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Abstract

We present an algorithm for obtaining ϵ-minimax solutions of statistical decision problems.

We are interested in problems where i) the statistician is allowed to choose randomly among I

decision rules, and ii) the statistical model may have a parameter space with infinitely many el-

ements. The minimax solution of these problems admits a convex programming representation

over the (I − 1)-simplex, and the algorithm suggested herein to obtain an ϵ-approximation of

the minimax solution is a version ofmirror subgradient descent, initialized with uniform weights

and stopped after a finite number of iterations. The resulting iterative procedure is known in

the computer science literature as the Hedge algorithm (a particular case of the Multiplicative

Weights update method) and it is used in algorithmic game theory as a practical tool to find

approximate solutions of two-person zero-sum games. We apply the suggested algorithm to

different minimax problems in the econometrics literature. An empirical application to the

problem of optimally selecting sites to maximize the external validity of an experimental policy

evaluation illustrates the usefulness of the suggested procedure.

1 Introduction

Under Wald (1950)’s minimax criterion different statistical decision rules are ranked based on their

worst possible expected loss. Searching for a minimax-optimal decision rule—i.e., a rule with the

∗We would like to thank Karun Adusumilli, Isaiah Andrews, Tim Armstrong, Patrik Guggenberger, Giannis
Fikioris, Kei Hirano, Nicole Immorlica, Lihua Lei, Charles Manski, Guillaume Pouliot, Brenda Quesada Prallon,
Vasilis Syrgkanis, David Shmoys, Sophie Sun, Yiwei Sun, Eva Tardos, Alex Torgovitsky, and Davide Viviano for
helpful feedback, comments, and suggestions. We would also like to thank Rohit Kumar for excellent research
assistance. We gratefully acknowledge financial support from the NSF under grant SES-2315600. First version:
December 5th, 2024.

†Department of Economics, Cornell University.
‡Management Science and Engineering Department, Stanford University.

1



smallest worst-case expected loss—presents two well-known computational challenges. First, eval-

uating the worst-case performance of a given decision rule typically requires optimizing a nonlinear

function (the risk function) over the model’s parameter space. Second, minimizing the worst-case

expected loss over the decision rules under consideration typically requires optimization over a

high-dimensional (and possibly infinite-dimensional) space; for example, all measurable functions

that map the data into actions. It is known that obtaining the minimax solution of a decision

problem—and sometimes even deciding whether a minimax solution exists—is NP hard in general;

see Du and Pardalos (1995); Daskalakis, Skoulakis, and Zampetakis (2021).1

We consider a particular class of decision problems in which the decision maker is restricted to

choose from a menu of I available decision rules, all of which are assumed to have risk between zero

and a known positive constantM . Our motivation is that, while it is always theoretically interesting

to look for the best overall decision rule, there are situations in which it is equally desirable to

“evaluate the performance of relatively simple statistical decision functions that researchers use in

practice” (Dominitz and Manski, 2024) and choose optimally among them. It is known that if

we allow the decision maker to choose randomly among its I options, the corresponding minimax

problem can be viewed as a nonlinear convex optimization problem over the (I − 1)-dimensional

simplex (Chamberlain, 2000). The connection to convex programming is helpful, but is not a

computational panacea: evaluating the objective function of the convex program associated to the

minimax problem could remain computationally costly.2 For instance, if one were to rely on a

textbook mirror descent routine for convex problems in the simplex (Nemirovski and Yudin, 1983;

Bubeck et al., 2015, Chapter 4.3), one would typically need to make infinitely many evaluations of

the objective function (and its subgradient) to guarantee that a minimax solution has been found. If

one is willing to measure the complexity of an iterative first-order algorithm for convex optimization

1See also Montiel Olea, Prallon, Qiu, Stoye, and Sun (2024a) for an example of a minimax problem that is NP
hard but that in practice can be solved to provable (sub)optimality using solvers for linear integer programming.

2As we will explain later, the objective function in the convex program is the worst-case expected loss of any
given random selection over the I decision rules; which, as discussed above requires optimizing a nonlinear function
over the model’s parameter space.
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by the number of calls (or queries) that the procedure makes to the objective function and its

subgradient—as it is done in the popular oracle model of optimization complexity of Nemirovski

and Yudin (1983)—it is thus desirable to search for iterative algorithms that require as fewer queries

as possible.

Our first contribution is to argue—motivated by the oracle complexity framework of Nemirovski

and Yudin (1983)—that it is possible to make substantial progress in solving the general class of

statistical decision problems considered herein if, instead of insisting in finding an exact minimax

solution, we make our goal to find an approximate minimax solution. In particular, we search

for an ϵ-minimax optimal decision rule (Ferguson, 1967, Chapter 1, Definition 4): that is, a rule

that attains the smallest worst-case expected loss, but up to a given additive factor ϵ. Our second

contribution, which we view as our main result, shows that we can provably obtain such an ϵ-

minimax rule by using a mirror subgradient descent routine (with negative entropy as a mirror

map) for convex optimization over the simplex (Theorem 1). The routine is initialized at uniform

weights over the I original decision rules, and the step size is set to be η ≡ ϵ/M2. Importantly, we

show that it suffices to stop the mirror descent routine after T = ⌈2M2 ln(I)/ϵ2⌉ epochs.3 Thus, we

obtain a concrete upper bound on the computational cost of our procedure (in terms of the number

of evaluations of the objective function and its subgradient). The required number of iterations

scales logarithmically on the number of original decision rules, I, which means that the algorithm is

still useful in problems in which I is large. Moreover, we use the results in Ben-Tal, Margalit, and

Nemirovski (2001) to argue that smallest number of epochs required by any iterative, first-order

algorithm for convex optimization over the (I − 1) simplex of a Lipschitz function with constant at

most M (with respect to ∥ · ∥1 norm) is O(1)M2/ϵ2, provided ϵ ≥ M/
√
I. Thus, there is a sense

in which the recommended algorithm, and the suggested number of epochs, achieve the optimal

dependence on M and ϵ, up to the logarithmic factor ln(I).

3⌈·⌉ is the ceiling function: the function that returns the smallest integer that is greater than or equal to a given
number.
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Importantly, the algorithm herein suggested is known in the computer science literature as the

Hedge algorithm (a particular case of the Multiplicative Weights update method); see Section 2.1 in

Arora, Hazan, and Kale (2012). This method is used in problems where a decision maker chooses

randomly among I alternatives repeatedly (an online decision-making problem), but after each

round he obtains a payoff for all of the I available actions.

Contributions: For the sake of exposition, we provide a brief summary of the main contri-

butions that our paper makes to the econometrics literature.

1. We show that it is possible to make substantial progress in solving a general class of statistical

decision problems if, instead of insisting in finding an exact minimax solution, we make our

goal to find an ϵ-minimax solution as defined in Ferguson (1967), Chapter 1, Definition 4.

2. We present theoretical results showing that the Hedge algorithm can be used to obtain an ϵ-

minimax solution in the class of statistical decision problems considered herein. Interestingly,

neither our theoretical results nor our algorithm need to assume that the parameter space of

the statistical model has finitely many elements (or that it has been discretized). Instead,

we assume that we have access to an oracle that can find the point in the parameter space

associated to the worst-case performance of any random selection of the I decision rules. In

other words, we assume that we have access to a computer routine that can solve the inner

part of the minimax problem. We remark that the use of the Hedge algorithm in statistical

decision problems is (to the best of our knowledge) novel. This is rather surprising in light of

the straightforward connection between statistical decision problems and two-person zero-sum

games, and the origins of Multiplicative Weights in iterative dynamics for game play—see the

notion of κ-exponential fictitious play in Fudenberg and Levine (1995) and the references to the

work of Blume (1993) therein. Lastly, it is important to mention that Freund and Schapire

(1999) use the Hedge algorithm to approximately solve the mixed extension of two-person

zero-sum games where both players have finitely many pure strategies. However, for games
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in which one player has an infinitely many pure strategies, some other algorithms have been

suggested in the literature; see, for example, Filar and Raghavan (1982) and our discussion of

related literature below.

3. We illustrate the usefulness of the suggested algorithm by analyzing a simple and stylyzed

binary treatment choice problem with partial identification based on the work of Stoye (2012).

We use this simple, well-known example to compare the output of the Hedge algorithm with

known exact solutions of two types of minimax problems: minimizing worst-case regret and

solving an ex-ante Robust Bayes problem using the class of priors in Giacomini and Kitagawa

(2021). Our analysis of the stylized treatment choice problem in Stoye (2012) shows that, with

an appropriate selection of the I decision rules, the ϵ-minimax decision rule obtained by the

Hedge algorithm is very similar to the exact solutions of the minimax problem that optimizes

over all decision rules. We emphasize, however, that the goal of this paper is not to argue that

when I is large (and ϵ is small) one can approximate the minimax value of a problem that

optimizes over all decision rules. While this can be done under some assumptions (and can be

verified numerically in some of our examples), the computational complexity results of Du and

Pardalos (1995) and Daskalakis et al. (2021) suggest that such an approach will not scale well

(and that there is no approach that does, without imposing additional restrictions). Thus,

if the original minimax problem is defined over infinitely many decision rules, our suggestion

is to change the goalpost by considering a problem that, instead, only optimizes over the

(possibly randomized) choice of I candidate decision rules. As suggested in Dominitz and

Manski (2024), there are some problems in which it is not difficult to think about a few,

relatively simple statistical decision rules that researchers could find attractive. Once that

the goalpost has been changed, one can use our algorithm to obtain an ϵ-minimax solution

for the new problem.

