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Abstract

This paper explores cross-validation regression model selection under one-way clustered depen-

dence. Clustered dependence is ubiquitous in current econometric applications, as evidence by the

widespread use of cluster-robust variance estimation and standard errors. Cross-validation methods

are also routinely used to compare and select between estimated models. There is no current theory,

however, investigating the interaction of clustered dependence and model selection. We show that con-

ventional cross-validation methods are inappropriate for model selection, as they do not account for

within-cluster correlation. In contrast, we show that delete-cluster cross-validation is asymptotically

optimal for model selection when evaluated by a regression mean-squared error criterion. This is be-

cause the delete-cluster criterion mimics the dependence structure of the observations. In contrast,

we show that conventional cross-validation effectively impose a “too small” parameterization penalty

similar to the “too small” standard errors obtained when clustered dependence is ignored in variance

estimation. In a simulation experiment we investigate the performance of conventional and delete-

cluster cross-valiation methods, and find that delete-cluster cross-validation is much preferred when

the within-cluster dependence is high. We illustrate the method in a simple empirical application. The

delete-cluster cross-validation criterion is simple to calculate, and is displayed by default by the author’s

jregress clustered regression R and Stata packages.

*Research support from the Phipps Chair is gratefully acknowledged.
†Department of Economics, 1180 Observatory Drive, University of Wisconsin, Madison WI 53706.
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1 Introduction

Clustered samples are widespread in current applied econometric practice. Despite this dominance,

there is no existing model-selection literature allowing for clustered dependence. This paper provides a

formal asymptotic theory for model selection by cross-validation.

We evaluate model-selection performance by the fitted regression mean-squared error. This is the

conventional criterion for the evaluation of regression model selection in the theoretical literature, in-

cluding Li (1987) and Andrews (1991). Our assumptions are similar to those this literature, except that

rather than assuming the observations are mutually independent, we assume that the observations are

grouped in known clusters, that the observations are mutually independent across clusters, but depen-

dence within clusters is unrestricted.

We show that the presence of within-cluster dependence can dramatically impact optimal model

selection. The mechanism is the same as for standard error construction: clustered dependence affects

estimation variance, and thereby affects the optimal fitted model. This arises even under a small degree

of within-cluster correlation when the number of observations per cluster is large. This is similar to

Moulton’s (1986) result on the impact of clustered dependence on the variance of regression estimates.

Cluster-robust variance estimation was introduced to econometrics by Liang and Zeger (1986) and

Arellano (1987), and became the dominant variance estimation method in empirical practice follow-

ing the influential work of Bertrand, Duflo, and Mullainathan (2004). The distributional theory jus-

tifying cluster-robust inference has been been developed by many authors, including Moulton (1986,

1990), Wooldridge (2003), C. Hansen (2007), Cameron, Gelbach, and Miller (2008), Bester, Conley, and

C. Hansen (2011), Conley and Taber (2011), Ibragimov and Müller (2016), Imbens and Kolesár (2016),

Djogbenou, MacKinnon, and Nielsen (2019), Ferman and Pinto (2019), Hagemann (2019), Hansen and

Lee (2019), MacKinnon and Webb (2020), Canay, Santos, and Shaikh (2021), and Hansen (2024).

Delete-one cross-validation for selection of regression models was introduced by Allen (1974), Stone

(1974), Geisser (1974), and Wahba and Wold (1975). Its optimality for homoskedastic regression was

demonstrated by Li (1987) and for heteroskedastic regression by Andrews (1991). A review of theory is

presented in Shao (1997). A related theory for model averaging was developed by Hansen (2007) and

Hansen and Racine (2012). For further theoretical results, see Hansen (2014, 2015).

Cross-validation is closely related to the jackknife. The jackknife estimator of variance was intro-

duced by Tukey (1958) and was developed in the monographs of Efron (1982) and Shao and Tu (1995).

Extensions to clustered samples were made by Cochran (1977), Rust and Rao (1996), Bell and McCaffrey

(2002), MacKinnon, Nielsen, and Webb (2023), and Hansen (2024).

Our proposed delete-cluster cross-valiation criterion (CCV) is simple to calculate, especially when

the number of clusters is small to moderate, which is typical in economic applications. Its calculation is

also a simple by-product of delete-cluster jackknife variance estimation. The CCV criterion is displayed

by default by the author’s jregress Stata and R packages for regression with delete-cluster variance

estimation.

This paper is organized as follows. Section 2 presents the clustered regression model. Section 3

presents cross-validation model selection methods. Section 4 presents a simple empirical illustration.
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Section 5 presents a definition of overall model fit based on mean-squared error (MSE). Section 6 presents

the main theory, demonstrating that model selection by delete-cluster cross-validation is asymptotically

equivalent to the infeasible optimal regression model with respect to the MSE measure. Section 7 ex-

amines conventional delete-one cross-validation (CV), and shows that model selection by conventional

CV is asymptotically not optimal. Section 8 extends the results to handle the presence of cluster fixed

effects. Section 9 presents a simulation experiment. Section 10 presents two probability inequalities,

generalizations of the those of Whittle (1960) to the cluster-dependent setting. The proofs of the main

theorems follow.

2 Clustered Regression

The setting is a clustered sample, with observations grouped into G unbalanced independent clus-

ters. We index the observations by i g , denoting the i th observation in the g th cluster, with g = 1, ...,G

and i = 1, ...,ng . The total number of observations is n =∑G
g=1 ng .

A researcher is interested in estimating the conditional mean of a scalar dependent variable Yi g given

a large set of potential regressors Xi g . This structure can be written as

Yi g =µi g +ei g (1)

µi g = E[
Yi g | Xi g

]
E
[
ei g | Xi g

]= 0.

By construction, ei g is the true regression error.

We can also write the regression structure using cluster-level notation. This is

Y g =µg +eg (2)

µg = E[
Y g | X g

]
(3)

E
[
eg | X g

]= 0. (4)

where Y g , µg , and eg are ng ×1. The error eg has the ng ×ng cluster-level covariance matrix

E
[

eg e ′
g | X g

]
=Σg . (5)

We treatΣg as unknown and unstructured. This allows for unconditional and conditional heteroskedas-

ticity, as well as arbitrary within-cluster correlation. The maintained assumption is that the cluster-level

observations are mutually independent across clusters.

The researcher considers a set of M regression models, which we index as m = 1, ..., M . For the mth

model, the researcher constructs1 a k(m)× 1 vector Xi g (m) from the set Xi g and postulates the linear

1This can include individual variables, transformations, interactions, and series transformations.
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regression

Yi g = Xi g (m)′β(m)+ui g (m) (6)

where β(m) is a k(m)× 1 coefficient vector and ui g (m) is a projection error. We index the regressors,

coefficients, and projection errors by the model m as they are model-dependent. In general, the model

(6) is not equal to the true regression (1) but rather is a projection approximation.

The model (6) written at the level of the cluster is

Y g = X g (m)β(m)+ug (m) (7)

where X g (m) is ng ×k(m).

The coefficient β(m) is estimated by least squares2

β̂(m) =
(

G∑
g=1

ng∑
i=1

Xi g (m)Xi g (m)′
)−1 (

G∑
g=1

ng∑
i=1

Xi g (m)Yi g

)

=
(

G∑
g=1

X g (m)′X g (m)

)−1 (
G∑

g=1
X g (m)′Y g

)
.

The least-squares fitted conditional mean written at the level of the cluster is

µ̂g (m) = X g (m)β̂(m).

3 Cross-Validation

A conventional criterion for model selection is delete-one cross-validation (CV). For each individual

observation i g , the delete-one least squares estimator is

β̄−i g (m) =
(

G∑
g=1

∑
j ̸=i

X j g (m)X j g (m)′
)−1 (

G∑
g=1

∑
j ̸=i

X j g (m)Y j g

)
.

The delete-one prediction errors are

ūi g (m) = Yi g −Xi g (m)′β̄−i g (m).

The delete-one cross-validation criterion is

CV(m) =
G∑

g=1

ng∑
i=1

ūi g (m)2. (8)

An alternative criterion is delete-cluster cross-validation (CCV). For each cluster g , the delete-cluster

2The ideas apply to other estimators, but our theoretical treatment is confined to least squares estimation.
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least squares estimator is

β̃−g (m) =
( ∑

j ̸=g
X j (m)′X j (m)

)−1 ( ∑
j ̸=g

X j (m)′Y j

)
. (9)

The delete-cluster prediction errors are

ũi g (m) = Yi g −Xi g (m)′β̄−g (m).

These equal

ũg (m) = Y g −X g (m)β̃−g (m) (10)

when grouped by cluster. The delete-cluster cross-validation (CCV) criterion is

CCV(m) =
G∑

g=1

ng∑
i=1

ũi g (m)2. (11)

The cross-validation criteria (8) and (11) may be used to compare and select models. The CV-selected

model is the one with the smallest value of CV(m). This is

m̂CV = argmin
1≤m≤M

CV(m).

