period 1959Q4 and 2024Q2 from the New York Fed web
page https://www.newyorkfed.org/research/capital_markets/ycfaq#/interactive, while for T = 1000, we use four
suitably concatenated copies of this series.
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10 � 11=2 = 55. The values of the conditional mean and variance parameters are set as in

the �rst model while the transition probability parameters as in the second one.

For each of these speci�cation, we look at the OPS version of the joint IM test and its relevant

components. Following Hamilton (1996), we also compute White�s (1987) dynamic information

matrix test based on the autocorrelation matrices of the scores, which is e¤ectively testing the

conditional version of the �rst Barlett identity rather than the unconditional version of the second

one (see chapter 11 of White (1994) for further details). To keep the number of degrees of freedom

of this last test manageable, we only look at the scores�marginal �rst-order autocorrelations, so

that the number of in�uence functions coincides with the number of model parameters as opposed

to its square.4

In all the null designs, we generate 10; 000 samples and compare asymptotic critical values

to those based on a parametric bootstrap procedure in which we simulate B = 99 samples from

the model estimated under the null.5 A substantially larger value of B is feasible in an empir-

ical application such as the one in section 4, but prohibitively costly for 10; 000 Monte Carlo

replications.

To ensure that we have indeed maximised the log-likelihood function, in each Monte Carlo

replication we check that the Euclidean norm of the sum of the scores evaluated at the maximum

likelihood estimators is less than 10�5. We also check that the TR2 version of the IM test does

not decrease when we add in�uence functions as regressors in the regression of the vector of ones

on those in�uence functions and the scores. When these checks fail, we discard the replication.

We apply exactly the same checks to the parametric bootstrap procedure until we get 99 valid

bootstrap samples, although if the number of samples required exceeds 109, we also discard the

entire Monte Carlo replication. In practice, we �nd that these checks are almost always satis�ed,

with the proportion of discarded replications often zero or at most 0.1% in all designs except

in models with asymmetric Student t innovations when it is slightly larger, possibly because

an occasional unusually large outlier makes the likelihood maximisation algorithm numerically

unstable.

In Table 1, we present the results for the three di¤erent versions of the model grouping

together the tests for unconditional asymmetry and kurtosis in the interest of space. We �nd

substantial over-rejections using the asymptotic-based critical values, which con�rms the need for

4 Including all possible scores��rst-order autocorrelations would result in a test with 64 degrees of freedom in the
�rst and second models, and 100 degrees of freedom in the third one. Higher-order autocorrelations would multiply
these numbers by the number of lags.

5Given the number of replications, the 95% asymptotic con�dence intervals for the Monte Carlo rejection prob-
abilities under the null are (.80,1.20), (4.57,5.43) and (9.41,10.59) at the 1%, 5% and 10% levels, respectively.
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�nite sample size adjustments. As can be seen, our parametric bootstrap procedure substantially

improves the reliability of the tests in �nite samples. Still, the rejection rates of the joint IM

test, the MN logit component and the cross-model test are lower than their nominal values in

samples of size T = 250, especially so in the versions of the model with covariate-dependent

transitions, with no other noticeable di¤erences across speci�cations. As expected, though, all

bootstrap-based p-values become reliable for T = 1000.

Turning now to the ability of the IM test to detect misspeci�cation, for each version of the

model considered in the size experiments we specify several alternatives to assess �nite sample

power using this time 2; 500 replications. For the model with Ar(1) processes within regimes but

a constant transition matrix in particular, we consider:

1a conditionally homoskedastic GaussianAr(2) processes within regimes but the same constant

transition matrix as under the null. The Ar(2) parameters are a1;1 = a2;1 = 1:1 and

a1;2 = a2;2 = �0:18. This amounts to adding an extra autoregressive root equal to 0.2 to

the speci�cation of the conditional means of the regimes under the null.