4. Finally, we present an empirical application to the problem of optimally selecting sites to
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maximize the external validity of an experimental policy evaluation. This site selection prob-

lem has been recently introduced in the work of Gechter, Hirano, Lee, Mahmud, Mondal,

Morduch, Ravindran, and Shonchoy (2024). When the policy maker is restricted to select

only one site for experimentation, the output of the Hedge algorithm is a selection probability

for each of the sites available for experimentation. In the empirical application (we provide

further details below), the ϵ-minimax solution is very different to uniform random sampling.

This difference suggests that selecting uniformly at random where to experiment need not

always maximize the external validity of an experimental policy evaluation.

Related Literature: Different algorithms have been suggested for approximating the so-

lutions of minimax problems like the ones considered in this paper. Some classical references in-

clude Troutt (1978); Filar and Raghavan (1982); Kempthorne (1987); Chamberlain (2000); Elliott,

Müller, and Watson (2015). One important difference between our work and this existing literature

is that—once a desired approximation error ϵ has been selected, and once the bound M on the

risk function has been obtained—there are no further inputs that the user needs to specify in order

to run the algorithm. This means that we are explicit about the number of iterations, step size,

and also the initial condition. Importantly, we are able to guarantee that, upon termination after

finitely many rounds, the algorithm provably generates an ϵ-minimax rule—in the sense of Ferguson

(1967)—provided our assumptions are satisfied. This is possible because the rich literature studying

the Hedge algorithm (and Multiplicative Weights more broadly) and also the literature on convex

optimization has explicit performance guarantees for the algorithm at any given iteration.4

Relatedly, there is also recent interest in approximating the solution of minimax problems in

which the strategies for both the statistician and nature are parameterized via neural networks, with

4In this sense, one could say that our work follows closely the literature on convergence analysis in convex
optimization; see, for example, the work of Nemirovski and Yudin (1983). This means that we try to be as explicit as
we can on the computational resources that we can credibly rely on (in our case, an oracle that finds the worst-case
point in the parameter space for a given decision rule) and then we try to make use of these computational resources
as efficiently as possible (in our case, this means that we attempt to call the available oracle as infrequently as
possible to obtain an approximation).
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weights that are updated iteratively using versions of what is called subgradient ascent-descent ; see

the recent work of Luedtke, Carone, Simon, and Sofrygin (2020) and also Luedtke, Chung, and

Sofrygin (2021). These algorithms where two players use subgradient descent are similar to the ap-

proaches used when optimizing Generative Adversarial Networks (GANs); see, for example, Kaji,

Manresa, and Pouliot (2023). These subgradient ascent-descent algorithms are also commonly used

to approximate the equilibrium of two-person zero-sum games by invoking simultaneous no-regret

dynamics; see, for example, Section 3.1 in Lewis and Syrgkanis (2018) and the references therein.

Convergence rates for these subgradient ascent-descent algorithms, as well some performance guar-

antees for a finite number of iterations, are available under some conditions. It is known, however,

that the (approximate) stationary points of these gradient ascent-descent algorithms are not neces-

sarily ϵ-minimax strategies. Instead, they are close to what the literature refers to as local min-max

solutions; see the seminal work of Daskalakis et al. (2021). As we discuss in the conclusion, it would

be interesting to further explore the differences between ϵ-minimax strategies and the notion of a

local min-max point.

Empirical Application: In our main application, we study the site selection problem in

Gechter et al. (2024) and Egami and Lee (2024). Broadly speaking, a policy maker wishes to

experimentally evaluate the effects of a new policy, with the end goal of recommending its imple-

mentation on a set of different sites. There are two types of sites: policy-relevant and experimental

sites. There are also covariates Xs ∈ Rd available for each site. The site selection problem asks the

following question: if the policy maker can pick at most k experimental sites, what are the sites

that optimize external validity?

Two recent papers have provided an answer to this question. Gechter et al. (2024) use an

elegant decision-theoretic framework to recommend a nonrandomized selection of sites with the

goal of maximizing the average welfare of the policy maker. Montiel Olea et al. (2024a) use the

framework of Gechter et al. (2024) to show that, under some conditions, selecting the k-sites with

the most representative covariates (in a sense they make precise) is minimax (welfare) regret optimal
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(restricting the policy maker to consider only nonrandomized selection of sites).

We obtain these two recommendations in the specific context of the selection of candidate migra-

tion corridors for conducting randomized evaluations in Bangladesh. We assume that a hypothetical

policy maker is interested in selecting only one site to evaluate an encouragement design where poor

rural households with family members who had migrated to a larger urban destination receive a

30–45 minute training about how to register and use a mobile banking service to send instant remit-

tances back home; see Lee, Morduch, Ravindran, Shonchoy, and Zaman (2021) and Gechter et al.

(2024).

The site selected based on average welfare and minimax (welfare) regret is not the same. We

consider both of them—along with an experimental site where the encouragement design of interest

has already been experimentally evaluated—to give the policy maker three concrete decision rules

(I = 3). We then let the policy maker choose randomly over them to determine where to experiment

in order to minimize worst-case regret. We note that although, in general, randomly choosing

where to experiment could be viewed as contrived, the randomized selection of experimental sites

is typically thought of as the first-best in applied work. For instance, Duflo, Glennerster, and

Kremer (2007) note that “the external validity of randomized evaluations for a given population

(say, the population of a country) would be maximized by randomly selecting sites and, within these

sites, by randomly selecting treatment and comparison groups.”5 In this application, the parameter

space consists of functions that control the treatment effect heterogeneity across sites. We impose a

Lipschitz constraint on these functions (we provide details later), and consider the worst-case regret

over this space.

The two main lessons from our application are the following. First, choosing uniformly at random

where to experiment does not tend to be ϵ-minimax optimal. Instead, the ϵ-minimax solution seems

to adjust the probability of sampling a site based on its baseline covariates. For instance, in our

5Although they remark that this is almost never done because “randomized evaluations are typically performed
in ‘convenience’ samples, with specific populations.”
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application the experimental site whose covariates are closest (on average) to the covariates of the

policy-relevant sites is sampled with the highest probability. Second, there seem to be some cases

(for example, when one experimental site is closest to each of the policy-relevant sites) in which the

ϵ-minimax solution places almost probability one such a site. This suggests that maximizing the

external validity of a randomized evaluation need not be accomplished by randomly selecting sites.

Instead, it is possible that using baseline covariates, experimenting on the most representative site

could be useful for policy purposes. Our approach thus provides an algorithm for deciding how to

randomly select sites to optimize external validity, taking into account information about baseline

covariates.

Outline: The rest of the paper is organized as follows. Section 2 introduces notation, main

assumptions, and presents the convex programming representation of the minimax problems ana-

lyzed herein. Section 3 defines an ϵ-minimax decision rule and presents the algorithm. Section 4

applies the algorithm to two illustrative examples that involve solving treatment choice problems

with partial identification. Our algorithm is the used to solve for ϵ-minimax regret optimal rules;

but we also argue that it can be applied to solve other minimax problems, such as (ex-ante) Robust

Bayes analysis with the priors suggested by Giacomini and Kitagawa (2021). Section 5 presents the

main application. Section 6 discusses some extensions. Section 7 concludes.
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2 Minimax Problems

2.1 Notation

A decision maker must choose an action a that belongs to some set A. Prior to choosing the action,

he observes data: the realization of a random variable X taking values in a set X . A data-driven

choice of action is summarized by a decision rule: a mapping from data to actions, which is herein

denoted by the function d : X → A.

It is common to allow the decision maker to consider every (measurable) function d as a decision

rule. However, we restrict our analysis to the case in which the decision maker only considers I

decision rules that belong to the finite set D ≡ {d1, . . . , dI}. Our motivation is that, while it is

always theoretically interesting to look for the best overall decision rule, there are situations in which

it is equally desirable to “evaluate the performance of relatively simple statistical decision functions

that researchers use in practice” (Dominitz and Manski, 2024) and choose optimally among them.

An important aspect of our analysis is that we allow the decision maker to choose randomly

from the set of decision rules D and we represent such a random choice by an element in the I − 1

simplex:

∆(D) ≡

{
(p1, ..., pI) ∈ RI

∣∣∣∣∣
I∑

i=1

pi = 1, pi ≥ 0

}
.

It is well known that allowing the decision maker to choose randomly is usually to his advantage.6

Moreover, there are two additional reasons why we would like to allow for the possibility of ran-

domization. The first one is that in the main application we will consider in the paper (the site

selection problem described in Section 5), the random choice of experimental sites is viewed as the

default practice in applied work. The second reason is that, as we will explain in Section 3 (Remark

6Consider a “matching pennies” game with two players, each with two actions: left and right. Suppose that
column player gets M when matched and −M when unmatched. If neither player is allowed to choose actions
randomly, the worst-case payoff obtained by the column player is −M regardless of the action chosen. If the column
player can randomize, but the row player cannot, the worst-case payoff for the column player if he chooses each
action at random with probability 1/2 is zero.
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4), allowing for random choice of actions can reduce the computational burden of selecting a good

decision rule.

A risk function is used to summarize the performance of each decision rule di ∈ D. This

performance is contingent on the data generating process, which we parameterize by an element

θ belonging to some space Θ. Thus, we write the risk function of each decision rule d ∈ D as a

mapping R : D ×Θ → R. We refer to θ as a parameter, and to Θ as the parameter space. We are

particularly interested in the case in which Θ is an infinite set; for example, when Θ equals all of

Rd. We also want to allow for the possibility that each element in the parameter space is an infinite

dimensional object (for example, when θ itself is a function). We impose the following assumption

on the risk function:

Assumption 1. There exists a known constant 0 < M < ∞ such that for any d ∈ D and θ ∈ Θ,

0 ≤ R(d, θ) ≤ M .

In Section 4 we explain how this assumption can be verified for each of the illustrative examples

we consider. We view Assumption 1 as a minimal regularity condition for the minimax problem

to be well-behaved. We also note that the assumption holds if each of the I decision rules under

consideration has a finite worst-case risk.