Similarly, the CCV-selected model is the one with the smallest value of CCV(m), which is

m̂CCV = argmin
1≤m≤M

CCV(m).

Calculation of the CCV criterion (11) requires computation of G least-squares regressions. This is

roughly a G-fold computational increase over a single regression estimation, though some computa-

tional reductions can be achieved by storage of the within-cluster cross-product matrices. This is dis-

tinct from the delete-one criterion (8), which does not require explicit re-estimations. In most economic

applications the number of clusters G is small to moderate, so this computational cost is mild.

Furthermore, when covariance matrix estimation is performed by the cluster jackknife (as recom-

mended by MacKinnon, Nielsen, and Webb (2023abc) and Hansen (2024)) the CCV criterion is a simple

by-product of jackknife calculation, so CCV calculation does not require any additional computational

burden. The criterion (11) is displayed (by default) by the Stata and R jregress jackknife regression

command written by the author.

4 Empirical Illustration

We illustrate the use of the CCV criterion (8) by an application to one of the regression models from

Duflo, Dupas, and Kramer (2011). Our sample, taken from the authors’ replication file, is 5269 Kenyan

5



first grade students3 at 111 schools.

These authors investigate the impact of tracking (splitting students based on beginning-of-year achieve-

ment) on end-of-year testscores, conditional on a set of controls. The observations are clustered by

school.

An ideal regression model includes a sufficient set of controls to minimize omitted variables bias, but

not more controls than necessary so that estimation error is minimized. We consider four control vari-

ables: gender, age, contract teacher, and percentile (initial student achievement reported as a percentile).

Two of these variables (gender and teacher) are binary, the third (age) is discrete with a large number

of distinct values, and the fourth (percentile) is continuous. Regression models which control for these

variables can take many forms, and it is not a priori obvious which is correct. Plausible models include

linear specifications, nonlinear, nonparametric, and with and without interactions.

Table 1 reports five nested regression models which vary the specifications. All models include track-

ing. Regression 1 includes no other variables. Regression 2 includes the four control variables linearly.

Regression 3 includes a fourth-order polynomial in percentile. Regression 4 replaces the linear control

age with dummy indicators for each year of age. Regression 5 includes six interactions between the linear

variables.

To compare the regressions, we report delete-one CV and the delete-cluster cross-validation CCV

for each estimated model. Smaller values indicate better fit. Focusing on CCV, we can see that Regres-

sion 4 (the model with flexible specifications for percentile and age, but no interactions) has the best fit

among the five regressions. If the CCV criterion is used as a guide for model selection among the reported

models, then this regression is selected, resulting in an estimated coefficient for tracking of 0.171 with a

standard error of 0.078.

In contrast, if conventional CV is used for model selection, then the largest estimated model (Regres-

sion 5) is selected.

5 MSE

A theoretical measure of overall model fit is the weighted mean (expected) squared error. Let X de-

note the full set of regressors. We define

MSE(m) =
G∑

g=1
E
[(
µ̂g (m)−µg

)′ (
µ̂g (m)−µg

)
| X

]
. (12)

This is the expected sum of squared deviations between the least-squares fitted values and the true con-

ditional mean.

Define the covariance matrix Σ = diag{Σ1, ...,ΣG } where Σg is defined in (5), the n × 1 conditional

mean µ by stacking the cluster-level means µg , the full-sample regressor matrices X (m) by stacking the

3The original sample has 7022 students at 121 schools. We reduced the sample to 5269 students to eliminate observations
with missing relevant variables.
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Table 1: Regression Models

(1) (2) (3) (4) (5)
Tracking 0.149 0.174 0.174 0.171 0.173
Jackknife s.e. (0.078) (0.078) (0.078) (0.078) (0.078)
Linear controls No Yes Yes Yes Yes
Quartic in percentile No No Yes Yes Yes
Age (discrete) No No No Yes Yes
Interactions No No No No Yes
CV 5254 3969 3936 3916 3914∗

CCV 5282 4005 3973 3953∗ 3961

Notes: The sample includes 60 tracking and 61 nontracking schools. The dependent variables are
normalized test scores, with mean 0 and standard deviation 1 in the nontracking schools. Jackknife

standard errors clustered at the school level are presented in parentheses. Basic controls are: age
(linear), gender, being assigned to the contract teacher, and initial attainment percentile. Age (discrete)
is a set of 13 dummies indicating student age from 6 through 19. Interactions are the products between

the basic controls.

cluster-level regressor matrices X g (m), and the projection matrix

P (m) = X (m)
(

X (m)′X (m)
)−1 X (m)′. (13)

The MSE has the following characterization.

Theorem 1 Under Assumption 1

MSE(m) =µ′ (I n −P (m))µ+ tr(P (m)Σ) .

This decomposes (12) into two components. The first component µ′ (I n −P (m))µ is the bias due to

model misspecification, and equals the sum of squared residuals from the regression of the true condi-

tional mean on the model regressors. If a regression is correctly specified in the sense that there are no

omitted regressors, this component will equal zero. On the other hand, this component will be strictly

positive if there are relevant omitted variables. In general, as the number of regressors are increased, the

bias component decreases. The second component tr(P (m)Σ) is due to estimation variance. In general,

as the number of regressors are increased, the variance component increases.

To gain some insight into this expression we consider a stylized example.

Example 1 The cluster sizes are homogeneous with ng = N . The regressors are constant within clusters

and orthonormal across clusters. The true coefficients equal β j = b
p

a j−(1+a)/2 for some b ̸= 0 and a > 0.

The errors satisfy the random effects structure ei g = ug +εi g with ug and εi g i.i.d., E
[
ug

] = 0, E
[
ei g

] = 0,

var
[
ug

]=σ2
u , and var

[
εi g

]=σ2
ε. The models are nested with k(m) = m. Then

MSE(m) ≃ nb2

ma + (
σ2
ε+Nσ2

u

)
m. (14)
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In (14) we have a precise characterization of how the model dimension m impacts MSE through bias

and variance. Most notably, we can see that the cluster-level error ug impacts the variance component of

MSE through the multiplicative factor Nσ2
u . This shows that cluster size magnifies the impact of within-

cluster dependence. Consequently, cluster dependence increases the variance cost of estimating larger

models, while having no impact on bias.

The MSE-optimal model in the set m = 1, ..., M is the one with the smallest value of MSE(m). This is

mopt = argmin
1≤m≤M

MSE(m). (15)

The optimal value of MSE is

min
1≤m≤M

MSE(m) = MSE(mopt). (16)

As MSE(m) is unknown, mopt is unknown, and the optimal MSE is not achievable.

We can calculate the optimal model in our stylized example.

Example 2 In the context of Example 1

mopt ≃
(

anb2

σ2
ε+Nσ2

u

)1/(1+a)

. (17)

Equation (17) shows that the optimal model mopt increases with sample size n, but is decreasing with

cluster size N . This means that cluster dependence leads to more parsimonious optimal model choices.

Furthermore, from (17) we can see that the optimal model order mopt rate (as a function of sample

size) can be significantly affected by cluster dependence. If N ∼ nη is increasing with n for some 0 ≤ η< 1,

then mopt ∼ n(1−η)/(1+a). This means that the optimal model rate slows as cluster sizes increase.

6 Asymptotic Optimality of CCV

Our main theoretical result is to provide conditions under which the CCV-selected model m̂CCV is

asymptotically equivalent to the MSE-optimal model mopt. To describe our assumptions, it will be useful

to define the matrices

P g (m) = X g (m)
(

X (m)′X (m)
)−1 X g (m)′ (18)

M g (m) = I ng −P g (m) (19)

which are the diagonal blocks of P (m) and I n −P (m). We also define

Qn = MSE(mopt)

Nn = max
1≤g≤G

ng .

Qn is the infeasible optimal MSE. If one of the models contains the true regression, so that the bias

term equals zero, then Qn will equal the variance of this model and will be bounded as n diverges. On the
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other hand, if none of the models contain the true regression (which occurs in a nonparametric context

such as Example 1) then Qn will diverge to positive infinity as n diverges. Nn is the largest cluster size.

We allow Nn →∞ to incorporate applications with large cluster sizes.

For any matrix A, let ∥A∥ =λmax
(

A′A
)1/2 denote the spectral norm.

Assumption 1

1. The observations
(
Y g , X g

)
are mutually independent across clusters.

2. E
[∣∣ei g

∣∣4r | X
]
≤ D <∞ for some r > 1.

3. λmin
(
Σg

)≥λ> 0, almost surely.

4. λmax
(
Σg

)≤ λ̄<∞, almost surely.

5. M g (m) is invertible for all 1 ≤ g ≤G and 1 ≤ m ≤ M, almost surely.

6. max
1≤m≤M

max
1≤g≤G

∥∥P g (m)
∥∥= op (1).

7. k(m) ≥ Amφ for some A > 0 and 1/r <φ≤ 1.

8.
N 2r

n

Qr−1/φ
n

= op (1).

