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Abstract. Rank-rank regressions are widely used in economic research to evaluate phenomena such
as intergenerational income persistence or mobility. However, when covariates are incorporated to
capture between-group persistence, the resulting coefficients can be difficult to interpret as such. We
propose the conditional rank-rank regression, which uses conditional ranks instead of unconditional
ranks, to measure average within-group income persistence. This property is analogous to that of
the unconditional rank-rank regression that measures the overall income persistence. The differ-
ence between conditional and unconditional rank-rank regression coefficients therefore can measure
between-group persistence. We develop a flexible estimation approach using distribution regression
and establish a theoretical framework for large sample inference. An empirical study on intergener-
ational income mobility in Switzerland demonstrates the advantages of this approach. The study re-
veals stronger intergenerational persistence between fathers and sons compared to fathers and daugh-
ters, with the within-group persistence explaining 62% of the overall income persistence for sons and
52% for daughters. Families of small size or with highly educated fathers exhibit greater persistence
in passing on their economic status.

1. Introduction

Rank-rank regressions (RRRs), in which the ranks of one variable, Y , are regressed on those of
another, W , are commonly employed to measure mobility or its absence, defined as persistence,
in a variety of settings. For example, Beller and Hout (2006) regressed child’s occupation rank on
father’s occupation rank to measure intergenerational social mobility. Dahl and DeLeire (2008)
and Chetty et al. (2014), among others, regressed child’s income rank on father’s income rank to
measure intergenerational income mobility. Adermon et al. (2018) regressed child’s wealth rank
on parent’s and grandparent’s wealth ranks to measure the role of inheritance in intergenerational
wealth persistence. RRRs have also been employed to measure other types of mobility and/or
persistence. For example, Murphy andWeinhardt (2020) regressed a child’s rank in a school grade
on the child’s grade in a previous grade to capture learning persistence. An appealing feature of
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the RRR as a measure of mobility is that its slope corresponds to the Spearman’s rank correlation
coefficient between the underlying variables Y and W .1 This coefficient is a popular measure of
dependence between variables that is invariant to monotone transformations (Spearman, 1904;
Kendall, 1948).

The equivalence between RRR and rank correlation holds in the canonical RRR which features
the rank of Y as the dependent variable and the rank ofW as the exclusive independent variable.
However, most empirical investigations which employ RRR also control for additional observed
covariates and fixed effects, X , as regressors. Chetverikov and Wilhelm (2023) observed that the
coefficient of the rank of W in a RRR with covariates (RRRX) is difficult to interpret and does
not necessarily lie in the interval [−1, 1]. Below we provide a simple example of intergenerational
height mobility in two countries where the coefficient of the father’s height rank is estimated to be
greater than one when a country indicator is included as additional covariate. Taken literally, this
implies that moving the father’s rank from zero to onewould predict that the child’s rank increases
above one on average. This is clearly not credible. We also use this example to illustrate an addi-
tional problem with RRRs. In empirical investigations which feature a categorical covariate, it is
common to conduct a subgroup analysis. That is, estimate separate RRR ofmarginal ranks for each
group as defined by the categories of this covariate. We show that the coefficients of these RRRs
also do not correspond to rank correlations and do not necessarily lie in the interval [−1, 1]. The
underlying cause of these problems is that the independent variable in these regressions does not
satisfy the properties of a rankwithin each group or after partialling out the effect of the covariates.

We introduce the conditional rank-rank regression (CRRR) which does not suffer from these
conceptual problems. CRRR regresses the rank of Y conditional on X on the rank ofW conditional
on X . Similar to the canonical RRR, the slope of the CRRR lies in the interval [−1, 1] and has a
natural interpretation in terms of rank correlation between Y andW . Indeed, it corresponds to the
Spearman’s rank correlation between Y andW conditional onX , averaged over the distribution of
X . The CRRR is also suitable for subgroup analysis. If the categorical variable defining groups is
included in X , the slope of the CRRR in each group has the interpretation of average conditional
rank correlation in that group and lies in the interval [−1, 1]. We also show that if the conditional
ranks of Y and W are constructed using different sets of covariates, the CRRR slope can still be
interpreted as the average rank correlation conditional on the intersection of the two covariate
sets.

The interpretation of the CRRR slope is different from the RRR slope. Assume, for example, that
Y is child’s income,W is father’s income andX is a father’s high school diploma indicator. TheRRR
slope without covariates is the correlation between the father’s and child’s income ranks where the
ranks are relative to the entire income distribution. The CRRR slope is the rank correlation where
the ranks are relative to the income distribution of those who have the same father’s high school

1Maasoumi et al. (2022) questioned the economic interpretation of the RRR as a measure of mobility due to the use
of linear regression and proposed alternative measures based on nonparametric regression.
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diploma indicator. The slope of the RRRX is the regression slope of the child’s income rank on
the father’s income rank, where the ranks are relative to the entire income distribution and the
father’s rank is centered to have the samemean for both groups defined by the father’s high school
diploma indicator. The slope of this regression might be difficult to interpret as the centered rank
is no longer a rank. We believe that the CRRR slope better reflects the relationship researchers
are intending to capture when they control for covariates as it is closer to a ceteris paribus effect.
Mathematically, the difference between CRRR and RRRX is the order in the application of the rank
and covariate partialling out operators. RRRX obtain ranks first and partials out the covariates
second, whereas CRRR reverses the order. The final outcome differs across procedures as the two
operators do not commute due to the nonlinearity of the rank operator.

We provide an estimator of the CRRR coefficients based on distribution regression (DR). Like
the estimator of the RRR coefficients, our estimator consists of two steps. In the RRR, the first step
estimates the marginal ranks of Y and X using the empirical distribution, and the second step
runs the linear regression of the estimated ranks of Y on the estimated ranks of W or computes
the sample correlation between these ranks. Both versions of the second step produce numerically
identical results if there are no ties in the observed values of Y andW . In the CRRR, the first step
estimates the conditional ranks by running logit or probit DRs of Y onX andW onX at multiple
values of Y and W to trace the entire conditional distributions. The second steps is identical to
RRR, but the linear regression and correlation versions are no longer numerically identical even if
there are no ties, but they are asymptotically equivalent. The CRRR estimator is computationally
tractable, albeit somewhat more demanding than RRR.

We derive the asymptotic distribution of the CRRR estimator and provide feasible inference the-
ory. Chetverikov and Wilhelm (2023) noted that standard inference methods for linear regression
do not apply to the RRR estimator because both the independent and dependent variables are gen-
erated, the estimated ranks. The exact same problem applies to CRRR. The theory for the RRR
estimator was derived using U-statistic theory (Hoeffding, 1948) or the delta method (Ren and
Sen, 1995) when Y and W are continuous. We employ the functional delta method approach to
derive the theory because the CRRR estimator does not have a U-statistic structure. The applica-
tion of the functional delta method to the CRRR estimator presents several differences with respect
to RRR. The first ingredient of both approaches consists of writing the parameter of interest as a
functional of inputs: the joint distribution of Y andW in the case of RRR, or the conditional distri-
butions of Y andW conditional onX and the joint distribution of Y ,W andX , in the case of CRRR.
The CRRR functional is more complicated than the RRR functional and the inputs for CRRR live in
more complex spaces than those for RRR. As a result, the Hadamard differentiability of the RRR
functional established by Ren and Sen (1995) does not cover the CRRR functional. We establish
the Hadamard differentiabilty of the CRRR functional in the relevant spaces.

The second ingredient for the application of the functional deltamethod is to establish functional
central limit theorems for the estimators of the inputs. For RRR, this follows from the now classical
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large sample theory of the empirical distribution function. A challenge for CRRR is that existing
theory for DR estimators of conditional distributions exclude the tails. In particular, the available
functional central limit theorems only hold for compact strict subsets of the support. We deal with
this problem by imposing assumptions on the tail behavior of DRmodel that allows us to estimate
the conditional distribution in the tails. We then obtain functional central limit theorems for DR
estimators of conditional distributions over the entire support.

Combining the two ingredients we establish that the CRRR estimator follows a normal distribu-
tion around the CRRR slope in large samples via the delta method. The asymptotic variance has a
complicated expression that might be difficult to estimate analytically. We develop the use of ex-
changeable bootstrap to obtain standard errors and construct confidence intervals. Exchangeable
bootstrap include the most common forms of bootstrap such as empirical, weighted and subsam-
pling bootstrap as special cases. We establish its validity in large samples from the functional delta
method for the bootstrap. Like Hoeffding (1948) and Ren and Sen (1995), our theory covers the
case where Y and W are continuous. The theory can be extended to noncontinuous variables
following the analysis of Chetverikov and Wilhelm (2023) for the RRR estimator. We leave this
extension to future research.

We apply the CRRR estimator to analyze intergenerational incomemobility in Switzerland using
the EconomicWell-Being of theWorking and Retirement Age PopulationData (WiSiER) from 1986
to 2016 for 11 cantons. This dataset contains rich information on socioeconomic, demographic and
other variablesmerged from tax records, social insurance, unemployment records and surveys, and
can be linked for fathers and children. Weuncover gender gap in intergenerational incomemobility
as the persistence between fathers and sons is stronger than between fathers and daughters, both
with and without controlling for covariates. We also find that about 62% and 52% of the overall
(unconditional) income persistence is explained by the within-group income persistence for sons
and daughters, respectively; where groups are defined by child’s and father’s marital status, Swiss
citizenship, high school graduation, experience, number of children and canton and year fixed
effects. We also provide evidence supporting greater persistence for fathers with higher education
and fathers with only one child. Thus, these results uncover the substantial role of both within-
group and between-group persistence in explaining the intergenerational transmission of income.

Our methodology complements related methodological developments in the econometric and
statistical literature. The work of Chetverikov and Wilhelm (2023) provides the inferential the-
ory for RRR and RRRX with marginal ranks; their approach does not apply to conditional ranks
employed in CRRR, as we explained earlier. Another new development is the work of Lei (2024)
that examines causal underpinnings of the marginal rank regressions. More closely related to our
work, Liu et al. (2018) introduced a covariate-adjusted Spearman coefficient based on the probabil-
ity scale residuals of Li and Shepherd (2012) and Shepherd et al. (2016), which we further discuss
in Section 2. They proposed a modelling strategy and an estimator based on a monotone trans-
formation of a location-shift model, which is a special case of the distribution regression model
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(Chernozhukov et al., 2013).2 The distribution regression approach is more flexible and compre-
hensive, in the sense that it can approximate the true conditional distribution function arbitrarily
well by considering rich sets of basis functions with respect to the covariates, which is not possible
in general with transformations of location models.3 Gijbels et al. (2011) and Veraverbeke et al.
(2011) developed estimators of conditional measures of association using copulas, relying on the
representation of thesemeasures in terms of the conditional copula for continuous outcomes. They
derived distribution theory for estimators of conditional versions of Kendall’s tau and Blomqvist’s
beta (Blomqvist, 1950) with scalar covariates. In contrast, our modelling and estimators are based
on conditional distributions and apply to multivariate covariates. Thus, our methodological con-
tributions complement the existing literature.

Outline. The rest of the paper is organized as follows. Section 2 introduces the CRRR and contrasts
it with the canonical RRR and RRRX. Section 3 illustrates the problems with the RRR with covari-
ates via a simple conceptual example. Section 4 describes the estimation procedure based on DR
and a bootstrap algorithm to make inference. Section 5 provides asymptotic theory, while Section
6 discusses an application examining the relationship between fathers’ and their children’s labor
income using Swiss data. Additional theoretical and numerical simulation results, and proofs are
reported in the Appendix.

2. Conditional Rank-Rank Regression

Let (Y,W ) be a bivariate random variate with joint distribution FY,W andmarginal distributions
FY and FW for Y andW , respectively. For example, Y is child’s income andW is father’s income.
We assume that Y andW are continuous.

2.1. Canonical RRR. We start by reviewing the canonical rank-rank regression (RRR). Let Ũ :=

FY (Y ) and Ṽ := FW (W ) denote the ranks of Y andW . By continuity of Y andW , ranks are uni-
formly distributed, Ũ ∼ U(0, 1) and Ṽ ∼ U(0, 1). The RRR of Y onW is defined as the correlation
between Ũ and Ṽ or the slope of the linear regression of Ũ on Ṽ (or vice versa):

ρ := Cor(Ũ, Ṽ ) =
Cov(Ũ, Ṽ )

Var(Ũ)
=

Cov(Ũ, Ṽ )

Var(Ṽ )
= 12 E[(Ũ − .5)(Ṽ − .5)],

where all the equalities follow from the uniform distribution of Ũ and Ṽ . In statistics this correla-
tion measure is the celebrated Spearman’s rank correlation between Y andW , and is widely used

2Liu et al. (2018) did not develop inference theory for their estimator in the case where Y and W are continuous,
although they conjectured that it is possible; see Section 5 ibid.

3A transformation of a location-shift model takes the formH(Y ) = b(X)′β+ ϵ, where ϵ is independent ofX and has
a known distribution, b(X) is a basis of functions of X , and H is an unknown monotone transformation function. The
model is more flexible than just a location model, but it does not allow the covariates to affect the distribution of H(Y )

other than through its location. No matter how rich the basis functions b(X) are, the model is not guaranteed to cover
the true conditional distribution, even in the limit where the dimension of b(X) grows large.
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to measure dependence between variables. It is invariant to rescaling and all increasing monotone
transformations of the variables, and has gained prominence for that reason. In economics, the
rank correlation has become popular in the context of income and wealth mobility applications
due to its natural interpretability as a measure of persistence.

