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Abstract

Latent variable models are widely used to account for unobserved determinants of

economic behavior. Traditional nonparametric methods to estimate latent hetero-

geneity do not scale well into multidimensional settings. Distributional restrictions

alleviate tractability concerns but may impart non-trivial misspecification bias. Mo-

tivated by these concerns, this paper introduces a quasi-Bayes approach to estimate a

large class of multidimensional latent variable models. Our approach to quasi-Bayes

is novel in that we center it around relating the characteristic function of observables

to the distribution of unobservables. We propose a computationally attractive class

of priors that are supported on Gaussian mixtures and derive contraction rates for a

variety of latent variable models. As a first application, we use data from the India

Young Lives Survey to estimate production functions for cognition and health for

children aged 1-12 in India. As a secondary application, we model individual log

earnings from the Panel Study of Income Dynamics (PSID) as the sum of permanent

and transitory components. Simulations illustrate the performance of quasi-Bayes

estimators relative to common alternatives.
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1 Introduction

Many questions in economics involve inferring information on unobserved determinants of eco-

nomic behavior. For instance, Cunha, Heckman, and Schennach (2010) and Attanasio, Meghir,

and Nix (2020b) study the importance of human capital development on child outcomes. In this

setting, observed variables such as test scores and height serve as imperfect proxies for latent

ability and health. Similarly, models on search unemployment (Heckman and Singer, 1984) and

labor income dynamics (Abowd and Card, 1989; Altonji, Smith Jr, and Vidangos, 2013) explic-

itly incorporate unobserved heterogeneity and measurement error in observables (e.g. observed

wages, hours and earnings).

To account for the informational uncertainty that arises from unobservables, models that in-

corporate latent variables are widely used. In multidimensional settings, a common strategy

to maintain tractability involves imposing distributional restrictions on observables and unob-

servables.1 These approaches are attractive in that they provide a researcher with a tractable

distribution (e.g. Gaussian) to sample from for counterfactual analysis. On the downside, they

may impart non-trivial misspecification bias through the distributional restrictions.2 Motivated

by these concerns, this paper introduces a novel quasi-Bayes approach to estimate a large class

of multidimensional latent variable models.

Traditional quasi-Bayes (Kim, 2002; Chernozhukov and Hong, 2003) combines a GMM objective

function Qn(θ) and a prior ν(θ) to create a quasi-posterior distribution. Intuitively, the GMM

objective function reweights the prior distribution to assign greater weight to areas of the

parameter space where the objective function is small. As a consequence, posterior samples

concentrate around minimizers of the GMM objective function. The usual quasi-posterior takes

the form

ν(θ|Z) ∝ e−Qn(θ)ν(θ). (1)

In this paper, we generalize the representation in (1) to settings where θ represents a latent

distribution of interest. While traditional quasi-Bayesian approaches in econometrics focus on

moment restrictions that identify a finite dimensional parameter, our approach instead centers

around identifying restrictions which relate the characteristic functions of observables to the

distribution of unobservables. Our analysis begins with the observation that a large class of

latent variable models are characterized by a collection of simple identifying restrictions on the

characteristic function of the observables. We use these restrictions to build a pseudo-likelihood

for the model. When combined with a prior, this provides a researcher with quasi-Bayes decision

rules such as point estimators (e.g. posterior means) and credible sets.

1For instance, in their empirical specification, Cunha et al. (2010) and Attanasio et al. (2020a,b) fix the
distribution of unobservables to lie in a Gaussian family. This induces a Gaussian likelihood on observables,
which facilitates the use of parametric maximum likelihood.

2In low dimensional settings, deconvolution based approaches (e.g. Horowitz and Markatou, 1996; Li and
Vuong, 1998; Bonhomme and Robin, 2010) are commonly used to estimate the distribution of unobservables.
These methods require minimal distributional restrictions on unobservables but are computationally challenging
and highly sensitive to user chosen tuning parameters, especially so in multidimensional setups.
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We propose a class of priors that are supported on Gaussian mixtures. Our focus on this class

is partially motivated from the observation that finite Gaussian mixture models are widely

used in a variety of empirical settings to model rich forms of heterogeneity. As Gaussian

mixtures can be efficiently sampled from, they provide researchers with a convenient framework

to perform counterfactual analysis. One consequence of building a framework around such a

structure is that we obtain decision rules with particularly desirable theoretical guarantees in

settings where the true data generating process closely resembles a (possibly infinite) Gaussian

mixture, while at the same time remaining viable in the more general case. A further desirable

property of focusing on Gaussian mixture based priors is that they greatly facilitate the interplay

analysis between the prior and pseudo-likelihood. Importantly, Gaussian mixtures admit a

simple characteristic function which in turn leads to a tractable pseudo-likelihood. Indeed, one

of the main ideas behind our analysis is that priors on Gaussian mixtures translate effortlessly

to priors on characteristic functions and vice versa.

The main contributions of this paper are as follows. We provide a unified treatment for three

classes of latent variable models. These are (i) models with classical measurement error, (ii)

models with repeated measurements and (iii) linear multi-factor models. In each case, we derive

characteristic function based identifying restrictions and use them to build a pseudo-likelihood

for the model. We then combine this likelihood with a theoretically motivated class of priors

and derive L2 rates of convergence (posterior contraction rates) for the induced quasi-Bayes pos-

terior. As our analysis is the first quasi-Bayesian approach to these classes of models, we expect

that the general analysis may be of independent interest towards related extensions. As a by

product of our analysis, we also contribute to a general understanding of characteristic function

based pseudo-likelihoods. Importantly, certain likelihoods may only lead to partial identification

but can nonetheless be modified in a suitable way to achieve point identification.

To the best of our knowledge, our paper is the first nonparametric Bayesian approach to utilize

a pseudo-likelihood based on characteristic functions. In our analysis, we use a Dirichlet pro-

cess prior to induce a prior on Gaussian mixtures which in turn leads to an induced prior on

characteristic functions. One consequence of this analysis is that we obtain novel L∞ posterior

contraction results even for the special case of density estimation. Intuitively, convergence of

characteristic functions implies risk bounds in stronger metrics.3 This approach is of indepen-

dent interest and may be useful in a variety of related extensions.

As a first application, we use data collected from the India Young Lives Survey to estimate

production functions for cognition and health for children aged 1-12 in India, revisiting Attana-

sio, Meghir, and Nix (2020b). As in the original analysis, we use the latent factor model of

Cunha, Heckman, and Schennach (2010) to estimate the joint distribution of unobservables and

observables. Our analysis deviates from the literature in that we estimate this joint distribu-

tion nonparametrically and do so without imposing a specific distribution on the measurement

3For example, if fX and fY have characteristic functions φX and φY , ∥fX − fY ∥L∞≤ ∥φX − φY ∥L1 .
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errors.4 In line with previous results in the literature, our results show that cognition displays

persistence across the development period and that parental investment is effective at develop-

ing cognition at all ages, with a higher return for younger children. Our results differ from the

literature in that, while previous studies attribute cognition at later ages primarily to persis-

tence, our results suggest a greater influence of alternative factors. Specifically, we find that

investment continues to maintain a significant impact during adolescence, albeit still lower than

in early childhood. As our sample size is relatively modest, and we do not consider estimation

by relaxing only a single restriction, it is difficult to ascertain whether our differences are due

to nonparametrically modeling the latent distribution and/or leaving free the distribution of

the measurement errors. To that end, we view our general methodology as complementary to

the existing literature in that it may serve as a robustness check to possible violations of these

restrictions.

As a secondary application, we apply our methodology to model individual earnings data from

the Panel Study of Income Dynamics (PSID), revisiting Bonhomme and Robin (2010). Our re-

sults in this setting are consistent with the literature (e.g. Geweke and Keane, 2000; Bonhomme

and Robin, 2010) in that the distribution of wage shocks in U.S data appear to be non-Gaussian

and leptokurtic. Additionally, as our priors are supported on infinite Gaussian mixtures, our

results also complement previous approaches (e.g. Geweke and Keane, 2000) that advocate for

Gaussian mixtures to model earnings dynamics. To assess the performance of our method, we

compare the implied fit of the wage growth moments to alternative estimators and the observed

data. Overall, we find that our approach is capable of reproducing the higher moments observed

in U.S wage growth data.

The paper is organized as follows. Section 1.2 briefly summarizes notation that frequently

appears throughout the text. Section 2 provides a brief review of Gaussian mixtures, the

Dirichlet process and the prior it induces on Gaussian mixtures. Section 3 introduces the quasi-

Bayes framework for all the latent variable models considered in this paper. Section 4 develops

the quasi-Bayes limit theory and main results. Section 5 provides simulation evidence on quasi-

Bayes estimators relative to common alternatives. In Section 6, we apply our methodology to

study human capital development in India, using data from the Young Lives Survey. In Section

7, we apply our methodology to study earnings dynamics in U.S wages, using data from the

PSID. Section 8 concludes. Section 9 contains proofs and auxiliary results for all the statements

in the main text.

1.1 Related Literature

Latent variable models have a long history in econometrics and statistics. For a comprehensive

overview, we refer to Chen, Hong, and Nekipelov (2011); Schennach (2016, 2022). Heckman

and Singer (1984) establish the consistency of a sieve maximum likelihood estimator for the

4This refers to estimation methods that explicitly depend on the specific form of the measurement error
distribution in their implementation. For example, Gaussian measurement errors are frequently used to induce a
Gaussian likelihood on the observables. If the latent distribution is also assumed to be Gaussian, its mean and
covariance structure can be recovered through minimum distance least squares.
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distribution of unobservables in a single spell duration model. For classical measurement error

with a known error distribution, Fan (1991a,b); Lounici and Nickl (2011) establish optimal

convergence rates of kernel deconvolution estimators. For early work on measurement error in

panel frameworks, see Horowitz and Markatou (1996). For models with repeated measurements,

Li and Vuong (1998) use Kotlarski’s lemma (Kotlarski, 1967) to build a deconvolution based

estimator. For extensions and related results on models with repeated measurements or auxiliary

information, see Li (2002); Schennach (2004a,b); Chen, Hong, and Tamer (2005); Delaigle, Hall,

and Meister (2008); Cunha, Heckman, and Schennach (2010); Kato, Sasaki, and Ura (2021);

Kurisu and Otsu (2022). For general multi-factor models with mutually independent factors,

Bonhomme and Robin (2010) propose a kernel deconvolution based estimator. For instrumental

variable based approaches to models with measurement error, see Newey (2001); Schennach

(2007); Hu (2008); Hu and Schennach (2008); Wang and Hsiao (2011).

Our paper is also related to a growing literature on Bayesian inference in density estimation

and deconvolution. For pure Bayesian approaches to density estimation, see Ghosal, Ghosh,

and Van Der Vaart (2000); Ghosal and Van Der Vaart (2001, 2007); Kruijer, Rousseau, and

van der Vaart (2010); Shen, Tokdar, and Ghosal (2013). For pure Bayesian approaches to

deconvolution with a known error distribution, see Donnet, Rivoirard, Rousseau, and Scricciolo

(2018); Rousseau and Scricciolo (2023). To the best of our knowledge, our paper is the first to

propose a quasi-Bayes framework for these models. As such, our paper also contributes to a

growing literature on quasi-Bayes in nonparametric econometric models (e.g. Liao and Jiang,

2011; Kato, 2013).

Quasi-Bayesian methods have a long history in econometric models identified through moment

restrictions. Traditional approaches (e.g. Chernozhukov and Hong, 2003; Gallant, Hong, Le-

ung, and Li, 2022) have typically focused on strongly identified parametric models. Recent

work (e.g. Chen, Christensen, and Tamer, 2018; Andrews and Mikusheva, 2022) in the litera-

ture also demonstrates that certain quasi-Bayesian decision rules have desirable properties in

settings where identification is weak or non standard. Although our focus in this paper is not

on settings with non standard identification, we do note that (in our nonparametric ill-posed

inverse setting) finite sample identification strength is typically user determined by tuning pa-

rameters that determine the structure of the parameter space. A complex parameter space

leads to objective function that are near-flat in substantial portions of the parameter space.

As traditional estimators (e.g. deconvolution based) are typically based on directly inverting

these objective functions, they are highly sensitive to the underlying structure.5 By contrast,

quasi-Bayes provides additional regularization to solve the ill-posed inverse problem through a

prior and flexible choice of pseudo-likelihood.

5Intuitively, an estimator that is based on inverting an objective function that is near-flat in substantial
portions of a parameter space typically displays large variability.
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1.2 Notation

Denote the standard Euclidean real coordinate space of dimension d by Rd. For complex

coordinates, we use Cd. Let i denote the imaginary unit. The magnitude of a complex valued

function f : Rd → C is defined as |f(t)|2 = (R[f(t)])2+(I[f(t)])2, where R and I denote the real

and imaginary parts, respectively. Given a random vector Z ∈ Rd, we denote its characteristic

function by φZ(t) = E[eit′Z ]. Given functions f, g : Rd → R, we denote their convolution by

f ⋆ g(x) =
∫
Rd f(x − z)g(z)dz. Convolution of a function g : Rd → R with a Borel measure µ

on Rd is denoted in a similar manner by g ⋆ µ(x) =
∫
Rd g(x− z)dµ(z). The Fourier Transform

of a function f : Rd → R and a Borel measure µ on Rd is denoted by F [f ](t) =
∫
Rd e

it′xf(x)dx

and F [µ](t) =
∫
Rd e

it′xdµ(x), respectively.