1b conditionally Gaussian Ar(1)-Gqarch(1,1) processes within regimes but the same autore-

gressive speci�cation and constant transition matrix as under the null. Speci�cally, we

generate the conditional variance of the (standardised) autoregressive innovations "�t =

(yt � ��t � a�t;1yt�1)

�1
�t
as  2t = 0:18 + 0:2("

�
t�1 � 0:9)2 + 0:6 2t�1.

1c conditionally homoskedastic Ar(1) processes within regimes with the same means, variances

and constant transition matrix as under the null but with asymmetric Student t innovations

within regimes whose shape parameters are �0 = �1 = 1=12, b0 = �5 and b1 = 5 (see Mencía

and Sentana (2012) for details).

1d conditionally homoskedastic Gaussian Ar(1) processes within regimes in which two univari-

ate logit models that depend on the single strictly exogenous regressor zt determine the

transitions between regimes, with �21;1 = �2, �22:1 = 2, and �21;2 = �22;2 = 0:5.

We report the Monte Carlo rejection rates in Table 2. Under incorrect speci�cation, we �nd

non-negligible power against alternatives 1a to 1c. Still, some components of the IM test are better

suited than others to detect speci�c alternatives. For example, the heteroskedasticity component

of the IM test is good at detecting Gqarch e¤ects (see Panel B) while the asymmetry and kurtosis

ones capture non-normality (see Panel C). As expected, the test based on the autocorrelation of

the scores is the most powerful under misspeci�ed conditional mean dynamics, but the cross-

model component of the IM test is almost on par with it despite the fact that none of its in�uence
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functions targets neglected serial correlation. Unfortunately, all tests struggle to detect time-

variation in the transition probabilities when the estimated model assumes that they are constant,

which is not surprising given that none of them involve zt.

We provide some additional insights by looking at the median of the maximum likelihood

estimators and their Monte Carlo interquartile ranges (IQRs) under incorrect speci�cation. As can

be seen in Table 3, power is intimately related to the extent of the inconsistencies in the parameter

estimators. For example, the results in Panel D show that the low power of the tests to detect

covariate-dependent transitions may be partly the result of the fact that the conditional mean

and variance parameters of both regimes appear to be consistently estimated despite incorrectly

assuming a constant transition probability (see Pouzo, Psaradakis and Solá (2024)).

For the model without dynamics within regimes in which two univariate logit models that

depend on the single strictly exogenous regressor zt determine the transitions between regimes,

we consider the following misspeci�ed alternatives:

2a conditionally homoskedastic GaussianAr(1) processes within regimes with a1;1 = a2;1 = 0:2,

but the same covariate-dependent transition matrix as under the null

2b conditionally Gaussian serially uncorrelated Gqarch(1,1) processes as in 1b and the same

parameters and covariate-dependent transition matrix as under the null

2c asymmetric Student t innovations as in 1c with the same parameters and covariate-dependent

transition matrix as under the null

2d no dynamics within regimes with a transition matrix that depends on zt when this variable

is predetermined instead of strongly exogenous. Speci�cally, we allow for contemporaneous

correlation between the shocks driving yt within each regime and the shocks driving zt by

simulating yt = ��t + 
�t(�t + ��t), with �t � i:i:d: N [0; (1 + �2)�1], � = :8 as in PPS, and

�t the standardised residuals from the autoregression of the slope of the term structure on

a constant and its �rst four lags.

We report the results of this second set of power experiments in Table 4. In this case, the

cross-model component of the IM test is the best at detecting misspeci�ed conditional mean dy-

namics (Panel A), while the (conditional and unconditional) skewness and kurtosis components

detect non-normality of the innovations (Panel C). Somewhat surprisingly, the test based on the

autocorrelation of the scores is better than the conditional heteroskedasticity test for detecting

misspeci�ed conditional variance dynamics, even though they both exploit the non-zero autocor-

relation of the square observations (Panel B). All tests have a hard time in detecting failure of
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regressor strict exogeneity, with the exception of the cross-model component, which has nonnegli-

gible power in the larger samples (Panel D). In turn, the MN logit heteroskedasticity component

of the IM test has very little power for all these alternatives. Finally, the median parameter

estimates and IQRs in Table 5 con�rm that power is intimately related to the extent of the

inconsistencies in the parameter estimators, as in the �rst set of power experiments.