2.2. Conditional RRR. We introduce now the conditional rank-rank regression (CRRR). Let X
denote a vector of covariates related to Y andW including, for example, child’s and father’s edu-
cation, age, marital status and nationality. Let FY |X and FW |X denote the distributions of Y andW
conditional on X . Then, U := FY |X(Y | X) and V := FW |X(W | X) are the conditional ranks of Y
andW , where conditioning is on X . For example, U and V would be child’s and father’s income
ranks among families with the same composition in terms of covariates. By continuity of Y and
W , the conditional ranks follow the uniform distribution, conditional on X :

U | X ∼ U(0, 1) and V | X ∼ U(0, 1),

and also unconditionally. This implies the constant variance property,

Var(V ) = Var(U) = Var(V | X) = Var(U | X) = 1/12

and the constant mean property

EV = EU = E(V | X) = E(U | X) = .5.

Note that both ranks U and V are marginally independent of X , but not necessarily jointly inde-
pendent so that the correlation between U and V can depend on X .4

The CRRR of Y onW givenX is defined as either the correlation between U and V or the slope
of the linear regression of U on V (or vice versa):

ρC = Cor(U, V ) =
Cov(U, V )

Var(V )
=

Cov(U, V )

Var(U)
. (2.1)

CRRR is the average conditional correlation between conditional ranks:

ρC = E[ρY,W |X ], ρY,W |X := Cor(U, V | X), (2.2)

where ρY,W |X denotes the conditional Spearman’s rank correlation between Y andW conditional
on X , which is equal to Cor(U, V | X) by definition. Equation (2.2) follows from Cov(U, V ) =

E[Cov(U, V | X)] by the law of total covariance since Cov[E(U | X),E(V | X)] = 0; moreover,
the conditional variance of U and V is equal to the unconditional variance. In summary, CRRR is
the average Spearman’s rank correlation between Y and W conditional on X , averaged over the
distribution of X .

By the properties of U and V , the CRRR can also be represented as the rescaled covariance of
conditional ranks:

ρC = 12 E[(U − .5)(V − .5)], (2.3)

4That is, U ⊥⊥X and V ⊥⊥X , but generally (U, V ) ̸⊥⊥ X .
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a formula convenient for estimation.

Finally, we note that correlation of conditional ranks is generally not equal to correlation of mar-
ginal (unconditional) ranks

ρC ̸= ρ

but the two agree under independence from X , namely ρC = ρ if Y ⊥⊥X andW ⊥⊥X , because in
that case U = Ũ and V = Ṽ .

In the context of the incomemobility application, ρC measures within-group income persistence
and ρmeasures overall income persistence, encompassing both within-group and between-group
persistence. The between-group persistence can then be defined as the difference between the
marginal rank and conditional rank correlations:

Between-group persistence = ρ− ρC .

Assume, for example, that the covariates X capture family characteristics such as size or parental
education. The difference between the two measures can be explained as follows: The within-
group or unexplained persistence ρC captures the extent to which father’s income rank facilitates
child’s income rank among families with the same observable characteristics. In other words, it
measures the influence of father’s income on child’s income, where the variation in father’s and
child’s incomes comes from unobserved characteristics such as family status, ability and the extent
of social or professional networks. On the other hand, the between-group measure ρ− ρC aims to
capture the contribution of observed characteristics to income persistence.

We can further decompose the between-group persistence using the total law of covariance:

ρ− ρC = 12Cov[E(Ũ | X],E(Ṽ | X)] + 12E[Cov(Ũ, Ṽ | X)− Cov(U, V | X)],

where the first component is the covariance of conditionalmeans ofmarginal ranks, and the second
component is the average conditional covariance ofmarginal ranks net of the averagewithin-group
inequality.

2.3. Rank-rank regression with covariates (RRRX). CRRR is different from RRRwith covariates
X (RRRX)whereX is included additively (or non-additively) in the regression of marginal ranks,
Ũ on Ṽ . We believe that our proposal is amore natural and adequateway to incorporate covariates.
In fact, RRRX with additive covariates is no longer related to a rank correlation nor has to lie in the
interval [−1, 1]. RRRX is also more difficult to interpret. Making RRRX more flexible by including
interactions between X and Ṽ does not mitigate any of these problems. In fact, making RRRX
fully nonparametric also does not alleviate the problem either: we show in the next section that
even in the simplest case whereX is binary, the nonparametric RRRX does not capture meaningful
economic quantities. When X is discrete, the nonparametric approach (tabulating unconditional
rank correlation by subgroups) does not either.
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In what follows, we systematically explain the current approaches to RRRX and contrast those
with the CRRR approach. We use the intergenerational income application to give context to the
discussion.

Example 1 (RRR vs RRRX vs CRRR). Let Y be child’s income, W be father’s income and X be
an indicator for father’s high school diploma. In this case, the marginal ranks Ũ and Ṽ are rela-
tive to the distribution of income in the entire population that includes fathers with and without
high school diploma, whereas the conditional ranks U and V are relative to the distribution of in-
come of those with the same father’s high school diploma status. RRR measures the correlation
between the marginal ranks, whereas CRRR measures the average correlation between the condi-
tional ranks, that is CRRR first obtains the rank correlation separately for fathers with and without
high school diploma and then averages these correlationsweighted by the proportions of each type
in the population. CRRR therefore can be interpreted as a ceteris paribus effect, where the fami-
lies are ranked and compared with families where the father’s high school diploma status is hold
constant. The slope of the RRRX with covariates does not have a natural interpretation in terms
of intergenerational mobility. It measures the coefficient in the regression of child’s marginal rank
on father’s marginal rank, where the father’s marginal rank is recentered to have the same mean
for fathers with and without high school diploma. This slope does not have an interpretation as
a rank correlation and can lie outside the interval [−1, 1] because the recentered father’s marginal
rank do not have the properties of a rank. In particular it no longer follows a uniform distribution.
■

2.4. Subgroup Analysis. WhenX is discrete, it is common to run RRRs separately for each value
ofX instead of includingX as an additive control. For example, Abramitzky et al. (2021) run sep-
arate RRR of child’s income on father’s income by father’s immigration status. The slopes of these
regressions cannot be interpreted in terms of rank correlations or even as conditional correlations
between the marginal ranks. To see this, note that the slope of the regression of Ũ on Ṽ conditional
on X = x, is not equal to conditional correlation of Ũ and Ṽ

Cov(Ũ, Ṽ | X = x)

Var(Ṽ | X = x)
̸= Cov(Ũ, Ṽ | X = x)√

Var(Ṽ | X = x)Var(Ũ | X = x)
,

because marginal ranks have difference conditional distributions, i.e. Ũ
d
̸∼ Ṽ | X = x, in general.

The slope therefore does not generally correspond with the conditional correlation of the marginal
ranks conditional nor the conditional rank correlation between Y andW . We give an example in
Section 3 where this slope is greater than one.

Consider now the CRRR. Assume we are interested in conducting a subgroup analysis of inter-
generational mobility with respect to father’s high school diploma or immigration statuses. Let
X1 ⊆ X be a set of variables that define the subpopulation of interest such as an indicator for high
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school diploma and/or Swiss nationality. Then, the CRRR slope conditional on X1 = x1 is5

ρC(x1) =
Cov(U, V | X1 = x1)

Var(V | X1 = x1)
= E

[
Cov(U, V | X)√

Var(V | X)Var(U | X)
| X1 = x1

]
= E[ρY,W |X | X1 = x1].

(2.4)
Hence, the CRRR slope for the subgroup defined by X1 = x1 corresponds to the average condi-
tional rank correlation betweenY andW , where the average is takenwith respect to the distribution
of X conditional on X1 = x1. This allow us, for example, to measure intergenerational mobility
separately for families with fathers with and without high school diploma.6

2.5. Different Sets of Covariates. There are applications where the researcher might want to use
different sets of covariates to obtain the conditional ranks U and V . In the intergenerational mobil-
ity application, for example, we might not want to control for son’s education to obtain the father’s
income rank. In this case the CRRR slope still corresponds to an average correlation between the
ranks. To see this, let U = FY |X1

(Y | X1) and V = FY |X2
(Y | X2)withX1 ̸= X2 andX = X1 ∩X2,

then

ρC =
Cov(U, V )

Var(V )
= E

[
Cov(U, V | X)√

Var(V | X)Var(U | X)

]
,

where we use the law of total covariance with respect to X , U ⊥⊥X , V ⊥⊥X and iterated expecta-
tions. The CRRR slope therefore corresponds to the correlation between the ranks U and V con-
ditional on the common covariatesX , averaged over the distribution ofX . Note, however, that ρC
in this case does not correspond to an average conditional rank correlation between Y andW . The
source of the difference is thatU ̸= FY |X(Y | X) andU ̸= FW |X(W | X) in general.7 One exception
occurs when Y is independent of the components ofX2 not included inX1 conditional onX1, and
W is independent of the components of X1 not included in X2 conditional on X2. In that case,

ρC = E

[
Cov(U, V | X̄)√

Var(V | X̄)Var(U | X̄)

]
= E[ρY,W |X̄ ],

where X̄ = X1 ∪ X2. This result follows by the law of total covariance with respect to X̄ and
uniformity of V and U conditional on X̄ .8

5Indeed, by the law of total covariance with respect toX and uniformity of U and V conditional onX ,

Cov(U, V | X1) = E[Cov(U, V | X) | X1] + Cov[E(U | X),E(V | X) | X1) = E[Cov(U, V | X) | X1],

and
Var(V | X1) = Var(V | X) = Var(U | X),

almost surely.
6If X1 ̸⊆ X , , the slope no longer has an interpretation as average conditional rank correlation because V ̸∼ U | X1

in general.
7This rank correlation can be obtained by constructing the conditional ranks asU = FY |X(Y | X) and V = FY |X(Y |

X).
8Note that if V | X1 ∼ U(0, 1) and V ⊥⊥X2 | X1, then V | X ∼ U(0, 1).
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2.6. Properties of CRRR. We conclude this section by gathering the properties of the CRRR slope
in the following lemma.

Lemma 2.1 (CRRR Properties). Assume that Y andW are continuous random variables, X is a vector
of covariates, U = FY |X(Y | X) and V = FW |X(W | X). Then, (1) The CRRR slope, ρC , has the repre-
sentations given in (2.1) and (2.3). (2) The slope ρC is the expected conditional Spearman rank correlation
between Y andW : ρC = E[ρY,W |X ]. (3) Group analysis: if X1 ⊆ X , then (2.4) holds. Therefore, ρC(x1)
is the average conditional rank correlation between Y and W in the group defined by X1 = x1. (4) Let
U1 = FY |X1

(Y | X1) and V2 = FY |X2
(Y | X2) with X1 ̸= X2 and X = X1 ∩X2, then

ρC = Cor(U1, V2) = E[Cor(U1, V2 | X)],

that is ρC is the average conditional correlation between U1 and V2 given the set of common covariates X .

Comment 2.1. This lemma simply records the observations given above. It is useful to connect
here to Liu et al. (2018) who introduced the covariate-adjusted Spearman correlation coefficient
as the correlation between the probability scale residuals of Y and W . These residuals are de-
fined as r(Y, FY |X) and r(W,FW |X), where r(r, FR|X) = FR|X(r | X) + FR|X(r− | X) − 1 and
FR|X(r− | x) = limu↗r FR|X(u | x), for R ∈ {Y,W}. In the case where Y and W are contin-
uous, the probability scale residuals are affine transformations of the conditional ranks because
FR|X(r− | x) = FR|X(r | x), e.g., r(Y, FY |X) = 2U − 1, and the covariate-adjusted Spearman corre-
lation equals to the CRRR slope. The properties in Lemma 2.1(2) and (3) then follow from results
in Liu et al. (2018) when Y andW are continuous. The conceptual difference is that our definition
and derivations are based on the characterization of the Spearman correlation as the correlation be-
tween ranks or grade correlation (Kruskal, 1958), whereas theirs are based on the characterization
of the Spearman correlation in terms of concordance-discordance probabilities.

3. CRRR vs RRR: A Conceptual Example

We compare CRRR with different versions of RRR in a simple conceptual example where X
is binary. This example is convenient because with a binary covariate there is no concern that
the difference between the methods is driven by particular modeling strategies to specify various
regression functions.

To make the example more concrete, let Y be daughter’s height (in cm), W be father’s height
(in cm) and X be a country indicator, say X = 0 for the Netherlands and X = 1 for Ireland.
Conditional on X , Y and W follow a bivariate normal distribution with mean parameters that
may depend on the value of X and constant covariance matrix. More specifically,(

Y

W

)
| X = x ∼ N2

((
165

180− δx

)
, 42

(
1 .6

.6 1

))
, (3.1)

where P(X = 0) = P(X = 1) = 1/2. For example, δ can be a negative country shock such as the
Irish Famine that affects the father’s height in Ireland, but not in the Netherlands.
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We consider two cases depending on the extent of the effect of the shock as measured by δ:

• No shock: δ = 0.
• Negative shock: δ = 12.

Table 1 compares measures of intergenerational height persistence based on rank correlation
with the estimands of RRR, CRRR and two versions of RRRX. Thus, ρY,W and ρ̄Y,W |X are the Spear-
man’s rank correlation coefficient between Y andW and the expected Spearman’s rank correlation
between Y andW conditional on X ; RRR is the RRR slope; CRRR is the CRRR slope; RRRX-A is
the slope of the RRRX, that is, β1 in

Ũ = β0 + β1Ṽ + β2X + ϵ, E[ϵ] = E[Ṽ ϵ] = E[Xϵ] = 0;

and RRRX-I is the average slope of the RRRs run separately by the values of X , that is, β1 in

Ũ = β0 + β1Ṽ + β2[X − .5] + β3[X − .5]Ṽ + ϵ, E[ϵ] = E[Ṽ ϵ] = E[Xϵ] = E[XṼ ϵ] = 0

Table 1. Mobility Measures and Estimands

Unconditional Conditional

True Estimand True Estimand

ρY,W RRR ρ̄Y,W |X RRRX-A RRRX-I CRRR
δ = 0 0.58 0.58 0.58 0.58 0.58 0.58
δ = 12 0.32 0.32 0.58 1.07 1.07 0.58

Notes: based on 2,000,000 simulations.