In a slight abuse of notation, we extend the original domain of the risk function—which was

defined over decision rules in D—to all possible random selections in ∆(D). We do this by defining,

for any p ∈ ∆(D) and θ ∈ Θ, the function:

R(p, θ) ≡
I∑

i=1

piR(di, θ). (1)

We view a decision problem as a triplet (D,Θ, R(·, ·)) and we define the “minimax value” of the

decision problem as the scalar

v̄ ≡ inf
p∈∆(D)

sup
θ∈Θ

R(p, θ). (2)
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A random selection p∗ ∈ ∆(D) is said to be a minimax decision rule if

sup
θ∈Θ

R(p⋆, θ) = v̄. (3)

The use of the minimax criterion as a solution concept in statistical decision problems is traditional,

dating back to Wald (1950). Manski (2021) argues that the primary challenge to use the minimax

criterion and Wald (1950)’s statistical decision theory is computational.

2.2 Exact minimax solutions via convex programming

We first show that the minimax solution of the decision problems considered in this paper can be

computed via convex programming. This observation is based on an analogous result in Chamberlain

(2000); see Equation 5, p. 630, and the discussion therein. The argument is as follows. For

p ∈ ∆(D), define the nonlinear function

f(p) ≡ sup
θ∈Θ

R(p, θ). (4)

This function is the upper envelope—over all possible values in the parameter space—of the risk of

p.

Lemma 1. Suppose Assumption 1 holds. The function f : ∆(D) → R is convex and Lipschitz

continuous w.r.t. ∥ · ∥1 (with constant at most M). Furthermore, fix an arbitrary p0 ∈ ∆(D). If

there exists θ0 ∈ Θ such that R(p0, θ0) = f(p0), then the vector g0 in RI given by

g0 ≡ (R(d1, θ0), . . . , R(dI , θ0))
⊤. (5)

is a subgradient of f at p0.
7

7If f : ∆(D) → R is convex, a vector g0 is said to be a subgradient of f at a point p0 if f(p) ≥ f(p0)+g⊤0 (p−p0),∀p ∈
∆(D). See pp. Rockafellar (1970) 214-215.
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Proof. The convexity of f(·) follows from Chamberlain (2000). The Lipschitz continuity follows

from the definition of f(·). We provide a detailed proof in Appendix A.1.

Lemma 1 shows that solving the minimax problem in (2) can be viewed as a nonlinear convex

program over the (I − 1) simplex. A popular routine for solving this type of convex optimization

problems is the mirror descent method of Nemirovski and Yudin (1983). We briefly describe a

textbook version of this routine (Bubeck et al., 2015, Section 4.3, p. 301). To make sure that the

subgradient is well defined, we make the following assumption.

Assumption 2. For any p ∈ ∆(D), there exists θp ∈ Θ such that

I∑
i=1

piR(di, θp) = sup
θ∈Θ

I∑
i=1

piR(di, θ).

The assumption says that for any p ∈ ∆(D) it is possible to find an element θp such that

R(p, θp) = f(p). This means that there is an algorithm that is capable to i) evaluate the function

f(p) and to ii) find a maximizer that evaluates to f(p).

Assumption 2 also imposes substantial regularity to search for a “worst-case” parameter in the

parameter space, and requires that worst-case risk is attained. Later we discuss the extent to which

this assumption can be relaxed, by requiring that we can get a δ-approximation to f(p). See Remark

3.

Mirror Descent Routine: The following is a typical mirror descent routine for finding the

minimum of (4) over the simplex ∆(D).8 Initialize w0 ∈ RI to be the vector that contains ones in

all of its entries. We will denote such vector by 1. Fix a step-size η > 0. For every t ∈ N:
8The routine is taken from Bubeck et al. (2015) (Section 4.3, p. 301), where the mirror map is chosen to be the neg-

ative entropy ϕ(x) =
∑n

i=1 xi log xi, the routine∇ϕ(xt+1) = ∇ϕ(xt)−η∇f(xt) becomes xt+1,i = xt,i exp(−η∇f(xt)i).
We simply adjust the notation to our problem.
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1. Set

ϕt ≡ 1⊤wt−1

=
I∑

i=1

wi,t−1.

2. Obtain a point pt ∈ ∆(D) by computing for each = 1, . . . , I:

pi,t ≡
wi,t−1

ϕt

.

3. Given pt = (p1,t, ..., pI,t)
⊤ ∈ ∆(D), find θt ∈ Θ such that

I∑
i=1

pi,tR(di, θt) = sup
θ∈Θ

I∑
i=1

pi,tR(di, θ).

Such a point in the parameter space exists by Assumption 2.

4. Define the vector

gt ≡ (R(d1, θt), . . . , R(dI , θt))
⊤.

By Lemma 1, this vector is a subgradient of f at pt if Assumption 2 holds.

5. Update the weights wt−1 with the coordinate-by-coordinate multiplicative rule:

wi,t ≡ wi,t−1 · exp (−η gi,t) .

Under this mirror descent routine, the vector pt gets updated as pi,t+1 = wi,t/ϕt+1. The mirror

descent routine typically uses (1/T )
∑T

t=1 pt (and not the last p obtained in the iteration) as the

approximate minimizer.

We note that the connection to convex programming is helpful, but should not be viewed

14



as a computational panacea. Evaluating the objective function of the convex program and its

subgradient could remain computationally costly. Verifying Assumption 2 requires optimizing a

nonlinear function over the model’s parameter space. As noted above, the solution of such nonlinear

optimization problem is used to evaluate the subgradient of the objective function f(p). It is known

that the rate of convergence of mirror descent for convex problems in the simplex improves over

regular subgradient descent (Bubeck et al., 2015, Section 4.3). However, in order to guarantee that

a minimax solution has been found one would typically need to run the routine above for infinitely

many epochs. This could be computational costly if one needs to fulfill Assumption 2.

Moreover, the use of (nonlinear) convex programming to find exact minimax solutions of general

decision problems might mean that, in some cases, one incurs in a higher computational cost than

needed. For example, there are some classical results in the game theory literature (Dantzig, 1951;

Adler, 2013; Owen, 2013, Section III.1, p. 36) that show that when Θ has finitely many elements,

it is possible to express the minimax problem in (2) as a linear program. It is possible to show

that every minimax problem where the statistician chooses randomly among I alternatives can be

expressed as a linear program in I + 1 variables with as many constraints as elements in Θ (even

if Θ has infinitely many elements). This suggests that, if one is willing to make more assumptions,

there might be better algorithms for solving the minimax problems of interest. There might also

be better algorithms to find an ϵ-minimax decision rule; see, for example, Section 5.2, p. 317 of

Bubeck et al. (2015).

3 Approximate Solutions for Minimax Problems

Computing the exact minimax rule of a decision problem could be computationally costly. This sec-

tion presents a definition of an approximate minimax solution, and an off-the-shelf implementation

of mirror descent—used routinely in different areas of computer science and machine learning—to

finding it.
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3.1 ϵ-Minimax Decision Rules

Definition 1. [Ferguson (1967), p. 44] A random selection p⋆ϵ ∈ ∆(D) is an “ϵ-minimax” decision

rule for the decision problem (D,Θ, R(·, ·)) if

sup
θ∈Θ

R(p⋆ϵ , θ) ≤ inf
p∈∆(D)

sup
θ∈Θ

R(p, θ) + ϵ = v̄ + ϵ.

We note that the risk of an ϵ-minimax decision rule is smaller—up to an additive factor of size

ϵ—than the worst-case risk of any other decision rule. That is:

R(p⋆ϵ , θ) ≤ sup
θ∈Θ

R(p, θ) + ϵ, ∀θ ∈ Θ, ∀p ∈ ∆(D).

The definition of a minimax decision rule further implies that

v̄ ≤ sup
θ∈Θ

R(p⋆ϵ , θ) ≤ v̄ + ϵ.

3.2 Hedge Algorithm for finding ϵ-Minimax Rules

In this section, we show that running the mirror descent routine described in Section 2.2 can be

used to provably find ϵ-minimax solutions for the decision problems herein considered. To be more

explicit, consider the following pseudocode for mirror descent, but stopped after T epochs.

Our concrete suggestion is to set the step size to η ≡ ϵ/M2 and to stop the routine after

T = ⌈2M2 ln(I)/ϵ2⌉ epochs. This routine is known as the Hedge Algorithm (a particular case of the

Multiplicative Weights update method). The Multiplicative Weights update method is a popular

algorithm in computer science that has found different applications in machine learning; see Arora

et al. (2012). The specific version of the Multiplicative Weights algorithm used in this paper uses an

exponential function of each of the coordinates of the gradient to update the weights and is known

as the Hedge algorithm. See Section 2.1 in Arora et al. (2012).
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Algorithm 1 Mirror Descent, stopped after T epochs (a.k.a. Hedge algorithm).

1: Input: Step-size η > 0; and number of epochs T ∈ N.
2: Initialize w0 ∈ RI by setting wi,0 = 1 for all i ∈ {1, . . . , I}.
3: for t = 1, 2, . . . do
4: Compute ϕt :=

∑I
i=1wi,t−1

5: For each i ∈ {1, . . . , I}, compute

pi,t :=
wi,t−1

ϕt

6: Find θt ∈ Θ such that

θt := arg sup
θ∈Θ

I∑
i=1

pi,tR(di, θ)

7: Define the vector
gt := (R(d1, θt), . . . , R(dI , θt))

⊤

8: Consider the multiplicative weights update:

wi,t := wi,t−1 · exp(−η · gi,t)

9: end for

For any nonnegative real number x, let ⌈x⌉ denote the “ceiling function”; that is smallest integer

larger than x. Our main result is the following.