The last set of power experiments correspond to the general model with conditionally ho-

moskedastic Gaussian Ar(1) processes within regimes in which two univariate logit models that

depend on the single strictly exogenous regressor zt determine the transitions between regimes.

We consider the following alternatives:

3a conditionally homoskedastic Gaussian Ar(2) processes as in 1a and the same parameters

and covariate-dependent transition matrix as under the null

3b conditionally Gaussian Ar(1)-Gqarch(1,1) processes as in 1b and 2b and the same para-

meters and covariate-dependent transition matrix as under the null

3c conditionally homoskedastic Ar(1) processes with asymmetric t innovations as in 1c and 2c

and the same parameters and covariate-dependent transition matrix as under the null

3d conditionally homoskedastic Gaussian Ar(1) processes within regimes with a transition

matrix that depends on zt when this variable is predetermined instead of strongly exogenous.

Once again, we allow for contemporaneous correlation between the shocks driving yt within

each regime with the shocks driving zt by simulating yt = ��t + a�t;1yt�1 + 
�t(�t + ��t),

with the remaining details as in 2d.

We report the Monte Carlo rejection rates in Table 6. In this case, all tests have some power

against predetermined regressors, especially for the larger sample size. Misspeci�ed conditional

mean dynamics is mostly detected by the cross-model component of the IM test, and especially

the serial correlation test for the scores. As in Table 2, the heteroskedasticity test is again the

best at detecting Gqarch dynamics in the conditional variance, while the skewness and kurtosis

components of the IM test are unsurprisingly best for capturing departures from normality. Once

more, the results in Table 7 con�rm the close connection between parameter inconsistencies and

test power.

In summary, our simulation exercises con�rm the need for �nite sample size adjustments

under correct speci�cation, with the simple parametric bootstrap procedure achieving rather

accurate sizes. We also �nd that the IM test has nonnegligible power against several empirically

relevant alternatives, with some components better suited than others to detect speci�c forms of
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speci�cation failure. It is precisely this diversity in the responses of the IM test components what

provides very useful guidance to identify the possible causes of misspeci�cation.

4 Empirical illustration

As an illustration of their theoretical results, PPS investigate the potential contribution of

the spread between the rates of the 10-year Treasury note and the 3-month Tbill in predicting

regime changes in US real output growth. To do so, they obtained quarterly data for the period

1954:3-2009:2 from the FRED database for interest rates. Then, they estimated a two-regime

Markov switching model for GDP growth that postulates univariate conditionally homoskedastic

Gaussian Ar(4) processes within each regime with di¤erent intercepts but common autoregressive

coe¢ cients and residual variances, together with two univariate logit models for the transition

probabilities that depend on the term spread as the single regime-change predictor. Although

PPS also considered joint maximum likelihood estimators of an augmented model that postulates

another univariate Ar(4) process for the term spread regressor, we focus on what they call par-

tial maximum likelihood estimator, which treats the predictor variable as strongly exogenous by

implicitly assuming no correlation between its innovations and the innovations in GDP growth.

We are able to practically replicate the parameter estimates in PPS, with some very mi-

nor di¤erences due to slightly di¤erent initialisation conditions for the �lter. However, we need

to modify our tests to take into account the restriction that the autoregressive coe¢ cients and

residual variances are common across regimes. Although the modi�cation is relatively straight-

forward thanks to the chain rule for �rst- and second-order derivatives, the interpretation of the

components of the tests related to the autoregressive coe¢ cients and their degrees of freedom

are di¤erent. To improve the reliability of the parametric boostrap-based p-values, we consider

B = 9999 simulations.