We find that all the methods give the same answer when δ = 0, that is the joint distribution
of daughter’s and father’s heights is the same in both countries.9 When δ = 12, RRR gives ρY,W ,
whereas CRRR gives ρ̄Y,W |X . Both forms of RRRX produce measures that are greater than one,
which do not correspond to any rank correlation and might be difficult to interpret. Whether RRR
or CRRR is the right measure depends on the application. In this case, CRRR measures average
intergenerational mobility within each country whereas RRR measures intergenerational mobility
pooling the two countries. They would lead to different conclusions about the effect of the Irish
Famine. According to RRR, the famine reduces height persistence, whereas it does not have any
effect according to CRRR. Both versions of RRRX lead to the opposite conclusion that the famine
increases height persistence.

Table 2 compares the subgroup analysis based onCRRR andRRR.More specifically, we compare
the conditional Spearman’s rank correlation, CRRR slope andRRR slope for each value ofX . CRRR
produces measures that are invariant to both X and δ, which correspond to the rank correlations

9Up to numerical error, all the slopes are equal to the rank correlation of the bivariate normal with correlation c = .6,
ρS(Y,W ) = 6 arcsin (c/2)/π = .58 (Cramér, 1999).
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Table 2. Subgroup Analysis using RRRX and CRRR

True Estimand

ρY,W |X RRR CRRR

X = 0 X = 1 X = 0 X = 1 X = 0 X = 1

δ = 0 0.58 0.58 0.58 0.58 0.58 0.58
δ = 12 0.58 0.58 1.06 1.07 0.58 0.58

Notes: based on 2,000,000 simulations.

between Y and W conditional on X . The RRR slopes are the same as the CRRR slopes when X
is completely irrelevant. RRR, however, delivers different slopes both across values of X when
δ = 12, and also across values of δ. The RRR slopes are greater than one when δ = 12, confirming
that they do not correspond to correlations and making them hard to interpret.

To better understand the source of the differences between CRRR and RRR, we consider a finite
sample example based on 20 observations of the design (3.1), 10 with X = 0 and 10 with X = 1,
and with δ = 12. Table 3 shows the observations of Y andW , together with the conditional ranks,
U and V , the marginal ranks, Ũ and Ṽ , and the residualized marginal rank ofW after partialling
out the effect of the covariate X , Ṽr. All the ranks are expressed in per cent and the residualized
rank are recentered at .5 to have the same mean as the other ranks. Note that CRRR is the slope of
the regression of U on V , RRR is the slope of the regression of Ũ on Ṽ , and RRRX-A is the slope
of the regression of Ũ on Ṽr. Here we can see that the main source of the difference between RRR
and CRRR in this case arises from the father’s ranks Ṽ and V . Thus, while the daughter’s ranks
U and Ũ are similar, the marginal ranks Ṽ are relatively larger than the conditional ranks Ṽ in
the Netherlands and smaller in Ireland due to the location change in Ireland. This results in that
the RRR slope is smaller than the CRRR slope. Netting out the country effect from the father’s
marginal ranks brings them generally closer to the father’s conditional ranks, but the residualized
ranks are no longer ranks in that the are not uniformly distributed conditionally or unconditionally.
As a result, the RRRX-A slope does not have an interpretation in terms of rank correlation and
might yield values greater than one in absolute value. In other words, the difference between
CRRR and RRRX-A is the order in the application of the rank and partialling out operators. CRRR
computes the ranks after partialling out the effect ofX , whereas RRRX-A reverses the order. They
deliver different results because these operators do not commute due to the nonlinearity of the
rank operator.
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Table 3. Finite Sample Example based on (3.1) with δ = 12

X Y U(%) Ũ(%) W V (%) Ṽ (%) Ṽr(%)
0 162 10 20 173 10 55 28
0 162 20 25 176 40 70 42
0 164 30 30 182 100 100 73
0 164 40 35 174 20 60 32
0 164 50 45 177 60 80 52
0 165 60 60 177 50 75 48
0 165 70 70 175 30 65 38
0 165 80 75 179 80 90 62
0 168 90 85 181 90 95 68
0 171 100 100 178 70 85 57

1 156 10 5 160 10 5 28
1 157 20 10 169 70 35 57
1 162 30 15 163 20 10 32
1 164 40 40 165 50 25 48
1 164 50 50 164 40 20 43
1 165 60 55 164 30 15 38
1 165 70 65 171 100 50 73
1 167 80 80 170 80 40 62
1 168 90 90 167 60 30 53
1 170 100 95 170 90 45 68

Notes: δ = 12 and Ṽr = .5 + Ṽ − E[Ṽ | X].

4. Distribution Regression Estimator of CRRR

4.1. DRModel for Conditional Distributions. For estimation purposes, it is convenient to model
the conditional distributions FY |X and FW |X using the distribution regression (DR) model:

FR|X(r | x) = Λ(x′βR(r)), R ∈ {Y,W}, r ∈ R,

where Λ is the standard normal or logistic distribution,R is the support of R and the first compo-
nent of x is a constant. The specification can be made more flexible by replacing x by a vector of
transformations of xwith good approximating properties.
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The data to estimate the conditional distribution function at the tails are sparse, so that we must
impose some structure. We assume that the conditional distribution far in the tails can be extrap-
olated from the conditional distribution not too far in the tails.10 We formalize this approach by
imposing restrictions on the coefficient of the DR model at the tails.

Let R̄ be a compact strict subset of R, for R ∈ {Y,W}. Then, we assume

FR|X(r | x) = Λ((r − r̄)αR(r̄) + x′βR(r̄)), R ∈ {Y,W}, r ∈ R \ R̄,

where r̄ := argminr′∈R̄ |r − r′| and αR(r̄) > 0. In words, we postulate that the random variable R
behaves in the tails like a random variable with distribution Λ, after subtracting the location shift
x′βR(r̄) and dividing by the scale αR(r̄), which are different at the upper and lower tails. Thus, the
DR coefficient is restricted at the tails by

βR,1(r) = βR,1(r̄) + (r − r̄)αR(r̄), βR,−1(r) = βR,−1(r̄), R ∈ {Y,W}, r ∈ R \ R̄,

where βR(r) is partitioned into (βR,1(r), βR,−1(r)
′)′ where βR,1(r) is the intercept and βR,−1(r) are

the slope components. That is, r 7→ βR,1(r) is a linear function and r 7→ βR,−1(r) is constant on
R \ R̄.

Under the DR model, the conditional ranks can be expressed as the following functionals of the
parameters:

U = Λ(X ′βY (Y )), V = Λ(X ′βW (W )).

4.2. Estimation. We provide several estimators of the CRRR slope based on the different repre-
sentations of ρC in (2.1) and (2.3). This section presents correlation-based and fully-restricted
estimators. Regression-based estimators are given in Appendix A. We recommend the use of at
least the correlation-based and fully-restricted estimators. The fully-restricted estimator, based on
(2.3), uses all the information available and is the simplest to compute, but it might be sensitive
to misspecification of the model for the conditional distributions. In particular, it can deliver esti-
mates outside the interval [−1, 1] under misspecification. The correlation-based estimator is more
robust in the sense that it is the only estimator that guarantees estimates in the interval [−1, 1]under
misspecification. We show in Appendix A that the correlation-based estimator is asymptotically
equivalent to the average of the regression-based and reversed regression-based estimators.

Let {Zi := (Yi,Wi, Xi)}ni=1 be a random sample of Z := (Y,W,X). The following algorithms
describe the estimators of ρC . All of them are based on DR.

Algorithm 1 (Correlation-based and Fully-Restricted Estimators). Let dx := dimX ,Rn denote the
set containing the observed values of R and R̄n = Rn ∩ R̄, for R ∈ {Y,W}.

10This is in line with approaches used in extreme value theory that impose restrictions on the tail behavior allowing
similar extrapolations. For example, see Embrechts et al. (1997) for a broad reference on the theory of extremes and
Chernozhukov (2005) or Chernozhukov and Fernández-Val (2011) for similar approaches in the context of extremal
quantile regression.
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(1) Estimate βR(r) at r ∈ R̄n by DR, that is,

β̂R(r) ∈ argmaxb∈Rdx

n∑
i=1

[
1(Ri ⩽ r) log Λ(X

′
ib) + 1(Ri > r) log Λ(−X ′

ib)
]
.

(2) Estimate βR(r) at r ∈ Rn \ R̄n by restricted DR, that is,

β̂R(r) = (r − r̄)α̂R(r̄) + x′β̂R(r̄),

where r̄ := argminr′∈R̄n
|r − r′| and

α̂R(r̄) ∈ argmaxa∈R

n∑
i=1

[
1(Ri ⩽ r0) log Λ((r0 − r̄)a+X ′

iβ̂R(r̄))

+1(Ri > r0) log Λ(−(r0 − r̄)a−X ′
iβ̂R(r̄))

]
,

and r0 ∈ Rn \ R̄n is such that (i) there are at least m observations between r̄ and r0, and
greater than r0 if r0 > r̄ (upper tail) or less than r0 if r0 < r̄ (lower tail), and (ii) α̂R(r̄) > 0.

(3) Obtain plug-in estimators of the conditional ranks

Ûi = Λ(X ′
iβ̂Y (Yi)), V̂i = Λ(X ′

iβ̂W (Wi)).

(4) Estimate ρC as either (a) the sample correlation between Ûi and V̂i, that is

ρ̂C =

∑n
i=1(Ûi − Û)(V̂i − V̂ )√∑n

i=1(V̂i − V̂ )2
∑n

i=1(Ûi − Û)2
, V̂ =

1

n

n∑
i=1

V̂i, Û =
1

n

n∑
i=1

Ûi;

or (b) the sample analog of (2.3), that is ρ̆C = 12
∑n

i=1(Ûi − .5)(V̂i − .5)/n.

Comment 4.1 (Computation). If the set Rn contains many elements, in step (2) we can either
replace it by a smaller fine mesh or use a computationally fast method similar to Chernozhukov
et al. (2022) to speed-up computation.11 Note that the optimization program to obtain α̂R(r̄) in
step (3) only needs to be solved twice, one for r0 in the upper tail and one for r0 in the lower tail.
Also, we requirem ⩾ 30, which is thought to be the minimal sample size required to estimate one
parameter.

4.3. Bootstrap Inference. Section 5 shows that the estimators described in Algorithm 1 follow nor-
mal distributions in large samples. The variances of these distributions, however, have complicated
forms and are therefore difficult to estimate. Section 5 also shows that the asymptotic distributions
can be consistently estimated using exchangeable bootstrap. Exchangeable bootstrap is a general
resampling method that includes empirical, weighted, wild and subsampling bootstrap as special
cases; see Comment 4.2. The following algorithm describes how to obtain bootstrap draws of the
estimators of ρC .

Algorithm 2 (Exchangeable Bootstrap Draws of Estimators).

11By stochastic equicontinuity of the conditional distribution processes (r, x) 7→
√
n
[
Λ(x′β̂R(r))− Λ(x′βR(r))

]
,

R ∈ {Y,W}, in Lemma 5.1, the meshwidth δ should be such that δ
√
n → 0 as n → ∞.
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(1) Draw a realization of the weights (ωn1, . . . , ωnn) from a distribution that satisfies Assump-
tion 5.2 in Section 5. Normalize the weights to add-up to one.

(2) Obtain a bootstrap draw of β̂R(r) at r ∈ R̄n by weighted DR, that is,

β̂∗R(r) ∈ argmaxb∈Rdx

n∑
i=1

ωni

[
1(Ri ⩽ r) log Λ(X

′
ib) + 1(Ri > r) log Λ(−X ′

ib)
]
.

(3) Obtain a bootstrap draw of β̂R(r) at r ∈ Rn \ R̄n by restricted weighted DR, that is,

β̂∗R(r) = (r − r̄)α̂∗
R(r̄) + x′β̂∗R(r̄),

where r̄ := argminr′∈R̄n
|r − r′|,

α̂∗
R(r̄) ∈ argmaxa∈R

n∑
i=1

ωni

[
1(Ri ⩽ r0) log Λ((r0 − r̄)a+X ′

iβ̂
∗
R(r̄))

+1(Ri > r0) log Λ(−(r0 − r̄)a−X ′
iβ̂

∗
R(r̄))

]
,

and r0 ∈ Rn \ R̄n is the same as in Algorithm 1.
(4) Obtain bootstrap draws of the estimators of the conditional ranks

Û∗
i = Λ(X ′

iβ̂
∗
Y (Yi)), V̂ ∗

i = Λ(X ′
iβ̂

∗
W (Wi)).

(5) Obtain a bootstrap draw of the estimator of ρC as either (a) the weighted sample correla-
tion, that is

ρ̂∗C =

∑n
i=1 ωni(Û

∗
i − Û

∗
)(V̂ ∗

i − V̂
∗
)√∑n

i=1 ωni(V̂ ∗
i − V̂

∗
)2
∑n

i=1 ωni(Û∗
i − Û

∗
)2
,

where V̂
∗
=
∑n

i=1 ωniV̂
∗
i /n and Û

∗
=
∑n

i=1 ωniÛ
∗
i /n; or (b) the weighed sample analog of

(2.3),

ρ̆∗C =
12

n

n∑
i=1

ωni(Û
∗
i − .5)(V̂ ∗

i − .5).