Theorem 1. Suppose Assumptions 1-2 hold. If ϵ ≤ M , η ≡ ϵ/M2, and T ≡ ⌈2M2 ln(I)/ϵ2⌉, then

the random choice of decision rules that assigns probability

pϵi ≡
1

T

T∑
t=1

pi,t

to each decision rule di—where pt corresponds to the t-th iteration of the mirror descent routine in

Algorithm 1—is ϵ-minimax in the sense of Definition 1. Moreover

v̄ϵ ≡ 1

T

T∑
t=1

(
I∑

i=1

pi,tR(di, θt)

)
,

where θt corresponds to “nature’s best response” in the t-th iteration of the mirror descent routine
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in Algorithm 1, is an ϵ-approximation to v̄: that is, v̄ ≤ v̄ϵ ≤ v̄ + ϵ.

Proof. We present two different proofs of Theorem 1. First, in Appendix A.2 we adapt (and

extend) the results in Arora et al. (2012) concerning the use of the Hedge algorithm to approximate

the minimax solution of two-player zero-sum games where both players have finitely-many pure

strategies. In adapting and extending their results, we improve the number of epochs by a factor of

two. Second, in Appendix A.3 we apply results from the convex optimization literature regarding

the general convergence analysis of mirror descent available; in particular, we use Theorem 4.2 from

Bubeck et al. (2015).

Theorem 1 presents a concrete computational strategy to approximately solve the statistical

decision problems considered in this paper. The only “tuning” parameter that needs to be chosen

is ϵ, which controls the approximation error. We note that in cases where is difficult to commit to

a value of ϵ explicitly, one can solve for the value of ϵ if there is a specific target for the runtime of

the algorithm and we know the time it takes for each iteration to run.

Theorem 1 shows that the average value of pt (over the T rounds) provides an ϵ-minimax

rule. The theorem also shows that the average worst-case payoff obtained in each round is an

ϵ-approximation to the minimax value of the decision problem.

We make some remarks about Theorem 1.

Remark 1 (Optimality of the Hedge Algorithm). There exist different results in the computer sci-

ence literature providing lower bounds for the regret of the Multiplicative Weights update method

in problems where a decision maker chooses randomly among I alternatives; see Section 4 in Arora

et al. (2012) and also Gravin, Peres, and Sivan (2016). We note, however, that these regret bounds

do not speak directly to the question of whether there exists another iterative algorithm for convex

optimization of an M -Lipschitz function over the simplex that could find an ϵ-minimizer in less

epochs than the Hedge Algorithm.
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Fortunately, Proposition 4.2 in Ben-Tal et al. (2001) addresses this issue. We briefly review their

notation and summarize their findings.

Let F(M, I) denote the collection of all minimization problems of a convex, Lipschitz function f

(with respect to ∥ · ∥1 and with constant at most M) over the I−1 simplex. Since the minimization

problem is indexed entirely by the function f , we denote the elements of F(M, I) succinctly as f .

Let ∂f(p) denote the subdifferential of f (the set containing all subgradients) at p. Let A be a

first-order iterative algorithm that successively generates points pt(A, f) ∈ ∆I−1 and approximate

solutions pt(A, f). We restrict the class of algorithms by requiring both pt and pt to be determin-

istic functions of first-order information about f ; namely the history of evaluations of f and its

subdifferential: {f(ps), ∂f(ps)}t−1
s=1. For the starting search point or initial condition, p1, we require

it to be chosen independently of the function f . We denote the class of deterministic, iterative,

first-order algorithms as A. Given a tolerance ϵ, define the complexity of the class of optimization

problems F(M, I) with respect to algorithm A as the function

ComplexityA(ϵ;F(M, I)) ≡ inf{T ∈ N | f(pt(A, f))− inf
p∈∆I−1

f(p) ≤ ϵ, ∀t ≥ T, f ∈ F(M, I)}.

Define the complexity of the family of optimization problems in F(M, I) as

Complexity(ϵ;F(M, I)) ≡ inf
A∈A

ComplexityA(ϵ;F(M, I)).

Proposition 4.2 in Ben-Tal et al. (2001) shows that

Complexity(ϵ;F(M, I)) ≥ O(1)min{M2/ϵ2, I}.

Therefore, the smallest number of epochs required by any iterative, first-order algorithm for (convex

optimization over the (I−1) simplex of a Lipschitz function with constant at most M (with respect

to ∥·∥1 norm) is O(1)M2/ϵ2, provided ϵ ≥ M/
√
I. Thus, there is a sense in which the recommended
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algorithm, and the suggested number of epochs, are optimal up to the logarithmic factor ln(I).

Remark 2 (Finite Θ). When Θ has J elements, obtaining an exact minimax solution could be

done via the linear program (Dantzig, 1951; Adler, 2013; Owen, 2013, Section III.1, p. 36). The

computational cost of using the fastest solver for linear program to find an exact minimax solution

can be shown to be of order (1+J + I)2.055 time.9 We note that Algorithm 1 makes ⌈2M2 ln(I)/ϵ2⌉

calls to nature’s oracle. Suppose that the runtime of the oracle is r(I, J). In each round, the

algorithm evaluates the risk of the I actions available to the decision maker. Thus, the runtime of

the algorithm is of order

M2I ln(I)r(I, J)/ϵ2.

If the calls to the oracle that computes nature’s best response are not expensive, and if M/ϵ2 is not

too large, the time needed in order to compute the approximate solution to the minimax problem

could be smaller than that time needed to obtain the exact solution. We also note that when Θ

has J elements, there might also be better algorithms to find an ϵ-minimax decision rule; see, for

example, the Saddle-Point Mirror Prox algorithm discussed in Section 5.2, p. 317 of Bubeck et al.

(2015).

Remark 3 (Approximate Oracle (or approximate best response)). It is possible to extend the proof

to the case that θt is not the exact oracle, but an approximate one. More precisely, consider θδt such

that (
sup
θ∈Θ

I∑
i=1

pi,tR(di, θ)

)
− δ ≤

I∑
i=1

pi,tR(di, θ
δ
t ) ≤ sup

θ∈Θ

I∑
i=1

pi,tR(di, θ).

This extension can be (roughly) completed by doing the following adjustments to the proof.

Firstly, in Step 2, we say that

sup
θ∈Θ

I∑
i=1

p̃⋆iR(di, θ) ≤
1

T

T∑
t=1

(
I∑

i=1

pi,tR(di, θt)

)
.

9Jiang, Song, Weinstein, and Zhang (2020) show that the fastest known LP solver for general (dense) linear
programs can solve such a program in an order of approximate (1 + I + J)2.055 time.
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We can change this to

sup
θ∈Θ

I∑
i=1

p̃⋆iR(di, θ) ≤
1

T

T∑
t=1

(
I∑

i=1

pi,tR(di, θ
δ
t ) + δ

)
.

Then, by Step 1, this is bounded by above by

1

T

T∑
t=1

I∑
i=1

pi,tR(di, θ
δ
t ) +

ϵ

2
+

ln(I)

T

(
M2

ϵ

)
+ δ.

Then, subbing in to Step 2, the left hand side is bounded by above by

v̄ +
ϵ

2
+

ln(I)

T

(
M2

ϵ

)
+ δ.

Choosing T as we have done gives an ϵ+ δ approximation.

Remark 4 (Minimax Solution without randomization). Finally, note that even if one were interested

in computing the minimax optimal rule among {d1, . . . , dI}, one would need I calls to the oracle

(one for computing the worst-case performance of each rule). Surprisingly, the ϵ-minimax solution

among randomized rules calls the oracle ⌈2M2 ln(I)/ϵ2⌉ times. When I is large, the difference could

be substantial.

Remark 5 (Least favorable distribution). The statistical decision problem we are interested in can

be interpreted as a two-player zero-sum game: the two players are 1) the statistician who has

pure strategies D = {d1, d2, ..., dI}, and 2) “nature”, whose set of pure strategies is given by the

parameter space Θ. The payoff function is R(di, θ). In the mixed extension of the game, in each

round, the statistician first chooses a mixed strategy pt ∈ ∆(D), and then nature responds with a

choice θt. Surprisingly, one implication of our proof of Theorem 1 is that the routine in Algorithm 1

not only gives an approximate minimax solution for the statistician, but also gives an approximate

maximin solution for nature. In particular the empirical distribution of the sequence of nature’s best

responses, {θt}Tt=1, is “ϵ-maximin” strategy for the nature. See Appendix B for detailed explanation.
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4 Illustrative Examples

4.1 ϵ-Minimax Regret in a treatment choice problem with partial iden-

tification

Consider the following example taken from Stoye (2012) and Yata (2021). A policy maker uses

experimental data to decide whether to implement a new policy in a target population of interest.

The treatment effect of action a = 1 is µ∗ ∈ R, while the effect of action a = 0 is normalized to be

equal to 0. Thus, the policy maker’s expected payoff equals W (a, µ∗) ≡ a · µ∗.

The data available to the policy maker is an estimated treatment effect, µ̂, for the experimental

population. The policy maker assumes that

µ̂ ∼ N(µ, σ2), (6)

where σ > 0 is known and where µ ∈ R is the true effect of the policy in the population where

the experiment was conducted. The policy maker is concerned about the external validity of the

experiment at hand. This is captured by allowing the effect of the policy in the experimental

population (µ) to be different from the effect in the target population (µ∗). The policy maker is

willing to work under the assumption that |µ∗ − µ| ≤ k for some known k ≥ 0. In this example,

θ = (µ, µ∗)⊤ and Θ ≡ {(µ, µ∗) ∈ R2 | |µ− µ∗| ≤ k} ⊆ R2.

A decision rule for the policy maker is a mapping d : R → [0, 1] from the observed experimental

data (6) to an action a ∈ [0, 1]. The action is interpreted as the fraction of the target population that

will be treated. Consider the regret loss associated toW (a, µ∗) given by L(a, θ) ≡ µ∗[1{µ∗ ≥ 0}−a].