Looking at the various components of the IM test, we are unable to reject the null hypothesis

of correct speci�cation of the two logit models, or the conditional and unconditional symmetry

and platykurtosis of the innovations in the autoregressive process. In contrast, we �nd some weak

evidence against the lack of correlation between the levels and squares of those innovations and

the generalised residuals of the two logit models (p-value = 7:68%), and much stronger evidence

against the null of conditional homoskedasticity of the Ar(4) innovations (p-value = 0:91%).

When we consider all those components together, we �nd that the p-value of the joint IM test is

3.82%. We interpret our results as suggestive evidence that the autoregressive coe¢ cients may in

fact be regime-speci�c rather than common.
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5 Directions for further research

The model we have considered in this paper may be excessively general for some purposes.

For example, an empirical researcher might have good reasons to restrict some elements of bk

or 
k to be common across regimes. As we explained in the empirical application in section

4, the usual chain rules for �rst and second derivatives would immediately yield the relevant

in�uence functions for the IM test and their asymptotic covariance matrices in those restricted

models. Similarly, in models with three or more regimes, it may be sensible to assume that the

transition matrix is tridiagonal so that the state variable can only move to adjacent regimes, in

which case the e¤ective dimension of the multinomial models for each of the columns will be

reduced. Alternatively, one could consider a dynamic ordered logit model that determines the

current regime as a function of a dynamic latent variable and some strongly exogenous regressors,

as in Chang, Choi and Park (2017) (see Duekker, Solá and Spagnolo (2007) for a closely related

proposal).

Another straightforward extension of our test would be to consider the joint model for yt and

zt proposed by PPS and used in some of our Monte Carlo simulations, in which the determinants

of the transition matrix probabilities follow an autoregressive process whose shocks are correlated

to the shocks to the observed variables within each regime. Such a test would add the in�uence

functions for the observed Var(1) process for zt discussed in section 2.3 together with some

additional in�uence functions related to the correlation between the shocks. Similarly, we could

consider models in which in addition to the recurrent regimes, there is a one-o¤ structural break,

as in Ravn and Solá (1999) or Psaradakis and Solá (2024).

In fact, the IM tests considered in this paper can be extended to a much wider class of

dynamic state space models with discrete and continuous latent variables that are routinely used in

macroeconometric and empirical �nance applications, including linear and non-linear models with

stochastic volatility and non-Gaussian shocks, as long as they can be written in the incomplete

data framework of Dempster, Laird and Rubin (1978) after a suitable data augmentation. The

main di¤erence would be that numerical techniques, such as Markov chain Monte Carlo or particle

�lters, would often be required for smoothing purposes.
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Appendix

Proofs

Proof or Proposition 1

The multiple sequential cuts on the vector of parameters performed by the additive log-

likelihood decompositions in (8) and (9) allows us to obtain very easily the score vectors, Hessian

matrices, and in�uence functions for the IM test for the each of the K conditional models for yt

given �kt, and each of the K marginal models for �kt. Speci�cally, we can use the expressions for

multivariate regression models in Amengual, Fiorentini and Sentana (2022) to write

sbkt(�) = �kt(IM 
 ��1=20k )fyat�1 
H1t["
�0
kt(bk;
k)]g;

s
kt(�) = �kt
1

2
D0
M (�

�1=20
k 
 ��1=20)DMH2t["

�0
kt(bk;
k)];

where DM is the duplication matrix of order M (see Magnus and Neudecker (2019)), which

con�rms that the scores with respect to bk and 
k are spanned by fyat 
H1t["
�0
kt(bk;
k)]g and

H2t["
�0
kt(bk;
k)]g, respectively. Amengual, Fiorentini and Sentana (2022) also show that the sum

of the outer product of the score and Hessian corresponding to these parameters is spanned by

mbkbkr(�t;yt�1;�) = �ktH2["
�0
kt(bk;
k)]
 vech(yat�1ya0t�1); (A1)

mbk
kr(�t;yt�1;�) = �ktH3["
�0
kt(bk;
k)]
 yat�1; (A2)

m
k
kr(�t;yt�1;�) = H4["
�0
kt(bk;
k)]; (A3)