Let E and P denote the usual expectation and probability operators. Let En denote the empirical

analog of E. We use ∥.∥ and ∥.∥∞ to denote the Euclidean and infinity norm on Rd, respectively.

We use Sd
+ to denote the set of positive definite matrices on Rd×d. Given two measures (λ, µ),

we denote the product measure by ν = λ⊗µ. Let Hp = (Hp, ∥.∥Hp) denote the usual p-Sobolev

space of functions on Rd. Given a symmetric positive definite matrix Σ ∈ Sd
+, we denote its

ordered eigenvalues by λ1(Σ) ≤ λ2(Σ) ≤ . . . ≤ λd(Σ). The L
2 space with respect to the Lebesgue

measure on Rd is denoted by L2(Rd), with associated norm given by ∥f∥2L2=
∫
Rd |f(t)|2 dt.

We introduce more specific notation for multivariate Gaussian distributions to denote various

dependencies that we make use of. Let N (0,Σ) denote the multivariate Gaussian distribution

with mean zero and covariance matrix Σ. We use ϕΣ and φΣ to denote the N (0,Σ) density and

characteristic function, respectively.

2 Review

We begin in Section 2.1 with a brief review of Gaussian mixtures. In Section 2.2, we review the

Dirichlet process and the prior it induces on Gaussian mixtures.

2.1 Gaussian Mixtures

Given a probability distribution P on Rd, the Gaussian mixture with mixing distribution P and

covariance matrix Σ ∈ Rd×d is denoted by

ϕP,Σ(x) = ϕΣ ⋆ P (x) =

∫
Rd

ϕΣ(x− z)dP (z). (2)

If P is a discrete distribution, i.e P =
∑∞

j=1 pjδµj which assigns probability mass pj to a point

µj ∈ Rd, the preceding definition reduces to

ϕP,Σ(x) =

∞∑
j=1

pjϕΣ(x− µj).
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If F denotes the Fourier transform operator, the characteristic function (CF) of a Gaussian

mixture is given by

φP,Σ(t) = F [ϕΣ ⋆ P ](t) = F [ϕΣ](t)×F [P ](t) = e−t′Σt/2F [P ](t). (3)

For a discrete distribution P =
∑∞

j=1 pjδµj , the preceding expression simplifies to

φP,Σ(t) = e−t′Σt/2
∞∑
j=1

pje
it′µj .

From the representation in (2), it follows that a Gaussian mixture is completely characterized

by its mixing distribution P and covariance matrix Σ.

In practice, a researcher may choose to model the distribution of a random vector X ∈ Rd as

an exact Gaussian mixture of the form in (2). That is, there exists a positive definite matrix

Σ0 ∈ Rd×d and a mixing distribution F0 such that the density of X can be expressed as

fX(x) = ϕΣ0 ⋆ F0(x) =

∫
Rd

ϕΣ0(x− z)dF0(z). (4)

As the mixing distribution F0 may be continuously distributed and/or possess unbounded sup-

port, the representation in (4) offers a flexible parametrization that lies somewhere between a

parametric and fully nonparametric model. Furthermore, while the representation in (4) may

be misspecified, there always exists a mixing distribution and covariance matrix (Σ0, F0) such

that the misspecification bias can be made arbitrarily small.6

2.2 Dirichlet Process Priors

The Dirichlet process is a distribution on the space of probability distributions on Rd. That

is, a random draw from the Dirichlet process is a distribution P on Rd. As the name suggests,

the precise definition of the process is closely related to that of the finite dimensional Dirichlet

distribution on the simplex. The following definition clarifies this.

Definition 1. A random distribution P on Rd is a Dirichlet process distribution with base

measure α if for every finite measurable partition of Rd =
⋃k

i=1Ai, we have

(P (A1), P (A2), . . . , P (Ak)) ∼ Dir(k, α(A1), . . . , α(Ak)) , (5)

where Dir(.) is the Dirichlet distribution with parameters k and α1(A1), . . . , αk(Ak) > 0 on the

6To be specific, suppose X ∈ Rd admits a density fX ∈ L2(Rd). A simple way to achieve a (not necessarily
optimal) Gaussian mixture approximation is to let dP = fX and Σn = σ2

nI for some σ2
n ↓ 0. As the Fourier

transform preserves distance (up to a constant), it follows that

∥ϕP,Σn(x)− fX(x)∥L2= ∥fX ⋆ ϕσ2
nI − fX∥L2≍ ∥(e−∥t∥2σ2

n/2 − 1)φX(t)∥L2−−−−→
n→∞

0.
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k dimensional unit simplex ∆ = {x ∈ Rk : xi ≥ 0 ,
∑k

i=1 xi = 1}.7

An alternative definition that is especially useful in simulating the process is the following.

Definition 2 (Dirichlet process). Fix β > 0 and a base probability distribution α on Rd. Let

V1, V2, . . .
i.i.d∼ Beta(1, β) and µ1, µ2, . . .

i.i.d∼ α. Define the weights

p1 = V1 , pj = Vj

j−1∏
i=1

(1− Vi) j ≥ 2.

It can be shown (Ghosal and Van der Vaart, 2017, Lemma 3.4) that
∑∞

i=1 pi = 1 almost surely.

The Dirichlet process with concentration parameter β and base measure α is the law of the

random discrete distribution

P =
∞∑
i=1

piδµi ,

where δµi is the point mass at µi. That is, P takes value µi with probability pi. Notationally,

we suppress the dependence on β and express this as P ∼ DPα. As Figure 1 illustrates, the

parameter β controls the spread around the base measure α, with larger values of β leading to

tighter concentration.

(a) β = 2 (b) β = 10 (c) β = 50

Figure 1: CDF Draws of P ∼ DPα. Black solid line indicates CDF of base measure α = N(0, 1).

A Dirichlet process prior can be used to build a prior on Gaussian mixtures in (2). Specifically,

given a Dirichlet process prior DPα and an independent prior G on the set Sd
+ of positive definite

matrices, the induced prior on Gaussian mixtures is given by

ϕP,Σ(x) =

∫
Rd

ϕΣ(x− z)dP (z) , (P,Σ) ∼ DPα ⊗G. (6)

In the remaining sections, we will frequently refer to the prior in (6). For ease of notation, we

denote this product prior by να,G = DPα ⊗G.

7The probability density of Dir(k, α1, . . . , αk), with respect to the k− 1 dimensional Lebesgue measure on the
unit simplex ∆, is proportional to

∏k
i=1 x

αi−1
i .
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3 Models and Procedures

In this section, we introduce three commonly used latent variable models: (i) classical measure-

ment error8, (ii) models with repeated measurements and (iii) linear independent multi-factor

models. For each model, we consider identifying restrictions that relate the distribution of

the latent variable to the characteristic function of observables. These restrictions are used to

construct a quasi-likelihood. When combined with a prior as in (6), we obtain a quasi-Bayes

posterior that is supported on infinite Gaussian mixtures.

3.1 Classical Measurement Error

Consider a classical measurement error model where we observe a random sample from

Y = X + ϵ , E[ϵ] = 0. (7)

Here, Y ∈ Rd is an observed vector, X ∈ Rd is an unobserved vector whose distribution is of

interest and ϵ is an unobserved error that is independent of X. We may view Y as an imperfect

proxy or error contaminated version of X.

We are interested in recovering the latent distribution of X. As the individual contributions of

X and ϵ cannot be separately identified from an observation of Y , identification of the latent

distribution of X generally requires some further auxiliary information on the distribution Fϵ of

the unobserved error ϵ. In the deconvolution literature (e.g. Lounici and Nickl, 2011; Rousseau

and Scricciolo, 2023), it is common to assume that the distribution Fϵ is completely known.

As in Dattner et al. (2016); Kato and Sasaki (2018), we consider a slightly weaker requirement

where a researcher has auxiliary information in the form of a random sample ϵ1, . . . , ϵm
i.i.d∼ Fϵ

of size m.9 As we discuss in Section 3.2, one way to generate such auxiliary information is

through repeated measurements of Y .

We start by observing that, as the unobserved error ϵ is independent from the latent vector X,

the characteristic functions of (Y,X, ϵ) factor as

φY (t) = φX(t)φϵ(t) ∀ t ∈ Rd. (8)

Our starting point towards constructing a quasi-likelihood is to observe that (8) can be viewed

as a collection of identifying restrictions on the model. As the characteristic functions φY (t) =

E[eit′Y ] and φϵ(t) = E[eit′ϵ] depend on population expectations, it is infeasible to evaluate either

side of (8) directly. Towards that goal, given the observed data, we estimate the population

8This is also known as the multivariate deconvolution model (Fan, 1991a,b; Lounici and Nickl, 2011)
9There are no restrictions on the dependence of the auxiliary sample with the original sample.
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expectations using their empirical analogs:

φ̂Y (t) = En[e
it′Y ] =

1

n

n∑
j=1

eit
′Yj (9)

φ̂ϵ(t) = Em[eit
′ϵ] =

1

m

m∑
j=1

eit
′ϵj . (10)

As estimated characteristic functions do not have uniformly (over t ∈ Rd) valid statistical

guarantees, it is necessary to consider a bounded set of restrictions that grows with the sample

size.10 To that end, given a fixed T > 0, we denote the ball of radius T and the L2 magnitude

(norm) of a function f : Rd → C over the ball by

B(T ) = {t ∈ Rd : ∥t∥∞≤ T} , ∥f∥2B(T )=

∫
B(T )

|f(t)|2 dt. (11)

If θ represents a distribution with characteristic function φθ, we aim to construct a quasi-

likelihood for the latent distribution of X using the quantity

L(θ) = −∥φ̂Y − φθφ̂ϵ∥2B(T ). (12)

While in principle L(.) can be evaluated at any distribution θ, in the interest of computational

tractability, it will be convenient to restrict our attention to distributions that admit a simple

characteristic function. At a minimum, this ensures that the quasi-likelihood in (12) can be

easily evaluated at such distributions. Towards this goal, we consider candidate solutions in the

class of infinite Gaussian mixtures:

ϕP,Σ(x) = ϕΣ ⋆ P (x) =

∫
Rd

ϕΣ(x− z)dP (z). (13)

As discussed in Section 2.1, a Gaussian mixture is completely characterized by its mixing dis-

tribution P and covariance matrix Σ. Therefore, to induce a quasi-Bayes posterior we endow

(P,Σ) with a prior. As discussed in Section 2.2, we use a Dirichlet process DPα prior for the

mixing distribution P . We then choose an independent prior G for the covariance matrix Σ.

The choice of prior G is flexible, with some leading to more straightforward computation in

higher dimensions. General conditions on G are specified in Section 4.1. In particular, an

Inverse-Wishart prior is always permitted.

We define, as discussed in Section 2.2, a prior on Gaussian mixtures given by

ϕP,Σ(x) =

∫
Rd

ϕΣ(x− z)dP (z) , (P,Σ) ∼ να,G = DPα ⊗G.

Let Zn denote the observed data. If φP,Σ denotes the characteristic function of a Gaussian

10Under standard regularity conditions, the usual statistical guarantee (see Lemma 1) is

sup
∥t∥∞≤T

|φ̂Y (t)− φY (t)| = OP(n
−1/2

√
log T ).
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mixture ϕP,Σ, we define the deconvolution quasi-Bayes posterior by

να,G(φP,Σ | Zn) =
exp (− n

2 ∥φ̂Y − φ̂ϵφP,Σ∥2B(T ))να,G(P,Σ)∫
exp (− n

2 ∥φ̂Y − φ̂ϵφP,Σ∥2B(T ))dνα,G(P,Σ)
. (14)

As the quasi-Bayes posterior is constructed using φ̂Y and φ̂ϵ, the conditioning on Zn is used to

denote that the quasi-posterior is defined conditionally on the observed data. Our construction

defines the posterior directly on characteristic space. However, as there is a one-to-one relation

between ϕP,Σ and φP,Σ, without loss of generality we view να,G(. |Zn) as a quasi-Bayes posterior

over distributions and their characteristic functions.

The quasi-Bayes posterior uses the identifying restrictions in (8) as a quasi-likelihood for the

model. Intuitively, we expect samples from the posterior to concentrate on Gaussian mixtures

that approximately satisfy the model’s identifying restrictions. As the latent distribution X

uniquely satisfies the restrictions, these Gaussian mixture samples are expected to concentrate

around the distribution of X. This intuition is formalized in Section 4.2.

As a formal estimator of the latent distribution, we use the expected density under the posterior

distribution in (14). Specifically, we denote the posterior mean by

Eνα,G|Zn
(f) =

∫
fdνα,G(f |Zn). (15)

Remark 1 (On Alternative Priors). Our priors are, by construction, supported on infinite

Gaussian mixtures. In theory, alternative priors such as logistic Gaussian process priors (Lenk,

1991) or log-sieve based priors (Ghosal et al., 2000) could be used as well. Unfortunately, real-

izations from these priors do not admit a closed form characteristic function. This considerably

complicates evaluation of the likelihood L(.) in (12). Motivated by computational tractability,

we focus on Gaussian mixtures as they admit a simple closed form characteristic function.