Comment 4.2 (BootstrapWeights). As pointed out in van der Vaart et al. (1996), by appropriately
selecting the distribution of the weights, exchangeable bootstrap covers the most common boot-
strap schemes as special cases. The empirical bootstrap corresponds to the casewhere (wn1, ..., wnn)

is a multinomial vector with parameter n and probabilities (1/n, ..., 1/n). The weighted boot-
strap corresponds to the case where wn1, ..., wnn are i.i.d. nonnegative random variables with
E(wn1) = Var(wn1) = 1, e.g. standard exponential. The wild bootstrap corresponds to the case
where wn1, ..., wnn are i.i.d. vectors with E(w2+ε

n1 ) < ∞ for some ε > 0, and Var(wn1) = 1. The m
out of n bootstrap corresponds to letting (wn1, ..., wnn) be equal to

√
n/m times multinomial vec-

tors with parameter m and probabilities (1/n, ..., 1/n). The subsampling bootstrap corresponds
to letting (wn1, ..., wnn) be a row in which the number n(n −m)−1/2m−1/2 appears m times and 0

appears n−m times ordered at random, independent of the data.
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We show next how to use exchangeable bootstrap to obtain standard errors for the estimators of
ρC and construct asymptotic confidence intervals for ρC . Algorithm 3 describes the procedure for
ρ̂C . A similar algorithm applies to ρ̆C . Let B a prespecified number of bootstrap repetitions and α
be the significance level for the confidence intervals. For example, B = 500 and α = 0.05.

Algorithm 3 (Inference on ρC based on ρ̂C).

(1) Draw {Ẑ∗
b : 1 ⩽ b ⩽ B} as i.i.d. realizations of Ẑ∗ =

√
n (ρ̂∗C − ρ̂C) using Algorithms 1 and

2.
(2) Compute a bootstrap estimate of the asymptotic standard deviation of ρ̂C , σρ, such as the

bootstrap interquartile range rescaled by the normal distribution:

σ̂ρ =
q.75 − q.25
z.75 − z.25

,

where qp is the p-th quantile of {Ẑ∗
ρ,b : 1 ⩽ b ⩽ B} and zp is the p-th quantile of N(0, 1).

(3) Compute B bootstrap draws of the T-statistic, {Tb : 1 ⩽ b ⩽ B}, where Tb = |Ẑ∗
ρ,b|/σ̂ρ

(4) Construct an asymptotic (1− α)-confidence interval for ρC as

ACI1−α(ρC) = ρ̂C ± t̂1−ασ̂ρ,

where t̂1−α is the (1− α)-quantile of {Tb : 1 ⩽ b ⩽ B}.

5. Asymptotic Theory

In this section we provide asymptotic theory for the estimators of the CRRR slope ρC . We focus
on the correlation-based and fully-restricted estimators of Algorithm 1. We derive their asymptotic
distributions by delta method. For example, we take the following steps for the correlation-based
estimator:

(1) Express the parameter ρC as a correlation-based functional of the function-valued inputs
FY |X , FW |X and FZ , where Z = (Y,W,X ′)′, that is

ρC = ϕ(FY |X , FY |X , FZ) :=

∫
[FY |X(y | x)− .5][FW |X(w | x)− .5]dFZ(z)√∫

[FW |X(w | x)− .5]2dFZ(z)
∫
[FY |X(y | x)− .5]2dFZ(z)

. (5.1)

(2) Show that the plug-in estimator of ρC using ϕ, ρ̃C , is a restricted correlation-based estima-
tor:

ρ̃C = ϕ(F̂Y |X , F̂W |X , F̂Z) =

∑n
i=1(Ûi − .5)(V̂i − .5)√∑n

i=1(V̂i − .5)2
∑n

i=1(Ûi − .5)2
,

where F̂Y |X and F̂W |X are the DR estimators of FY |X , FW |X and F̂Z is the empirical distri-
bution function of Z.

(3) Establish that the map ϕ is Hadamard differentiable in the relevant functional spaces at
(FY |X , FY |X , FZ) with the affine and continuous derivative operator

(zY , zW , gZ) 7→ ϕ′FY |X ,FY |X ,FZ
(zY , zW , gZ),
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where zY , zW and gZ are the limits of converging deviations from FY |X , FY |X and FZ .
(4) Apply the functional delta method to obtain the limit of ρ̃C from the limit of the deviations

of the estimators of the inputs
√
n(F̂Y |X − FY |X),

√
n(F̂W |X − FW |X), and

√
n(F̂Z − FZ),

√
n(ρ̃C − ρC)⇝ ϕ′FY |X ,FW |X ,FZ

(ZY , ZW , GZ),

where⇝ and (ZY , ZW , GZ) are defined below.
(5) Show that ρ̂C has the same asymptotic distribution as ρ̃C ,

√
n(ρ̂C − ρ̃C) →P 0.

The distribution of the fully-restricted estimator is derived following steps (1)-(4), replacing the
correlation-based functional in step (1) by the fully-restricted functional

ρC = 12 ϕ1(FY |X , FY |X , FZ) := 12

∫
[FY |X(y | x)− .5][FW |X(w | x)− .5]dFZ(z). (5.2)

Comment 5.1 (Regression-Based Estimators). The limit distribution of the regression-based es-
timators is derived following analogous steps to the correlation-based estimator, replacing the
correlation-based representation of the functional in step (1) by the regression-based represen-
tation

ρC = φ(FY |X , FY |X , FZ) :=

∫
[FY |X(y | x)− .5][FW |X(w | x)− .5]dFZ(z)∫

[FW |X(w | x)− .5]2dFZ(z)
. (5.3)

We provide the corresponding results in Appendix A.

Before stating formally the main results, we review the existing theory for the estimator of the
RRR slope. The purpose of this review is to explain why the existing results do not cover the
estimators of the CRRR slope. Hoeffding (1948) first derived the asymptotic distribution of the
RRR slope estimator using the theory of U-statistics. We cannot follow the same approach because
none of our estimators has a U-statistic representation. Ren and Sen (1995) alternatively derived
the asymptotic distribution of the RRR slope estimator using the deltamethod. Ren and Sen (1995)
used analogous steps to our procedure described above. The following remarks explain each step
of our procedure and point out the challenges and differences with respect to Ren and Sen (1995).

Comment 5.2 (Functional Representation of ρC). The functional and the inputs of the functional
representation of the RRR slope, ρ, are different from ρC . In particular, Ren and Sen (1995) showed
that

ρ = ϕ̃(FY,W ) = 12

∫
[FY,W (y,+∞)− .5][FY,W (+∞, w)− .5]dFY,W (y, w).

The functional ϕ̃ is an special case of the fully-restricted functional ϕ1 in (5.2) where there are no
covariatesX . In the case of RRR, depite being a regression-based estimator, the denominator sim-
plifies because the sample variances of the estimatedmarginal ranks are deterministic when Y and



CRRR 19

W are continuous.12 This simplification is not available for the correlation-based and regression-
based estimators of ρC because the sample variances of the estimated conditional ranks are random.

Comment 5.3 (Plug-in Estimator). The plug-in estimator of ρC using ϕ is

ϕ(F̂Y |X , F̂W |X , F̂Z) =

∫
[Λ(x′β̂Y (y))− .5][Λ(x′β̂W (w))− .5]dF̂Z(z)∫

[Λ(x′β̂W (w))− .5]2dF̂Z(z)
= ρ̃C ,

where the second equality follows from the properties of the empirical distribution function F̂Z .
This proves Step (2) above.

Comment 5.4 (Hadamard Differentiability of ϕ). The argument to establish differentiability of the
RRR functional ϕ̃ does not apply to the CRRR functional ϕ for several reason. First, the expres-
sion of ϕ is different from ϕ̃. Second, the inputs and their estimators are also different. Moreover,
the estimators of the inputs of the CRRR functional live in more complicated spaces than the es-
timators of the inputs of the RRR functional. Thus, while the estimator of FZ lives in the space
of Cadlag functions, the estimators of FY |X and FW |X live in the space of bounded functions, but
have limits in the space of continuous functions, once properly recentered and rescaled. Because of
this difference, we need to establish Hadamard differentiability in the space of bounded functions,
tangentially to the space of continuos functions.

Comment 5.5 (Limit Process of Input Estimators). To apply the deltamethod,weneed to character-
ize the limit process for the estimator of the inputs. This characterization is muchmore challenging
for CRRR than RRR. Thus, for example, Ren and Sen (1995) can rely on existing functional central
limit theorems for the empirical distribution to establish the limit process over the entire support
of Y and W . Unfortunately, the existing functional central limit theorems for DR estimators of
conditional distributions have only been established on compact strict subset of the support of Y
and W ; see, for example, Chernozhukov et al. (2013). We deal with this challenge by imposing
restrictions on the DR model of the conditional distributions at the tails. These restrictions allow
us to extend the central limit theorems to the entire support of Y andW . In numerical simulations,
however, we find that estimators with and without imposing the tail restrictions perform similarly
in terms of bias, standard deviation and root mean squared error.

We formally state now the main results from the steps (4) and (5). The result from step (3) is
relegated to Appendix B.1 because it is of more technical nature. We state all the results for the
logistic link function because it produces analytically simpler expressions, but it can be readily
extended to the Gaussian link at the cost of more cumbersome notation.

We start by imposing some conditions on the DR model.

12Indeed, these sample variances are equal to (n2−1)/(12n2), see Ren and Sen (1995); and the regression-based and
correlation-based versions of the RRR estimator are numerically identical if there are no ties in the observations of W
and Y .
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Assumption 5.1 (DRModel). ForR ∈ {Y,W}: (a) The conditional distribution function takes the form
FR|X(r | x) = Λ(x′βR(r)) for all r ∈ R and x ∈ X , where Λ(u) = (1+exp(−u))−1, the standard logistic
distribution. (b) The support R is an open interval in R and the conditional density function fR|X(r | x)
exists and is positive in (r, x) on (R,X); it is uniformly bounded and uniformly continuous in (r, x) on
(R,X). (c) E∥X∥2 <∞ and the minimum eigenvalue of

JR(r) := E
[
λ(X ′βR(r))XX

′] ,
is bounded away from zero uniformly over r ∈ R, where λ = Λ(1 − Λ) is the derivative of Λ. (d) Let
βR(y) be partitioned as (βR,1(r), βR,−1(r)

′)′ where βR,1(r) is the intercept and βR,−1(r) includes the rest
of the components. Then, for r ∈ R \ R̄, where R̄ is a closed subinterval of the interior of R, βR,1(r) =

βR,1(r̄) + (r − r̄)αR(r̄) for r̄ := argminr′∈R̄ |r − r′| and some αR(r̄) > 0, and βR,−1(r) = βR,−1(r̄).

Comment 5.6 (DR Model). The conditions in Assumption 5.1(a)-(c) are the same as in Cher-
nozhukov et al. (2013). They are used to obtain a functional central limit for the DR estimator of
the conditional distribution FR|X(r | x) on R̄. Assumption 5.1(d) imposes restrictions on the tails
that allow us to extend the functional central limit theorem toR.

In order to state the result about the limit process for the inputs, we define, for R ∈ {Y,W},

ℓr,x(R,X) = 1{r ∈ R̄}λ(x′βR(r))x′J−1
R (r)

[
Λ(X ′βR(r))− 1{R ⩽ r}

]
X

+ 1{r ∈ R \ R̄}λ(x′βR(r))
{
r − r̄

r0 − r̄

Λ(X ′βR(r0))− 1{R ⩽ r0}
E[λ(X ′βR(r0))]

+

[
x− r − r̄

r0 − r̄

E[λ(X ′βR(r0))X]

E[λ(X ′βR(r0))]

]′
J−1
R (r̄)

[
Λ(X ′βR(r̄))− 1{R ⩽ r̄}

]
X

}
.

Consider the empirical processes (r, x) 7→ ẐR(r, x) :=
√
n
(
F̂R|X(r | x)− FR|X(r | x)

)
,R ∈ {Y,W},

and f 7→ ĜZ(f) :=
√
n
∫
fd(F̂Z − FZ), where F̂R|X(r | x) := Λ(x′β̂R(r)), F̂Z is the empiri-

cal distribution function of Z = (Y,W,X), and F is a class of measurable functions that (i) in-
cludes FY |X , FW |X , F 2

Y |X , F 2
W |X , FY |XFW |X and the indicators of all the rectangles in R̄dx+2, where

R := R ∪ {−∞,∞} is the extended real line, and (ii) is totally bounded under the metric

λ(f, f̃) =

[∫
(f − f̃)2dFZ

]1/2
, f, f̃ ∈ F .

Let Zn ⇝ Z in E denote weak convergence of a stochastic process Zn to a random element Z in a
normed space E, as defined in van der Vaart et al. (1996).

Lemma 5.1 (Limit Processses for Inputs). Assume that Assumption 5.1 holds, the supportX is a compact
subset of Rdx , and {Zi = (Yi,Wi, Xi)}ni=1 is a random sample of Z = (Y,W,X). Then, in the metric space
ℓ∞(YWXF),

(ẐY (y, x), ẐW (w, x), ĜZ(f))⇝ (ZY (y, x), ZW (w, x), GZ(f))
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as stochastic processes indexed by (y, w, x, f). The limit process is a zero-mean tight Gaussian process such
that

ZR(r, x) = G(ℓr,x), R ∈ {Y,W}, and GZ(f) = G(f),

where G is a P -Brownian bridge.