Since all multivariate Hermite polynomials have a zero conditional mean and a constant con-

ditional variance given yat�1, and they are uncorrelated for di¤erent orders (see e.g. Holmquist

(1996) or Rahman (2017)), one only needs to regress (A1) on H2t["
�0
kt(bk;
k) for those observa-

tions for which �kt = 1 to purge the IM in�uence functions from sampling uncertainty resulting

from the estimation of the mean and variance parameters of the kth regime. Importantly, this re-

sults in the loss of
�
M+1
2

�
degrees of freedom. Intuitively, the sample average of �ktH2["

�0
kt(b̂k; 
̂k)]

is equal to 0 from the �rst order conditions for 
k. Consequently, the information matrix test

that compares the outer product of the score with the Hessian of the Var(1) model for regime

k evaluated at the Gaussian MLE �̂T is asymptotically equivalent under the null hypothesis of

correct speci�cation to the sum of three quadratic forms in the sample averages of (A2), (A3) and

a version of (A1) with vech(yat�1y
a0
t�1) replaced by vech(y

a
t�1y

a0
t�1)�E[vech(yat�1ya0t�1)] which con-

verge in distribution to three independent chi-square random variables whose degrees of freedom

are
�
M+2
3

�
(M + 1),

�
M+3
4

�
and

�
M+1
2

� h (M+1)(M+2)
2 � 1

i
, respectively.
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Similarly, we can use the expressions for multinomial logit models in Amengual, Fiorentini

and Sentana (2025) to show that

s�rj (�t;yt�1;�rj) = �jt�1urj(�t;yt�1;�rj)
 zat�1;

h�rj�rj (�t;yt�1;�rj) = ��jt�1fdiag[prj(yt�1;�rj)]� prj(yt�1;�rj)p0rj(yt�1;�rj)g


zat�1za0t�1;

and

m�rj�rj (�t;yt�1;�rj) = �jt�1(vech[urj(�t;yt�1;�rj)u
0
rj(�t;yt�1;�rj)

�fdiag[pr(ya;�)]� pr(ya;�)p0r(ya;�)g])


vech(zat�1za0t�1);

which gives rise to another K(K�1)(L+1)(L+2)4 in�uence functions for each column of the transition

matrix.

The sequential cuts in (8) and (9) also mean that both the Hessian matrix and the informa-

tion matrix will be block-diagonal between the elements of the mean and variance parameters

of each regime and the multinomial logit parameters characterising each column of the transi-

tion matrix. However, the outer-product of the scores corresponding to those elements are not

necessarily 0, even though their expected value is. While the outer product of [sbkt(�); s
kt(�)]

and [sb`t(�); s
`t(�)] will indeed be 0 for ` 6= k because �kt�`t = 0, and the same is true of the

outer product of s�rj (�t;yt�1;�rj) and s�r`(�t;yt�1;�r`) for ` 6= j because �jt�1�`t�1 = 0 too,

the outer product of �kt[sbkt(�); s
kt(�)] with �jt�1s�rj (�t;yt�1;�rj) will not generally be 0 on

average in the sample when evaluated at the maximum likelihood estimators, which gives rise to

the additional 3KM(M+1)(K�1)(L+1)
2 in�uence functions (14).