Remark 2 (On Quasi vs Pure Bayes). Pure Bayesian approaches to deconvolution have been

studied in the literature (Donnet et al., 2018; Rousseau and Scricciolo, 2023). In these frame-

works, it is assumed that the density fϵ is known. From the model in (7), the density of Y

is given by the convolution fY (y) = fX ⋆ fϵ(y) =
∫
Rd fX(y − t)fϵ(t)dt. It follows that the

pure-Bayes posterior distribution under a να,G = DPα ⊗G prior is given by

ν(ϕP,Σ|Zn) =

∏n
i=1

∫
Rd ϕP,Σ(Yi − t)fϵ(t)dt∫ ∏n

i=1

∫
Rd ϕP,Σ(Yi − t)fϵ(t)dtdνα,G(P,Σ)

. (16)

In particular, even if the density fϵ is known, the convolution structure in the posterior likelihood

makes it very challenging to compute in higher dimensions. By contrast, quasi-Bayes uses a

loss function that is based on transforming the convolution structure fX ⋆ fϵ(t) into simple

11



multiplication φX(t)×φϵ(t) in the Fourier domain.11 This remains true in the more complicated

setups studied in Section 3.2 and 3.3.12

Remark 3 (Implementation). As our quasi-likelihoods are smooth functions of (P,Σ), gradient

based Markov chain Monte Carlo (MCMC) methods can be used to construct a random sample

from the quasi-Bayes posterior. In our implementation, we use the No-U-Turn Sampler (NUTS)

version of Hamiltonian Monte Carlo (Hoffman, Gelman et al., 2014).

3.2 Models with Repeated Measurements

In this section, we continue our investigation into quasi-Bayes representations for latent variable

models. In Section 3.1, we considered the setting where a researcher has auxiliary information

on the error distribution that contaminates the latent variable. Specifically, we assumed the

availability of a random sample from the error distribution. In practice, this specific form of

auxiliary information may not always be available. Here we examine the more common situation

where a researcher observes several noisy measurements of the latent variable X. To fix ideas,

suppose we observe (Y1, Y2) from the model:

Y1 = X + ϵ1 , E[ϵ1] = 0, (17)

Y2 = X + ϵ2 , E[ϵ2] = 0.

Here, X ∈ Rd is a latent random vector whose distribution is of interest and (ϵ1, ϵ2) are unob-

served errors. As a baseline example, X may denote latent child ability and (Y1, Y2) measure-

ments of test scores in different subjects (e.g. math, english). Similar to the preceding section,

it is not necessary for Y1 and Y2 to have the same number of observations n. Nonetheless, for

simplicity and notational ease, we continue under this setting.

In the special case where (ϵ1, ϵ2, X) are mutually independent and ϵ2 is a symmetric distribution

around zero, the model in (17) can be reduced to the classical measurement error model in (7)

by differencing out the error. Specifically, consider the observed quantities(
Y1 + Y2

2

)
= X +

(
ϵ1 + ϵ2

2

)
, (18)(

Y1 − Y2
2

)
=

(
ϵ1 − ϵ2

2

)
. (19)

The main idea being that, under the appropriate symmetry and independence conditions, the

observations from (19) can be used as an auxiliary sample for the error in (18). As such, the

analysis in the preceding section and the quasi-Bayes posterior in (14) can be directly applied

to this setting. This analysis, while convenient to implement, may not always be applicable.

11In a sense, this is similar to the idea behind Fast Fourier Transform (FFT) methods for convolution (Cooley
et al., 1967). There, convolution is replaced with simple multiplication in the Fourier domain and the convolution
is obtained by inversion.

12We could not find any references that study nonparametric pure Bayesian approaches to repeated measure-
ments (Section 3.2) and multi-factor models (Section 3.3).
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In particular, weaker restrictions on the joint distribution of (X, ϵ1, ϵ2) may violate either the

mutual independence of (X1, ϵ1, ϵ2) or the requirement of symmetrically distributed errors.

Under the weaker restriction that the errors satisfy E[ϵ1|X, ϵ2] = 0 and ϵ2 ⊥ X, it is known

(Li and Vuong, 1998; Cunha et al., 2010) that the latent distribution of X can be identified

through the representation13

fX(x) =
1

(2π)d

∫
Rd

e−it′x exp

(∫
Pt

E[iY1eiζ
′Y2 ]

E[eiζ′Y2 ]
dζ

)
dt. (20)

Here,
∫
Pt

is the path integral over the straight line segment joining the origin to t ∈ Rd. The

closed form representation in (20) is convenient for theoretical analysis, but feasible analogs of

it are very challenging to implement. This is especially true in higher dimensions where both

the path and outer integral are difficult to evaluate precisely. This is further complicated by

the fact that the empirical analog of the ratio appearing inside the path integral is volatile and

highly sensitive to the choice of t ∈ Rd. Intuitively, bad choices of t lead to situations where

|E[eit′Y2 ]| is significantly smaller than sampling uncertainty |(En − E)[eit′Y2 ]|. This makes the

empirical analog of the ratio a highly volatile function of t ∈ Rd.

Our starting point towards a general quasi-Bayes representation of model (17) is to consider

characteristic function based implications of the representation in (20). By applying the Fourier

transform to both sides of (20) and taking the logarithm, we obtain

logφX(t) =

∫
Pt

E[iY1eiζ
′Y2 ]

E[eiζ′Y2 ]
dζ ∀ t ∈ Rd. (21)

By differentiating both sides of (21) and rearranging, we obtain

φY2(t)∇ logφX(t) = E[iY1eiζ
′Y2 ] ∀ t ∈ Rd. (22)

We view (22) as a collection of identifying restrictions on the model. Given the observed data

{(Y1,i, Y2,i)}ni=1, we estimate the empirical counterpart to (22) using

φ̂Y2(t) = En[e
it′Y2 ] =

1

n

n∑
j=1

eit
′Y2,j ,

φ̂Y1,Y2(t) = En[iY1e
iζ′Y2 ] =

1

n

n∑
j=1

iY1,je
it′Y2,j .

If θ represents a distribution with characteristic function φθ, the identifying restrictions in (22)

suggest a quasi-likelihood of the form

L(θ) = −∥φ̂Y2∇ logφθ − φ̂Y1,Y2∥2B(T ). (23)

13The representation in (20) belongs to a family of Koltarski type (Kotlarski, 1967; Evdokimov and White,
2012) identities that often appear in the identification of econometric models with measurement error. For
examples in auction based frameworks, see (Krasnokutskaya, 2011; Haile and Kitamura, 2019).
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Up to sampling uncertainty, the quasi-likelihood in (23) is based on the objective function

Q(θ) = −∥φY2(∇ logφθ −∇ logφX)∥2B(T ). (24)

A natural question, which we study in detail in Section 4.3, is whether the quasi-likelihood in

(23) is sufficient to identify the true latent distribution. From the objective function in (24),

this can be rephrased as to whether gradient based information is sufficient to determine the

latent characteristic function. We show that this is indeed the case in dimension d = 1 but that

for higher dimensions, the quasi-likelihood in (23) must be augmented with further information

that accounts for the behavior of f on the boundary ∂B(T ) of B(T ).14 Intuitively, the magnitude

∥f∥B(T ) of a function f : B(T ) → C is determined by the magnitude of its gradient ∥∇f∥B(T )

and the behavior of f |∂B(T ), the function obtained by restricting f to ∂B(T ).15

Given a DPα prior and an independent prior G on covariance matrices, we consider (as defined

in Section 2.2) a prior on Gaussian mixtures given by

ϕP,Σ(x) =

∫
Rd

ϕΣ(x− z)dP (z) , (P,Σ) ∼ να,G = DPα ⊗G.

If φP,Σ denotes the characteristic function of a Gaussian mixture ϕP,Σ, we define the (prelimi-

nary) repeated measurements quasi-Bayes posterior by

να,G(φP,Σ | Zn) =
exp (− n

2 ∥φ̂Y2∇ log(φP,Σ)− φ̂Y1,Y2∥2B(T ))να,G(P,Σ)∫
exp (− n

2 ∥φ̂Y2∇ log(φP,Σ)− φ̂Y1,Y2∥2B(T ))dνα,G(P,Σ)
. (25)

We show in Section 4.2 that the quasi-Bayes posterior in (25) is valid for dimension d = 1. For

higher dimensions, as discussed above, we introduce an adjustment to account for the boundary

∂B(T ). For a function g : B(T ) → Cd, define the metric

∥g∥2∂, B(T )=

∫
B(T )

∥g(t)∥2dt+
∫
∂B(T )

∫ 1

0
∥g(tz)∥2dtdHd−1(z). (26)

Here, Hd−1(.) denotes the d − 1 dimensional Hausdorff measure.16 Intuitively, for a function

h : B(T ) → R with h(0) = 0, we can write h(z) =
∫ 1
0 ⟨∇h(tz), z⟩dt for every z ∈ ∂B(T ). The

second term of (26) therefore accounts for the boundary by specifically controlling the gradient

along the straight line segment from the origin.

14The boundary ∂Ω of a domain Ω ⊂ Rd is the remainder of the closure of Ω after removing its interior. In the
case of a ball B(T ) = {t ∈ Rd : ∥t∥≤ T}, this is just ∂B(T ) = {t ∈ Rd : ∥t∥= T}.

15The necessity of considering more than just the gradient is clear as adding a large constant to f modifies
∥f∥B(T ) but leaves ∥∇f∥B(T ) unchanged. In dimension d = 1, the condition f(0) = 0 and knowledge of ∥∇f∥B(T )

is sufficient to determine the behavior of f |∂B(T ). Unfortunately, this does not hold in higher dimensions.
16Up to a known normalization constant c, integration w.r.t the Hausdorff measure is given by∫

∂B(T )

h(z)dHd−1(z) = cE[h(V )] where V = T
Z

∥Z∥ , Z ∼ N (0, Id)

for every Borel function h : ∂B(T ) → R.
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For d > 1, we define the repeated measurements quasi-Bayes posterior by

ν∂,α,G(φP,Σ | Zn) =
exp (− n

2 ∥φ̂Y2∇ log(φP,Σ)− φ̂Y1,Y2∥2∂, B(T ))να,G(P,Σ)∫
exp (− n

2 ∥φ̂Y2∇ log(φP,Σ)− φ̂Y1,Y2∥2∂, B(T ))dνα,G(P,Σ)
. (27)

Remark 4 (On Multiple Identifying Restrictions). If (ϵ1, ϵ2, X) are mutually independent in

model (17), the roles of Y1 and Y2 can be interchanged in (22). In particular, this provides

us with two sets of identifying restrictions. It is straightforward to modify the quasi-Bayes

posteriors in (25) and (27) to include both sets of restrictions. One way to achieve this is to use

the quasi-likelihood

L∗(θ) = −(∥φ̂Y2∇ logφθ − φ̂Y1,Y2∥2B(T )+∥φ̂Y1∇ logφθ − φ̂Y2,Y1∥2B(T )).

Remark 5 (On the choice of Quasi-Likelihood). In practice, the choice of quasi-likelihood

used to induce a valid quasi-Bayes posterior is not unique. For example, one could base a

quasi-likelihood on the identity (21) directly. While such a choice is more straightforward

for theoretical analysis, implementation requires evaluation of the path integral. As discussed

previously, this is further complicated by the fact that the empirical analog of the ratio appearing

inside the path integral is volatile and highly sensitive to the choice of t ∈ Rd.

3.3 Multi-Factor Models

In this section, we study the linear multi-factor model

Y = AX (28)

where Y = (Y1, . . . , YL)
′ ∈ RL is a vector of L measurements, X = (X1, . . . , XK)′ is a vector of

K latent and mutually independent factors and A is a known L×K matrix of factor loadings.

We take for granted that measurements are demeaned so that E[X] = 0. The model in (28)

was initially introduced by Bonhomme and Robin (2010).17

Remark 6 (Factor Loadings). In most cases, A is not fully known but can be consistently

estimated through means and covariances of the observed Y = (Y1, . . . , YL). In particular,

the discrepancy from replacing A with an estimate Â has stochastic order OP(n
−1/2). As the

nonparametric rates of convergence are not faster than O(n−1/2), all our main results go through

with Â replacing A. For expositional simplicity, we continue with the case of known A.

Remark 7 (Repeated Measurements). The repeated measurements model in (17) can be re-

alized as a special case of the multi-factor model in (28). Indeed, consider univariate repeated

measurements (Y1, Y2) of a latent signal X with measurement errors (ϵ1, ϵ2). Then (28) holds

17To ease the exposition, this section closely follows the notation introduced in Bonhomme and Robin (2010).
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with

(
Y1

Y2

)
︸ ︷︷ ︸

Y

=

(
1 1 0

1 0 1

)
︸ ︷︷ ︸

A


X

ϵ1

ϵ2


︸ ︷︷ ︸

X

(29)

We are interested in recovering the distribution of X from a random sample of Y. Denote the

columns of A by A = (A1,A2, . . . ,AK). In Bonhomme and Robin (2010), it is shown that the

identifying restrictions of the model in (28) may be expressed as

∇∇′ logφY(t) =
K∑
k=1

AkA
′
k(logφXk

)′′(t′Ak) ∀ t ∈ RL , (30)

where ∇∇′ logφY(t) denotes the Hessian of the map t → logφY(t).