Assumption 1.1 states that the clusters are mutually independent, which means that our analysis

is confined to oneway clustering. Assumption 1.2 states that the regression errors have a uniformly

bounded conditional moment above four. Assumption 1.3 and 1.4 specify that the eigenvalues of the

cluster-level covariance matricesΣg are uniformly bounded away from zero and infinity. Assumption 1.5

is essentially equivalent to the uniqueness of the delete-one-cluster estimators (9). In Hansen (2024) this

condition is called “clusterwise invertibility”. This assumption rules out dummy variables which indicate

individual clusters, and thus excludes cluster-level treatment with one treated cluster and cluster-level

fixed effects from the model regressors Xi g (m). Assumption 1.6 states that uniformly across models,

cluster-level regressors are asymptotically negligible relative to the full sample. Assumption 1.7 states

that the number of regressors is increasing across models at some rate. If the models are conventionally

nested then φ= 1. Assumption 1.7 allows for non-nested models, but restricts the number of considered

subset models. The constraint on φ (and thus the growth rate of subset models) is less restrictive as the

number of bounded moments r increases. Assumption 1.8 is a technical condition which relates the

rate of growth of the maximal cluster size Nn to the rate of growth of the infeasible optimal MSE Qn . A

necessary condition for Assumption 1.8 is Qn →∞. As discussed above, this holds when the true regres-

sion function is nonparametric in the sense that all linear regression models are misspecified. If cluster

sizes Nn are bounded, then Qn →∞ is sufficient for Assumption 1.8. When cluster sizes increase with

n, then Assumption 1.8 restricts the rate of growth of the cluster sizes. This rate is less restrictive when

Qn diverges at a fast rate and when φr is large. This implies a trade-off between the number of bounded

moments r , the growth rate φ of the number of subset models, the growth rate of the maximal cluster

size Nn , and the growth rate of Qn .
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Theorem 2 Under Assumption 1, as n →∞,

max
1≤m≤M

∣∣∣∣CCV(m)−MSE(m)−e ′e
MSE(m)

∣∣∣∣= op (1). (20)

Theorem 2 shows that the CCV criterion is asymptoticallly equivalent to the mean square error (12).

Thus CCV can be used as a guide to compare and select regression models under clustered dependence.

If CCV is used for model selection, the achieved MSE will be close to the theoretical optimal, as we

now show. This is the main result of the paper.

Theorem 3 Under Assumption 1, as n →∞,

MSE(m̂CCV)

MSE(mopt)
−→

p
1.

Theorem 3 demonstrates that the mean squared error of the regression model selected by minimizing

the CCV criterion is asymptotically equivalent to the infeasible optimal mean squared error. Thus CCV

model selection is asymptotically optimal.

7 Conventional CV

We have shown that the delete-cluster cross-validation criterion is asymptotically equivalent to the

model MSE. We now show that the conventional delete-one cross-validation criterion is asymptotically

equivalent to something different.

Theorem 4 Under Assumption 1, as n →∞,

max
1≤m≤M

∣∣∣∣CV(m)−C(m)−e ′e
MSE(m)

∣∣∣∣= op (1), (21)

where

C(m) =µ′ (I n −P (m))µ− tr(P (m)Σ)+2tr(P (m)Σ0) (22)

and Σ0 is the n ×n diagonal matrix consisting of the diagonal elements of Σ.

Theorem 4 shows that the conventional cross-validation criterion CV(m) is asymptotically equivalent

to the criterion C(m). Therefore, the CV-selected model m̂CV is asymptotically similar to the minimizer

of C(m), which we define as

mcv = argmin
1≤m≤M

C(m). (23)

In the absence of clustering, Σ0 =Σ, so C(m) = MSE(m)+ tr(Σ) and mcv = mopt. Otherwise, it can be

quite different. This is easiest to see if we reexamine the example from the previous section .
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Example 3 In the context of Example 1

C(m) ≃ n
b2

ma + (
σ2
ε− (N −2)σ2

u

)
m.

If σ2
ε− (N −2)σ2

u > 0, the minimizer (23) of (22) equals

mcv = min

[(
anb2

σ2
ε− (N −2)σ2

u

)1/(1+a)

, M

]
.

If σ2
ε− (N −2)σ2

u ≤ 0 then

mcv = M.

We can see that the criterion C(m) differs substantially from MSE(m). The bias terms are the same,

but the variances terms are different, with that for C (m) smaller. Thus, C (m) places a reduced cost on

model order m. For small levels of clustered correlation the impact is to “select” a larger model than the

optimal model mopt. For larger levels of clustered correlation, however, the variance penalty can be de-

creasing in model dimension m, so the criterion C(m) is strictly decreasing in m and “selects” the largest

model M . The practical implication is that model-selection by delete-one CV leads to over-selection.

8 Fixed Effects

Many estimated clustered regressions include cluster-level fixed effects. Instead of (2), this regression

framework can be written as

Y g = i gαg +µg +eg (24)

where i g is an ng ×1 vector of ones. Similarly, instead of (7), the mth regression model takes the form

Y g = i gαg +X g (m)β(m)+ug (m). (25)

This model falls outside of the framework covered by Theorems 2-3 for two interrelated reasons. First,

if we interpret (25) as expanding the list of regressors from X g (m) to (i g , X g (m)), then Assumption 1.5

fails. Second, if we expand the list of coefficients of the model fromβ to (α1, ...αG ,β), then the delete-one-

cluster estimator (9) is not well-defined. Essentially, when the observations in cluster g are omitted, the

fixed effect αg cannot be estimated. These two problems are interrelated, as Assumption 1.5 is precisely

the condition needed for existence of the delete-one-cluster estimators.

This problem can be sidestepped if we focus on the model after applying the within transformation.

Define the ng ×ng within transformation matrix

W g = I ng − i g

(
i ′g i g

)−1
i ′g

which subtracts cluster-specific means from cluster-level vectors. For example, the within-transformed
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dependent variable equals

Ẏ g = Y g − 1

ng

ng∑
i=1

Yi g =W g Y g .

The within-transformation applied to the regression structure (24) equals

Ẏ g = µ̇g + ėg

where µ̇g =W gµg and ėg =W g eg . The transformed regression error satisfies

E
[
ėg | X g

]= 0

E
[

ėg ė ′
g | X g

]
= Σ̇g =W gΣg W g .

The within-transformation applied to the mth regression model (25) equals

Ẏ g = Ẋ g (m)β(m)+ u̇g (m) (26)

where Ẋ g (m) =W g X g (m) and u̇g (m) =W g ug (m).

The regression model is estimated by least squares. As is well known, this can be achieved either

by estimation of the full regression (25) or the transformed equation (26). The least squares esitmate of

β(m) equals ̂̇β(m) =
(

G∑
g=1

Ẋ g (m)′Ẋ g (m)

)−1 (
G∑

g=1
Ẋ g (m)′Ẏ g

)
.

Write the fitted values as ̂̇µg (m) = Ẋ g (m) ̂̇β(m).

The delete-one-cluster coefficient estimates are

˜̇β−g (m) =
( ∑

j ̸=g
Ẋ j (m)′Ẋ j (m)

)−1 ( ∑
j ̸=g

Ẋ j (m)′Ẏ j

)

with prediction errors ˜̇ug (m) = Ẏ g − Ẋ g (m) ˜̇β−g (m).

The delete-one-cluster within cross-validation (WCCV) criterion is

WCCV(m) =
G∑

g=1

˜̇ug (m)′ ˜̇ug (m).

Let ̂̇m be the model which minimizes WCCV(m).

The MSE of the transformed regression is

WMSE(m) =
G∑

g=1
E
[(̂̇µg (m)− µ̇g

)′ (̂̇µg (m)− µ̇g

)
| X

]
. (27)
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Let ṁopt be the model which minimizes WMSE(m). We also define

Q̇n = WMSE(ṁopt)

Ṗ g (m) = Ẋ g (m)

(
G∑

g=1
Ẋ g (m)′Ẋ g (m)

)−1

Ẋ g (m)′

Ṁ g (m) = I ng − Ṗ g (m).

Assumption 2 Assumption 1 holds, with parts 1.5-1.7 replaced by

5’ Ṁ g (m) is invertible for all 1 ≤ g ≤G and 1 ≤ m ≤ M.

6’ max
1≤m≤M

max
1≤g≤G

∥∥Ṗ g (m)
∥∥= op (1).

7’
N 2r

n

Q̇r−1/φ
n

= op (1).

Theorem 5 Under Assumption 2, as n →∞,

WMSE(̂̇m)

WMSE(ṁopt)
−→

p
1.

Theorem 5 shows that model selection by minimization of the within cross-validation criterion is

asymptotically optimal, when optimality is assessed by the MSE of the within-transformed regression.

Therefore, WCCV can be used to compare and select among regressions estimated with fitted fixed ef-

fects, but cannot be used to compare models with fixed effects with models without fixed effects.