Define the risk function

R(d, θ) ≡ Eθ[L(d, θ)].

Exact Minimax Solution Over all Decision Rules: Let D∗ denote the set of all decision
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rules. Stoye (2012) derived a solution to the minimax (regret) problem

inf
d∈D∗

sup
θ∈Θ

R(d, θ), (7)

as a function of (σ2, k). Stoye (2012) showed that when k ≥
√

π/2σ, Equation (7) equals k/2.

Montiel Olea, Qiu, and Stoye (2024b) further showed that when k ≥
√

π/2σ there are infinitely

many minimax-regret optimal rules. One such solution takes the form

d⋆MQS(µ̂) =


0, µ̂ < −ρ⋆,

µ̂+ρ⋆

2ρ⋆
, −ρ∗ ≤ µ̂ ≤ ρ∗

1, µ̂ > ρ∗,

,

where ρ∗ ∈ (0, k) uniquely solves the nonlinear equation:

(
1

2k

)
ρ∗ − 1

2
+ Φ

(
−ρ∗

σ

)
= 0, (8)

see Theorem 3 in Montiel Olea et al. (2024b).

Approximate Minimax Regret Solution over a Class of Threshold Rules: Sup-

pose that instead of considering all decision rules, we focus on a class D ⊂ D∗ that contains only

“threshold” rules; that is, decision rules of the form

di(µ̂) ≡ 1{µ̂ ≥ ci},

where ci ∈ R. For concreteness, we consider 500 different values for ci equally spaced in the

interval [−k, k]. These threshold rules seem natural for this problem. For example, if one observes

a realization of µ̂ ≥ k, any of these rules would suggest to implement the policy at scale.

Algebra shows that, in this example, the largest worst-case risk among all threshold rules in D
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is bounded above by M ≡ σmaxx≥0 xΦ ((2k/σ)− x), where Φ (·) denotes the Normal c.d.f.10 Since

the expected loss is nonnegative, Assumption 1 is satisfied.

We can also show that, for a given p ∈ ∆(D), the values (µ, µ∗) ∈ Θ that verify Assumption 2

can be obtained by solving three optimization problems. Define the parameter µ∗
+ to be the solution

of the problem

max
µ∗≥0

µ∗

(
I∑

i=1

piΦ

(
ci − µ∗

σ
+

k

σ

))
,

and µ+ ≡ µ∗
+ − k. Define the parameter µ∗

− to be the solution of the problem

max
µ∗≤0

−µ∗

(
I∑

i=1

piΦ

(
µ∗ − ci

σ
+

k

σ

))
,

and µ− = µ∗
− + k. Set θp to be the maximizer of

{R(p, µ+, µ
∗
+), R(p, µ−, µ

∗
−)}.

Since we have verified Assumption 1 and 2, we proceed to applying Algorithm 1. We consider

the case in which σ = 1 and k = 2. The value of the bound M is M = 2.5294. Since we know that

the value of the problem in (7) is 1, we can set ϵ = .1 (we ar willing to tolerate 10% relative error).

We later discuss how to pick ϵ in more realistic problems in which there is no information about

the minimax value. The number of epochs in Theorem 1 then becomes

T = ⌈2M2 ln(I)/ϵ2⌉ = 7, 953.

The runtime of Algorithm 1 is about 30 seconds (on a personal ASUS Vivobook Pro 15 @ 2.5GHz

Intel Core Ultra 9 185H). Figure (2) presents a comparison of d∗MQS and the ϵ-minimax rule. The

value of v̄ϵ is 1.0033.

10The formula corresponds to the worst-case risk of the rule that uses the threshold ci = k (or -k).
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Figure 1: ϵ-Minimax Decision Rule via the Hedge algorithm. The graph is generated using σ = 1,
k = 2. The value of ρ∗ in Equation 8 is 1.8797.

4.2 ϵ-Robust Bayes rules in a treatment choice problem with partial

identification

Consider the same example as in Section 4.1, but instead of focusing on minimax-regret optimality as

in Stoye (2012), we are interested in computing ex-ante Robust Bayes rules as in Aradillas Fernández,

Montiel Olea, Qiu, Stoye, and Tinda (2024).

Let π be a prior over (µ, µ⋆). We are interested in obtaining the rule that minimizes worst-

case expected risk over the class of priors suggested by Giacomini and Kitagawa (2021). We will

denote this class of priors by Γ. Broadly speaking, the priors in this class fix a marginal prior

over µ, but allow for arbitrary priors over µ∗|µ (as long as the joint distribution over (µ, µ∗) is

supported on Θ). For this example, we will first consider the “two-point prior” for µ analyzed

in Aradillas Fernández et al. (2024). That is, we assume that the prior of µ is supported on the

set M = {−µ̄, µ̄}. We first assume that the policy maker has a discrete uniform prior πµ on M,

meaning that πµ(µ = µ̄) = πµ(µ = −µ̄) = 1/2.
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Just as we did in Section 4.1, we consider the regret loss L(a, θ) ≡ µ⋆[1{µ⋆ ≥ 0} − a] and the

risk function

R(d, θ) ≡ Eθ[L(d, θ)].

However, we are now interested in the average (“Bayesian”) risk of a decision rule; which we define

as

r(d, π) ≡ Eπ[R(d, θ)].

Let D∗ be the set of all decision rules. The minimax problem of interest is thus

inf
d∈D∗

sup
π∈Γ

r(d, π). (9)

We follow the literature and refer to any decision rule that solves this problem as either ex-ante

Γ-minimax or ex-ante Robust Bayes.

Aradillas Fernández et al. (2024) showed that, under some conditions, the problem in Equation

(9) for the two-point priors on µ described before has infinitely many solutions. One such solution

takes the form

d⋆(µ̂) =


0, µ̂ < −σ2ρ⋆

µ̄

µ̄µ̂+σ2ρ⋆

2σ2ρ⋆
, −σ2ρ⋆

µ̄
≤ µ̂ ≤ σ2ρ⋆

µ̄

1, µ̂ > σ2ρ⋆

µ̄

,

where ρ⋆ uniquely solves

∫ 1

0

Φ

(
2ρ⋆x− ρ⋆ − (µ̄/σ2)

µ̄/σ

)
dx =

−µ̄+ k

2k
.

We compare this Γ-minimax optimal rule with the ϵ-approximation obtained via the Hedge
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algorithm. We again consider the class D of decision rules of the form

di = 1{µ̂ ≥ ci},

where ci ∈ R. We again start with an equally spaced grid of 500 points over [−k, k].

In order to apply the Hedge algorithm we extend the Bayes risk r(d, π) to any element p ∈ ∆(D)

by defining

r(p, π) ≡
I∑

i=1

pir(di, π) =
I∑

i=1

piEπ [R(di, µ, µ
⋆)] = Eπ

[
I∑

i=1

piR(di, µ, µ
⋆)

]
.

We note that Assumption 1 is satisfied with the same M as in Subsection 4.1. In order to verify

Assumption 2, we note that the results in Giacomini and Kitagawa (2021) show that

sup
π∈Γ

Eπ

[
I∑

i=1

piR(di, µ, µ
⋆)

]

equals

Eπµ

[
sup

µ⋆∈[µ−k,µ+k]

I∑
i=1

piR(di, µ, µ
⋆)

]
≡ Eπµ

[
Λ̄(µ, p1, ..., pI)

]
.

This relation immediately gives the prior π ∈ Γ associated to the worst-case Bayes risk of any vector

p ∈ ∆(D). In particular, the subgradient used in the updates is

git = πµ ·R(di, µ̄, µ̄
⋆
t ) + πµ ·R(di,−µ̄, (−µ̄)⋆t ),

where µ̄⋆
t and (−µ̄)⋆t are the corresponding values of µ⋆ for µ = µ̄ and µ = −µ̄, that solve

Λ̄(µ, p1, ..., pI) ≡ sup
µ⋆∈[µ−k,µ+k]

I∑
i=1

piR(di, µ, µ
⋆).
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We can show that the solutions of µ∗ (as a function of µ) are given by

µ⋆ =


µ+ k, µ+k

2k
≥
∑I

i=1 piΦ
(
− ci−µ

σ

)
µ− k, µ+k

2k
<
∑I

i=1 piΦ
(
− ci−µ

σ

)
We consider the case in which σ = 1, k = 2, and µ̄ = 0.5. We set ϵ = 0.1. The number of epochs

in Theorem 1 is again

T = ⌈2M2 ln(I)/ϵ2⌉ = 7, 953

The algorithm runs for T = 7, 953 iterations and finishes in about 25 seconds (on a personal ASUS

Vivobook Pro 15 @ 2.5GHz Intel Core Ultra 9 185H).

Figure 2 shows the true solution versus its ϵ-approximate solution. Qualitatively, the two are

very close. In fact, the minimax values are close as well, with the ϵ-approximation having a minimax

value of .9377 and the true solution having a minimax value of 0.9375. Note that here, the term

referred to as ρ⋆-adjusted is

ρ⋆-adjusted =
σ2ρ⋆

µ̄
. (10)

We also consider a 500-point uniform prior (i.e., πµ = 1/500) supported on an equally spaced

grid within [−k, k]. In this case, no analytical solution is available. We still keep σ = 1 and k = 2.

Keeping ϵ = 0.1, the algorithm runs for T = 7, 953 iterations and finishes in about 440 seconds

(on a personal ASUS Vivobook Pro 15 @ 2.5GHz Intel Core Ultra 9 185H). Figure 3 shows the

ϵ-approximate solution.