To simplify the exposition further, we introduce some additional notation. Let VY(t) denote

the vector of upper triangular elements of ∇∇′ logφY(t). Let VX(t) denote the vector with

elements {(logφXi)
′′(t′Ai)}Ki=1. Let V (Ak) denote the vector of upper triangular elements of

AkA
′
k and Q = [V (A1), . . . , V (AK)] the matrix with columns composed of those vectors.

As the matrices in (30) are symmetric, the identifying restrictions may be expressed as

VY(t) = QVX(t) ∀ t ∈ RL.

Equivalently, if Q has full column rank, the identifying restrictions are

Q∗VY(t)− VX(t) = 0 ∀ t ∈ RL (31)

where Q∗ = (Q′Q)−1Q′. The empirical analog to VY(t) is given below in (33). As it involves

the squared reciprocal of the characteristic function, the estimand is volatile and highly sensitive

to the choice of t ∈ RL.18 Similar to our strategy in the preceding section, we focus instead

on a smoothed version of the identifying restriction. If the characteristic function of Y is non

vanishing, the identifying restrictions can equivalently be expressed as

φ2
Y(t)[Q∗VY(t)− VX(t)] = 0 ∀ t ∈ RL

Denote by Q∗
k, the kth row of Q∗

k. From the definition of VX(t), it follows that the identifying

restrictions for the kth latent factor Xk reduce to

φ2
Y(t)[Q∗

kVY(t)− (logφXk
)′′(t′Ak)] = 0 ∀ t ∈ RL. (32)

18Intuitively, bad choices of t lead to situations where |φY(t)| is significantly smaller than sampling uncertainty

|(En − E)eit
′Y|. This makes the function in (33) a highly volatile function of t ∈ Rd. Reweighting by φ̂2

Y leads
to a more stable quasi-likelihood.
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Our starting point for a quasi-Bayes framework is to view (32) as a collection of complex

valued restrictions on the model. Given the observed data {Yi}ni=1, we estimate the empirical

counterpart to (32) using

φ̂Y = En[e
it′Y] =

1

n

n∑
j=1

eit
′Yj ,

[∇∇′ log φ̂Y(t)]l,k = −En[YlYke
it′Y]

φ̂Y(t)
+

En[Yle
it′Y]En[Yke

it′Y]

φ̂2
Y(t)

. (33)

Using these estimands, we obtain empirical analogs φ̂Y and V̂Y(t).

If θ represents a distribution with characteristic function φθ, the identifying restrictions in (32)

suggest a quasi-likelihood of the form

L(θ) = −∥φ̂2
Y(Q∗

kV̂Y − (logφθ)
′′(t′Ak))∥2B(T ) (34)

Up to sampling uncertainty, the quasi-likelihood in (34) is based on the objective function

Q(θ) = −∥φ2
Y(t)[(logφθ)

′′(t′Ak)− (logφXk
)′′(t′Ak)]∥2B(T ). (35)

A natural question is whether the quasi-likelihood in (34) is sufficient to identify the true latent

distribution. From the objective function in (35), this can be rephrased as to whether gradient

based information is sufficient to determine the latent characteristic function. Intuitively, this

follows if φθ = φXk
is the unique solution to the second order differential equation

(logφθ)
′′(t) = (logφXk

)′′(t). (36)

As all characteristic functions satisfy the boundary condition logφθ(0) = log(1) = 0, (36) has a

unique solution if θ satisfies a second boundary condition. As the latent factor Xk is demeaned,

a natural boundary condition is given by (logφθ)
′(0) = (logφXk

)′(0) = iE[Xk] = 0. This can

be achieved by restricting θ to be a mean zero distribution.

Given a DPα prior and an independent prior G on covariance matrices, we consider (as defined

in Section 2.2) a prior on Gaussian mixtures given by

ϕP,Σ(x) =

∫
Rd

ϕΣ(x− z)dP (z) , (P,Σ) ∼ να,G = DPα ⊗G.

If φP,Σ denotes the characteristic function of a Gaussian mixture ϕP,Σ, we define the multi-factor

quasi-Bayes posterior for latent factor Xk by

να,G(φP,σ2 | Zn) =
exp (− n

2 ∥φ̂
2
Y(Q∗

kV̂Y − (logφP,σ2)′′(t′Ak))∥2B(T ))να,G(P, σ
2)∫

exp (− n
2 ∥φ̂

2
Y(Q∗

kV̂Y − (logφP,σ2)′′(t′Ak))∥2B(T ))dνα,G(P, σ
2)
. (37)

Without further modifications, the quasi-Bayes posterior in (37) does not account for the mean
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zero boundary condition discussed above. To enforce this, we propose the demeaned quasi-

posterior distribution obtained from demeaning samples from (37). That is,

να,G(. | Zn) ∼ Z − E[Z] where Z ∼ να,G(.|Zn). (38)

Remark 8 (On Joint Posteriors). From (32), the identifying restrictions can be separated

for each latent factor and this leads to a simple univariate quasi-Bayes posterior. However,

as the latent factors (X1, . . . , XK) are mutually independent, the analysis is unchanged if we

model them jointly using independent priors. Let P = (P1, . . . , PK) denote a vector of mixing

distributions and σ2 = (σ2
1, . . . , σ

2
K) a vector of variance parameters. Let VP,σ2(t) denote the

vector with elements {(logφPi,σ2
i
)′′(t′Ai)}Ki=1. With some abuse of notation, we denote the

vector of individual characteristic functions by φP,σ2 = (φP1,σ2
1
, . . . , φPK ,σ2

K
). The joint quasi-

Bayes posterior induced from the multi-factor model in (28) is then given by

να,G(φP,σ2 | Zn) =
exp (− n

2 ∥φ̂
2
Y(V̂Y −QVP,σ2)∥2B(T ))να,G(P,σ2)∫

exp (− n
2 ∥φ̂

2
Y(V̂Y −QVP,σ2)∥2B(T ))dνα,G(P,σ2)

(39)

να,G(. | Zn) ∼ Z − E[Z] , Z ∼ να,G(.|Zn).

Here G is the common univariate prior on each variance parameter {σ2
i }Ki=1. The prior να,G is

the one obtained by placing mutually independent (DPα ⊗G) priors on each of (Pi, σ
2
i )

K
i=1

(a) Posterior Samples, να,G (b) Posterior samples, να,G

Figure 2: Repeated Measurements (see Remark 7) multi-factor posterior with X ∼
0.5N (−2, 1) + 0.5N (2, 1) and ϵ1, ϵ2 ∼ N (0, 1). Posterior draws for the latent distribution of X
relative to true latent histogram.

As Figure 2 illustrates, in this specific example, the quasi-Bayes posterior να,G appears to con-

centrate on bimodal Gaussians that differ only by shifts in central tendency (mean). This is con-

sistent with our discussion above in that they concentrate around the identified set, i.e solutions

to the second order differential equation in (36). These solutions only identify the distribution

up to the location parameter. The demeaned quasi-Bayes posterior να,G produces posterior

samples with a fixed mean at zero. The boundary conditions for the differential equation are

satisfied and posterior samples concentrate around the true mean-zero latent distribution.
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4 Theory

In this section, we develop the quasi-Bayes limit theory for the models in Section 3. First, we

outline conditions on the prior in Section 4.1. In Sections 4.2-4.4, we present the main results

for each model.

4.1 Priors

The models and the associated quasi-Bayes posteriors in Section 3 are all based on a common

family of prior distributions. In all cases, we model latent distributions using a prior on Gaussian

mixtures given by

ϕP,Σ(x) =

∫
Rd

ϕΣ(x− z)dP (z) , (P,Σ) ∼ DPα ⊗G. (40)

We first state and then discuss the main assumptions that we impose on the Dirichlet process

DPα and covariance prior G.

Assumption 1 (Dirichlet Prior). The Dirichlet process DPα, in the sense of Definition 2, arises

from a Gaussian base measure α. That is, α = N (µ∗,Σ∗) for some mean vector µ∗ ∈ Rd and

positive definite matrix Σ∗ ∈ Sd
+.

Assumption 2 (Covariance Prior). (i) G is a probability measure with support contained in

the space of positive semi-definite matrices on Rd×d. (ii) There exists κ ∈ (0, 1], v1 ≥ 0, v2 ≥ 0

and universal constants C,C ′, D,D′ > 0 that satisfy

(a) G(Σ : λd(Σ
−1) > td) ≤ C exp

(
−C ′tκd

)
,

(b) G

(
Σ :

⋂
1≤j≤d

{
tj ≤ λj(Σ

−1) ≤ tj(1 + δ)

})
≥ Dtv11 δv2 exp

(
−D′tκd

)
for every δ ∈ (0, 1) and 0 < t1 ≤ t2 ≤ . . . ≤ td < ∞.

We note that, as the researcher chooses the prior, Assumption 1 and 2 can always be satisfied.

For the Dirichlet process prior, by varying (µ∗,Σ∗), a researcher can impose varying degrees of

prior information. In practice, setting µ∗ = 0 and Σ∗ = CId for a large C > 0 leads to a diffuse

noninformative prior.

Assumption 2 is frequently used in the literature on density estimation (Shen et al., 2013; Ghosal

and Van der Vaart, 2017). It allows for a general class of covariance priors. In dimension d = 1,

it holds with κ = 1/2 if G is the distribution of the square of an inverse-gamma distribution.

In dimension d > 1, it holds with κ = 1 if G is the Inverse-Wishart distribution. Various other

choices may be used as well, with some leading to more straightforward computation in higher

dimensions. For instance, we can always write Σ = DCD where C is a correlation matrix and

D =
√

Diag(Σ) is the scale matrix. In higher dimensions, it is often computationally simpler to

place priors on C and D separately. For D, the diagonal can consist of independent univariate
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priors (e.g. inverse-gamma). For the correlation matrix C, a common choice is the class of

Lewandowski-Kurowicka-Joe (LKJ) priors (Lewandowski et al., 2009).

Remark 9 (On Empirical Bayes Priors). For the base measure α in Assumption 1, one may

choose (µ∗,Σ∗) using an empirical Bayes approach. All our main results go through with a data

dependent prior α̂ = N (µ̂, Σ̂), provided that asymptotically with probability approaching one,

∥µ̂∥ is bounded and the eigenvalues of Σ̂ are bounded away from zero and infinity. For example,

in the classical measurement error model (7), one can choose (µ∗,Σ∗) to be the empirical mean

and covariance matrix of the observed vector Y .

4.2 Main Results (Multivariate Deconvolution)

In this section, we present the main results for the deconvolution-based quasi-Bayes posterior

of Section 3.1. Recall that in this case, we observe a sample {Yi}ni=1 and an auxiliary sample

{ϵi}mi=1, from the model in (7). The main conditions that we impose on the observations is

summarized in the following condition.

Condition 4.1 (Data). (i) (Yi)
n
i=1 ∈ Rd is a sequence of independent and identically distributed

random vectors. (ii) (ϵ1, . . . , ϵm)
i.i.d∼ Fϵ where Fϵ is the distribution of the error ϵ in model (7).

(iii) The sample size of the auxiliary sample grows at rate m = mn ≍ n. (iv) The distributions

have finite second moments: E(∥Y ∥2) < ∞ and E(∥ϵ∥2) < ∞.

The rate requirement on the auxiliary sample size in Condition 4.1(iii) is made for simplicity

and could be relaxed further.19 As is common in the literature, we characterize the ill-posedness

in the model through the decay rate of the characteristic function of the error φϵ(.). This is

summarized in the following definition.

Definition 3 (Inverse Regime). We say a model is either mildly or severely ill-posed if

inf
t∈Rd:∥t∥∞≤T

|φϵ(t)| ≍

T−ζ mildly ill-posed

exp
(
−RT ζ

)
severely ill-posed

for some R, ζ ≥ 0.

Recall that the deconvolution-based quasi-Bayes posterior is given by

να,G(φP,Σ | Zn) =
exp (− n

2 ∥φ̂Y − φ̂ϵφP,Σ∥2B(T ))να,G(P,Σ)∫
exp (− n

2 ∥φ̂Y − φ̂ϵφP,Σ∥2B(T ))dνα,G(P,Σ)
. (41)

Intuitively, our general strategy to study (41) proceeds as follows. The quantity ∥φ̂Y −φ̂ϵφP,Σ∥2B(T )

represents a smoothed version of the distance ∥ϕP,Σ − fX∥2L2 , where fX denotes the latent den-

sity of X. We first obtain contraction rates with respect to this smoothed, weaker metric. Its

19Lower sample sizes only influence the analysis through weaker statistical guarantees on the estimated char-
acteristic function φ̂ϵ(.). It is straightforward to incorporate this into the analysis.
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implications towards distance in the stronger metric ∥ϕP,Σ − fX∥2L2 is then determined by the

complexity of B(T ) and the model ill-posedness.