9 Simulation

We present a simulation experiment to investigate the performance of model selection methods un-

der clustered dependence. The model is the linear regression

Yi g =α+
J∑

j=1
β j X j i g +ei g

with the observations grouped into G clusters of size N , so the full sample has n = NG observations.

We vary G ∈ {20,100} and N ∈ {20,100}. The number of regressors is set at J = p
n. The errors ei g are

independent of the regressors and are distributed N (0,1) with within-cluster correlation ρ. We vary ρ ∈
{0.1,0.3,0.5,0.7,0.9}. In the baseline model the regressors X j i g are distributed N (0,1) with within-cluster

correlation ρ. The coefficients are set asα= 0 and β j = b
p

a j−(1+a)/2, with b ∈ {0.3,1} and a ∈ {1,2,3}. For

each parameter configuration we generate 20,000 samples.

For each simulation sample we estimate M = 20 nested models. The mth includes the first km =
m J/M regressors. The Mth includes all J regressors. We select among the M models by CCV and CV,
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Table 2: Normal Regressors, a = 1

b = 0.3 b = 1.0
G N ρ 0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9
20 20 mopt 6 6 5 3 2 20 19 16 10 6

E [m̂CCV] 7 7 6 6 5 16 16 14 11 6
E [m̂CV] 7 8 12 18 19 16 17 17 19 19

RMSE(CCV) 1.30 1.29 1.35 1.57 2.29 1.12 1.12 1.13 1.16 1.39
RMSE(CV) 1.30 1.33 1.74 2.65 5.24 1.12 1.09 1.05 1.16 1.78

20 100 mopt 14 10 6 4 2 40 38 24 12 6
E [m̂CCV] 15 13 10 10 12 36 32 25 20 18
E [m̂CV] 15 23 38 39 40 36 37 39 40 40

RMSE(CCV) 1.18 1.19 1.34 1.63 2.55 1.08 1.08 1.09 1.12 1.35
RMSE(CV) 1.18 1.43 2.19 2.82 4.32 1.07 1.02 1.06 1.15 1.40

100 20 mopt 14 14 10 6 4 40 40 32 20 12
E [m̂CCV] 15 14 11 8 6 36 35 30 22 14
E [m̂CV] 15 17 29 38 40 36 36 37 39 40

RMSE(CCV) 1.19 1.18 1.23 1.33 1.52 1.07 1.07 1.08 1.14 1.24
RMSE(CV) 1.19 1.23 1.87 3.12 5.75 1.07 1.05 1.04 1.25 1.98

100 100 mopt 30 25 10 5 5 100 80 40 20 15
E [m̂CCV] 32 25 15 9 7 89 77 48 29 17
E [m̂CV] 32 60 99 100 100 89 95 99 100 100

RMSE(CCV) 1.10 1.11 1.17 1.26 1.44 1.05 1.06 1.10 1.18 1.26
RMSE(CV) 1.11 1.64 3.29 5.23 11.69 1.04 1.04 1.32 1.91 3.74

denoting the selected models by m̂CCV and m̂CV. Given the selected models we calculate the model-

selected coefficient vectors β̂ccv = β̂(m̂CCV) and β̂cv = β̂(m̂CV), where the non-estimated coefficients are

set to zero.

We assess estimation accuracy by coefficient mean-squared error. For the individual model estima-

tors β̂(m) we define

MSE(m) = E
[(
β̂(m)−β)′ (

β̂(m)−β)]
which is similar (but not identical) to the expected squared error (12). Among the estimated models the

MSE-optimal model is

mopt = argmin
1≤m≤M

MSE(m).

We compare the model selection methods by contrasting mopt with the average selected models E [m̂CCV]

and E [m̂CV].

For the selection estimators β̂ccv and β̂cv we define the coefficient mean-squared error

MSE(CCV) = E
[(
β̂ccv −β

)′ (
β̂ccv −β

)]
MSE(CV) = E

[(
β̂cv −β

)′ (
β̂cv −β

)]

14



and the relative mean-squared error

RMSE(CCV) = MSE(CCV)

MSE(mopt)

RMSE(CV) = MSE(CV)

MSE(mopt)
.

By construction the RMSE measures are greater than 1. Values close to 1 imply that the selection esti-

mator has near-optimal accuracy. Large values of RMSE indicate that the selection estimator has poor

accuracy.

Table 3: Normal Regressors, a = 3

b = 0.3 b = 1.0
G N ρ 0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9
20 20 mopt 4 4 3 3 2 6 6 5 4 4

E [m̂CCV] 4 4 5 5 5 7 7 7 7 7
E [m̂CV] 4 5 10 18 19 7 7 11 18 19

RMSE(CCV) 1.55 1.47 1.57 1.79 2.79 1.34 1.32 1.37 1.53 1.95
RMSE(CV) 1.55 1.58 2.55 3.83 6.97 1.34 1.37 1.82 2.51 3.89

20 100 mopt 6 4 4 2 2 10 8 6 4 4
E [m̂CCV] 6 6 7 8 11 10 10 10 11 13
E [m̂CV] 6 14 37 39 40 10 17 37 39 40

RMSE(CCV) 1.32 1.26 1.61 1.84 3.12 1.23 1.23 1.42 1.64 2.27
RMSE(CV) 1.34 2.09 3.84 3.99 5.88 1.23 1.71 2.72 2.85 3.34

100 20 mopt 6 6 4 4 4 10 10 8 6 6
E [m̂CCV] 6 6 6 5 4 10 10 9 8 8
E [m̂CV] 6 7 23 38 40 10 11 25 38 40

RMSE(CCV) 1.38 1.31 1.36 1.63 1.69 1.25 1.23 1.28 1.40 1.44
RMSE(CV) 1.38 1.46 3.85 6.71 9.82 1.25 1.32 2.59 4.17 6.18

100 100 mopt 10 5 5 5 5 15 10 10 5 5
E [m̂CCV] 9 8 6 6 6 15 13 11 8 7
E [m̂CV] 9 31 99 100 100 15 36 99 100 100

RMSE(CCV) 1.26 1.14 1.27 1.39 1.51 1.18 1.11 1.26 1.28 1.47
RMSE(CV) 1.26 2.86 9.05 11.33 17.72 1.18 2.28 5.74 6.95 13.87

We report the simulation results in Tables 2-3, with Table 2 reporting results for a = 1 and Table 3 for

a = 3. In each table the first five columns are for b = 0.3 and the second set of five columns for b = 1.0. The

columns vary by the within-cluster correlation ρ. The results are displayed in four groups, with the first

group for the setting G = N = 20 and the final group for the setting G = N = 100. Within each group we

report the MSE-optimal model mopt, the average selected models E [m̂CCV] and E [m̂CV], and the relative

mean-squared errors of the two model selection methods.

First examine Table 2 and the displayed values of mopt. What you can see is that the optimal model

order is strongly affected by the parameters. As should be generally expected, the optimal model order

is increasing in regression signal (b), number of clusters (G), and cluster size (N ). More importantly,
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the optimal model order is strongly decreasing in the within-cluster correlation ρ. For example, when

G = N = 100 and b = 1, the optimal model order is mopt = 100 for ρ = 0.1 but is mopt = 15 for ρ = .9.

This illustrates how important it is to incorporate within-cluster correlation when considering model

selection.

Next examine the displayed values of E [m̂CCV], the average value of the CCV-selected model. What

we can see is that it tracks the optimal model order mopt well in large samples, and moderately well in

smaller samples.

Next examine the displayed values of E [m̂CV], the average value of the conventional CV-selected

model. We can see that it is similar to E [m̂CCV] for small values of ρ, but they are very different for

large values of ρ. While the optimal model order mopt is decreasing with ρ, E [m̂CV] is increasing in ρ.

This discrepancy is particular striking in large samples. For example, when G = N = 100 and ρ ≥ 0.5, CV-

selection essentially picks the largest model (m = 100) in all simulation replications, while the optimal

model order is small.

Next example the relative mean-squared error of the model selection methods. In most cases the

RMSE of CCV selection is slightly elevated over the optimal value of 1.0, and the values are descreasing

with sample size. In contrast, the RMSE of CV selection has high variation. It is low for small values of

ρ, but is high for large values of ρ. The latter values are increasing with sample size. For example, when

G = N = 100 and ρ = 0.9, the RMSE of CV exceeds 11, meaning that the MSE of CV-selection is 11 times

the optimal value.

Comparing CCV and CV, we can see that CCV has equal or lower MSE than CV in every single case

examined. The two methods are near equivalents when ρ = 0.1, but differ meaningfully for larger values

of ρ.

Now example Table 3 which displays the results for a = 3. In this setting the regression coefficients

decay more quickly, reducing the bias of low-dimension models, and thus altering the model-selection

trade-offs. We can see that the optimal model orders mopt are smaller than in Table 2, but display the

same patterns. The other results are similar to Table 2. CCV-selection performs similarly to the optimal

model order in most cases, and achieves low RMSE in most cases, especially in large samples. In contrast,

conventional CV leads to sever over-selection when ρ is large, leading to large values of RMSE. These

latter values are considerably larger than in Table 2, reaching as high as 17.7. In all cases, CCV-selection

has equal or lower MSE than CV-selection.