The next result states a central limit theorem for ρ̃C and ρ̆C , and the asymptotic equivalence
between ρ̃C and ρ̂C .

Theorem 5.1 (Limit Distribution of ρ̂C , ρ̃C and ρ̆C). Under the conditions of Lemma 5.1: (1) in R,
√
n (ρ̃C − ρC)⇝ Zρ := 12 [Z1,ρ − ρC(Z2,ρ + Z3,ρ)/2] and

√
n (ρ̆C − ρC)⇝ 12Z1,ρ,

where Z1,ρ, Z2,ρ and Z3,ρ are zero-mean Gaussian random variables defined by

Z1,ρ :=

∫ {
ZY (y, x)[FW |X(w | x)− .5] + ZW (w, x)[FY |X(y | x)− .5]

}
dFZ(y, w, z)

+GZ

(
[FY |X − .5][FW |X − .5]

)
,

Z2,ρ := 2

∫
ZW (w, x)[FW |X(w | x)− .5]dFZ(y, w, z) +GZ

(
[FW |X − .5]2

)
,

and

Z3,ρ := 2

∫
ZY (y, x)[FY |X(y | x)− .5]dFZ(y, w, z) +GZ

(
[FY |X − .5]2

)
.

(2) ρ̂C has the same limit distribution as ρ̃C because
√
n (ρ̂C − ρ̃C) →P 0.

The variance of the limit processes Z1,ρ and Zρ have complicated expressions that might be dif-
ficult to estimate analytically. To avoid this difficulty, we propose the use of bootstrap to make
inference. We show that the exchangeable bootstrap draws of Algorithm 2 have the same asymp-
totic distribution as the CRRR estimators under the following assumption on the weights:

Assumption 5.2 (Exchangeable Bootstrap). For each n, (ωn1, ..., ωnn) is an exchangeable,13 nonnegative
random vector, which is independent of the data, such that for some ϵ > 0

sup
n

E[ω2+ϵ
n1 ] <∞, n−1

n∑
i=1

(ωni − ω̄n)
2 →P 1, ω̄n →P 1, (5.4)

where ω̄n = n−1
∑n

i=1 ωni.

13A sequence of random variables X1, X2, ..., Xn is exchangeable if for any finite permutation σ of the indices
1, 2, ..., n the joint distribution of the permuted sequence Xσ(1), Xσ(2), ..., Xσ(n) is the same as the joint distribution
of the original sequence.
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In order to state the results about bootstrap validity formally, we follow the notation and def-
initions in van der Vaart et al. (1996). Let Dn denote the data vector and Mn be the vector of
random variables used to generate bootstrap draws givenDn. Consider the random element Z∗

n =

Zn(Dn,Mn) in a normed space E. We say that the bootstrap law of Z∗
n consistently estimates the

law of some tight random element Z and write Z∗
n ⇝P Z in E if

suph∈BL1(E) |EMnh (Z∗
n)− Eh(Z)| →P 0, (5.5)

where BL1(E) denotes the space of functions with Lipschitz norm at most 1 and EMn denotes the
conditional expectation with respect to Mn given the data Dn; and →P denotes convergence in
(outer) probability.

We know provide a bootstrap central limit theorem for the for the estimators of the CRRR slope.
This result follows from a functional central limit theorem for the input processes, which we estab-
lish in Lemma B.4 in Appendix B, and the functional delta method for the bootstrap.

Theorem 5.2 (Exchangeable Bootstrap Consistency). Under the conditions of Lemma 5.1 and Assump-
tion 5.2: in R,

√
n (ρ̃∗C − ρ̃C)⇝P Zρ,

√
n (ρ̂∗C − ρ̂C)⇝P Zρ, and

√
n (ρ̆∗C − ρ̂C)⇝P Z1,ρ

that is, exchangeable bootstrap consistently estimates the law of the limit processesZρ andZ1,ρ. In particular,

σ̂ρ →P σρ and P {ρC ∈ ACI1−α(ρC)} → 1− α as n→ ∞,

where σρ is the standard deviation of the limit process Zρ, and σ̂ρ and ACI1−α(ρC) are defined in Algorithm
3.

6. Empirical Application

We analyze intergenerational incomemobility in Switzerland using the EconomicWell-Being of
the Working and Retirement Age Population Data (WiSiER).

6.1. Data. WiSiER data include Swiss individuals from 11 Cantons from 1982 to 2016. The Swiss
Federal Statistical Office merged data from tax records, social insurance, unemployment data, and
surveys, creating a unique opportunity to analyzemobility. An ID canmatch parents and children.
While many approaches seem feasible, we compare fathers and children at the same age of 35. As
a result, the observations stem from different periods, with most of our successful matches coming
from 1982-1990 (fathers) and 2000-2016 (children). The primary outcome variable is yearly real
insured labor income (AHV) in 1, 000 Swiss francs (CHF). The following covariates are available
for both fathers and children: months experience, indicators for high-education (12 or more years
of schooling), Swiss citizenship, and being single, and number of own children. Further, we in-
clude the fathers age at birth, and year and canton fixed effects for the children. Finally, for the
analysis we exclude the following observations: (i) children where there is no parent in the data,
(ii) observations with no information on the children’s or father’s birth year, and (iii) whenever



CRRR 23

the father was younger than 15 at the birth of the child. We conduct separate analyses for the re-
lationships with sons and daughters. Table 4 reports descriptive statistics for the data used in the
analysis.

Table 4. Descriptive Statistics

Father-Son Father-Daughter

Son Father Daughter Father
Mean SD Mean SD Mean SD Mean SD

Income (1,000 CHF) 91 43 80 42 52 35 80 42
Age at birth 26.8 3.3 26.9 3.3
Higher Education 0.56 0.50 0.34 0.47 0.50 0.50 0.34 0.48
Months of Experience 191 30 50 34 184 31 51 34
Swiss Citizen 0.96 0.20 0.88 0.33 0.96 0.21 0.87 0.34
Single 0.46 0.50 0.16 0.37 0.43 0.49 0.17 0.38
Number of Children 1.20 1.11 2.45 0.86 1.35 1.10 2.46 0.87

Notes: sample size is 10, 363 for father-son and 9, 581 for father-daughter.

6.2. Rank-Rank Regressions. Table 5 reports the results of RRR and CRRR. The CRRR results are
obtained using Algorithms 1 and 3 for the correlation-based estimator with a logistic link function
and a mesh of 200 points located at sample quantiles in a sequence of orders from 0.01 to 0.99with
increment of 0.98/199. We use linear interpolation to obtain estimates of the conditional ranks
corresponding to intermediate points in the mesh. The standard errors (SE) and 95% confidence
intervals (95% CI) are computed by empirical bootstrap with 500 repetitions. Based on the results
of numerical simulations reported in Appendix C, we do not impose tail restrictions. In results not
reported, we find very similar estimates, standard errors and confidence intervals for regression-
based and fully restricted estimators.14 We show the robustness of the results to the choice of link
function in Section 6.5.

We find significant positive income persistence in both father-son and father-daughter relation-
ships, with and without covariates. However, the persistence is much stronger for sons than for
daughters suggesting the presence of gender gap in intergenerational transmission of income even
after controlling for father’s and child’s characteristics. Comparing RRR and CRRR, we find that
within-grouppersistence accounts for approximately 62%of the overall incomepersistence for sons
and about 52% for daughters. These results highlight the substantial role of bothwithin-group and
between-group differences in explaining intergenerational mobility.

14These results are available from the authors upon request.
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A subgroup analysis reveals relatively more mobility in families with a larger number of chil-
dren and with a low educated father. In particular, we find relatively less persistence for sons in
large families and more for daughters of high educated fathers. This would be consistent with
decreasing returns of intergenerational transfers with respect to family size and increasing with
respect to father’s education. This heterogeneity, however, is not statistically significant. We do not
find differences in intergenerational mobility for families with immigrant fathers in Switzerland,
unlike the results of Abramitzky et al. (2021) for the U.S. This difference might be due to the small
fraction of immigrant fathers in the sample, see Table 4.

Table 5. Intergenerational Income Mobility in Switzerland

Father-Son Father-Daughter

Coef. SE 95% CI Coef. SE 95% CI

RRR 0.202 0.010 0.182 0.222 0.088 0.010 0.069 0.107
CRRR 0.126 0.011 0.106 0.147 0.046 0.010 0.027 0.066
CRRR, by Father:
High education 0.131 0.017 0.095 0.167 0.085 0.016 0.014 0.156
Age >26 at birth 0.130 0.015 0.100 0.160 0.054 0.014 0.021 0.087
Swiss citizen 0.128 0.012 0.105 0.152 0.045 0.011 0.024 0.065
More >2 children 0.109 0.016 0.070 0.149 0.044 0.016 0.012 0.077

Notes: Correlation-based estimator with logistic link function and a mesh of 200 points. SE and 95% CI obtained by
empirical bootstrap with 500 repetitions. Covariates include father’s and child’s months of experience, higher education,
Swiss citizenship, single and number of own children; father’s age birth; and child’s year and canton fixed effects. Sample
size is 10, 363 for father-son and 9, 581 for father-daughter data.

6.3. TransitionMatrices. Figures 1 and 2 show heatmaps of transition matrices for father-son and
father-daughter, respectively. These matrices are a parsimonious representation of the joint distri-
bution of income for father and child discretized in cells defined by deciles. They are commonly
used in intergenerational mobility studies to provide a more granular measure of persistence than
the rank-rank regressions. We report all the entries in percent deviations from 0.1 because all the
entries should be equal to 0.1 under perfect mobility, that is when the income of the child is inde-
pendent of the income of the father. Panels (A) report transitionmatrices based onmarginal ranks,
similar to previous studies. Panels (B) report conditional transition matrices based on conditional
ranks, which are new to this paper. For father-son, we find that the highest values in panel (A)
concentrate in the diagonal, which is consistent with the positive RRR estimate in Table 5. The re-
sults in panel (B) show a less clear pattern once we control for covariates, consistent with the lower
CRRR estimates in Table 5. The results for father-daughter show similar but weaker patterns as we
expect from the smaller correlation estimates in Table 5. Interestingly, for both sons and daughters
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the highest probability occurs at the bottom right corner of the very top deciles conditionally and
unconditionally.

Figure 1. Transition matrices: Father-Son
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Notes: entries are in percent deviations from 0.01. Sample size is 10, 363 for father-son and 9, 581 for father-
daughter.

6.4. Rank-RankRegressions Excluding Child’s Covariates. One concern about the CRRR results
in Table 5 is that the child’s covariates might be picking up indirect sources of intergenerational
mobility of income. For example, fathers might invest in child’s education to increase the child’s
income prospects. To deal with this concern, Table 6 reports CRRR results where the child’s covari-
ates, other than year and canton fixed effects, are excluded from the covariate setX . These results
are obtained using the correlation-based estimator with logistic link function with the same pa-
rameter choices as in Table 5.

As expected, not accounting for the child’s covariates increases the importance of within-group
persistence to about 80% for fathers-son and 69% for father-daughter. In both cases the increase is of
about 17-18%. The rest of the conclusions remain unchanged. In particular, we still find significant
gender gap in intergenerational transmission of income both conditional and unconditionally, and
relatively less persistence for sons in large families andmore for daughters of high educated fathers.
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Figure 2. Transition matrices: Father-Daughter

Fa
th

er
's

 D
ec

ile

+9 +6 −1 +23 −10 +30 +0 −12 −15 −30

−1 +5 +17 +4 +13 −1 −6 +6 −18 −21

+10 −15 +26 +8 +1 −10 −7 −2 +1 −11

+8 +6 +8 +12 +4 −2 +10 +5 −19 −32

+14 +4 +8 +6 −3 +10 −12 −1 −11 −13

+3 +20 −21 −17 −14 +1 −6 +1 +20 +11

−5 +2 −8 −6 +8 −2 −4 +29 −3 −11

−7 +5 +6 −9 +0 −10 +8 −15 +14 +8

−10 −8 −9 −15 +6 −1 +19 −6 +15 +10

−20 −28 −26 −6 −5 −15 −1 −6 +16 +91

1 2 3 4 5 6 7 8 9 10

10
9

8
7

6
5

4
3

2
1

−57 −27 +2 +32 +62 +91 +121

Daughters's Decile

(a) Marginal ranks

Fa
th

er
's

 D
ec

ile

−2 −1 +6 −6 +24 −2 +6 −1 −10 −15

+4 +1 +0 +12 +1 −13 +6 +12 −10 −13

+0 +29 +2 +13 +8 +2 −10 −8 −18 −20

−3 −6 +10 −9 −6 +20 +2 −1 +5 −12

+9 −3 +11 −8 −13 +1 −8 +5 +3 +3

−3 +5 +16 −2 −21 −5 +16 −3 +2 −6

+0 +6 −7 −6 +8 +1 −4 −6 −1 +9

+5 −12 −5 −10 +0 +3 −10 −5 +25 +9

−5 −5 −9 +3 +8 −4 −4 +1 +5 +10

−6 −15 −24 +13 −8 −4 +5 +5 −3 +37

1 2 3 4 5 6 7 8 9 10

10
9

8
7

6
5

4
3

2
1

−57 −27 +2 +32 +62 +91 +121

Daughters's Decile

(b) Conditional ranks

Notes: entries are in percent deviations from 0.01. Sample size is 10, 363 for father-son and 9, 581 for father-
daughter.