Before considering the general case, we first study the case where the true latent density fX

admits a representation as a (possibly infinite) Gaussian mixture:

fX(x) = ϕΣ0 ⋆ F0(x) =

∫
Rd

ϕΣ0(x− z)dF0(z). (42)

Here, Σ0 ∈ Sd
+ is a positive definite matrix and F0 is a mixing distribution. Note that, we do

not assume knowledge of (Σ0, F0), only that the representation in (42) is true for some (Σ0, F0).

Importantly, if F0 is continuously distributed or has unbounded support, the specification in

(42) allows for a Gaussian mixture with infinite components. The model specification in (42) is

commonly used to study Gaussian mixture based approaches to density estimation.20

Finite Gaussian mixture representations are widely used in empirical settings.21 Hence, the

model in (42) serves as a natural starting point. Intuitively, as the prior concentrates on Gaus-

sian mixtures, the expectation is that the model should exhibit negligible bias in approximating

a latent density with Gaussian mixture structure as in (42). We formalize this intuition below

by showing that nearly parametric rates of convergence can be obtained. To that end, our main

assumption on the Gaussian mixture specification is the following.

Condition 4.2 (Exact Gaussian Mixtures). fX = ϕΣ0⋆F0 where Σ0 ∈ Rd×d is a positive definite

matrix and F0 is a mixing distribution that satisfies F0(t ∈ Rd : ∥t∥> z) ≤ C exp(−C ′zχ) for

all sufficiently large z, where C,C ′, χ ≥ 0 are universal constants.

Condition (4.2) imposes an exponential tail on the mixing distribution F0. Importantly, this

covers all Gaussian mixtures that have modes contained in a compact subset of Rd. As the

mixing distribution may be continuously distributed, the corresponding Gaussian mixture may

be infinite as well. The following result shows that, under suitable scaling of the covariance prior,

the quasi-Bayes posterior contracts towards the true latent density fX at a nearly parametric

rate.

Theorem 1 (Rates with Exact Gaussian Mixtures). Suppose Conditions 4.1, 4.2 hold and the

covariance prior is taken as Gn ∼ G/σ2
n where G satisfies Assumption 2 and σ2

n is as specified

below. Furthermore, suppose Σ0 is in the support of G. Let κ, χ > 0 be as in Assumption 2 and

Condition 4.2, respectively.

(a) Let λ = max{χ−1(d + 2) + d/2, d + 1}. Suppose the model is mildly ill-posed with ζ ≥ 0

as in Definition 3. If Tn ≍
√
log n

√
log log n and σ2

n ≍ (log n)−λ/κ, then there exists a

20Convergence rates (for univariate density estimation) for the model in (42), using a Gaussian mixture sieve
maximum likelihood estimator, were initially studied by Genovese and Wasserman (2000). Contraction rates
(and improved rates on the MLE) for pure Bayesian density estimation were subsequently obtained in Ghosal
and Van Der Vaart (2001).

21As in, for example, Geweke and Keane (2000); Cunha et al. (2010); Attanasio et al. (2020a,b).
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universal constant C > 0 such that

να,Gn

(
∥fX − ϕP,Σ∥L2> C

(log n)(λ+ζ)/2

√
n

(log log n)ζ/2
∣∣∣∣Zn

)
= oP(1).

(b) Let λ = max{χ−1(d+ 2) + d/2, d+ 1, d/ζ + 1/2}. Suppose the model is severely ill-posed

with ζ ∈ (0, 2] and R > 0 as in Definition 3. If Tn = (c0 log n)
1/ζ for any c0 satisfying

c0R = γ < 1/2 and σ2
n is defined by

σ2
n ≍

(log n)2/ζ−1−λ/κ(log log n)−2/κ ζ ∈ (0, 2)

(log n)−λ/κ ζ = 2.

Then, there exists a universal constant C > 0 and V ∈ (0, 1/2) such that
να,Gn

(
∥fX − ϕP,Σ∥L2> Cn−1/2+γ(log n)λ/2 |Zn

)
= oP(1) ζ ∈ (0, 2)

να,Gn

(
∥fX − ϕP,Σ∥L2> Cn−V |Zn

)
= oP(1) ζ = 2.

Under a mildly ill-posed regime, the quasi-Bayes posterior attains nearly (up to a logarithmic

factors) parametric rates of convergence. If the model is severely ill-posed at a rate ζ that is

lower than Gaussian type ill-posedness, nearly parametric rates in the form n−1/2+ϵ for any

ϵ > 0 can be obtained. In the extreme case where the model exhibits Gaussian ill-posedness,

the model bias (which is determined by the decay rate of a Gaussian mixture characteristic

function) has similar order to the variance. In this case, the rate is still polynomial but the

exponent V depends on second order factors such as the constant R in Definition 3 and the

eigenvalues of the matrix Σ0 in representation (42). In the case of univariate frequentist kernel

deconvolution, a similar finding can be found in Butucea and Tsybakov (2008a,b).

Remark 10 (On Covariance Scaling). The strategy of scaling the covariance prior can be

traced back to Ghosal and Van Der Vaart (2007) where it was employed for univariate pure

Bayesian density estimation. This requirement was eventually removed in Shen et al. (2013).

We conjecture that the scaling may be an artifact of the proof and can possibly be relaxed.

As our quasi-Bayesian setup is quite different to a pure Bayesian model, the analysis in Shen

et al. (2013) is not directly applicable here. We leave this investigation for future work. In our

simulations and empirical illustrations, we do not apply any scaling to the covariance prior.

Remark 11 (Convergence in stronger metrics). An interesting aspect of the quasi-Bayes frame-

work is that all formal analysis takes place directly in the Fourier domain. As the Fourier

transform F is a distance preserving isomorphism between L2 spaces, ∥.∥L2 contraction rates in

the Fourier domain translate directly to ∥.∥L2 rates for the density. However, this can also be

used to derive contraction rates in stronger metrics such as ∥.∥L∞ . In particular, as the Fourier

transform satisfies ∥f∥∞≤ ∥F [f ]∥L1 , we have the following variant of Theorem 1.

22



Corollary 1 (L∞ Rates with Exact Gaussian Mixtures). Suppose Conditions 4.1, 4.2 hold

and the covariance prior is taken as Gn ∼ G/σ2
n where G satisfies Assumption 2 and σ2

n is

as specified below. Furthermore, suppose Σ0 is in the support of G. Let κ, χ > 0 be as in

Assumption 2 and Condition 4.2, respectively.

(a) Let λ = max{χ−1(d + 2) + d/2, d + 1}. Suppose the model is mildly ill-posed with ζ ≥ 0

as in Definition 3. If Tn ≍
√
log n

√
log log n and σ2

n ≍ (log n)−λ/κ, then there exists a

universal constant C > 0 such that

να,Gn

(
∥fX − ϕP,Σ∥L∞> C

(log n)(λ+d/2+ζ)/2

√
n

(log log n)(ζ+d/2)/2

∣∣∣∣Zn

)
= oP(1).

(b) Let λ = max{χ−1(d + 2) + d/2, d + 1, d/ζ}. Suppose the model is severely ill-posed with

ζ ∈ (0, 2] and R > 0 as in Definition 3. If Tn = (c0 log n)
1/ζ for any c0 satisfying

c0R = γ < 1/2 and σ2
n is defined by

σ2
n ≍

(log n)2/ζ−1−λ/κ(log log n)−2/κ ζ ∈ (0, 2)

(log n)−λ/κ ζ = 2.

Then, there exists a universal constant C > 0 and V ∈ (0, 1/2) such that
να,Gn

(
∥fX − ϕP,Σ∥L∞> Cn−1/2+γ(log n)(λ+d/ζ)/2 |Zn

)
= oP(1) ζ ∈ (0, 2)

να,Gn

(
∥fX − ϕP,Σ∥L∞> Cn−V |Zn

)
= oP(1) ζ = 2.

The L2 and L∞ rates in Theorem 1 and Corollary 1 appear to be novel even for the special

case of density estimation.22 As discussed in Remark 11, this is an interesting consequence

of our characteristic function based quasi-Bayesian approach. While it may be possible for

pure-Bayesian approaches to achieve similar results, the analysis to verify this appears to be

significantly more complicated. For ease of exposition, all the remaining results in Section 4 are

stated only for the ∥.∥L2 metric. By analogous arguments to that of Corollary 1 and Remark

11, it is straightforward to extend these results to stronger metrics such as ∥.∥L∞ .

As Gaussian mixtures can approximate any density fX ∈ L2 arbitrarily well, it is straightforward

to modify the preceding results to obtain consistency for a general density.23 We focus instead

on the more difficult task of establishing a rate of convergence. To that end, consider the case

where the true latent density fX is not an exact Gaussian mixture and thus, the prior model

exhibits non-negligible bias. In this model, the Gaussian mixture bias is closely related to the

22Rates of convergence with Dirichlet Process priors in L1 or Hellinger risk can be found in Ghosal and Van
Der Vaart (2001)

23Here, consistency means that

να,Gn(∥fX − ϕP,Σ∥L2> ϵ|Zn) = oP(1) ∀ ϵ > 0.
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quantity

B(σ) = min
P

∥fX ⋆ fϵ − ϕP,σ2I ⋆ fϵ∥L2≍ min
P

∥φϵ(φX − φP,σ2I)∥L2 , (43)

where σ2I denotes the identity matrix with each diagonal entry σ2 and the minimum is over all

mixing distributions P .

Remark 12 (Bias Bounds). For a conservative upper bound on the rate at which B(σ) tends
to 0 as σ → 0, observe that by picking P = fX , we obtain

∥φϵ(φX − φP,σ2I)∥L2= ∥(e−∥t∥2σ2/2 − 1)φX(t)φϵ(t)∥L2⪅ σ2.

The preceding bound follows from
∣∣∣e−∥t∥2σ2/2 − 1

∣∣∣ ≤ ∥t∥2σ2/2. As such, the concluding estimate

is valid provided that
∫
Rd∥t∥4|φX(t)|2 |φϵ(t)|2 < ∞ or equivalently fX ⋆fϵ ∈ H2. For fX ⋆fϵ with

smoothness order greater than 2, this argument does not provide better rates. In particular,

with higher smoothness, the choice P = fX is not optimal in (43): one can typically do better

by allowing P = PX,ϵ,σ to depend implicitly on all the features (fϵ, fX , σ).

We consider the following characterization of the Gaussian mixture bias.

Condition 4.3 (Gaussian Mixture Bias). (i) fX ∈ Hp(R) for some p > 1/2 and R < ∞.

(ii) There exists universal constants C,M < ∞ and χ > 0 such that for all σ > 0 suffi-

ciently small, there exists a mixing distribution Fσ = FX,ϵ,σ supported on the cube Iσ =

[−C(log σ−1)1/χ, C(log σ−1)1/χ]d that satisfies ∥fX ⋆ fϵ − ϕFσ ,σ2I ⋆ fϵ∥L2≤ Mσp+ζ .

Variants of Condition 4.3 are commonly used in density estimation (Shen et al., 2013; Ghosal

and Van der Vaart, 2017). A stronger version of Condition 4.3 is also used in Donnet et al. (2018)

within the context of univariate pure Bayes density deconvolution. For examples of explicit con-

structions of Fσ in Condition 4.3, see Shen et al. (2013) and Ghosal and Van der Vaart (2017) for

density estimation and Rousseau and Scricciolo (2023) for deconvolution. We note that, at least

in our quasi-Bayes setup, Condition 4.3 can be weakened further. In particular, it suffices that

the approximation holds with respect to the weaker norm ∥.∥B(Tn) and for a sequence σn, where

(σ−1
n , Tn) grow at a suitable rate. Finally, it is worth noting that Bayesian procedures do not

require knowledge of the optimal mixing distribution Fσ in Condition 4.3 for implementation.

The existence is purely a proof device towards obtaining theoretical guarantees.

The following result derives the quasi-Bayes posterior contraction rate when the Gaussian mix-

ture bias is as in Condition 4.3.

Theorem 2 (Rates with Gaussian Mixture Bias). Suppose the model is mildly ill-posed with

ζ ≥ 0 as in Definition 3. Suppose Conditions 4.1, 4.3 hold and the covariance prior is taken as

Gn ∼ G/σ2
n where G satisfies Assumption 2. Let κ, χ > 0 be as in Assumption 2 and Condition

4.3, respectively. Define λ = max{χ−1(d + 2), χ−1d + 1}. If Tn ≍ n1/[2(p+ζ)+d]
√
log n and
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σ2
n ≍ T

2−d/κ
n /(log n)λ/κ+1 log logn, then there exists a universal constant C > 0 such that

να,Gn

(
∥fX − ϕP,Σ∥L2> Cn−p/[2(p+ζ)+d](log n)(λ+ζ)/2+d/4

∣∣∣∣Zn

)
= oP(1).

Theorem 2 provides contraction rates for the mildly ill-posed case. As the theorem illustrates,

rates are determined by the Gaussian mixture bias. From our discussion above, this implicitly

depends on the underlying smoothness of the density. Rates for the severely ill-posed case can

be obtained in a similar manner. In this case, the Gaussian mixture bias decays exponentially

in σ (see e.g. Donnet et al., 2018).

4.3 Main Results (Repeated Measurements)

In this section, we present the main results for the repeated measurements quasi-Bayes posterior

of Section 3.2. Recall that in this case, we observe a sample {Y1,i, Y2,i}ni=1 from the model in

(17). The main conditions that we impose on the observations is summarized in the following

condition.