Many papers, including MacKinnon, Nielsen, and Webb (2023c) and Hansen (2024) have argued

that the context where conventional robust covariance matrix estimation fails to perform well, and jack-

knife covariance matrix estimation performs better, is in the presence of regressor leverage, which arises

when regressors have heavy-tailed distributions. Given the parallel between cross-validation and the

jackknife, we now explore the impact of heavy-tailed regressors. We augment the model by taking the

regressors X j i g as originally generated (as N (0,1) with within-cluster correlation ρ) and replacing them

with the transformed regressors Z j i g = (exp(X j i g )−exp(1/2))/
√

exp(2)−exp(1). These regressors are log-

normally distributed, but scaled to have zero mean and unit variance, and preserve the within-cluster

dependence of the original regressors. Otherwise, the experience is unaltered. The results (not reported)
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are remarkably similar to Tables 2-3. Essentially, the presence of leveraged (heavy-tailed) regressors has

no meaningful impact on the performance of CCV and CV model selection.

The simulation evidence supports the use of CCV model selection for clustered regression. Model

selection methods which neglect dependence should be avoided.

10 Conclusion

Model selection methods are routinely used for model evaluation, especially with the rise of high-

dimensional and machine-learning estimation methods. At the same time, economic data sets typi-

cally display clustered sampling dependence. This paper investigates cross-valiation model-selection

methods under clustered dependence, demonstrates that a computationally inexpensive cluster cross-

validation (CCV) method is asymptotically optimal, while conventional CV methods can lead to severe

over-selection.

The proposed CCV method, similarly to cluster-robust covariance matrix estimation, requires the

knowledge of the appropriate clustering structure. If the clustering structure is mis-specified, then the

CCV method will be mis-specified and can lead to over-selection similarly to conventional CV.

The results of this paper are confined to one-way clustering. Extensions to two-way and multi-way

clustering would be desirable.

11 Appendix

11.1 Whittle Inequalities

Whittle (1960) provided two powerful inequalities which bound real-valued sums and quadratic forms

of independent random variables. We generalize these inequalities to the clustered dependence setting.

The following is a generalization of Whittle’s first inequality.

Lemma 1 For any p ≥ 2, any n ×d matrix A, and any n ×1 random vector e = (e ′
1, ...,e ′

G )′ with ng ×1 eg

mutually independent across g and E
[
eg

]= 0, then

E
∥∥A′e

∥∥p ≤ 2Mp
(
tr

(
A′A

))p/2 max
1≤g≤G

E
∥∥eg

∥∥p (28)

where Mp <∞ is the matrix Rosenthal constant from B. E. Hansen (2015) which only depends on p.

The following is a generalization of Whittle’s (1960) second inequality.

Lemma 2 For any q ≥ 2, any n ×n matrix P , and any n ×1 random vector e = (e ′
1, ...,e ′

G )′ with ng ×1 eg

mutually independent across g and E
[
eg

]= 0, then

E
∣∣e ′Pe −E[

e ′Pe
]∣∣q ≤Cq

(
tr

(
P ′P

))q/2 max
1≤g≤G

E
∥∥eg

∥∥2q . (29)

17



where

Cq =
√

21+5q

π
Γ((q +1)/2)M 1/2

2q (30)

and M2q <∞ is the matrix Rosenthal constant from B. E. Hansen (2015).

The bounds (28) and (29) are written in terms of the moments of the cluster-level errors eg . Typi-

cally we will want to use bounds written in terms of the moments of the individual errors. For this, the

following result is useful.

Lemma 3 Write eg = (e1g , ...,eng g )′. If ng ≤ Nn and for some p ≥ 2, E
∣∣ei g

∣∣p ≤ D <∞, then

max
1≤g≤G

E
∥∥eg

∥∥p ≤ N p/2
n D.

Proof of Lemma 1. Make the partition A′ = (
A′

1, ..., A′
G

)
conformably with e = (e ′

1, ...,e ′
G )′. The vectors

A′
g eg are mean zero and independent across g . Let ∥A∥F = (

tr
(

A′A
))1/2 denote the Frobenius norm

of a matrix A. By the matrix Rosenthal inequality of B. E. Hansen (2015), there is a constant Mp < ∞
depending only on p such that

E
∥∥A′e

∥∥p = E
∥∥∥∥∥ G∑

g=1
A′

g eg

∥∥∥∥∥
p

≤ Mp

((
G∑

g=1
E
∥∥∥A′

g eg

∥∥∥2
)p/2

+
G∑

g=1
E
∥∥∥A′

g eg

∥∥∥p
)

(31)

≤ 2Mp

(
G∑

g=1

(
E
∥∥∥A′

g eg

∥∥∥p)2/p
)p/2

≤ 2Mp

(
G∑

g=1

∥∥Ag
∥∥2

F

(
E
∥∥eg

∥∥p)2/p

)p/2

≤ 2Mp
(
tr

(
A′A

))p/2 max
1≤g≤G

E
∥∥eg

∥∥p . (32)

This is (28). The second inequality holds by applying Lyapunov’s inequality to the first term in (31) and

applying the cr inequality to the second term. The third inequality is the Schwarz matrix inequality. The

fourth uses the relationship
∑G

g=1

∥∥Ag
∥∥2

F = tr
(

A′A
)
. ■

Proof of Lemma 2. Let u = (u′
1, ...,u′

G )′ be an independent copy of e and let Eu denote expectations over
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u. By the equality E
[
e ′Pe

]= Eu
[
u′Pu

]
, Jensen’s inequality, and iterated expectations,

E
∣∣e ′Pe −E[

e ′Pe
]∣∣q = E ∣∣e ′Pe −Eu

[
u′Pu

]∣∣q

= E ∣∣Eu
[
e ′Pe −u′Pu

]∣∣q

≤ E[
Eu

∣∣e ′Pe −u′Pu
∣∣q]

= E ∣∣e ′Pe −u′Pu
∣∣q

= E ∣∣(e +u)′ P (e −u)
∣∣q

= E
∣∣∣∣∣ G∑

g=1
(e +u)′ P g

(
eg −ug

)∣∣∣∣∣
q

= E
∣∣∣∣∣ G∑

g=1
ag

∣∣∣∣∣
q

, (33)

where the second-to-last equality makes the partition P = (P 1, ...,PG ) conformably with e = (e ′
1, ...,e ′

G )′

and the final equality sets ag = (e +u)′ P g
(
eg −ug

)
.

Because eg and ug have the same distribution, eg −ug has the same distribution as ug − eg and ag

has the same distribution as −ag . Thus ag has the same distribution as agεg , where εg is an independent

Rademacher random variable. Since the ag are independent across g , it follows that (a1, ..., aG ) has the

same distribution as (a1ε1, ..., aGεG ). Let Eε denote expectations over ε. By iterated expectations, (33)

equals

E

[
Eε

∣∣∣∣∣ G∑
g=1

agεg

∣∣∣∣∣
q]

≤ E
[

Kq

(
G∑

g=1
a2

g

)q/2]
≤ Kq

(
G∑

g=1

(
E
∣∣ag

∣∣q)2/q

)q/2

. (34)

The first inequality is Khintchine’s inequality (with Kq = 2q/2Γ((q +1)/2)/π1/2, see equation (B.45) in B.

E. Hansen (2022)) and the second is Minkowski’s inequality.

By multiple application of Minkowski’s inequality, identical distributions, the Schwarz inequality, the

Cauchy-Schwarz inequality, and finally (28) with p = 2q and A = P g ,

(
E
∣∣ag

∣∣q)1/q = (
E
∣∣(e +u)′ P g

(
eg −ug

)∣∣q)1/q

≤ 2
(
E
∣∣e ′P g eg

∣∣q)1/q +2
(
E
∣∣e ′P g ug

∣∣q)1/q

≤ 2
(
E
[∥∥∥P ′

g e
∥∥∥q ∥∥eg

∥∥q
])1/q

+2
(
E
[∥∥∥P ′

g e
∥∥∥q ∥∥ug

∥∥q
])1/q

≤ 4

(
E
∥∥∥P ′

g e
∥∥∥2q

)1/2q (
E
∥∥eg

∥∥2q
)1/2q

≤ 4

(
2M2q

(
tr(P ′

g P g )
)q

max
1≤g≤G

E
∥∥eg

∥∥2q
)1/2q (

E
∥∥eg

∥∥2q
)1/2q

≤ 22+1/2q M 1/2q
2q

(
tr(P ′

g P g )
)1/2

(
max

1≤g≤G
E
∥∥eg

∥∥2q
)1/q

. (35)
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Together, (33), (34), (35), and
∑G

g=1 tr(P ′
g P g ) = tr

(
P ′P

)
establish that

E
∣∣e ′Pe −E[

e ′Pe
]∣∣q ≤ Kq

(
G∑

g=1

(
22+1/2q M 1/2q

2q

(
tr(P ′

g P g )
)1/2

)2
)q/2

= 22q+1/2Kq M 1/2
2q

(
tr

(
P ′P

))q/2 max
1≤g≤G

E
∥∥eg

∥∥2q ,

which is (29). ■

Proof of Lemma 3. By the definitition of the Euclidean norm and the cr inequality,

E
∥∥eg

∥∥p = E
[(

ng∑
i=1

e2
i g

)p/2]
≤ np/2−1

g

ng∑
i=1

E
∣∣ei g

∣∣p ≤ np/2
g D ≤ N p/2

n D. (36)

The final two inequalities are the assumptions E
∣∣ei g

∣∣p ≤ D and ng ≤ Nn . ■

11.2 Intermediate Results

In this section we list some intermediate results which will be used for the main proofs. Define the

delete-cluster fitted values µ̃g (m) = X g (m)β̃−g (m) and stack into the full-sample vectors µ̃(m). Similarly,

define the delete-one fitted values µ̄i (m) = X ′
i (m)β̄−i (m) and stack into the full-sample vectors µ̄(m).