5 Application

Lee et al. (2021) conducted a randomized controlled trial in Bangladesh to estimate the effects

of encouraging rural households to receive money transfers from migrant family members. They

specifically conducted an encouragement design where poor rural households with family members
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Figure 2: ϵ-Minimax Decision Rule for the 2-point Robust Bayes problem via the Hedge algorithm.
The graph is generated using σ = 1, k = 2. The ρ⋆-adjusted value is about 1.8486.

who had migrated to a larger urban destination receive a 30–45 minute training about how to

register and use the mobile banking service “bKash” to send instant remittances back home.

The experiment was conducted in the Gaibandha district, one of Bangladesh’s poorest regions.

It focused on households that had migrant workers in the Dhaka district, the administrative unit

in which the capital of Bangladesh is located. Lee et al. (2021) measure several outcomes of both

receiving households and sender migrants; see their Figures 3 and 4. To give a concrete example of

the measured outcomes, one question of interest is whether families that adopt the mobile banking

technology are more (or less) likely to declare that the monga—the seasonal period of hunger in

September through November—was not a problem for their household. Table 9, Column 7, p. 60

in Lee et al. (2021) presents results for this specific variable showing that households that used a

bKash account in the treatment group are 9.2 percentage points more likely to declare that monga

was not a problem. The standard error of the estimator is 4.5 percentage points.
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Figure 3: ϵ-Minimax Decision Rule via the Hedge algorithm for the 500-point Robust Bayes problem
supported along [−k, k].

Is the corridor selected by Lee et al. (2021) a good choice for a researcher who is concerned

about external validity?11 There are two recent papers that have provided an answer to this

question. Gechter et al. (2024) use an elegant decision-theoretic framework to argue that the Dhaka-

Noakhali corridor would have been a better choice from the perspective of maximizing average

welfare. Montiel Olea et al. (2024a) use the framework of Gechter et al. (2024) to argue that the

Dhaka-Pabna corridor would have been a better choice from the minimax (welfare) regret criterion

perspective (restricting the policy maker to consider only nonrandomized selection of corridors).

The Dhaka-Pabna corridor is also recommended by the synthetic purposive sampling approach in

Egami and Lee (2024). One important comment is that the Dhaka-Pabna corridor is the most

representative in terms of covariates, in the sense that it minimizes the average distance (measured

using the euclidean distance between covariates) to the 41 migration corridors analyzed in Gechter

11Following Gechter et al. (2024), we name the corridors using a destination-origin format; for example, the
migration corridor studied in Lee et al. (2021) is “Dhaka-Gaibandha”.
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et al. (2024).

In our application, we consider a situation where a policy maker is considering the three sites

mentioned above to run an experiment: Dhaka-Gaibandha (the original site in Lee et al. (2021)),

Dhaka-Noakhali (the site suggested by Gechter et al. (2024)) and Dhaka-Pabna (the site suggested

in Montiel Olea et al. (2024a)). Each of these sites (migration corridor) have site characteristics

Xs ∈ Rd, with d = 13.12 We index these three sites by 1, 2, 3 respectively and refer to the set

SE ≡ {1, 2, 3} as the set of experimental sites. Once we exclude these three sites, we have 38

migration corridors. We use the distance between the covariates of each of these sites and Dhaka-

Pabna to order them in increasing order and index them with integers 4 to 41. Figure 4 presents

the distances. The figure shows that for most of the sites the corridor Dhaka-Pabna is the “closest”

in terms of the Euclidean distance between covariates.
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Figure 4: Distances from each of the experimental sites to each of the policy-relevant sites.

12The covariates include mean household income, mean household size, migrant density, mean remittances. See
Figure 2 in Montiel Olea et al. (2024a).
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We assume that the sites Sp ≡ {4, . . . , 41} in the x-axis of Figure 4 are the policy-relevant sites.

This means that policy maker is interested in deciding whether the training program discussed

in Lee et al. (2021) should be rolled out in these sites. We assume that the outcome variable of

interest for the policy maker is the likelihood that the households declare that the monga was not

a problem.

Treatment Effect Heterogeneity: Treatment effect heterogeneity is allowed, but only via the

observable site characteristics. The effects of the policy in each site, denoted by τs, are restricted

to be a Lipschitz function (with respect to a Euclidean norm || · ||) with known constant C; that is,

τs = τ(Xs) where

|τ(x)− τ(x′)| ≤ C||x− x′||, ∀x, x′ ∈ R13.

One first issue that we need to address in order to conduct our exercise is the value of C that will be

used in our application. We do this by using the available point estimates of the treatment effect of

the program in Lee et al. (2021). Let xDG denote the covariates of the corridor Dhaka-Gaibandha.

Assume that the we entertained the possibility that the true effect, τ(xDG), coincides with the

estimated effect 9.2. We consider a “low C” regime.

Suppose that we want to consider a value of C that imposes that if 9.2 were the true effect,

then even the corridor that is the most different (in terms of covariates) to Dhaka-Gaibandha

the effect of the program must be nonnegative. Intuitively, this means that even for the most

different corridor, the effect must remain nonnegative. Dhaka-Bhola is the most different site and

∥xDG − xDB∥ = 7.7736. Since the Lipschitz restriction imposes that

τ(xDG)− C∥xDG − xDB∥ ≤ τ(xDB),

we could pick C as

C = 9.2/7.7736 ≈ 1.1834.
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Treatment Rules: The policy maker makes two choices. First, the policy maker must pick one

site on which to experiment. Second, the policy maker must decide how to make treatment choices

in all the sites of interest given the available data. We assume that if the policy maker decides to

experiment on site s, the available data becomes τ̂s, with

τ̂s ∼ N (τs, σ
2
s) (11)

and, as in Gechter et al. (2024), we assume σ2
s is known. In order to conduct our exercise, we

assume that σs is the same for all experimental sites, and that it matches the standard error of the

estiamted effect of the program in the Dhaka-Gaibhanda site. That is σs = 4.5 for all s ∈ SE.

The treatment rule is a mapping T : R → [0, 1]#SP . For s ∈ SE we further denote by Ts the

specific policy choice for site s. We refer to a tuple (s, T ) as a policy, and we use d to denote it.

We consider three nonrandomized policies

D ≡ {d1, d2, d3} .

Under policy ds, the policy maker experiments on site s ∈ SE and its recommendation for any

policy relevant site is 1{τ̂s ≥ 0}. That is, the policy maker makes the same policy recommendation

for every policy-relevant site depending on the sign of τ̂s.
13 We focus on this special form of policy

rule because we think it captures the policy recommendations that are given based on randomized

controlled trials.

We consider the following regret function for the policy ds,

R(ds, τ) ≡
1

#SP

∑
s′∈SP

(
τ(Xs′)(1{τ(Xs′) ≥ 0} − Eτ(Xs) [1{τ̂s ≥ 0}])

)
. (12)

13The results in Montiel Olea et al. (2024a) suggest that this type of policy is likely to be suboptimal. The policy
maker could improve its welfare by allowing the treatmetment choice to be randomnly selected, depending on the
distance between the policy-relevant site and the experimental site.
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This expression can be simplified to:

R(ds, τ) ≡
1

#SP

∑
s′∈SP

(
τ(Xs′)

(
1{τ(Xs′) ≥ 0} − Φ

(
τ(Xs)

σs

)))
. (13)

The minimax (regret) problem that we are interested in solving is

inf
p∈∆2

sup
τ∈LipC(R13)

3∑
s=1

psR(ds, τ), (14)

where LipC(R13) refers to the space of all Lipschitz functions f : R13 → R with constant C.

5.1 Results

We report results for the case in which C = 1.1834. We consider four different scenarios that vary

in terms of the number of sites that are policy relevant. The scenarios we consider have either 1,

5, 15, or 38 policy-relevant sites. In each of these cases, we choose to include the sites that are

closest to Dhaka-Pabna. For example, when we include only one policy-relevant site we include

Dhaka-Faridpur. We do this because, in light of the results in Montiel Olea et al. (2024a), the

best nonrandomized choice of experimental site is Dhaka-Pabna. And we would like to use this

application to understand how the probability of selecting this site changes as we include sites that

perhaps are closer to some of the other experimental sites under consideration.

Figure 5 presents the ϵ-minimax selection of sites obtained via the Hedge algorithm. Note

first that when there is only one policy-relevant site (and this site is closest to Dhaka-Pabna) the

probability of choosing Dhaka-Pabna is close to 1. This is measured by the height of the first yellow

bar in Figure 5. We think this is an interesting result as it shows that even if randomization is

allowed, it is possible that choosing the site that is most representative for the policy-relevant site

is still approximately minimax regret optimal.

The results with five policy relevant sites are also worth discussing. By construction, the five

34



policy-relevant sites that we considered are those that are closest to Dhaka-Pabna. According

to Figure 4, Dhaka-Pabna is the nearest neighbor for all of them, with the exception of Dhaka-

Kishoregonj. For the latter site, the nearest neighbor is Dhaka-Gaibandha. Figure 5 shows that

with 5 sites the ϵ-minimax selection of experimental sites places probability slightly above .2 to

Dhaka-Gaibandha (corresponding to the height of the second blue bar) and probability close to .7

to Dhaka-Pabna (corresponding to the height of the second yellow bar).
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Figure 5: ϵ-Minimax decision rule for the Site Selection Problem via the Hedge algorithm. The
graph is generated using C = 1.1834, σ = 4.5, and ϵ = .1.

Finally, we discuss the cases in which the experimental sites are 15 and 38. We note that in

both cases the ϵ-minimax solutions are very similar, though the time required by the algorithm

and the number of iterations are not; see Tables 1. The recommended probability of experimenting

on Dhaka-Pabna is close to .6 (height of the last yellow bar). The recommended probability of

experimenting on Dhaka-Noakhali is close to .1. Interestingly, we note that the ordering of the

probabilities is also consistent with the ordering of the three experimental sites (in terms of how
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frequently they are the nearest neighbor of each of the policy-relevant sites).