Proof or Proposition 2

This is a straightforward application of Proposition 1 in Amengual, Fiorentini and Sentana

(2024a). The only complication arises because ujt is unobserved, but if we express this vector as

(15) and exploit the fact that �kt�`t = I(k = `), we can tediously derive all the expressions in the

statement of the Proposition.
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Table 2: Finite sample rejections rates of the AR(1) dynamics and constant transitions model
under the alternatives

Bootstrap
df T = 250 T = 1; 000

Panel A: Ar(2) dynamics
Joint 16 10.24 47.32
Heteroskedasticity 4 4.80 6.60
Heterocliticity 2 4.08 6.40
Skewness and kurtosis 4 4.68 12.40
Across models 6 19.84 74.72
Scores autocorrelation 8 28.16 93.92

Panel B : Gqarch
Joint 16 3.56 45.56
Heteroskedasticity 4 25.04 79.60
Heterocliticity 2 11.80 50.56
Skewness and kurtosis 4 2.68 31.44
Across models 6 4.24 12.76
Scores autocorrelation 8 15.76 69.36

Panel C : Asymmetric t innovations
Joint 16 22.84 99.32
Heteroskedasticity 4 15.00 15.60
Heterocliticity 2 62.48 95.52
Skewness and kurtosis 4 47.36 99.96
Across models 6 8.12 22.04
Scores autocorrelation 8 15.04 57.76

Panel D : Covariate-dependent transitions
Joint 16 3.16 4.40
Heteroskedasticity 4 4.68 4.00
Heterocliticity 2 4.20 4.04
Skewness and kurtosis 4 4.64 3.96
Across models 6 3.72 4.72
Scores autocorrelation 8 4.96 5.04

Notes: Monte Carlo empirical rejection rates at 5% signi�cance level based on 2,500 replications. Rejection
rates based on a parametric bootstrap procedure in which we simulate B = 99 samples from the model
estimated under the null. See section 3 for details about the DGPs.
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Table 3: Parameter estimators of the AR(1) dynamics and constant transitions model

Parameter �1 �2 a1;1 a2;1 
1 
2 p q

Panel 0 : Null hypothesis
True Values 1.00 -1.00 0.90 0.90 1.00 1.00 0.76 0.93

Median (T = 1; 000) 1.00 -1.01 0.90 0.90 0.99 1.00 0.76 0.93
IQR (T = 250) 0.38 0.26 0.06 0.03 0.19 0.09 0.12 0.04
IQR (T = 1; 000) 0.17 0.12 0.03 0.02 0.10 0.05 0.06 0.02

Panel A: Ar(2) dynamics
Median (T = 1; 000) 1.18 -1.13 0.93 0.92 1.00 0.99 0.78 0.93
IQR (T = 250) 0.37 0.27 0.05 0.03 0.16 0.09 0.08 0.04
IQR (T = 1; 000) 0.17 0.13 0.02 0.01 0.08 0.05 0.04 0.02

Panel B : Gqarch
Median (T = 1; 000) 1.06 -0.93 0.88 0.91 0.92 0.96 0.74 0.93
IQR (T = 250) 0.33 0.22 0.06 0.04 0.27 0.17 0.13 0.04
IQR (T = 1; 000) 0.14 0.11 0.03 0.02 0.14 0.09 0.06 0.02

Panel C : Asymmetric t innovations
Median (T = 1; 000) 1.27 -0.86 0.89 0.91 0.66 1.07 0.75 0.95
IQR (T = 250) 0.35 0.23 0.05 0.03 0.22 0.16 0.11 0.03
IQR (T = 1; 000) 0.15 0.12 0.02 0.02 0.11 0.09 0.06 0.01

Panel D : Covariate-dependent transitions
Median (T = 1; 000) 1.00 -1.02 0.90 0.90 0.99 1.00 0.80 0.93
IQR (T = 250) 0.33 0.24 0.06 0.03 0.18 0.09 0.10 0.04
IQR (T = 1; 000) 0.14 0.12 0.02 0.01 0.08 0.04 0.05 0.02

Notes: Monte Carlo medians and interquantile ranges of parameter estimators. See section 3 for details
about the DGPs.
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Table 4: Finite sample power properties: White noise, covariate-dependent transitions

Bootstrap
df T = 250 T = 1; 000

Panel A: Ar(1) dynamics
Joint 26 64.56 100.00
Skewness and kurtosis 4 13.36 65.84
MNL heteroskedasticity 6 2.32 4.56
Across models 16 78.28 100.00
Scores autocorrelation 8 38.72 100.00