Lemma 4 Under Assumption 1.5, the vector of delete-cluster and delete-one fitted values can be written as

µ̃(m) = P̃ (m)Y (37)

and

µ̄(m) = P̄ (m)Y (38)

where

P̃ (m) = P (m)− D̃(m) (I n −P (m)) (39)

D̃(m) = diag
{

M g (m)−1 − I ng

}
(40)

P̄ (m) = P (m)− D̄(m) (I n −P (m)) (41)

D̄(m) = diag

{
Pi g (m)

1−Pi g (m)

}
, (42)

P (m) and M g (m) are defined in (13) and (19), and Pi g (m) = Xi g (m)′
(

X (m)′X (m)
)−1 Xi g (m). The n ×n

matrix P̃ (m) has the property that its diagonal ng ×ng blocks (corresponding to each cluster) contain only

0’s. The n ×n matrix P̄ (m) has the property that its diagonal elements equal 0. The matrices D̃(m) and

D̄(m) are symmetric.
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Proof. We demonstrate (37), as (38) is the special case where each cluster has one observation. To sim-

plify the notation for ease of reading, we omit notational dependence on the model m. Using the Wood-

bury matrix identity, the delete-cluster fitted values equal

µ̃g = X g

(
X ′X −X ′

g X g

)−1 (
X ′Y −X ′

g Y g

)
= X g

(
X ′X

)−1 X ′Y −X g
(

X ′X
)−1 X ′

g Y g

+X g
(

X ′X
)−1 X ′

g

(
I ng −X g

(
X ′X

)−1 X ′
g

)−1
X g

(
X ′X

)−1 X ′Y

−X g
(

X ′X
)−1 X ′

g

(
I ng −X g

(
X ′X

)−1 X ′
g

)−1
X g

(
X ′X

)−1 X ′
g Y g

= X g
(

X ′X
)−1 X ′Y − (

I ng −M g
)

Y g

+ (
I ng −M g

)
M−1

g X g
(

X ′X
)−1 X ′Y − (

I ng −M g
)

M−1
g

(
I ng −M g

)
Y g

= X g
(

X ′X
)−1 X ′Y −

(
M−1

g − I ng

)(
Y g −X g

(
X ′X

)−1 X ′Y
)

.

The third equality makes multiple use of (19). The fourth equality simplifies terms.

Stacking over g = 1, ...,G and using (39)-(40) we obtain

µ̃= X
(

X ′X
)−1 X ′Y − D̃

(
Y −X

(
X ′X

)−1 X ′Y
)

= (
P − D̃ (I n −P )

)
Y

= P̃ Y

which is (37).

To show that the diagonal blocks of P̃ contain only 0’s, observe that the diagonal blocks of I n −P are

M g , so those of D̃ (I n −P ) are (
M−1

g − I ng

)
M g = I ng −M g

which are the diagonal blocks of P . We deduce that the diagonal blocks of P and D̃ (I n −P ) are identical,

so those of P̃ are 0’s, as claimed.

The matrices M g (m) are symmetric which implies that the diagonal blocks in (40) are symmetric and

thus D̃(m) is symmetric as claimed.

To show that the diagonal elements of P̄ (m) equal 0, observe that since D̄(m) is diagonal and the

diagonal elements of P (m) are Pi g (m), the diagonal elements of D̄(m) (I n −P (m)) equal

Pi g (m)(
1−Pi g (m)

) (
1−Pi g (m)

)= Pi g (m),

which equal the diagonal elements of P (m). Hence, the diagonal elements of P̄ (m) = P (m)−D̄(m) (I n −P (m))

equal zero, as claimed. ■
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Lemma 5 Under Assumption 1.5-1.6, as n →∞,

max
1≤m≤M

∥∥D̃(m)
∥∥= op (1) (43)

max
1≤m≤M

∥∥P̃ (m)
∥∥= 1+op (1) (44)

max
1≤m≤M

∥∥I n − P̃ (m)
∥∥= 1+op (1) (45)

max
1≤m≤M

∥∥D̄(m)
∥∥= op (1) (46)

max
1≤m≤M

∥∥P̄ (m)
∥∥= 1+op (1) (47)

max
1≤m≤M

∥∥I n − P̄ (m)
∥∥= 1+op (1) (48)

Proof. Assumption 1.6 states that

max
1≤m≤M

max
1≤g≤G

∥∥I ng −M g (m)
∥∥= op (1). (49)

This implies

max
1≤m≤M

∥∥D̃(m)
∥∥= max

1≤m≤M
max

1≤g≤G

∥∥M g (m)−1 − I ng

∥∥= op (1)

which is (43). Hence

max
1≤m≤M

∥∥P̃ (m)
∥∥= max

1≤m≤M

∥∥P (m)− D̃(m) (I n −P (m))
∥∥

≤ max
1≤m≤M

∥P (m)∥+ max
1≤m≤M

∥∥D̃(m)
∥∥∥I n −P (m)∥

= 1+ max
1≤m≤M

∥∥D̃(m)
∥∥

= 1+op (1)

where the second equality uses ∥P (m)∥ = 1 and ∥I n −P (m)∥ = 1. This is (44). Similarly,

max
1≤m≤M

∥∥I n − P̃ (m)
∥∥= max

1≤m≤M

∥∥I n −P (m)+ D̃(m) (I n −P (m))
∥∥

≤ max
1≤m≤M

∥I n −P (m)∥+ max
1≤m≤M

∥∥D̃(m)
∥∥∥I n −P (m)∥

= 1+op (1),

which is (45).

As Pi g (m) is a diagonal element of P g (m),

max
1≤m≤M

max
i ,g

∣∣Pi g (m)
∣∣≤ max

1≤m≤M
max

1≤g≤G

∥∥P g (m)
∥∥= op (1) (50)

where the convergence is (49). This is the delete-one analog of (49). Just as the three results (43)-(45)

follow from (49), (46)-(48) follow from (50). ■
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11.3 Proof of Theorem 1

Stack Y g , eg , and µ̂g (m) into the full-sample vectors Y , e, and µ̂g (m). We have

µ̂(m) = P (m)Y = P (m)µ+P (m)e

µ̂(m)−µ=− (I n −P (m))µ+P (m)e.

Using the properties

P (m)P (m) = P (m) (51)

(I n −P (m))P (m) = 0 (52)

(I n −P (m)) (I n −P (m)) = I n −P (m) (53)

and E
[
ee ′ | X

]=Σwe find

MSE(m) = E
[(
µ̂(m)−µ)′ (

µ̂(m)−µ) | X
]

=µ′ (I n −P (m))µ+E[
e ′P (m)e | X

]
=µ′ (I n −P (m))µ+ tr(P (m)Σ)

as claimed. ■

11.4 Proof of Theorem 2

The n ×1 vector of delete-cluster errors can be written as

ũ(m) = (
I n − P̃ (m)

)
Y = (

I n − P̃ (m)
)(
µ+e

)
.

Expanding the quadratic,

CCV(m) = ũ(m)′ũ(m)

= (
µ+e

)′ (I n − P̃ (m)
)′ (

I n − P̃ (m)
)(
µ+e

)
=µ′ (I n − P̃ (m)

)′ (
I n − P̃ (m)

)
µ+e ′e −2e ′P̃ (m)e +e ′P̃ (m)′P̃ (m)e +2µ′ (I n − P̃ (m)

)′ (
I n − P̃ (m)

)
e.

Using (39) and (51),

tr
(
P̃ (m)′P̃ (m)Σ

)= tr(P (m)Σ)−2tr
(
(I n −P (m))D̃(m)P (m)Σ

)+tr
(
(I n −P (m))D̃(m)D̃(m) (I n −P (m))Σ

)
.