Condition 4.4 (Data). (i) (Y1,i, Y2,i)
n
i=1 is a sequence of independent and identically distributed

random vectors. (ii) Finite second moments: E(∥Y1∥2) < ∞ and E(∥Y2∥2) < ∞.

To begin, we consider the repeated measurements quasi-Bayes posterior without explicit bound-

ary correction. From Section 3.2, this takes the form

να,G(φP,Σ | Zn) =
exp (− n

2 ∥φ̂Y2∇ log(φP,Σ)− φ̂Y1,Y2∥2B(T ))να,G(P,Σ)∫
exp (− n

2 ∥φ̂Y2∇ log(φP,Σ)− φ̂Y1,Y2∥2B(T ))dνα,G(P,Σ)
. (44)

Up to sampling uncertainty, the quasi-Bayes posterior in (44) is based on a transformation of

the objective function

Q(φP,Σ) = ∥φY2(∇ logφP,Σ −∇ logφX)∥2B(T ). (45)

From this formulation, some natural questions arise. What are the statistical guarantees of such

a posterior? Does L2 gradient behavior over a domain like B(T ) provide enough identifying

information to recover the true latent density? What is the difference between this posterior

and one where boundary behavior is explicitly accounted for? In the remainder of this section,

we investigate these questions in detail.

As in Section 4.2 (see (42) and the discussion following it), first we consider the case where the

true latent density fX admits a representation as a (possibly infinite) Gaussian mixture:

fX(x) = ϕΣ0 ⋆ F0(x) =

∫
Rd

ϕΣ0(x− z)dF0(z). (46)

Our main assumption on the Gaussian mixture specification is as follows.
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Condition 4.5 (Exact Gaussian Mixtures in Repeated Measurements). (i) fX = ϕΣ0⋆F0 where

Σ0 ∈ Rd×d is a positive definite matrix. (ii) The mixing distribution F0 satisfies F0(t ∈ Rd :

∥t∥> z) ≤ C exp(−C ′zχ), |φF0(t)| ≥ c exp
(
−c′∥t∥2

)
and ∥∇ logφF0(t)∥≤ C∥t∥ for all sufficiently

large z and ∥t∥, where χ > 0 and c, c′, C, C ′ > 0 are universal constants.

By integrating the differential inequality, the Condition ∥∇ logφF0(t)∥≤ C∥t∥ essentially states

that φF0(.) has at most Gaussian decay. As a first result, we show that quasi-Bayes posterior in

(44) contracts rapidly around the logarithmic gradient of the true characteristic function.

Theorem 3 (Preliminary Contraction of Gradients). Suppose the characteristic function of Y2

has at most Gaussian decay, that is inf∥t∥∞≤T |φY2(t)| ≥ exp
(
−RT 2

)
for some R > 0. Suppose

Conditions 4.4, 4.5 hold and the covariance prior is taken as G where G satisfies Assumption

2. Furthermore, suppose Σ0 is in the support of G. Let χ > 0 be as in Condition 4.5 and

λ = max{χ−1(d + 2) + d/2, d + 1}. If Tn = (c0 log n)
1/2 for any c0 satisfying c0R = γ < 1/2,

then there exists a universal constant C > 0 such that

να,G

(
∥∇ logφX −∇ logφP,Σ∥B(Tn)> Cn−1/2+γ(log n)λ/2

∣∣∣∣Zn

)
= oP(1).

By picking c0 sufficiently small, Theorem 3 shows that the quasi-Bayes posterior contracts

around the gradient of logφX at nearly parametric rates of the form n−1/2+ϵ for any ϵ > 0.

While the results of Theorem 3 are encouraging, the question remains as to whether this can be

improved to convergence in a stronger metric such as ∥fX − ϕP,Σ∥L2 . As φX and φP,Σ are the

characteristic functions of random variables, they necessarily satisfy the initial value condition

∇ logφX(0) = ∇ logφP,Σ(0) = 0. From this initial value condition, in dimension d = 1, the

fundemental theorem of calculus and Cauchy-Schwarz imply

sup
t∈B(T )

|logφX(t)− logφP,Σ(t)| = sup
t∈B(T )

∣∣∣∣∫ t

0
[∇ logφX(s)−∇ logφP,Σ(s)]ds

∣∣∣∣ (47)

≤
√
T∥∇ logφX −∇ logφP,Σ∥B(T ).

In particular, at least in dimension d = 1, contraction of gradients is informative towards

recovering the true latent distribution. This is formalized in the next result.

Theorem 4 (Rates with Exact Gaussian Mixtures, d = 1). Suppose d = 1 and the characteristic

function of Y2 has at most Gaussian decay, that is inf∥t∥∞≤T |φY2(t)| ≥ exp
(
−RT 2

)
for some

R > 0. Suppose Conditions 4.4, 4.5 hold and the covariance prior is taken as Gn ∼ G/σ2
n

where G satisfies Assumption 2. Furthermore, suppose Σ0 is in the support of G. Let κ, χ > 0

be as in Assumption 2 and Condition 4.5 respectively and define λ = max{1/2 + 3/χ, 2}. If

Tn = (c0 log n)
1/2 for any c0 satisfying c0R = γ < 1/2 and σ2

n ≍ (log n)−λ/κ, then there exists a
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universal constant C > 0 and V ∈ (0, 1/2) such that

να,Gn

(
∥fX − ϕP,Σ∥L2> Cn−V |Zn

)
= oP(1).

With Gaussian decay on φY2 , the model bias (which is determined by the decay rate of a

Gaussian mixture characteristic function) has similar order to the variance. In this case, as

in the discussion following Theorem 1, the precise value of the exponent V depends on second

order factors such as the constant R and the eigenvalues of the matrix Σ0 in the representation

(46).

The strategy employed to prove Theorem 4 is based on (47). Unfortunately, for dimension d > 1

and a function f : B(Tn) → C, there is no direct relationship between ∥f∥B(Tn) and ∥∇f∥B(Tn),

even with initial value condition f(0) = 0. However, for sufficiently nice domains like B(Tn), it

can be shown that24

∥f∥B(Tn)≤ Cn(∥∇f∥B(Tn)+∥f∥∂B(Tn)) , (48)

holds, where Cn is a constant that depends only on Tn and ∥.∥∂B(Tn) is the L2 norm on the

boundary ∂B(Tn) of B(Tn).
25 In the theory of Sobolev spaces, inequality (48) is commonly

referred to as a Poincaré inequality (Evans, 2022).

The discussion above suggests that a suitable modification of the quasi-Bayes posterior to ac-

count for the second term in (48) may resolve the problem. The starting point in our analysis

towards this goal is to observe that a function f : B(Tn) → C with initial value condition

f(0) = 0 satisfies

f(z) =

∫ 1

0
⟨∇f(tz), z⟩dt ∀ z ∈ ∂B(Tn). (49)

Specifically, (49) says that the value of f(.) at a boundary point z ∈ ∂B(Tn) can be determined

by a scaled average of ∇f on the line segment connecting the origin to z. In particular, by

accounting for values of ∇f on this line segment, we can induce a boundary corrected quasi-

Bayes posterior. This motivates the following distance metric. For a function g : B(Tn) → Cd,

define the metric

∥g∥2∂, B(T )=

∫
B(Tn)

∥g(t)∥2dt+
∫
∂B(Tn)

∫ 1

0
∥g(tz)∥2dtdHd−1(z). (50)

As in Section 3.2, dHd−1 denotes the d−1 dimensional Hausdorff measure on ∂B(Tn). For d > 1,

24We show this formally in Lemma 13. This makes use of the general Poincaré trace results in Maggi and
Villani (2005, 2008)

25The L2 norm on the boundary is taken with respect to the d − 1 dimensional Hausdorff measure Hd−1.
Specifically,

∥f∥2∂B(Tn)=

∫
∂B(Tn)

|f(t)|2 dHd−1(t).
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we define the (boundary corrected) repeated measurements quasi-Bayes posterior by

ν∂,α,G(φP,Σ | Zn) =
exp (− n

2 ∥φ̂Y2∇ log(φP,Σ)− φ̂Y1,Y2∥2∂, B(T ))να,G(P,Σ)∫
exp (− n

2 ∥φ̂Y2∇ log(φP,Σ)− φ̂Y1,Y2∥2∂, B(T ))dνα,G(P,Σ)
. (51)

The following result verifies that quasi-Bayes posterior in (51) contracts towards the true latent

distribution, for all dimensions.

Theorem 5 (Rates with Exact Gaussian Mixtures, d > 1). Suppose the characteristic function

of Y2 has at most Gaussian decay, that is inf∥t∥∞≤T |φY2(t)| ≥ exp
(
−RT 2

)
for some R > 0.

Suppose Conditions 4.4, 4.5 hold and the covariance prior is taken as Gn ∼ G/σ2
n where G

satisfies Assumption 2. Furthermore, suppose Σ0 is in the support of G. Let κ, χ > 0 be as in

Assumption 2 and Condition 4.5 respectively and define λ = max{χ−1(d+ 2) + d/2, d+ 1}. If

Tn = (c0 log n)
1/2 for any c0 satisfying c0R = γ < 1/2 and σ2

n ≍ (log n)−λ/κ, then there exists a

universal constant C > 0 and V ∈ (0, 1/2) such that

ν∂,α,Gn

(
∥fX − ϕP,Σ∥L2> Cn−V |Zn

)
= oP(1).

Next, analogous to our discussion in Section 4.2, we consider the case where the true latent

density fX is not an exact Gaussian mixture and thus, the prior model exhibits non-negligible

bias. In this model, the Gaussian mixture bias is closely related to the quantity

B(σ, T ) = min
P

∥φY2(∇ logφP,σ2I −∇ logφX)∥∂, B(T ) (52)

where σ2I denotes the identity matrix with each diagonal entry σ2 and the minimum is over all

mixing distributions P . For a conservative upper bound on the rate at which B(σ) tends to 0

as σ → 0, observe that by picking P = fX we obtain

∥φY2(∇ logφP,σ2I −∇ logφX)∥∂, B(T ) = ∥φY2(∇ log (φXφσ2I)−∇ logφX)∥∂, B(T )

= ∥φY2∇ logφσ2I∥∂, B(T ).

Since the logarithmic gradient of the Gaussian characteristic function is ∇ logφσ2I(t) = −σ2t,

the preceding equality reduces to

∥φY2(∇ logφP,σ2I −∇ logφX)∥∂, B(T )≤ σ2∥φY2(t)t∥∂, B(T )⪅ σ2(1 + T d/2−1). (53)

The preceding bound is valid provided that26
∫
Rd∥t∥2|φY2(t)|

2 dt < ∞ or equivalently that

fY2 = fX ⋆ fϵ2 ∈ H1. For fX ⋆ fϵ2 with smoothness order greater than 1, this argument does

not provide better rates. Analogous to the discussion in Section 3.1, the choice P = fX in (52)

26By change of variables on (∂B(T ), dHd−1) and the coarea formula (Evans, 2022, C.3)∫ 1

0

∫
∂B(T )

t2∥z∥2|φY2(tz)|
2 dHd−1(z)dt ⪅ T d−1

∫ 1

0

∫
∂B(t×T )

|φY2(y)|
2

∥y∥d−3
dHd−1(y)dt = T d−2

∫
B(T )

|φY2(y)|
2

∥y∥d−3
dy ⪅ T d−2.
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may not be optimal. One way to see this directly is to express φY2 = φXφϵ2 and write

φY2(∇ logφP,σ2I −∇ logφX) = ∇ logφP,σ2I [φϵ2(φX − φP,σ2I)] + φϵ2(∇φP,σ2I −∇φX). (54)

If we consider mixing distributions P with characteristic function having at most Gaussian decay,

then supt∈B(T )∥∇ logφP,σ2I(t)∥⪅ T . In particular, this implies that the Gaussian mixture bias

is bounded above by

B(σ, T ) ⪅ min
P

[
T∥φϵ2(φX − φP,σ2I)∥∂, B(T )+∥φϵ2(∇φX −∇φP,σ2I)∥∂, B(T )

]
. (55)

The quantity on the right closely resembles the Gaussian mixture bias that arises from a de-

convolution model as in (43). While this illustrates some of factors that determine the bias, the

preceding argument is however quite loose as it treats the characteristic function and its gradi-

ent separately. We generally expect the bias in (52) to have smaller order than the right side of

(55). Indeed, the simple choice P = fX on the right side of (55) leads to a worse bound than

(53) and requires more stringent27 smoothness conditions imposed on (fX , fϵ). Motivated by

this discussion, we consider the following characterization of the Gaussian mixture bias.

Condition 4.6 (Gaussian Mixture Bias). (i) fX ∈ Hp for some p > 0 and supt∈Rd∥∇ logφX(t)∥≤
D for some D < ∞. (ii) There exists universal constants C,M < ∞ and χ > 0 such that for

all σ > 0 sufficiently small and T > 0 sufficiently large, there exists a mixing distribution

Fσ = FX,ϵ,σ supported on the cube Iσ = [−C(log σ−1)1/χ, C(log σ−1)1/χ]d that satisfies (a)

∥φY2(∇ logφFσ ,σ2I −∇ logφX)∥2∂, B(T )≤ M(1+T d−2)σ2(s+ζ) for some s > max{3/2, d/2+1/2},
(b) inf∥t∥≤T |φFσ(t)| ≥ T−γ1σ−γ2 for some γ1, γ2 < ∞ and (c) ∥∇ logφFσ∥≤ M .