Table 6. Estimates Excluding Child’s Covariates

Father-Son Father-Daughter

Coef. SE 95% CI Coef. SE 95% CI

RRR 0.202 0.010 0.182 0.222 0.088 0.010 0.069 0.107
CRRR 0.161 0.010 0.140 0.182 0.061 0.010 0.041 0.081
CRRR, by Father:
High education 0.166 0.016 0.132 0.200 0.089 0.015 0.031 0.147
Age >26 at birth 0.164 0.014 0.135 0.194 0.077 0.013 0.038 0.116
Swiss citizen 0.164 0.012 0.140 0.187 0.060 0.010 0.039 0.081
More >2 children 0.142 0.017 0.100 0.183 0.064 0.016 0.031 0.098

Notes: Correlation-based estimator with logistic link function and a mesh of 200 points. SE and 95% CI obtained by empirical bootstrap with 500
repetitions. Covariates include father’s months of experience, higher education, Swiss citizenship, single and number of own children; father’s age birth;
and child’s year and canton fixed effects. Sample size is 10, 363 for father-son and 9, 581 for father-daughter data.



CRRR 27

6.5. Robustness to Link Function. Table 7 reports the results of CRRR using the correlation-based
estimator with a Gaussian or probit link function. The estimates, standard errors and confidence
intervals are almost identical to Table 5 showing the robustness of the results to the use of the
logistic versus Gaussian link functions.

Table 7. Robustness to Link Function: Probit Estimates

Father-Son Father-Daughter

Coef. SE 95% CI Coef. SE 95% CI

RRR 0.202 0.010 0.182 0.222 0.088 0.010 0.069 0.107
CRRR 0.127 0.011 0.107 0.148 0.047 0.010 0.028 0.067
CRRR, by Father:
High education 0.132 0.017 0.096 0.168 0.086 0.016 0.015 0.157
Age >26 at birth 0.131 0.014 0.102 0.161 0.055 0.015 0.023 0.087
Swiss citizen 0.129 0.012 0.106 0.153 0.045 0.011 0.025 0.066
More >2 children 0.110 0.016 0.071 0.150 0.046 0.016 0.014 0.079

Notes: Correlation-based estimator with Gaussian link function and a mesh of 200 points. SE and 95% CI obtained by empirical bootstrap with 500
repetitions. Covariates include father’s and child’s months of experience, higher education, Swiss citizenship, single and number of own children; father’s
age birth; and child’s year and canton fixed effects. Sample size is 10, 363 for father-son and 9, 581 for father-daughter data.

7. conclusion

This paper introduces the conditional rank-rank regression (CRRR) as an alternative to tradi-
tional rank-rank regressions with covariates (RRRX) for measuring mobility and persistence. The
CRRRuses conditional ranks of the variables of interest given covariates, in contrast to RRRXwhich
uses marginal ranks net of covariate effects. We show that the CRRR slope preserves an intuitive
interpretation as the average conditional rank correlation between the variables, similar to RRR
without covariates. In contrast, the slope of RRRX loses the rank correlation interpretation and can
take on extreme values outside the interval [−1, 1].TheCRRR is also suitable for subgroup analysis,
where the CRRR slopes maintain a rank correlation interpretation conditional on the groups.

We propose a distribution regression estimator for CRRR where the conditional distributions
are modeled flexibly using parametric link functions. The estimator is easy to implement and
computationally tractable. We derive asymptotic theory for the estimator based on the functional
delta method. The analytic asymptotic variance is cumbersome, so we propose an exchangeable
bootstrap procedure for inference. The bootstrap procedure is also used to construct confidence
intervals. We illustrate the usefulness of CRRR in an empirical application to intergenerational
income mobility in Switzerland. The application reveals stronger intergenerational persistence
between fathers and sons than fathers anddaughters, where thewithin-grouppersistence accounts
for between 52% and 79% of the overall persistence. We also find some evidence of heterogeneity
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across groups defined by father’s education and family size. The results are robust to the exclusion
of child’s covariates and the use of logistic or Gaussian link functions.

In summary, CRRR provides a well-grounded measure of within-group mobility and persis-
tence. It also allows us to decompose the overall persistence captured by RRR into within-group
persistence captured by CRRR plus a remainder term interpretable as between-group persistence.
The distribution regression estimator, coupled with exchangeable bootstrap inference, provides a
practical and flexible way to implement CRRR in empirical applications. We expect CRRR will be
a useful addition to the toolkit of methods for studying mobility and persistence.
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Appendix A. Regression-Based Estimators

Algorithm 4 (Regression-based Estimators). Steps (1)–(3) are the same as in Algorithm 1. In step
(4) estimate ρC as either (a) the slope of the linear regression of Ûi on V̂i, that is

ϱ̂C =

∑n
i=1 Ûi(V̂i − V̂ )∑n
i=1(V̂i − V̂ )2

, V̂ =
1

n

n∑
i=1

V̂i;

or (b) the slope of the restricted linear regression of Ûi on V̂i, that is

ϱ̃C =

∑n
i=1(Ûi − .5)(V̂i − .5)∑n

i=1(V̂i − .5)2
.

Theorem A.1 (Limit Distribution of ϱ̃C and ϱ̂C). Under the conditions of Lemma 5.1: (1) in R,
√
n (ϱ̃C − ρC)⇝ 12 [Z1,ρ − ρCZ2,ρ],
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where Z1,ρ and Z2,ρ are zero-mean Gaussian random variables defined in Theorem 5.1. (2) ϱ̂C has the same
limit distribution as ϱ̃C because

√
n (ϱ̂C − ϱ̃C) →P 0.

CommentA.1 (ReverseRegression-BasedEstimators). The limit distribution of the reverse regression-
based estimator can be trivially obtained from the regression-based case by relabeling the variables
Y andW . Thus, let r̃C denote the reverse regression-based restricted estimator, that is

r̃C =

∑n
i=1(Ûi − .5)(V̂i − .5)∑n

i=1(Ûi − .5)2
.

By Theorem A.1, switching the roles of Y andW ,

√
n(r̃C − ρC)⇝ 12 [Z1,ρ − ρCZ3,ρ] in R,

where Z3,ρ is a zero-mean Gaussian random variable defined in Theorem 5.1.

Comment A.2 (Correlation-based vs. Regression-based Estimators). The correlation-based esti-
mators are asymptotically equivalent to the average of the regression-based and reversed regression-
based restricted estimators. To see this equivalence, we combine

√
n(ϱ̃C −ρC)⇝ 12 [Z1,ρ−ρCZ2,ρ]

with
√
n(r̃C − ρC)⇝ 12 [Z1,ρ − ρCZ3,ρ] to get

√
n ((ϱ̃C + r̃C)/2− ρC)⇝ 12 [Z1,ρ − ρC(Z2,ρ + Z3,ρ)/2] in R.

The same result applies for the average of the regression-based and reversed regression-based
unrestricted estimators.

Comment A.3 (Relative Efficiency). The relative asymptotic efficiency of the different estimators
depends on the variances of the components of the limit processes and the correlations between
them. For example, the fully-restricted estimator ρ̆C is relatively more efficient than the regression-
based restricted estimator ϱ̃C if

Cor(Z1,ρ, ρZ2,ρ) ⩽
1

2

√
Var(ρZ2,ρ)

Var(Z1,ρ)
,

and relative to the correlation-based estimator ρ̃C if

Cor(Z1,ρ, ρ(Z2,ρ + Z3,ρ)/2) ⩽
1

2

√
Var(ρ(Z2,ρ + Z3,ρ)/2)

Var(Z1,ρ)
,

The correlation-based estimator is relatively more efficient than the regression-based restricted
estimator if Var(Z2,ρ) = Var(Z3,ρ) and Cov(Z1,ρ, Z2,ρ) = Cov(Z1,ρ, Z3,ρ).
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Appendix B. Proofs of Section 5

B.1. Hadamard Differentiability of CRRR Functionals. We start by establishing the Hadamard
differentiability of the fully-restricted functional ϕ1 defined in (5.2) and characterizing the expres-
sion of the corresponding derivative. Next, we establish the Hadamard differentiability of the
correlation-based and regression-based functionals ϕ andφ defined in (5.1) and (5.3), respectively,
and characterize the corresponding derivatives. We provide a brief proof for the results for ϕ and
φ because they follow by similar arguments as the proof for ϕ1.

We need some setup and preliminary observations. For R ∈ {Y,W}, let ℓ∞m (RX ) denote the
set of all bounded and measurable mappings RX 7→ R. Let R := R ∪ {−∞,∞} be the extended
real line. We consider RX as a subset of Rdx+1, with relative topology. Let ρ denote a standard
metric on Rdx+1. The closure ofRX under ρ, denotedRX , is compact in Rdx+1. Let UC(RX , ρ) be
the set of functions mappingRX to the real line that are uniformly continuous with respect to the
metric ρ , and can be continuously extended to RX , so that UC(RX , ρ) ⊂ ℓ∞m (RX ). For a class of
functions F , let UC(F , λ) be the set of functionals mapping F to the real line that are uniformly
continuous with respect to the (semi) metric λ(f, f̃) = [P(f − f̃)2]1/2.

Lemma B.1 (Hadamard differentiability of ϕ1). LetRX ⊆ Rdx+1,R ∈ {Y,W}, and F be the class of
bounded functions, mappingRdx+2 toR, that contains FY |X , FW |X , FY |XFW |X and the indicators of all the
rectangles inRdx+2, such thatF is totally bounded under λ. LetDϕ be the product of the spaces of measurable
functions ΓY : YX 7→ [−.5, .5] defined by (y, x) 7→ ΓY (y, x) and ΓW : WX 7→ [−.5, .5] defined by
(w, x) 7→ ΓW (w, x), and the bounded maps Π : F 7→ R defined by f 7→

∫
fdΠ, where Π is restricted to be

a probability measure on Z := YWX . Consider the map ϕ1 : Dϕ1 ⊂ D = ℓ∞m (Y)× ℓ∞m (WX )× ℓ∞(F) →
E ⊂ R, defined by

(ΓY ,ΓW ,Π) 7→ ϕ1(ΓY ,ΓW ,Π) :=

∫
ΓY (y, x)ΓW (w, x)dΠ(z).

Then the map ϕ1 is well defined. Moreover, the map ϕ1 is Hadamard-differentiable at (ΓY ,ΓW ,Π) =

(FY |X − .5, FW |X − .5, FZ), tangentially to the subset D0 = UC(YX , ρ) × UC(WX , ρ) × UC(F , λ),
with the derivative map (γY , γW , π) 7→ ϕ′1,FY |X ,FY |X ,FZ

(γY , γW , π) mapping D to E defined by

ϕ′1,FY |X ,FW |X ,FZ
(γY , γW , π) :=

∫
γY (y, x)[FW |X(w | x)− 1/2]dFZ(y, w, x)

+

∫
γW (w, x)[FY |X(y | x)− 1/2]dFZ(y, w, x)

+

∫
[FY |X(y | x)− 1/2][FW |X(w | x)− 1/2]dπ(y, w, x),

and the derivative is defined and is continuous on D.

Proof of Lemma B.1. First we show that the map ϕ1 is well defined. Any probability measure
Π on Z is determined by the values

∫
fdΠ for f ∈ F , since F contains all the indicators of the

rectangles in Rdx+2. By Caratheodory’s extension theorem Π(A) = Π1A is well defined on all
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Borel subsets A of Rdx+2. Since z 7→ ΓY (y, x)ΓW (y, x) is Borel measurable and takes values in
[−.52, .52], it follows that

∫
ΓY (y, x)ΓW (w, x)dΠ(z) is well defined as a Lebesgue integral, and∫

ΓY (y, x)ΓW (w, x)dΠ(z) ∈ R.

Next we show the main claim. We establish the Hadamard differentiability of ϕ1. Consider any
sequence (Γt

Y ,Γ
t
W ,Π

t) ∈ Dϕ such that for γtY := (Γt
Y − FY |X + .5)/t, γtW := (Γt

W − FW |X + .5)/t,

and πt(f) :=
∫
fd(Πt − FZ)/t,

(γtY , γ
t
W , π

t) → (γY , γW , π), in ℓ∞m (YX )× ℓ∞m (WX )× ℓ∞(F), where (γY , γW , π) ∈ D0.

We want to show that as t↘ 0

ϕ1(Γ
t
Y ,Γ

t
W ,Π

t)− ϕ1(FY |X − .5, FW |X − .5, FZ)

t
− ϕ′1,FY |X ,FW |X ,FZ

(γY , γW , π) → 0 in R.

Write the difference above as

∫
(γtY − γY )[FW |X − .5]dFZ +

∫
(γtW − γW )[FY |X − .5]dFZ +

∫
[FY |X − .5][FW |X − .5](dπt − dπ)

+

∫
γY [FW |X − .5]tdπt +

∫
γW [FY |X − .5]tdπt +

∫
(γtY − γY )[FW |X − .5]tdπt

+

∫
(γtW − γW )[FY |X − .5]tdπt +

∫
γtY γ

t
W tdFZ +

∫
γtY γ

t
W t

2dπt (B.1)

The first two terms of (B.1) are bounded by ∥γtR − γR∥RX
∫
dFZ → 0, R ∈ {Y,W}. The third

term vanishes, since for any f ∈ F ,
∫
fdπt →

∫
fdπ in ℓ∞(F), and [FY |X − .5][FW |X − .5] ∈ F

by assumption. The fourth and fifth terms vanish by the argument provided below. The sixth
and seventh term vanish, since |

∫
(γtR − γR)tdπ

t| ⩽ ∥γtR − γR∥RX
∫
|tdπt| ⩽ 2∥γtR − γR∥RX → 0

for R ∈ {Y,W}, where
∫
|dµ| is the total variation of the signed measure µ. The eighth term is

bounded by Ct
∫
dFZ → 0, for some C > 0. The last term can be bounded as:

2t∥γtY ∥YX ∥γtW ∥WX = 2t{∥γY ∥YX + o(1)}{(γW ∥WX + o(1)} → 0.