Panel B : Gqarch
Joint 26 1.44 9.72
Skewness and kurtosis 4 2.32 37.60
MNL heteroskedasticity 6 2.48 4.16
Across models 16 4.68 12.24
Scores autocorrelation 8 14.24 76.88

Panel C : Asymmetric t innovations
Joint 26 14.68 99.64
Skewness and kurtosis 4 93.04 100.00
MNL heteroskedasticity 6 2.40 4.08
Across models 16 7.28 16.24
Scores autocorrelation 8 4.68 10.80

Panel D : Predetermined regressors
Joint 26 4.20 20.08
Skewness and kurtosis 4 3.20 13.84
MNL heteroskedasticity 6 2.24 5.68
Across models 16 8.64 45.16
Scores autocorrelation 8 8.72 20.96

Notes: Monte Carlo empirical rejection rates at 5% signi�cance level based on 2,500 replications. Rejection
rates based on a parametric bootstrap procedure in which we simulate B = 99 samples from the model
estimated under the null. See section 3 for details about the DGPs.
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Table 5: Parameter estimators: White noise, covariate-dependent transitions

Parameter �1 �2 
1 
2 �21;1 �21;2 �22;1 �22;2

Panel 0 : Null hypothesis
True Value 10.00 -10.00 2.29 2.29 -2.00 0.50 2.00 0.50

Median (T = 1; 000) 10.00 -10.00 2.29 2.29 -2.01 0.51 2.00 0.50
IQR (T = 250) 0.40 0.22 0.28 0.17 0.73 0.43 0.56 0.35
IQR (T = 1; 000) 0.20 0.11 0.14 0.08 0.36 0.20 0.27 0.17

Panel A: Ar(1) dynamics
Median (T = 1; 000) 11.31 -12.12 3.02 2.62 -2.01 0.51 2.00 0.50
IQR (T = 250) 0.61 0.30 0.41 0.21 0.72 0.43 0.56 0.35
IQR (T = 1; 000) 0.30 0.16 0.20 0.10 0.35 0.19 0.26 0.17

Panel B : Gqarch
Median (T = 1; 000) 10.00 -10.00 2.26 2.26 -2.01 0.51 2.00 0.50
IQR (T = 250) 0.39 0.22 0.54 0.36 0.73 0.42 0.55 0.35
IQR (T = 1; 000) 0.20 0.12 0.28 0.19 0.36 0.20 0.27 0.17

Panel C : Asymmetric t innovations
Median (T = 1; 000) 10.06 -9.99 2.11 2.29 -1.98 0.50 1.99 0.50
IQR (T = 250) 0.38 0.23 0.38 0.32 0.70 0.43 0.54 0.34
IQR (T = 1; 000) 0.18 0.11 0.19 0.17 0.34 0.20 0.26 0.16

Panel D : Predetermined regressors
Median (T = 1; 000) 10.02 -10.02 2.57 2.18 -2.02 0.53 1.95 0.53
IQR (T = 250) 0.38 0.19 0.41 0.17 0.72 0.43 0.54 0.35
IQR (T = 1; 000) 0.19 0.10 0.20 0.09 0.35 0.19 0.26 0.17

Notes: Monte Carlo medians and interquantile ranges of parameter estimators. See section 3 for details
about the DGPs.
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Table 6: Finite sample power properties: AR(1) dynamics, covariate-dependent transitions

Bootstrap

df T = 250 T = 1; 000

Panel A: Ar(2) dynamics
Joint 40 6.24 36.44
Heteroskedasticity 4 5.04 5.32
Heterocliticity 2 4.00 5.60
Skewness and kurtosis 4 5.08 12.12
MNL heteroskedasticity 6 2.72 5.36
Across models 24 12.48 54.16
Scores autocorrelation 10 27.56 93.44