The following result derives the quasi-Bayes posterior contraction rate when the Gaussian mix-

ture bias is as in Condition 4.6. This condition is stated to cover the mildly ill-posed setting.

The requirement in the severely ill-posed case is similar except that the Gaussian mixture bias

is expected to be exponential in σ.

Theorem 6 (Rates with Gaussian Mixture Bias). Suppose Conditions 4.4, 4.6 hold and the

covariance prior is taken as Gn ∼ G/σ2
n where G satisfies Assumption 2. Let κ, χ > 0

be as in Assumption 2 and 4.2, respectively. Define λ = max{χ−1(d + 2), χ−1d + 1} and

β = max{0, d − 2}. Suppose there exists ζ > 0 such that the characteristic function of

Y2 satisfies inf∥t∥≤T |φY2(t)| ≥ RT−ζ for some R > 0. If Tn ≍ n1/[2(s+ζ)+(d−β)]
√
log n and

σ2
n ≍ T

2−d/κ
n /(log n)λ/κ+1 log logn, then there exists a universal constant C > 0 such that

να,Gn

(
∥fX − ϕP,Σ∥L2> Cn−min{p,s−β/2−1.5}/[2(s+ζ)+(d−β)](log n)λ/2

∣∣∣∣Zn

)
= oP(1).

As in Theorem 2, rates are determined by the Gaussian mixture bias. An interesting avenue

27To be specific, it requires fϵ2 ∈ H2, fX ∈ H1,
∫
Rd∥t∥4∥∇φX(t)∥2|φϵ(t)|2 dt < ∞ instead of the much weaker

requirement that fX ⋆ fϵ ∈ H1 in (53).
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for future research would be explicitly characterize the Gaussian mixture bias based on lower

level smoothness assumptions on the latent density and unobserved errors. As the analysis in

Rousseau (2010) and Shen et al. (2013) shows, the precise construction of the optimal mixing

distribution can be quite involved. We leave this investigation for future work.

4.4 Main Results (Multi-Factor Models)

In this section, we present the main results for the multi-factor quasi-Bayes posterior of Section

3.3. Recall that in this case, we observe a sample {Yi}ni=1 from the model in (28). The main

conditions that we impose on the observations are summarized in the following condition.

Condition 4.7 (Data). (i) (Yi)
n
i=1 is a sequence of independent and identically distributed

random vectors. (ii) Finite second moment: E(∥Y∥2) < ∞. (iii) The factors X1, . . . , XK are

mutually independent and demeaned, i.e E[Xk] = 0 for k = 1, . . . ,K.

The multi-factor quasi-Bayes posterior for latent factor Xk is given by

να,G(φP,σ2 | Zn) =
exp (− n

2 ∥φ̂
2
Y(Q∗

kV̂Y − (logφP,σ2)′′(t′Ak))∥2B(T ))να,G(P, σ
2)∫

exp (− n
2 ∥φ̂

2
Y(Q∗

kV̂Y − (logφP,σ2)′′(t′Ak))∥2B(T ))dνα,G(P, σ
2)
. (56)

Up to sampling uncertainty, the quasi-Bayes posterior in (56) is based on a transformation of

the objective function

Q(φP,σ2) = ∥φ2
Y(t)[( logφP,σ2)′′(t′Ak)− ( logφXk

)′′(t′Ak)]∥2B(T ). (57)

As a first observation, we note that near minimizers of (57) are not uniquely identified without

further normalization restrictions. Intuitively, such minimizers are (approximately) solutions to

the second order differential equation

( logφP,σ2)′′(t) = ( logφXk
)′′(t). (58)

For a unique solution of (58) to exist, we require two boundary conditions. As all characteristic

functions equal 1 at zero, all solutions must necessarily satisfy the first boundary condition

(logφP,σ2)(0) = 0. For the second condition, observe that by Condition 4.7(iii), the true

factors are demeaned and hence their characteristic functions satisfy (logφXk
)′(0) = iE[Xk] = 0.

Unfortunately, solutions (or near solutions) to (58) do not necessarily satisfy this boundary

condition. One way to enforce this constraint is to force the normalization (logφP,σ2)′(0) = 0

directly on the prior. In essence, this would entail replacing the prior with a restricted prior that

is supported on mean zero Gaussian mixtures. While this is theoretically possible, in practice

a restricted prior entails significant computational challenges. A second option, that we use in

the remainder of this section, is to use the original quasi-Bayes posterior in (56) but to demean

the posterior samples. To that end, consider the demeaned posterior measure

να,G(.|Zn) ∼ Z − E[Z] where Z ∼ να,G(.|Zn). (59)
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Each realization of (59) is a demeaned Gaussian mixture. If (P,Σ) is the mixing distribution

and covariance matrix associated to the original Gaussian mixture sample from (56), we denote

the density and characteristic function of the demeaned mixture by ϕP,Σ and φP,Σ, respec-

tively.

First, we consider the case where the latent density fXk
admits a representation as a (possibly

infinite) Gaussian mixture:

fXk
(x) = ϕσ2

0
⋆ F0(x) =

∫
R
ϕσ2

0
(x− z)dF0(z). (60)

Our main assumption on the Gaussian mixture specification is as follows.

Condition 4.8 (Exact Gaussian Mixtures in Multi-Factor Models). (i) fXk
= ϕσ2

0
⋆F0 for some

constant σ2
0 > 0. (ii) The mixing distributions F0,k satisfy F0(t ∈ R : |t| > z) ≤ C exp(−C ′zχ),

|φF0(t)| ≥ c exp
(
−c′t2

)
and

∣∣∂2
t logφF0(t)

∣∣ ≤ C for all sufficiently large z and |t|, where χ > 0

and c, c′, C, C ′ > 0 are universal constants.

By integrating the differential inequality, the Condition
∣∣∂2

t logφF0(t)
∣∣ ≤ C essentially states

that φF0(.) has at most Gaussian decay. As a first result, we show that quasi-Bayes posterior in

(59) contracts rapidly around the logarithmic gradient of the true characteristic function.

Theorem 7 (Rates with Exact Gaussian Mixtures). Suppose the characteristic function of Y

has at most Gaussian decay, that is inf∥t∥∞≤T |φY(t)| ≥ exp
(
−RT 2

)
for some R > 0. Suppose

Conditions 4.7, 4.8 hold and the covariance prior is taken as Gn ∼ G/σ2
n where G satisfies

Assumption 2. Furthermore, suppose σ2
0 is in the support of G. Let κ, χ > 0 be as in Assumption

2 and Condition 4.8 respectively and define λ = max{χ−1(d+2)+d/2, d+1}. If Tn = (c0 log n)
1/2

for any c0 satisfying 2c0R = γ < 1/2 and σ2
n ≍ (log n)−λ/κ, then there exists a universal constant

C > 0 and V ∈ (0, 1/2) such that

να,Gn

(
∥fXk

− ϕP,σ2∥L2> Cn−V |Zn

)
= oP(1). (61)

Similar to the preceding sections, with Gaussian decay on φY, the model bias (which is de-

termined by the decay rate of a Gaussian mixture characteristic function) has similar order to

the variance. In this case, as in the discussion following Theorem 1, the precise value of the

exponent V depends on second order factors such as the constant R and σ2
0 in representation

(60).

Next, analogous to our discussion in Section 4.2 and 4.3, we consider the case where the true

latent density fXk
is not an exact Gaussian mixture and thus, the prior model exhibits non-

negligible bias. In this model, the Gaussian mixture bias is closely related to the quantity

B(σ, T ) = min
P

∥φ2
Y(t)[( logφP,σ2)′′(t′Ak)− ( logφXk

)′′(t′Ak)]∥B(T ). (62)
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where the minimum is over all mixing distributions P .28

By similar reasoning to the preceding sections, we consider the following characterization of the

Gaussian mixture bias.

Condition 4.9 (Gaussian Mixture Bias). (i) fXk
∈ Hp for some p > 0 and supt∈R |(logφXk

)′′(t)| ≤
D for some D < ∞. (ii) There exists universal constants C,M < ∞ and χ > 0 such that

for all σ > 0 sufficiently small and T > 0 sufficiently large, there exists a mixing distribu-

tion Fσ = FXk,Y,σ supported on the cube Iσ = [−C(log σ−1)1/χ, C(log σ−1)1/χ] that satis-

fies (a) ∥φ2
Y(t)[( logφFσ ,σ2)′′(t′Ak) − ( logφXk

)′′(t′Ak)]∥B(T )≤ Mσ2ζ+s for some s > max{(5 −
d)/2, 0}, (b) inf∥t∥≤T |φFσ(t)| ≥ T−γ1σ−γ2 for some γ1, γ2 < ∞, (c) |(logφFσ)

′′(t)| ≤ M and

supr=1,2 |∂r
tφFσ(t)| ≤ M .

The following result derives the quasi-Bayes posterior contraction rate when the Gaussian mix-

ture bias is as in Condition 4.9.

Theorem 8 (Rates with Gaussian Mixture Bias). Suppose Conditions 4.7, 4.9 hold and the

covariance prior is taken as Gn ∼ G/σ2
n where G satisfies Assumption 2. Let κ, χ > 0 be as in

Assumption 2 and Condition 4.9, respectively. Define λ = max{χ−1(d+2), χ−1d+1}. Suppose

there exists ζ > 0 such that the characteristic function of Y satisfies inf∥t∥∞≤T |φY(t)| ≥ RT−ζ

for some R > 0. If Tn ≍ n1/[2(s+2ζ)+d]
√
log n and σ2

n ≍ T
2−d/κ
n /(log n)λ/κ+1 log logn, then there

exists a universal constant C > 0 such that

να,Gn

(
∥fXk

− ϕP,σ2∥L2> Cn−min{p,s+(d−5)/2}/[2(s+2ζ)+d](log n)λ/2+ζ+5/4

∣∣∣∣Zn

)
= oP(1).

Remark 13 (Rates for Joint Posteriors). Let P = (P1, . . . , PK) denote a vector of mixing

distributions and σ2 = (σ2
1, . . . , σ

2
K) a vector of variance parameters. Let VP,σ2(t) denote the

vector with elements {(logφPi,σ2
i
)′′(t′Ai)}Ki=1. With some abuse of notation, we denote the

vector of individual characteristic functions by φP,σ2 = (φP1,σ2
1
, . . . , φPK ,σ2

K
). The joint multi-

factor quasi-Bayes posterior is given by

να,G(φP,σ2 | Zn) =
exp (− n

2 ∥φ̂
2
Y(V̂Y −QVP,σ2)∥2B(T ))να,G(P,σ2)∫

exp (− n
2 ∥φ̂

2
Y(V̂Y −QVP,σ2)∥2B(T ))dνα,G(P,σ2)

(63)

να,G(. | Zn) ∼ Z − E[Z] , Z ∼ να,G(.|Zn).

Here G is the common univariate prior on each variance parameter {σ2
i }Ki=1. The prior να,G is

the one obtained by placing mutually independent (DPα ⊗G) priors on each of (Pi, σ
2
i )

K
i=1. An

analogous argument to the preceding cases provides contraction rates for the joint quasi-Bayes

posterior. The main idea being that, as the priors are independent among the factors and

28For a conservative upper bound on the rate at which B(σ, T ) tends to 0 as σ → 0, observe that by picking
P = fX , we obtain B(σ, T ) ≤ σ2∥φ2

Y(t)∥B(T )⪅ σ2. The final bound is valid if ∥φ2
Y(t)∥L2< ∞ which ,by the Haus-

dorff–Young inequality, is true whenever
∫
RL |fY(y)|4/3 dy < ∞. Analogous to our discussions in the preceding

sections, one can typically do better by allowing P = PX,ϵ,σ to depend implicitly on all the features (fY, fXk , σ).
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the factors are mutually independent, analysis of the quasi-Bayes posterior in (63) reduces to

studying univariate quasi-posteriors. In principle, one could obtain rates where certain factors

are modelled as exact (infinite) Gaussian mixtures and others with non-neglegible Gaussian

mixture bias.

5 Simulations

In this section, we provide simulation evidence on the finite sample performance of our quasi-

Bayes posteriors. In all cases, we use m = 1000 Monte Carlo replications to estimate the

population expectation of interest.

5.1 Deconvolution

In this section, we examine the finite sample properties of the deconvolution quasi-Bayes pos-

terior, introduced in Section 3.1. The setup is as follows. Two samples (Y1, Y2) are generated

according to the specification

Y1 = X + ϵ1 ϵ1 ∼ N(0, 1)

Y2 = X + ϵ2 ϵ2 ∼ N(0, 1)

where ϵ1, ϵ2 are independent.29 To nest this into the setup of Section 3.1, we write(
Y1 + Y2

2

)
= X +

(
ϵ1 + ϵ2

2

)
, (64)(

Y1 − Y2
2

)
=

(
ϵ1 − ϵ2

2

)
. (65)

In particular, we can use the observations in (65) as an auxiliary sample for the error in (64).