Here we consider the fourth term
∫
γY [FW |X − .5]tdπt and show that it vanishes. The argument

for the fifth term is analogous. Since γY is continuous on the compact semi-metric space (YX , ρ),
there exists a finite partition of Rdx+1 into non-overlapping rectangular regions (Rim : 1 ⩽ i ⩽ m)

(rectangles are allowed not to include their sides to make them non-overlapping) such that γY
varies at most ϵ on YX ∩ Rim. Let pm(y, x) := (yim, xim) if (y, x) ∈ YX ∩ Rim, where (yim, xim) is
an arbitrarily chosen point within YX ∩ Rim for each i; also let χim(z) := 1{(y, x) ∈ Rim}. Then,
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as t→ 0,∣∣∣∣∫ γY [FW |X − .5]tdπt
∣∣∣∣ ⩽ ∣∣∣∣∫ (γY − γY ◦ pm)tdπt

∣∣∣∣+ ∣∣∣∣∫ (γY ◦ pm)tdπt
∣∣∣∣

⩽ ∥γY − γY ◦ pm∥YX

∫
|tdπt|+

m∑
i=1

|γY (yim, xim)|t
∣∣πt(χim)

∣∣
⩽ 2∥γY − γY ◦ pm∥YX + tm∥γY ∥YX max

1⩽i⩽m

∣∣πt(χim)
∣∣

⩽ 2ϵ+ tm∥γY ∥YX
∥∥πt∥∥F ⩽ 2ϵ+ tm [∥γY ∥YX ∥π∥F + o(1)] ⩽ 2ϵ+O(t) → 2ϵ,

since ∥FW |X − .5∥WX < 1 and {χim : 1 ⩽ i ⩽ m} ⊂ F , so that maxi |πt(χim)| ⩽ ∥πt∥F → ∥π∥F <

∞.15 The constant ϵ is arbitrary, so that the right hand side vanishes as t→ 0.

The derivative is well-defined over the entireD and is in fact continuouswith respect to the norm
on D given by ∥ · ∥YX ∨ ∥ · ∥WX ∨ ∥ · ∥F . The third component of the derivative map is trivially
continuous with respect to ∥ · ∥F . The first component is continuous with respect to ∥ · ∥YX since∣∣∣∣∫ (γY − γ̃Y )[FW |X − .5]dFZ(z)

∣∣∣∣ ⩽ ∥γY − γ̃Y ∥YX

∫
dFZ(z).

The second component is continuous with respect to ∥ · ∥WX by an analogous argument. Hence
the derivative map is continuous. ■

Lemma B.2 (Hadamard differentiability of ϕ). Let RX ⊆ Rdx+1, R ∈ {Y,W}, and F be the class
of bounded functions, mapping Rdx+2 to R, that contains FY |X , FW |X , F 2

W |X , F 2
Y |X , FY |XFW |X and the

indicators of all the rectangles in Rdx+2, such that F is totally bounded under λ. Let Dϕ be the product of
the spaces of measurable functions ΓY : YX 7→ [−.5, .5] defined by (y, x) 7→ ΓY (y, x) and ΓW : WX 7→
[−.5, .5] defined by (w, x) 7→ ΓW (w, x), and the bounded maps Π : F 7→ R defined by f 7→

∫
fdΠ,

where Π is restricted to be a probability measure on YWX ,
∫
ΓY (y, x)

2dΠ > 0 and
∫
ΓW (w, x)2dΠ > 0.

Consider the map ϕ : Dϕ ⊂ D = ℓ∞m (Y)× ℓ∞m (WX )× ℓ∞(F) → E ⊂ R, defined by

(ΓY ,ΓW ,Π) 7→ ϕ(ΓY ,ΓW ,Π) :=

∫
ΓY (y, x)ΓW (w, x)dΠ(z)√∫

ΓW (w, x)2dΠ(z)
∫
ΓY (y, x)2dΠ(z)

.

Then the map ϕ is well defined. Moreover, the map ϕ is Hadamard-differentiable at (ΓY ,ΓW ,Π) = (FY |X −
.5, FW |X − .5, FZ), tangentially to the subset D0 = UC(YX , ρ) × UC(WX , ρ) × UC(F , λ), with the
derivative map (γY , γW , π) 7→ ϕ′FY |X ,FY |X ,FZ

(γY , γW , π) mapping D to E defined by

ϕ′FY |X ,FW |X ,FZ
(γY , γW , π)

:= 12[ϕ′1,FY |X ,FW |X ,FZ
(γY , γW , π)− ρC(ϕ

′
2,FW |X ,FZ

(γW , π) + ϕ′3,FW |X ,FZ
(γW , π))/2],

15The set F is allowed to include zero, the indicator of an empty rectangle.
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with ϕ′1,FY |X ,FW |X ,FZ
(γY , γW , π) defined as in Lemma B.1,

ϕ′2,FW |X ,FZ
(γW , π) := 2

∫
γW (w, x)[FW |X(w | x)− .5]dFZ(y, w, x)

+

∫
[FW |X(w | x)− .5]2dπ(y, w, x),

and

ϕ′3,FY |X ,FZ
(γY , π) := 2

∫
γY (y, x)[FY |X(y | x)− .5]dFZ(y, w, x)

+

∫
[FY |X(y | x)− .5]2dπ(y, w, x);

where the derivative is defined and is continuous on D.

Proof of Lemma B.2. It is convenient to express

ϕ(ΓY ,ΓW ,Π) =
ϕ1(ΓY ,ΓW ,Π)√

ϕ2(ΓW ,Π)ϕ3(ΓY ,Π)
,

where ϕ1 defined as in Lemma B.1,

ϕ2(ΓW ,Π) :=

∫
ΓW (w, x)2dΠ(z) and ϕ3(ΓY ,Π) :=

∫
ΓY (y, x)

2dΠ(z).

First note that the maps ϕ2 and ϕ3 are well defined by a similar argument to the proof of Lemma
B.1 that shows that ϕ1 is well-defined. The map ϕ is also well-defined because ϕ2(ΓW ,Π) > 0 and
ϕ3(ΓY ,Π) > 0 by assumption.

Next we show the main claim. The Hadamard differentiability of of ϕ1 is establish in Lemma
B.1. The Hadamard differentiability of ϕ2 and ϕ3 can be established by analogous arguments. In
particular, the maps ϕ2 and ϕ3 in the denominator are Hadamard differentiable at (FW |X − .5, FZ)

and (FY |X − .5, FZ), respectively, with derivatives ϕ′2,FW |X ,FZ
and ϕ′3,FY |X ,FZ

. Indeed, we can show
that as t↘ 0

ϕ2(Γ
t
W ,Π

t)− ϕ2(FW |X − .5, FZ)

t
− ϕ′2,FW |X ,FZ

(γW , π) → 0 in R

and
ϕ3(Γ

t
Y ,Π

t)− ϕ3(FY |X − .5, FZ)

t
− ϕ′3,FY |X ,FZ

(γY , π) → 0 in R

following an analogous argument as for ϕ1 in the proof of Lemma B.1. It can also be showed that
ϕ′2,FW |X ,FZ

and ϕ′3,FY |X ,FZ
are well-defined over the entireD and are continuous. We omit the proof

for the sake of brevity.

The final result then follows by the chain-rule for Hadamard differentiable maps using that

Var(FW |X(W | X)) = Var(FY |X(Y | X)) = 1/12.

Continuity of the derivative with respect to the norm onD given by ∥ ·∥YX ∨∥·∥WX ∨∥·∥F follows
by continuity of ϕ′1,FY |X ,FW |X ,FZ

, ϕ′2,FW |X ,FZ
and ϕ′3,FY |X ,FZ

. ■
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Lemma B.3 (Hadamard differentiability of φ). Let RX ⊆ Rdx+1, R ∈ {Y,W}, and F be the class of
bounded functions, mapping Rdx+2 to R, that contains FY |X , FW |X , F 2

W |X , FY |XFW |X and the indicators

of all the rectangles in Rdx+2, such that F is totally bounded under λ. Let Dϕ be the product of the spaces
of measurable functions ΓY : YX 7→ [−.5, .5] defined by (y, x) 7→ ΓY (y, x) and ΓW : WX 7→ [−.5, .5]
defined by (w, x) 7→ ΓW (w, x), and the bounded maps Π : F 7→ R defined by f 7→

∫
fdΠ, where Π is

restricted to be a probability measure on YWX and
∫
ΓW (w, x)2dΠ > 0. Consider the map φ : Dϕ ⊂ D =

ℓ∞m (Y)× ℓ∞m (WX )× ℓ∞(F) → E ⊂ R, defined by

(ΓY ,ΓW ,Π) 7→ φ(ΓY ,ΓW ,Π) :=

∫
ΓY (y, x)ΓW (w, x)dΠ(z)∫

ΓW (w, x)2dΠ(z)
.

Then the map φ is well defined. Moreover, the map φ is Hadamard-differentiable at (ΓY ,ΓW ,Π) = (FY |X−
.5, FW |X − .5, FZ), tangentially to the subset D0 = UC(YX , ρ) × UC(WX , ρ) × UC(F , λ), with the
derivative map (γY , γW , π) 7→ φ′

FY |X ,FY |X ,FZ
(γY , γW , π) mapping D to E defined by

φ′
FY |X ,FW |X ,FZ

(γY , γW , π) := 12[ϕ′1,FY |X ,FW |X ,FZ
(γY , γW , π)− ρCϕ

′
2,FW |X ,FZ

(γW , π)],

with ϕ′1,FY |X ,FW |X ,FZ
(γY , γW , π) defined as in Lemma B.1 and ϕ′2,FW |X ,FZ

(γW , π) defined as in Lemma
B.2, where the derivative is defined and is continuous on D.

Proof of Lemma B.3. The result follows by an analogous argument to the proof of Lemma B.2. We
omit the proof for the sake of brevity. ■

B.2. Proof of Lemma 5.1. We start by stating a Lemma with a bootstrap functional central limit
theorem for the bootstrap draws of the inputs needed to establish Theorem 5.2. We shall prove this
lemma together with Lemma 5.1.

For R ∈ {Y,W}, let (r, x) 7→ Ẑ∗
R(r, x) :=

√
n
(
F̂ ∗
R|X(r | x)− F̂R|X(r | x)

)
and f 7→ Ĝ∗

Z(f) :=
√
n
∫
fd(F̂ ∗

Z − F̂Z), where F̂ ∗
R|X(r | x) := Λ(x′β̂∗R(r)), β̂∗R(r) is the bootstrap draw of β̂R(r) de-

fined in Algorithm 2 and F̂ ∗
Z is the bootstrap draw of the empirical distribution function of Z, be

exchangeable bootstrap draws of the empirical processes (r, x) 7→ ẐR(r, x) and f 7→ ĜZ(f).

Lemma B.4 (Bootstrap Limit Processses for Inputs). Under the conditions of Lemma 5.1 and Assump-
tion 5.2, in the metric space ℓ∞(YWXF),

(Ẑ∗
Y (y, x), Ẑ

∗
W (w, x), Ĝ∗

Z(f))⇝P (ZY (y, x), ZW (w, x), GZ(f)),

as stochastic processes indexed by (y, w, x, f), where (ZY (y, x), ZW (w, x), GZ(f)) has the same distribu-
tion as the limit process in Lemma 5.1.

The proof of Lemmas 5.1 and B.4 follows similar steps to the proof of Theorem 5.2 in Cher-
nozhukov et al. (2013), suitably modified to extend the process to the tails. The main differences
are highlighted in Steps 1, 2, and 3 below.
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Step 1.(Results for coefficients and empirical measures). Application of the Hadamard differen-
tiability results for Z-processes in Chernozhukov et al. (2013) gives that, in ℓ∞(Ȳ)dx × ℓ∞(W̄)dx ×
ℓ∞(F),

(
√
n(β̂Y (·)− βY (·)),

√
n(β̂W (·)− βW (·)), ĜZ)⇝ (HY (·), HW (·), GZ), (B.2)

where Ȳ and W̄ are any compact strict subsets of Y andW , respectively, and

r 7→ HR(r) := −JR(r)−1G(φr,β), φr,β(R,X) :=
[
Λ(X ′βR(r))− 1{R ⩽ r}

]
X,

has continuous paths a.s., for R ∈ {Y,W}.16

We extend the process β̂(r) to the tails as

β̂R(r) = β̂R(r̄) + (r − r̄)α̂R(r̄)e1, r ∈ R \ R̄,

where e1 is a unitary dx-vector with a one in the first component. Likewise, the estimands are given
by

βR(r) = βR(r̄) + (r − r̄)αR(r̄)e1 r ∈ R \ R̄,

by assumption.

Inwhat follows it is convenient to analyze the estimator for the lower tail, the analysis for estima-
tors for upper tails follows exactly the same steps, switching the signs on the dependent variables,
R ∈ {Y,W,−Y,−W}. The estimators (β̂R(r̄), α̂R(r̄)) can be seen as Z-estimators with moment
function

φ̄β,α(R,X) =
(
φr̄,β(R,X)′, φα(R,X)(r0 − r̄)

)′
, φα(R,X) := Λ(X ′βR(r̄)+(r0−r̄)αR(r̄))−1{R ⩽ r0}.