Panel B : Gqarch
Joint 40 2.68 21.44
Heteroskedasticity 4 26.28 77.08
Heterocliticity 2 13.12 48.08
Skewness and kurtosis 4 2.04 34.48
MNL heteroskedasticity 6 3.48 4.96
Across models 24 4.52 11.40
Scores autocorrelation 10 14.80 65.84

Panel C : Asymmetric t innovations
Joint 40 15.00 95.92
Heteroskedasticity 4 13.88 16.52
Heterocliticity 2 61.28 93.84
Skewness and kurtosis 4 55.72 100.00
MNL heteroskedasticity 6 8.60 9.00
Across models 24 11.28 18.56
Scores autocorrelation 10 13.76 46.24

Panel D : Predetermined regressors
Joint 40 7.92 26.96
Heteroskedasticity 4 12.08 25.84
Heterocliticity 2 19.28 52.00
Skewness and kurtosis 4 2.52 27.72
MNL heteroskedasticity 6 2.04 18.56
Across models 24 12.36 41.24
Scores autocorrelation 10 12.72 41.56

Notes: Monte Carlo empirical rejection rates at 5% signi�cance level based on 2,500 replications. Rejection
rates based on a parametric bootstrap procedure in which we simulate B = 99 samples from the model
estimated under the null. See section 3 for details about the DGPs.
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Table 7: Parameter estimators: AR(1) dynamics, covariate-dependent transitions

Parameter �1 �2 a1;1 a2;1 
1 
2 �21;1 �21;2 �22;1 �22;2

Panel 0 : Null hypothesis
True Values 1.00 -1.00 0.90 0.90 1.00 1.00 -2.00 0.50 2.00 0.50

Median (T = 1; 000) 1.00 -1.01 0.90 0.90 0.99 1.00 -2.02 0.52 2.00 0.51
IQR (T = 250) 0.32 0.24 0.06 0.03 0.18 0.09 1.20 0.66 0.80 0.57
IQR (T = 1; 000) 0.14 0.11 0.02 0.01 0.09 0.04 0.52 0.28 0.36 0.24

Panel A: Ar(2) dynamics
Median (T = 1; 000) 1.19 -1.14 0.92 0.92 0.99 0.99 -2.06 0.49 1.99 0.48
IQR (T = 250) 0.33 0.25 0.05 0.03 0.16 0.09 1.00 0.54 0.69 0.49
IQR (T = 1; 000) 0.15 0.12 0.02 0.01 0.08 0.04 0.43 0.24 0.33 0.21

Panel B : Gqarch
Median (T = 1; 000) 1.07 -0.95 0.88 0.91 0.93 0.96 -1.90 0.53 2.01 0.45
IQR (T = 250) 0.28 0.21 0.05 0.03 0.26 0.17 1.09 0.62 0.74 0.51
IQR (T = 1; 000) 0.12 0.11 0.02 0.02 0.13 0.09 0.53 0.29 0.35 0.22

Panel C : Asymmetric t innovations
Median (T = 1; 000) 1.23 -0.89 0.89 0.90 0.69 1.07 -1.76 0.40 2.19 0.64
IQR (T = 250) 0.29 0.22 0.04 0.03 0.21 0.16 1.12 0.63 0.75 0.54
IQR (T = 1; 000) 0.14 0.11 0.02 0.01 0.10 0.08 0.50 0.27 0.35 0.23

Panel D : Predetermined regressors
Median (T = 1; 000) 0.97 -0.98 0.89 0.91 1.13 0.94 -2.65 0.85 1.83 0.71
IQR (T = 250) 0.35 0.23 0.07 0.03 0.23 0.09 1.29 0.70 0.58 0.48
IQR (T = 1; 000) 0.15 0.11 0.03 0.01 0.11 0.05 0.56 0.30 0.26 0.22

Notes: Monte Carlo medians and interquantile ranges of parameter estimators. See section 3 for details
about the DGPs.
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