Number of Sites Runtime (seconds) Iterations
1 1, 765 14, 063
5 1, 554 11, 449
15 7, 427 12, 974
38 38, 741 21, 248

Table 1: Runtime (seconds) and Number of Iterations (C = 1.1834).

6 Conclusion

This paper presented an algorithm for obtaining ϵ-minimax solutions of statistical decision problems

where the statistician is allowed to choose randomly among I decision rules. The notion of an ϵ-

minimax decision rule was taken from Ferguson (1967) (Chapter 1, Definition 4) and it refers to a

decision rule whose worst-case expected loss exceeds the minimax value of the decision problem by

at most an additive factor of ϵ.14

Once we allow for randomized selection over the I decision rules, the minimax problem admits

a convex programming representation over the (I − 1)-simplex, an observation which has been

previously documented in the literature by Chamberlain (2000). Both the objective function and

the subgradient of this problem are in general difficult to evaluate. The reason being that the

objective function of the convex problem involves solving a nonconvex maximization problem to find

the worst-case performance (over the model’s parameter space) of a specific randomized selection

over the I rules. This type of problem arises commonly in the convex optimization literature; see

Bubeck et al. (2015) and the seminal work of Nemirovski and Yudin (1983). The algorithm herein

suggested is a version of mirror subgradient descent, initialized with uniform weights and stopped

after a finite number of iterations. The early stopping of the algorithm tries to minimize the number

14We note that the definition given in Ferguson (1967) differs of the usage of ϵ-minimax decision rules in other
contexts. Most notably, from the work of Manski and Tetenov (2016), who use the term ϵ-minimax to refer to a
decision rule whose worst-case regret is at most ϵ.
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of calls to the objective function and its subgradient.

The iterative procedure arising from this mirror descent routine described in this paper is known

in the computer science literature as the Multiplicative Weights update method, and it is used

in algorithmic game theory as a practical tool to find approximate solutions of two-person zero-

sum games. The paper applies the suggested algorithm to different minimax problems in the

econometrics literature. In some of these problems, the minimax solution is known, and we show

numerically that in these examples the ϵ-minimax solution is practically the same as the true

minimax solution.

Finally, we apply the algorithm to the site selection problem of Gechter et al. (2024); namely,

how to optimally selecting sites to maximize the external validity of an experimental policy evalu-

ation. Our algorithm allows the researcher to choose randomly where to experiment, but adjusting

optimally for the available baseline covariate information.

We think there are several interesting areas for future work, both from an applied and from a

more theoretical perspective. From a purely applied angle, applying this algorithm could be helpful

in settings in which the space of decision rules is already discrete, but large. For example, as in

the recent interesting work of Christy and Kowalski (2024). Relatedly, the algorithm suggested

here might also be helpful in applications in which the parameter space is “large”. For example, in

the site selection application we considered the parameter space is a subset of RS where S is the

total number of experimental and policy-relevant sites. This means that that our algorithm could

be useful in extending the scope of certain minimax problems, such as the one described in the

recent work of Armstrong, Kline, and Sun (2024). More generally, the algorithm we presented is

part of large literature in computer science and algorithmic game theory. We think that there is

an opportunity to apply some of the procedures suggested in this literature (including some of the

recent procedures that parameterize the strategy space using neural networks).

From a more theoretical perspective, it would be interesting to further explore the differences

between ϵ-minimax strategies and the notion of a local min-max point in Daskalakis et al. (2021).

37



There are very interesting results about the relation between this notion and the stationary points

of sugbradient ascent-descent dynamics. But it would be great to understand, theoretically and

empirically, what are the potential benefits of searching for these type of points as opposed to

ϵ-minimax strategies.
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A Proofs of Main Results

A.1 Proof of Lemma 1

Take p, p′ ∈ ∆(D). Note that

f(αp+ (1− α)p′) = sup
θ∈Θ

R(αp+ (1− α)p′, θ)

= sup
θ∈Θ

I∑
i=1

(αpi + (1− α)p′i)R(di, θ)

= sup
θ∈Θ

(
α

I∑
i=1

piR(di, θ) + (1− α)p′iR(di, θ)

)

≤ α sup
θ∈Θ

I∑
i=1

piR(di, θ) + (1− α) sup
θ∈Θ

p′iR(di, θ)

= αf(p) + (1− α)f(p′).

Thus, the function f(·) is convex.

Now we establish the Lipschitz continuity of f(·). Take any p, p′ ∈ ∆(D). Note that

|f(p)− f(p′)| ≤ | sup
θ∈Θ

I∑
i=1

(pi − p′i)R(di, θ)|

≤ M
I∑

i=1

|pi − p′i|

= M∥p− p′∥1,

where the second inequality applies Assumption 1. This shows that f(·) is Lipschitz continuous

with constant at most M .

We now show that g0 is a subgradient of f at p0. That is, that for any p ∈ ∆(D):

f(p) ≥ f(p0) + g⊤0 (p− p0).
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Let p be an arbitrary point in ∆(D). By definition

f(p0) ≡ sup
θ∈Θ

I∑
i=1

p0,iR(di, θ)

=
I∑

i=1

p0,iR(di, θ0)

=
I∑

i=1

(p0,i − pi)R(di, θ0) +
I∑

i=1

piR(di, θ)

= g⊤0 (p0 − p) +
I∑

i=1

piR(di, θ)

≤ g⊤0 (p0 − p) + f(p).

Thus, g0 is a subgradient of f(·) at p0.

A.2 Proof of Theorem 1 via Arora et al. (2012)

We extend Theorem 2.1 and Theorem 2.3 in Arora et al. (2012). For the sake of exposition, we

divide our proof in three steps.

STEP 1: Fix the step-size η. First, we show that after T rounds the algorithm guarantees

that, for all decision rules di ∈ {d1, ..., dI}, we have obtained average payoffs bounded above by the

average payoff of any decision rule di plus an error term. More precisely:

1

T

T∑
t=1

(
I∑

i=1

pi,tR(di, θt)

)
≤ 1

T

T∑
t=1

R(di, θt) +
M2η

2
+

ln(I)

Tη
(15)

To show this, we use a similar argument to Theorem 2.1 in Arora et al. (2012). Let M > 0 be the

bound on the risk function in Assumption 1. We define the normalized sub-gradient, mt ≡ gt/M .
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Then, recall the definition of ϕt, we have that

ϕt+1 =
I∑

i=1

wi,t

=
I∑

i=1

wi,t−1 exp (−ηgi,t)

=
I∑

i=1

wi,t−1 exp (−ηMmi,t)

≤
I∑

i=1

wi,t−1

(
1− ηMmi,t +

η2M2m2
i,t

2

)

= ϕt − ϕtηM
I∑

i=1

pi,tmi,t + ϕt
η2M2

2

I∑
i=1

pi,tm
2
i,t

= ϕt

(
1− ηM

I∑
i=1

pi,tmi,t +
η2M2

2

I∑
i=1

pi,tm
2
i,t

)

≤ ϕt exp

(
−ηM

I∑
i=1

pi,tmi,t +
η2M2

2

I∑
i=1

pi,tm
2
i,t

)
.

The first inequality follows from the fact that exp(−x) ≤ 1 − x + x2/2, for |x| ≤ 1.15 The last

inequality follows from 1− x ≤ e−x for all x ∈ R. By induction after T rounds, and using the fact

15Note that:

exp(−x) = 1− x+
x2

2!
− x3

3!
+ ...

≤ 1− x+
x2

2
,

if and only if:

0 ≤ x3

3!
− x4

4!
+ ...

Note that xn ≥ xn+1 for all |x| ≤ 1 and n ∈ N, and so the statement above holds.
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that w0 was initialized to be a vector of ones (i.e., w0 := 1, we have

ϕT+1 ≤ ϕ1 exp

(
−ηM

T∑
t=1

I∑
i=1

pi,tmi,t +
η2M2

2

T∑
t=1

I∑
i=1

pi,tm
2
i,t

)

= I exp

(
−ηM

T∑
t=1

I∑
i=1

pi,tmi,t +
η2M2

2

T∑
t=1

I∑
i=1

pi,tm
2
i,t

)
. (16)

Also notice that

ϕT+1 ≥ wi,t+1 =
T∏
t=1

exp (−ηgi,t) , (17)

After taking logs of both sides in (16) and (17), we have

−
T∑
t=1

gi,t ≤
ln(I)

η
−M

T∑
t=1

I∑
i=1

pi,tmi,t +
ηM2

2

T∑
t=1

I∑
i=1

pi,tm
2
i,t.

Since mi,t = gi,t/M = R(di, θt)/M , we have

1

T

T∑
t=1

I∑
i=1

pi,tR(di, θt) ≤
1

T

T∑
t=1

R(di, θt) +
M2η

2T

T∑
t=1

I∑
i=1

pi,tm
2
i,t +

ln(I)

Tη

≤ 1

T

T∑
t=1

R(di, θt) +
ηM2

2
+

ln(I)

Tη

(since m2
i,t ≤ 1)

≤ 1

T

T∑
t=1

R(di, θt) +
ϵ

2
+

ln(I)M2

Tϵ

(since η = ϵ/M2).

STEP 2: Let pϵi ≡ 1
T

∑T
t=1 pi,t. We show that after T rounds, we have that:

v̄ ≤ sup
θ∈Θ

I∑
i=1

pϵiR(di, θ) ≤
1

T

T∑
t=1

(
I∑

i=1

pi,tR(di, θt)

)
≤ v̄ +

ϵ

2
+

ln(I)

T

(
M2

ϵ

)
,

where v̄ is the minimax value of the decision problem.
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To show this, note that the lower bound holds by definition. For the upper bound, note:

sup
θ∈Θ

I∑
i=1

pϵiR(di, θ) = sup
θ∈Θ

I∑
i=1

(
1

T

T∑
t=1

pi,t

)
R(di, θ)

= sup
θ∈Θ

1

T

T∑
t=1

(
I∑

i=1

pi,tR(di, θ)

)

≤ 1

T

T∑
t=1

(
I∑

i=1

pi,tR(di, θt)

)
, (18)

where the inequality uses the fact that θt is nature’s best response to pt.