Invoking Z-process theory again but this time for the simple case of finite-dimensional spaceRdx+1,
we have that jointly in R ∈ {Y,−Y,W,−W},

√
n
(
β̂R(r̄)− βR(r̄), α̂R(r̄)− αR(r̄)

)′
⇝

[
JR(r̄) 0

(r0 − r̄)E[λ(X ′βR(r0))X
′] (r0 − r̄)2E[λ(X ′βR(r0))]

]−1

G(φ̄β,α)

=

[
J−1
R (r̄)G(φr̄,β)

G(φα)−E[λ(X′βR(r0))X]′J−1
R (r̄)G(φr̄,β)

(r0−r̄)E[λ(X′βR(r0))]

]
. (B.3)

In fact usingHadamarddifferentiability results for Z-processes given inChernozhukov et al. (2013),
we conclude that convergence results (B.2) and (B.3) for all R ∈ {Y,W,−Y,−W} hold jointly.17

16Chernozhukov et al. (2013) gives detailed arguments on how H-differentiability of Z-processes implies that
(
√
n(β̂Y (y)− βY (y)), ĜX(f))⇝ (HY (y), GX(f)) in ℓ∞(Ȳ)dx × ℓ∞(F), where ĜX(f) is the empirical process induced

by the marginal distribution of X . The extension to stacking another Z-process is straightforward, implying the result
(B.2).

17Of course, it is cumbersome to put this joint convergence statement into one display, so we state this verbally.
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The Hadamard differentiability results for Z-processes also imply that the bootstrap analogs of
the results (B.2) and (B.3) are also valid and hold jointly as well. We omit writing the formulas for
these convergence results, since they are analogous to (B.2) and (B.3).

Step 2.(Main: Results for conditional cdfs). Here we show that,

(ẐY , ẐW , ĜZ)⇝ (ZY , ZW , GZ) in ℓ∞(YWXF),

(Ẑ∗
Y , Ẑ

∗
W , Ĝ

∗
Z)⇝P (ZY , ZW , GZ) in ℓ∞(YWXF).

For the body part, r ∈ R, consider the mapping ν : Dν ⊂ ℓ∞(Rdx
) → ℓ∞(RX ), defined as

b 7→ ν(b), ν(b)(x, y) := Λ
(
x′b(y)

)
.

It is straighforward to deduce that this map is Hadamard differentiable at b(·) = βR(·) tangentially
to UC(R, ρ)dx with the derivative map given by:

v 7→ ν ′(v), ν ′(v)(r, x) = λ
(
x′βR(r)

)
x′v(r).

For the tail part r ∈ R \ R, we consider the mapping µ : Rdx+1 → ℓ∞(R \R) defined by:

(d, a) 7→ µ(d, a), µ(d, a)(r, x) := Λ(x′d+ (r − r̄)ae1)

This is also Hadamard differentiable at (d, a) = (βR(r̄), αR(r̄)) tangentially to the entire domain
with the derivative

(h, u) 7→ µ′(h, u), µ′(h, u)(r, x) = λ(x′βR(r))(x
′h+ (r − r̄)ue1).

The derivative is a bounded (continuous) linear operator (note that as r → ±∞, the derivative van-
ishes, with the linear growth factor r− r̄ being dominated by the term λ(x′βR(r))with exponential
tails).

We can now define the ”extended map” that combines the body and tail pieces:

(b, d, a) 7→ ν̄(b, d, a); ν̄(b, d, a)(r, x) := ν(b)(r, x)1(r ∈ R) + µ(d, a)(r, x)1(r ∈ R \ R).

By combining the two differentiability results above, we can deduce that this map is Hadamard
differentiable with the derivative map

(v, h, u) 7→ ν̄ ′(v, h, u), ν̄ ′(v, h, u)(r, x) := ν ′(v)(r, x)1(r ∈ R) + µ′(h, u)(r, x)1(r ∈ R \ R).

Then, the claim follows by the functional delta method, and we find that the limit process is
given by

ZR(r, x) = λ(x′βR(r))x
′HR(r), R ∈ {Y,W}.

where we now define the extended version of HR as: HR(r) = G(ψR,r,βR
)where

ψR,r,βR
(R,X) = 1{r ∈ R̄}JR(r)−1φr,β(R,X) + 1{r ∈ R \ R̄}

[
JR(r̄)

−1φr̄,β(R,X)

+
r − r̄

r0 − r̄

φα(R,X)− E[λ(X ′βR(r0))X]′JR(r̄)
−1φr̄,β(R,X)

E[λ(X ′βR(r0))]
e1

]
,
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and letting ℓr,x(R,X) := λ(x′βR(r))x
′ψr,βR

(R,X), after some algebra.

Step 3. (Auxiliary: Donskerness). One key ingredient for the result is to show thatF is aDudley-
Koltchinskii-Pollard (DKP) class, namely it has bounded uniform covering entroy integral and
obeys standard measurability condition (Dudley’s image-admissible Suslin condition). We omit
any discussion of measurability in this paper, but we note that it trivially holds. The proof in
Chernozhukov et al. (2013) relies on compactness of the set R̄X and does not apply immediately.
We extend the result to RX . For R ∈ {Y,W}, note that FR = {FR|X(r | ·) : r ∈ R} is a uniformly
bounded “parametric” family indexed by r ∈ R that obeys |FR|X(r | ·)− FR|X(r′ | ·)| ⩽ L|r − r′|,
given the assumption that the density function fR|X is uniformly bounded by some constant L.
This was enough to bound the covering numbers for the index set R̄, but is not enough to bound
the covering number over the unbounded setR.

Under our modelling hypotheses, there exists a small enough constant C > 0 such that

FR|X(r | ·) ⩽ exp(rC); r < 0; 1− FR|X(r | ·) ⩽ exp(−rC); r > 0;

LetRj = −M(ϵ)−ϵ/(2L)+j(ϵ/L), with j = 0, ..., J , where J = ⌈2M(ϵ)L/ϵ⌉+1,M(ϵ) = log(1/ϵ)/C

and ⌈·⌉ is the ceiling function. LetR−1 = −∞ andRJ+1 = +∞. The setsBj = {FR|X(r | X) : Rj ⩽

r ⩽ Rj+1} for j ∈ {−1, ..., J} have the L2 diameter of at most ϵ independently of the distribution
of FX :

• Indeed by the previous paragraph, if j ∈ {0, ..., J − 1}, then the diameter of the set Bj is at
most L(ϵ/L) = ϵ.

• For j = −1 or J , then any pair of conditional cdfs in the same ball obey:

|FR|X(r | ·)− FR|X(r′ | ·)| ⩽ exp(−M(ϵ)C) = exp(−[log(1/ϵ)/C]C) ⩽ ϵ.

The number of sets is at most 2 log(1/ϵ)L/(Cϵ)+ 5. It follows that the uniform covering entropy
of the function set FR = {FR|X(r | X) : r ∈ R} is bounded by (1 + (1/ϵ)2) up to a constant that
does not depend on the distribution of X .

Further if we take F as generated by union of products of FR over different labels R, and the
union of rectangles, the resulting set is still a DKP class, by standard uniform covering entropy
calculus. ■

B.3. Proof of Theorem 5.1. Part (1) follows by the functional delta method (see, e.g., Lemma B.1
of Chernozhukov et al. (2013)). Indeed, in the notation of Lemma B.2,

ρ̃C = ϕ(F̂Y |X , F̂W |X , F̂Z) =

∫
[F̂Y |X(y | x)− .5][F̂W |X(W | x)− .5]dF̂Z(y, w, x)√∫

[F̂W |X(W | x)− .5]2dF̂Z(y, w, x)
∫
[F̂Y |X(Y | x)− .5]2dF̂Z(y, w, x)

,

and ρC = ϕ(FY |X , FW |X , FZ). By Lemmas B.2 and 5.1, together with the functional delta method,
√
n(ρ̃C − ρC)⇝ ϕ′FY |X ,FW |X ,FZ

(ZY , ZW , GZ) in R.
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Similarly, in the notation of Lemma B.1,

ρ̆C = 12ϕ1(F̂Y |X , F̂W |X , F̂Z) = 12

∫
[F̂Y |X(y | x)− .5][F̂W |X(W | x)− .5]dF̂Z(y, w, x),

and ρC = 12ϕ1(FY |X , FW |X , FZ). By Lemmas B.1 and 5.1, together with the functional delta
method,

√
n(ρ̆C − ρC)⇝ 12 ϕ′1,FY |X ,FW |X ,FZ

(ZY , ZW , GZ) in R.

To show part (2), write

1

n

n∑
i=1

(V̂i − V̂ )2 =
1

n

n∑
i=1

(V̂i − .5)2 − (V̂ − .5)2, V̂ =
1

n

n∑
i=1

V̂i,

1

n

n∑
i=1

(Ûi − Û)2 =
1

n

n∑
i=1

(Ûi − .5)2 − (Û − .5)2, Û =
1

n

n∑
i=1

Ûi,

and

1

n

n∑
i=1

Ûi(V̂i − V̂ ) =
1

n

n∑
i=1

(Ûi − .5)(V̂i − .5)− (Û − .5)(V̂ − .5).

To analyze the second components of the previous expressions, note that

|V̂ − .5| ⩽ 1

n

n∑
i=1

|V̂i − Vi|+

∣∣∣∣∣ 1n
n∑

i=1

(Vi − .5)

∣∣∣∣∣ = OP(n
−1/2), Vi = FW |X(Wi | Xi),

by the central limit theorem applied to the second term and

max
i∈{1,...,n}

|V̂i − Vi| = max
i∈{1,...,n}

|F̂W |X(Wi | Xi)− FW |X(Wi | Xi)| ⩽ ∥F̂W |X − FW |X∥WX = OP(n
−1/2),

(B.4)
where the last equality follows by Lemma 5.1. A similar argument gives |Û − .5| = OP(n

−1/2), and

max
i∈{1,...,n}

|Ûi − Ui| = OP(n
−1/2), Ui = FY |X(Yi | Xi). (B.5)

Combining the previous results with the continuous mapping theorem, and using amean value
expansion, we conclude that

ρ̂C =
1
n

∑n
i=1(Ûi − .5)(V̂i − .5) +OP(n

−1)√[
1
n

∑n
i=1(V̂i − .5)2 +OP(n−1)

] [
1
n

∑n
i=1(Ûi − .5)2 +OP(n−1)

] = ρ̃C +OP(n
−1).

■
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B.4. Proof of Theorem 5.2. The results for ρ̃∗C and ρ̆∗C follow by Lemmas B.2, B.1 and B.4, to-
gether with the functional delta method for bootstrap (see, e.g., Lemma B.3 of Chernozhukov et al.
(2013)).

The result for ρ̂∗C follows from
√
n(ρ̂∗C − ρ̂C) =

√
n(ρ̃∗C − ρ̃C) +

√
n(ρ̃C − ρ̂C) +

√
n(ρ̂∗C − ρ̃∗C) =

√
n(ρ̃∗C − ρ̃C) + oP(1),

because
√
n(ρ̃C − ρ̂C) = oP(1) by part (2) of Theorem 5.1, and

√
n(ρ̂∗C − ρ̃∗C) = oP(1) by the same

argument as in the proof of part (2) of Theorem 5.1 replacing Lemma 5.1 by Lemma B.4.

Appendix C. Simulations

We show that the asymptotic theory provides a good approximation to the behavior of the CRRR
estimator through a small sample Monte Carlo simulation. In particular, we document that the
CRRR estimator converges at the expected rate and that the corresponding confidence interval
has coverage close to its nominal level. We focus on the correlation-based estimator, but we find
very similar performance for the regression-based and fully-restricted estimators in results not
reported.18 We do not impose any restriction at the tails because we obtain good results for the
unrestricted estimator even for small sample sizes. In preliminary results not reported, we find
similar results imposing the restrictions of the tail model.

We consider a bivariate normal design for analytical convenience. In particular, we draw data
from the process (

Y

W

)
| X = x ∼ N2

((
x

x

)
,

(
1 c

c 1

))
, X ∼ N(0, 1). (C.1)

We consider 3 different values for the correlation parameter c ∈ {0.25, 0.50, 0.75} and 3 sample
sizes n ∈ {625, 2500, 10000}. We choose these sample sizes because they correspond to

√
n ∈

{25, 50, 100}, where
√
n is the theoretical rate of convergence of the CRRR estimator. The true value

of the CRRR slope is obtained from c using the expression of the rank correlation of the bivariate
normal, ρC = 6arcsin(c/2)/π (e.g., Cramér, 1999).

Table 8 shows the result from 500 simulations using the correlation-based estimator ofAlgorithm
1 with Gaussian or probit link function and a mesh of 500 points located at sample quantiles in a
sequence of orders from 0.01 to 0.99with increment of 0.98/499. We report rootmean squared error
(RMSE), bias, standard deviation (SD) and coverage of 95% confidence intervals (Cover.). The
confidence intervals are obtained from Algorithm 3 by empirical bootstrap with 100 repetitions.
The results indicate that (i) the estimator converges at the expected rate of

√
n and (ii) the coverage

of the confidence intervals floats around the nominal level of .95.19

18The results for the regression-based and fully-restricted estimators are available from the authors upon request.
19Note that the simulation standard error for coverage is about 1%.
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Table 8. Properties of CRRR Estimator

c n RMSE Bias SD Cover.

0.25 625 0.039 0.004 0.039 0.94
2,500 0.019 0.002 0.019 0.95

10,000 0.010 0.000 0.010 0.94

0.5 625 0.033 0.005 0.033 0.93
2,500 0.016 0.002 0.016 0.95

10,000 0.008 0.001 0.008 0.94

0.75 625 0.021 0.005 0.021 0.94
2,500 0.010 0.001 0.010 0.96

10,000 0.005 0.001 0.005 0.94

Notes: results based on 500 simulations of the DGP in (C.1) for the correlation-based esti-
mator with probit liknk function and a mesh of 200 points. The nominal level for coverage is
0.95.
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