(54)

Using Theorem 1, (54), and some rearrangment we find

CCV(m)−MSE(m)−e ′e
MSE(m)

= T1(m)−2T2(m)+T3(m)−2T4(m)+T5(m)+2T6(m) (55)
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where

T1(m) = µ′ (I n − P̃ (m)
)′ (

I n − P̃ (m)
)
µ−µ′ (I n −P (m))µ

MSE(m)
(56)

T2(m) = tr
(
(I n −P (m))D̃(m)P (m)Σ

)
MSE(m)

(57)

T3(m) = tr
(
(I n −P (m))D̃(m)D̃(m) (I n −P (m))Σ

)
MSE(m)

(58)

T4(m) = e ′P̃ (m)e

MSE(m)
(59)

T5(m) = e ′P̃ (m)′P̃ (m)e − tr
(
P̃ (m)′P̃ (m)Σ

)
MSE(m)

(60)

T6(m) = µ′ (I n − P̃ (m)
)′ (

I n − P̃ (m)
)

e

MSE(m)
. (61)

We will show that the components (56)-(61) are each op (1) uniformly in 1 ≤ m ≤ M , which will establish

(20).

It will be useful to observe that Theorem 1, tr(P (m)Σ) ≥ 0, and µ′ (I n −P (m))µ ≥ 0 imply the two

inequalities

µ′ (I n −P (m))µ≤ MSE(m) (62)

and

tr(P (m)Σ) ≤ MSE(m). (63)

We will make multiple use of the inequalities

tr(AB ) ≤ ∥A∥ tr(B ) (64)

b′Ab ≤ b′b ∥A∥ (65)

for any square matrices A, positive semi-definite matrices B , and vectors b. In addition, (63) and an

analog of (64) using Assumption 1.3 imply

MSE(m) ≥ tr(P (m)Σ) ≥ tr(P (m))λ= k(m)λ. (66)

Take (56). Using (39), some algebra, (65), (53), (62), the triangle inequality, and finally (43) we find

|T1(m)| = µ′ (I n −P (m))
(
2D̃(m)+ D̃(m)D̃(m)

)
(I n −P (m))µ

MSE(m)

≤
∥∥2D̃(m)+ D̃(m)D̃(m)

∥∥µ′ (I n −P (m))µ

MSE(m)

≤ 2
∥∥D̃(m)

∥∥+∥∥D̃(m)
∥∥2

≤ op (1) (67)

uniformly in m.
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Take (57). Rearranging, applying (64), the Schwarz matrix inequality, (63), and finally (43) and (45),

T2(m) = tr
(
Σ1/2 (I n −P (m))D̃(m)Σ−1/2Σ1/2P (m)Σ1/2

)
MSE(m)

≤
∥∥Σ1/2 (I n −P (m))D̃(m)Σ−1/2

∥∥ tr
(
Σ1/2P (m)Σ1/2

)
MSE(m)

≤ ∥I n −P (m)∥∥∥D̃(m)
∥∥ tr(P (m)Σ)

MSE(m)

≤ ∥I n −P (m)∥∥∥D̃(m)
∥∥

≤ op (1) (68)

uniformly in m.

Take (58). We first observe that by applying (53), (64), and the fact from Theorem 4 that the diagonal

blocks of D̃(m) (I n −P (m)) equal those of P (m)

tr
(
(I n −P (m))D̃(m)D̃(m) (I n −P (m))

)= tr
(
D̃(m)1/2 (I n −P (m))D̃(m)1/2D̃(m)

)
≤ tr

(
D̃(m)1/2 (I n −P (m))D̃(m)1/2)∥∥D̃(m)

∥∥
= tr

(
D̃(m) (I n −P (m))

)∥∥D̃(m)
∥∥

= tr(P (m))
∥∥D̃(m)

∥∥
≤ MSE(m)

λ
op (1) (69)

uniformly in m, with the final inequality by (66) and (43).

Applying (64) and (69), we find

T3(m) ≤ tr
(
(I n −P (m))D̃(m)D̃(m) (I n −P (m))

)
MSE(m)

λ̄≤ op (1) (70)

uniformly in m.

Using (39), (51), (52), (66), and (69), we calculate that

tr
(
P̃ (m)′P̃ (m)

)
MSE(m)

= tr(P (m))+ tr
(
(I n −P (m))D̃(m)D̃(m) (I n −P (m))

)
MSE(m)

≤ 1

λ

(
1+op (1)

)
(71)

uniformly in m.

Take (59). As established by Lemma 4, the diagonal blocks of P̃ (m) are 0’s. Since Σ is block diagonal,

this implies that the diagonal blocks of P̃ (m)Σ are 0’s as well. Hence

E
[
e ′P̃ (m)e | X

]= tr
(
P̃ (m)Σ

)= 0. (72)
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Using (72), applying Lemma 2 with q = 2r , Lemma 3 under Assumption 1.2, and (71)

E |T4(m) | X |2r = E
∣∣∣∣∣e ′P̃ (m)e −E[

e ′P̃ (m)e | X
]

MSE(m)
| X

∣∣∣∣∣
2r

≤
C2r

(
tr

(
P̃ (m)′P̃ (m)

)
MSE(m)

)r

max
1≤g≤G

E
∥∥eg

∥∥4r

MSE(m)r

≤ C2r DN 2r
n

(
1+op (1)

)
λr MSE(m)r (73)

uniformly in m.

Fix ε> 0. By Boole’s inequality, Markov’s inequality, and (73),

P

[
sup

1≤m≤M
|T4(m)| > ε | X

]
≤

M∑
m=1

P [|T4(m)| > ε | X ]

≤ 1

ε2r

M∑
m=1

E |T4(m) | X |2r

≤ C2r D

ε2rλr

M∑
m=1

1

MSE(m)r N 2r
n

(
1+op (1)

)
≤ C2r D

ε2rλr

Q1/φ
n∑

m=1

1

MSE(m)r + 1

λr Ar

M∑
m=Q1/φ

n +1

1

mφr

N 2r
n

(
1+op (1)

)
≤ C2r D

ε2rλr

(
1+ 1

λr Ar
(
φr −1

))
N 2r

n

Qr−1/φ
n

(
1+op (1)

)
≤ op (1). (74)

For the fourth inequality we apply (66) and Assumption 1.7 to obtain

MSE(m) ≥λk(m) ≥λAmφ.

For the fifth inequality in (74) we use MSE(m) ≥Qn for the first sum, and in the second sum we use

M∑
m=t+1

1

mα
≤

∞∑
m=t+1

1

mα
≤ 1

(α−1) tα−1

which holds for α > 1 and integer t ≥ 0. The final inequality in (74) is Assumption 1.8. As ε is arbitrary,

(74) establishes

T4(m) = op (1) (75)

by Markov’s inequality.

Take (60). Recognizing that tr
(
P̃ (m)′P̃ (m)Σ

) = E
[
e ′P̃ (m)′P̃ (m)e

]
, applying Lemma 2 with q = 2r ,
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Lemma 3 under Assumption 1.2, (64), (44), and (71)

E |T5(m) | X |2r = E
∣∣∣∣∣e ′P̃ (m)′P̃ (m)e −E[

e ′P̃ (m)′P̃ (m)e | X
]

MSE(m)
| X

∣∣∣∣∣
2r

≤
C2r

(
tr

(
P̃ (m)′P̃ (m)P̃ (m)′P̃ (m)

)
MSE(m)

)r

max
1≤g≤G

E
∥∥eg

∥∥4r

MSE(m)r

≤
C2r

(
tr

(
P̃ (m)′P̃ (m)

)
MSE(m)

)r ∥∥P̃ (m)
∥∥2r

DN 2r
n

MSE(m)r

≤ C2r DN 2r
n

(
1+op (1)

)
λr MSE(m)r (76)

uniformly in m. This is identical to (73). By the same steps as in (74)-(75), we conclude that T5(m) = op (1)

uniformly in m.

Take (61). It is useful to observe that by norm monotonicity and Assumption 1.2,

E
[∣∣ei g

∣∣2r | X
]
≤

(
E
[∣∣ei g

∣∣4r | X
])1/2 ≤ D1/2. (77)

By Lemma 1 with p = 2r , Lemma 3 under (77), and (65),

E |T6(m) | X |2r ≤
B2r

(
µ′ (I n − P̃ (m)

)′ (
I n − P̃ (m)

)(
I n − P̃ (m)

)′ (
I n − P̃ (m)

)
µ

MSE(m)

)r

max
1≤g≤G

E
∥∥eg

∥∥2r

MSE(m)r

≤
B2r

(
µ′ (I n − P̃ (m)

)′ (
I n − P̃ (m)

)
µ

MSE(m)

)r ∥∥I n − P̃ (m)
∥∥2r

D1/2N r
n

MSE(m)r

≤
B2r D1/2N r

n

(
µ′ (I n −P (m))µ

MSE(m)
+op (1)

)r ∥∥I n − P̃ (m)
∥∥2r

MSE(m)r

≤ B2r D1/2N 2r
n

(
1+op (1)

)
MSE(m)r (78)

uniformly in m. The third inequality follows from T1(m) = op (1). The final inequality uses (62), (45), and

N r
n ≤ N 2r

n .