Lemma 1 showed that f(·) is a continuous function on the closed set ∆(D). Therefore, the

minimax strategy of the decision problem exists, and we denote it as

p∗ ∈ arg min
p∈∆(D)

f(p).

By Step 1, the right hand side of the Equation (18) is bounded by above by Equation (15) for

any di. It then follows that for any pi ∈ ∆I−1, 18 is bounded above by

1

T

T∑
t=1

piR(di, θt) +
ϵ

2
+

ln(I)

T

(
M2

ϵ

)
.

In particular, we can use p∗ and further use the bound

I∑
i=1

p⋆iR(di, θt) ≤ sup
θ∈Θ

I∑
i=1

p⋆iR(di, θ) = v̄.

Consequently,

sup
θ∈Θ

I∑
i=1

pϵiR(di, θ) ≤
1

T

T∑
t=1

(
I∑

i=1

pi,tR(di, θt)

)
≤ v̄ +

ϵ

2
+

ln(I)

T

(
M2

ϵ

)
.

This gives the desired result.
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STEP 3: By taking the smallest integer T such that

ln(I)

T

(
M2

ϵ

)
≤ ϵ

2
,

or, equivalently,

T = ⌈2M2 ln(I)/ϵ2⌉.

We then conclude that

v̄ ≤ sup
θ∈Θ

(
I∑

i=1

pϵiR(di, θ)

)
≤ 1

T

T∑
t=1

(
I∑

i=1

pi,tR(di, θt)

)
≤ v̄ +

ϵ

2
+

ϵ

2
= v̄ + ϵ,

where pϵi ≡ 1
T

∑T
t=1 pi,t (as defined before). Since

pϵ ≡ (pϵ1, ..., p
ϵ
I) ∈ ∆I−1,

we conclude that p̃⋆ is an ϵ-minimax decision rule and that v̄ϵ ≡ 1
T

∑T
t=1

(∑I
i=1 pi,tR(di, θt)

)
is an

ϵ-approximation to v̄.

A.3 Proof of Theorem 1 via Bubeck et al. (2015)

We apply Theorem 4.2 from Bubeck et al. (2015). In order to do so, we note that:

1. The mirror map used in our mirror-descent routine is the negative entropy Φ(p) =
∑I

i=1 pi log pi,

defined for any p ∈ int(∆I−1). By Pinsker’s inequality, we have that for any p, q ∈ int(∆I−1):

I∑
i=1

pi log pi −
I∑

i=1

pi log qi ≥
1

2

(
I∑

i=1

|pi − qi|

)2

.
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This can be written as

Φ(q)− Φ(p) ≤
I∑

i=1

(qi − pi) log qi −
1

2
∥p− q∥21

=
I∑

i=1

(qi − pi) (1 + log qi)−
1

2
∥p− q∥21.

Since the gradient of Φ(·) with respect to q is (1 + ln q1, . . . , 1 + ln qI)
⊤, this means that the

negative entropy is ρ-strongly convex over int(∆I−1) (with respect to ∥ · ∥1) with parameter

ρ = 1.

2. We calculate the “radius” of int(∆I−1) defined as R2 ≡ supp∈int(∆I−1) Φ(p)− Φ(p0). We show

that R2 = ln(I). To do this, note that

sup
p∈int(∆I−1)

Φ(p) = 0.

The supremum is attained by any sequence of distributions that converges to a discrete dis-

tribution that places all of its mass in one of point. Then, since p0 = (1/I, ..., 1/I) in our

setting, we have that Φ(p0) = − ln(I). This implies that R2 = ln(I).

3. Lemma 1 has implied that the objective function f is convex and L-Lipschitz continuous w.r.t.

∥ · ∥1, with parameter L = M . Let p∗ be a minimizer of f over ∆I−1.

In light of 1-2-3, the conditions of Theorem 4.2 in Bubeck et al. (2015) are verified. The theorem

then implies that mirror descent with step size η satisfies

f

(
1

T

T∑
t=1

pt

)
− f(p⋆) ≤ 1

T

T∑
t=1

f(pt)− f(p⋆) ≤ ln(I)

Tη
+

ηM2

2

49



Notice that f(p⋆) = v̄. For a given error ϵ, we choose η = ϵ/M2 and T ≥ 2M2 ln(I)/ϵ2 such that

the right hand side is smaller than ϵ:

ln(I)

Tη
+

ηM2

2
=

ln(I)M2

Tϵ
+

ϵ

2
≤ ϵ.

Therefore, we conclude with

f(pϵi)− v̄ ≤ v̄ϵ − v̄ ≤ ϵ.

B Connection to S Games

The minimax problem we study is closely related to what Blackwell and Girshick (1954) call an

S-Game. Player I, the statistician in our case, has a finite number of pure strategies d ∈ D ≡

{d1, . . . , dI}. Player II, nature, may have infinitely many pure strategies. For each θ ∈ Θ, the

strategy of nature can be represented as a vector in RI , s(θ) = (R(d1, θ), R(d2, θ), ..., R(dI , θ)).

Define

S := {(R(d1, θ), R(d2, θ), ..., R(dI , θ)) ∈ RI |θ ∈ Θ} (19)

and M(i, s) = si, then ΓP = (D, S,M) is a S-game with payoff matrix M(i, s). The index P stands

for pure as we are only considering pure strategies. The mixed extension of the S-game is equivalent

to Γm = (∆, R,M), where ∆ is the set of discrete probability distribution over D, and R is the

set of all countable convex linear combination of points in S. When S is closed and convex, our

minimax problem is exactly to solve the best mixed strategy for player I.

(Blackwell and Girshick, 1954, Theorem 2.4.2) states that i) Every S game has a value, and the

first player has a good (a minimax) strategy; and ii) If S is closed and convex, player II has a pure

good strategy. Further, (Blackwell and Girshick, 1954, Theorem 1.8.1) indicates that if game ΓP

has a pure value, then its mixed extension Γm also has the same value.

50



Combining these results, we have that i) there exists v̄,

inf
d∈D

sup
θ∈Θ

R(d, θ) = sup
θ∈Θ

inf
d∈D

R(d, θ) = v̄, (20)

and inf
p∈∆(D)

sup
θ∈Θ

R(p, θ) = sup
θ∈Θ

inf
p∈∆(D)

R(p, θ) = v̄, (21)

and there exists minimax decision rule p∗ ∈ ∆(D) such that

sup
θ∈Θ

R(p∗, θ) = v̄.

Further, consider mixed strategies for the nature,

inf
p∈∆(D)

sup
q∈P(Θ)

∫
Θ

R(p, θ)dq(θ) = sup
q∈P(Θ)

inf
p∈∆(D)

∫
Θ

R(p, θ)dq(θ) = v̄, (22)

where P(Θ) is the set of all mixed strategies of the nature. This means the assumption in Theorem 1

can be verified from our Assumptions. ii) If the set S defined in (19) is convex and closed, there

exists exactly one θ∗ that is maxmin strategy for nature, i.e.,

inf
p∈∆(D)

R(p, θ∗) = v̄.

Otherwise, the results in Blackwell and Girshick (1954) show that that the maxmin strategy for

nature is supported on at most I points.

B.1 Maximin Strategy (least-favorable distribution)

Our proof for Theorem 1 also gives a surprising side result: When the game has a value, i.e. (22)

holds, we can derive approximate max-min strategy for the nature.
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Definition 2. For simplicity, we denote

R(p, q) :=

∫
Θ

R(p, θ)dq(θ).

A distribution q∗ϵ ∈ P(∆) is called an “ϵ-maximin” strategy for the game (∆(D),P(Θ), R(·, ·)) with

value v̄ if

inf
p∈∆(D)

R(p, q∗ϵ ) ≥ sup
q∈P(Θ)

inf
p∈∆(D)

R(p, q)− ϵ = v̄ − ϵ.

In our proof, we derived an intermediate result that (15),

1

T

T∑
t=1

(
I∑

i=1

pi,tR(di, θt)

)
≤ 1

T

T∑
t=1

I∑
i=1

piR(di, θt) +M2η +
ln(I)

Tη
,∀p ∈ ∆(D)

Recall assumption 2 states that for all t,
∑I

i=1 pi,tR(di, θt) = supθ∈ΘR(pt, θ), so

1

T

T∑
t=1

(
I∑

i=1

pi,tR(di, θt)

)
=

1

T

T∑
t=1

sup
θ∈Θ

R(pt, θ) ≥ inf
p∈∆(D)

sup
θ∈Θ

R(p, θ) = v̄,

we get

v̄ ≤ 1

T

T∑
t=1

I∑
i=1

piR(di, θt) +M2η +
ln(I)

Tη
, ∀p ∈ ∆(D)

By taking η = ϵ/2M2, T = ⌈4M2 ln(I)/ϵ2⌉, we get

v̄ − ϵ ≤ 1

T

T∑
t=1

I∑
i=1

piR(di, θt),∀p ∈ ∆(D).

Now, if we choose q∗ϵ to be a discrete distribution that

q∗ϵ (θ) =
|{t ∈ [T ] : θt = θ}|

T
,
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Then,

inf
p∈∆(D)

R(p, q∗ϵ ) =
1

T

T∑
t=1

I∑
i=1

piR(di, θt) ≥ v̄ − ϵ = sup
q∈P(Θ)

inf
p∈∆(D)

R(p, q)− ϵ,

which means q∗ϵ is an “ϵ-maximin” strategy for the nature.
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