The bound (78) is of the same form as (73). By the same steps as in (74)-(75), we conclude that

T6(m) = op (1)

uniformly in m.

This completes the proof. ■
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11.5 Proof of Theorem 3

Define the normalized delete-one-cluster cross-validation criterion

CCV∗(m) = CCV(m)−e ′e. (79)

Since the regression error e is independent of the model m, the minimizers of CCV∗(m) and CCV(m) are

the same, thus

m̂CCV = argmin
1≤m≤M

CCV∗(m). (80)

Definition (15) and (80) imply that

MSE(m̂CCV) ≥ MSE(mopt) (81)

CCV∗(m̂CCV) ≤ CCV∗(mopt). (82)

By construction, MSE(m) > 0. Hence

0 ≤ MSE(m̂CCV)−MSE(mopt)

MSE(m̂CCV)

≤
(

CCV∗(mopt)−MSE(mopt)

MSE(m̂CCV)

)
−

(
CCV∗(m̂CCV)−MSE(m̂CCV)

MSE(m̂CCV)

)
≤

∣∣∣∣CCV∗(mopt)−MSE(mopt)

MSE(m̂CCV)

∣∣∣∣+ ∣∣∣∣CCV∗(m̂CCV)−MSE(m̂CCV)

MSE(m̂CCV)

∣∣∣∣
≤

∣∣∣∣CCV∗(mopt)−MSE(mopt)

MSE(mopt)

∣∣∣∣+ ∣∣∣∣CCV∗(m̂CCV)−MSE(m̂CCV)

MSE(m̂CCV)

∣∣∣∣
≤ 2 max

1≤m≤M

∣∣∣∣CCV∗(m)−MSE(m)

MSE(m)

∣∣∣∣
−→

p
0 (83)

as G →∞. The first and fourth inequalities use (81). The second inequality uses (82). The final conver-

gence is (20). (83) shows that
MSE(mopt)

MSE(m̂CCV)
−→

p
1.

Theorem 3 follows by the continuous mapping theorem. ■

11.6 Proof of Theorem 4

Similarly to (55),

CV(m)−C(m)−e ′e
MSE(m)

= S1(m)−2S2(m)+S3(m)−2S4(m)+S5(m)+2S6(m)+2S7(m) (84)
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where

S1(m) = µ′ (I n − P̄ (m)
)′ (I n − P̄ (m)

)
µ−µ′ (I n −P (m))µ

MSE(m)
(85)

S2(m) = tr
(
(I n −P (m))D̄(m)P (m)Σ

)
MSE(m)

(86)

S3(m) = tr
(
(I n −P (m))D̄(m)D̄(m) (I n −P (m))Σ

)
MSE(m)

(87)

S4(m) = e ′P̄ (m)e − tr
(
P̄ (m)Σ

)
MSE(m)

(88)

S5(m) = e ′P̄ (m)′P̄ (m)e − tr
(
P̄ (m)′P̄ (m)Σ

)
MSE(m)

(89)

S6(m) = µ′ (I n − P̄ (m)
)′ (I n − P̄ (m)

)
e

MSE(m)
(90)

S7(m) = tr(P (m)Σ)− tr
(
P̄ (m)Σ

)− tr(P (m)Σ0)

MSE(m)
. (91)

We now show that (85)-(91) are each op (1) uniformly in m. The arguments for (85)-(90) are similar to

those for (56)-(61)

The proof that (85) is op (1) is identical to (67), with D̄(m) replacing D̃(m) and using (46).

The proof that (86) is op (1) is identical to (68), with D̄(m) replacing D̃(m), using (46) and (48).

Analogously to (69), using the fact (Theorem 4) that the diagonal elements of D̄(m) (I n −P (m)) equal

those of P (m), and (46),

tr
(
(I n −P (m))D̄(m)D̄(m) (I n −P (m))

)≤ MSE(m)

λ
op (1). (92)

This implies that (87) is op (1).

Similarly to (71), using (41) and (92),

tr
(
P̄ (m)′P̄ (m)

)
MSE(m)

≤ 1

λ

(
1+op (1)

)
. (93)

Analogously to (73) using (93),

E |S4(m) | X |2r ≤ C2r DN 2r
n

(
1+op (1)

)
λr MSE(m)r . (94)

By the same calculation as (74) we deduce that (88) is op (1). Analogously to (76) using (47) and (93),

S5(m) satisfies the same bound as in (94), and by the same steps as for T5(m), we find that (89) is op (1).

By a similar calculation to (78) we can show that

E |S6(m) | X |2r ≤ B2r D1/2N 2r
n

(
1+op (1)

)
MSE(m)r

and by the same steps as for T6(m) we deduce that (90) is op (1).
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We now take (91). Using (41)

S7(m) = tr
(
D̄(m)Σ

)− tr(P (m)Σ0)

MSE(m)
− tr

(
D̄(m)P (m)Σ

)
MSE(m)

. (95)

Let σ2
i be the diagonal elements ofΣ andΣ0. Observe that σ2

i ≤ λ̄ by Assumption 1.4. Using (66) and (50)

tr
(
D̄(m)Σ

)− tr(P (m)Σ0)

MSE(m)
= 1

MSE(m)

(
n∑

i=1

Pi i (m)

1−Pi i (m)
σ2

i −
n∑

i=1
Pi i (m)σ2

i

)

= 1

MSE(m)

n∑
i=1

P 2
i i (m)

1−Pi i (m)
σ2

i

≤ tr(P (m))

MSE(m)
max

1≤i≤n

Pi i (m)

1−Pi i (m)
λ̄

≤ op (1).

Using (64), (66), (46), and Assumption 1.4,

tr
(
D̄(m)P (m)Σ

)
MSE(m)

≤ tr(P (m))
∥∥D̄(m)Σ

∥∥
MSE(m)

≤ op (1).

Thus both components on the right side of (95) are op (1) and we conclude that (91) is op (1).

We have shown that (85)-(91), and hence (84), are op (1) uniformly in m. This completes the proof.

■

11.7 Proof of Theorem 5

The proof is an analog of that of Theorem 3, which is based on Theorems 1 and 2.

The same arguments leading to Theorem 1 can establish that

WMSE(m) = µ̇′ (I n − Ṗ (m)
)
µ̇+ tr

(
Ṗ (m)Σ̇

)
where

Ṗ (m) = Ẋ (m)
(

Ẋ (m)′Ẋ (m)
)−1 Ẋ (m)′

and Ẋ (m) consists of the stacked Ẋ g (m) and Σ̇= diag
(
Σ̇g

)
Define W = diag{W g }. Then Ẋ (m) =W X (m).

The matrices W g and W are idempotent. This implies W Ẋ (m) =W W X (m) = Ẋ (m) and

W Ṗ (m)W =W Ẋ (m)
(

Ẋ (m)′Ẋ (m)
)−1 Ẋ (m)′W

= Ẋ (m)
(

Ẋ (m)′Ẋ (m)
)−1 Ẋ (m)′

= Ṗ (m).

Since Σ̇=W Σ̇W we find

tr
(
Ṗ (m)Σ̇

)= tr
(
Ṗ (m)WΣW

)= tr
(
W Ṗ (m)WΣ

)= tr
(
Ṗ (m)Σ

)
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and

WMSE(m) = µ̇′ (I n − Ṗ (m)
)
µ̇+ tr

(
Ṗ (m)Σ

)
. (96)

We therefore use (96) in place of Theorem 1.

We next prove an analog of Theorem 2, with WCCV(m) replacing CCV(m) and WMSE(m) replacing

MSE(m). Theorem 2 holds unde Assumption 1, so we need to establish that these conditions hold for

the within-transformed model under Assumption 2. All these conditions apply with the exception of

Assumption 1.3. To see that Assumption 1.2 holds, by Minkowski’s inequality and Assumption 2.2

E
[∣∣ėi g

∣∣4r | X
]
= E

[∣∣∣∣∣ei g − 1

ng

ng∑
j=1

e j g

∣∣∣∣∣
4r ∣∣∣∣∣ X

]

≤
((
E
[∣∣ei g

∣∣4r | X
])1/4r + 1

ng

ng∑
j=1

(
E
[∣∣e j g

∣∣4r | X
])1/4r

)4r

≤ 24r D.

so Assumption 1.2 holds with D replaced with 24r D when applied to (26).

Assumption 1.3, however, does not hold when applied to (26) because Σ̇ is singular. However, As-

sumption 1.3 is only used at one point in the proof of Theorem 2, and this is for the proof of equation

(66). The needed analog for the within-transformed model is

WMSE(m) ≥ k(m)λ.

This however, follows from (96) by the same argument as for (66).

Otherwise, the details of the proofs of Theorems 1-2 carry over to the within-transformed model,

establishing the stated result. ■
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