This provides us with a sample to construct the quasi-Bayes posterior in Section 3.1.

The implementation details are as follows. For the base measure of the Dirichlet process prior

DPα we take α = N (µ̂, σ̂2) where (µ̂, σ̂2) are the sample mean and variance of the observations

in (64). The standard deviation prior is taken to be Inv-Gamma(2, 2). In all cases, we use

B(T ) = [−2, 2] as the set of identifying restrictions.

Table 1 compares the mean integrated squared error (MISE) of the deconvolution quasi-Bayes

posterior mean against common alternatives in the literature. The alternative estimators use

the bandwidth selection rule proposed in (Delaigle and Gijbels, 2004) to select the tuning

parameter T . By contrast, we use T = 2, equivalently B(T ) = [−2, 2], in all designs.30 As

Table 1 illustrates, the MISE efficiency of quasi-Bayes over traditional estimators is substantial.

One reason for this, among other factors, is that even a very modestly informative prior can be

29In all our simulations, the results were similar with standard Laplace errors.
30We found that it was possible to improve performance further by selecting T based on the specific design

or Monte Carlo realization. However, as the validity of traditional deconvolution selection procedures such as
(Delaigle and Gijbels, 2004) is unclear in this context, we opted to implement everything using the same fixed
choice.
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beneficial towards variance reduction by down weighting implausible regions of the parameter

space. In a nonparametric ill-posed inverse setup such as ours, this variance reduction can be

substantial.

√
n × MISE

HM LV BR Deconvolution quasi-Bayes (D)

N (0, 1) 0.285 0.250 0.155 0.164 0.037
Laplace(0, 1) 1.107 1.171 0.822 0.791 0.202
Gamma(2, 1) 0.981 1.107 0.759 0.822 0.290
Gamma(5, 1) 0.506 0.411 0.348 0.348 0.032
Log-Normal(0, 1) 7.595 7.271 11.067 9.170 1.446
0.5N (−2, 1) + 0.5N (2, 1) 1.962 1.993 1.519 1.297 0.042

Table 1: n = 1000. HM, LV, BR refer to the estimators proposed in Horowitz and Markatou
(1996), Li and Vuong (1998) and Bonhomme and Robin (2010), respectively. Deconvolution
refers to the traditional deconvolution estimator (Delaigle and Gijbels, 2004). The MISE for
these estimators are taken from Table 1 and 2 in Bonhomme and Robin (2010). quasi-Bayes
(D) refers to the deconvolution quasi-Bayes (Section 3.1) posterior mean.

Figure 3: Deconvolution, n = 1000. Model : X ∼ 0.5N (−2, 1) + 0.5N (2, 1).

As Table 1 illustrates, the quasi-Bayes estimator uniformly outperforms alternatives. As a final

thought, we note that the alternative estimators HM, LV and BR in Table 1 do not rely

on a symmetric error distribution in their implementation, whereas traditional deconvolution

and quasi-Bayes deconvolution use this fact to write the repeated measurements problem as a

deconvolution problem through (64) and (65). In some situations, the assumption of symmetric

errors may be too strong. In the interest of a more direct comparison, we also provide simulation

results on the repeated measurements quasi-Bayes posterior, introduced in Section 3.2. This is

provided below in Table 2.
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5.2 Repeated Measurements

In this section, we examine the finite sample properties of the repeated measurements quasi-

Bayes posterior, introduced in Section 3.2. To start with, we repeat the simulation study done

in Table 1. There, the deconvolution quasi-Bayes posterior was constructed by transforming the

repeated measurements (Y1, Y2) into a deconvolution problem through (64) and (65). Instead,

in this section, we use the observations (Y1, Y2) directly to construct the repeated measurements

quasi-Bayes posterior. The implementation details are as follows. For the base measure of the

Dirichlet process prior DPα we take α = N (µ̂, σ̂2) where (µ̂, σ̂2) are the sample mean and vari-

ance of the observations in (64). The standard deviation prior is taken to be Inv-Gamma(2, 2).

In all cases, we use B(T ) = [−1, 1] as the set of identifying restrictions.

√
n × MISE

HM LV BR quasi-Bayes (R)

N (0, 1) 0.285 0.250 0.155 0.033
Laplace(0, 1) 1.107 1.171 0.822 0.151
Gamma(2, 1) 0.981 1.107 0.759 0.307
Gamma(5, 1) 0.506 0.411 0.348 0.041
Log-Normal(0, 1) 7.595 7.271 11.067 1.851
0.5N (−2, 1) + 0.5N (2, 1) 1.962 1.993 1.519 0.980

Table 2: n = 1000. HM, LV, BR refer to the estimators proposed in Horowitz and Markatou
(1996), Li and Vuong (1998) and Bonhomme and Robin (2010), respectively. The MISE for
these estimators are taken from Table 2 in Bonhomme and Robin (2010). quasi-Bayes (R)
refers to the repeated measurements quasi-Bayes (Section 3.2) posterior mean.

As Table 2 illustrates, the repeated measurements quasi-Bayes estimator uniformly outperforms

alternatives. We found that it was possible to improve performance further by selecting T based

on the specific design or Monte Carlo realization. We discuss the possibility of empirical (or

hierarchical) Bayes selection of T in the conclusion (see Section 8).

Next, we consider a multivariate setup that closely resembles our empirical application in Section

6. The setup is as follows. We have two baseline non-negative inputs: child cognition C1 and a

covariate X at time t = 1. Cognition evolves over time as

logC2 = α1 + δ1 log(C1) + δ2 log(X) + u1 , (66)

logC3 = α2 + δ3 log(C2) + δ4 log(X) + u2. (67)

where (u1, u2) are unobserved errors and θ = (α1, α2, δ1, δ2, δ3, δ4) is an unknown parameter of

interest. We do not observe (X,C1, C2, C3) directly. Instead, for each variable, we observe three

noisy measurements specified as follows.

ml,j = λi,j logCi + ϵi,j l, j = 1, 2, 3 , (68)

mj = γj logX + εj j = 1, 2, 3 , (69)
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where {ϵl,j} and {εj} are mutually independent measurement errors. Here, the {λl,j} and {γj}
are unknown factor loadings with the normalization that λi,1 = 1 and γ1 = 1. Intuitively, the

remaining factor loadings determine the scale of measurement relative to the base measurement

that corresponds to j = 1. Observe that, with three measurements, the remaining factor

loadings can be estimated using the data as follows:

λ̂l,j =
Ĉov(ml,j ,ml,j′)

Ĉov(ml,1,ml,j′)
, γ̂j =

Ĉov(mj ,mj′)

Ĉov(m1,mj′)
. (70)

for any j′ satisfying j′ ̸= j and j′ ̸= 1, where Ĉov(.) is the empirical covariance using the

data. As such, up to the stochastic error from estimating the covariances, we observe noisy

measurements Ẑl,j = λ̂−1
l,j ml,j and Z̃j = γ̂−1

j mj that satisfy the identity

Ẑl,j = log(Cl) + ϵl,j , Z̃j = log(X) + εj , (71)

with unobserved measurement errors ϵl,j = λ−1
l,j ϵi,j and εj = γ−1

j εj .

To estimate the parameter θ = (α1, α2, δ1, δ2, δ3, δ4) in (66) and (67), we proceed as fol-

lows.

1. Use the observations in (71) to compute the repeated measurements quasi-Bayes posterior,

introduced in Section 3.2).

2. A sample of size m from this quasi-Bayes posterior consists of a sequence of Gaussian

mixtures {ϕPk,Σk
}mk=1. Use each Gaussian mixture ϕPk,Σk

to generate a synthetic data set

Dk.

3. Estimate the parameter θ using the synthetic data set Dk and the regression specifications

in (66) and (67). This provides us with a (conditional on data set Dk) estimate θ̂k.

4. As a formal estimator of θ, we use the posterior mean θ̂ = m−1
∑m

k=1 θ̂k.

As a Monte Carlo exercise, we consider the following initial conditions:

(logC1, logX) ∼ 0.65N (µ1,Σ0) + 0.35N (µ2,Σ0) , (72)

µ1 = (−4, 2) , µ2 = (6, 3) , Σ0 =

(
1 0.5

0.5 1

)
.

The evolution over time is specified by

logC2 = 1 + 0.5 log(C1) + 0.5 log(X) + u1 , u1 ∼ N (0, 1) (73)

logC3 = 1 + 0.5 log(C2) + 0.5 log(X) + u2 , u2 ∼ N (0, 1). (74)

This corresponds to a true parameter θ = (1, 1, 0.5, 0.5, 0.5, 0.5, 0.5).

For (68) and (69), we take the factor loadings to be λj′ = γj′ = 0.5 for j′ ̸= 1. All the

measurement errors in (68) and (69) are taken to be independent N (0, 1) noise. Observe that,
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with such a choice, the measurement errors of the observed proxies in (71) are N (0, 4) for j′ ̸= 1.

Table 3 provides the mean and standard deviation of the quasi-Bayes posterior mean for each

of the coefficients appearing in (73) and (74).

t = 2 Coefficients t = 3 Coefficients

α1 δ1 δ2 α2 δ3 δ4

True 1 0.5 0.5 1 0.5 0.5
Mean 1.022 0.502 0.491 1.002 0.499 0.497
Standard Deviation 0.140 0.011 0.059 0.136 0.021 0.072

Table 3: Mean and Standard Deviation of quasi-Bayes posterior mean.

Figure 4: Sample realization of quasi-posterior samples for the latent distribution of log(C1),
relative to true latent histogram.

Figure 5: Sample realization of quasi-posterior samples for the latent distribution of log(C3),
relative to true latent histogram.
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Figure 6: Sample realization of the quasi-posterior distribution of δ1, δ3. Black dashed line
indicates posterior mean.

6 Empirical Illustration I (Human Capital Development)

In this section, we apply our methodology to study human capital development for young chil-

dren in India. Our analysis closely follows Attanasio et al. (2020b). Using data collected from

the Young Lives Project, Attanasio et al. (2020b) estimate production functions for cognition

and health for young children in India. Their analysis makes use of the latent factor approach

initially introduced in Cunha et al. (2010).31 As measurements on production function inputs

and child outcomes are not directly observed, a first step in their analysis specifies and es-

timates32 a parametric form for the joint distribution of unobserved and observed variables.

We apply our methodology to nonparametrically estimate this joint distribution. The joint

distribution is then used to estimate production functions for cognition and health.

6.1 Data and Model

We begin with a brief summary of the data and empirical framework used in Attanasio et al.

(2020b). The sample consists of 2, 011 children from seven districts33 and 98 separate communi-

ties. Their families were surveyed at child ages 1, 5, 8 and 12. The data consists of information

obtained from household, child and community questionnaires. The households in the sample

are relatively poor, with over half of all respondants living on less than 2$ per day. We re-

strict the sample to children observed in all rounds, which leads to a sample size of n = 1910

children.

We observe multiple measurements on child cognition, child health, parental investment, parental

cognition, parental health and parental resources.34 If mj,k,t denotes the jth measurement of

31They also make use of additional identification results in Agostinelli and Wiswall (2016)
32To estimate the model, they assume the joint distribution follows a two component Gaussian mixture and

impose normality restrictions on the measurement errors. These restrictions induce a Gaussian mixture likeli-
hood on the observed measurements. Estimation then follows from applying the Expected Maximization (EM)
algorithm.

33These are Hyderabad and a “poor” and “nonpoor” district in Coastal Andhra, Rayalaseema, and Telangana.
34The precise list of measurements can be found in Table 4 of Attanasio et al. (2020b).
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latent factor θk,t at time t, we assume a log linear relationship of the form

mj,k,t = aj,k,t + λj,k,t log(θk,t) + ϵj,k,t. (75)

Here, the aj,k,t and λj,k,t are fixed constants and factor loadings, respectively. The ϵj,k,t are

unobserved mean zero errors that are independent of each other and the latent factors. At

each age, we also observe (without measurement error) prices for food, clothing, notebooks and

worm medication (Mebendazol).35

As the units of measurement typically differ across the measurements, the factor loadings de-

termine how values in one measurement relate to another. To achieve identification, each latent

factor is chosen to have a reference measurement that has unit factor loading. For factors θk

that do not vary over time (such as parental cognition and health), we work under the normal-

ization that E[log θk] = 0. For dynamic factors that vary over time, we normalize the mean only

at the initial age of observation. The mean in future periods in identified relative to the initial

period by assuming that the growth in measurements is due only to the growth of the latent

factor.36 Under these restrictions, the constants aj,k,t and λj,k,t can be recovered through means

and covariances of the observed measurements.37 By using empirical analogs of these means

and covariances, we obtain consistent estimates âj,k,t, λ̂j,k,t. In particular, up to a negligible

stochastic error of order n−1/2 that arises from estimating the means and covariances, we can

view

Zj,k,t = λ̂−1
j,k,t(mj,k,t − âj,k,t) (76)

as repeated measurements of the latent factors log(θk,t).

The parental investment specification is given by

log θI,t = γ0 + γc,t log θc,t + γh,t log θh,t + γcp log θcp (77)

+ γhp log θhp + γpt log(pt) + γI,t log(θY,t) + ϵt.

Here, ϵt represents an unobserved mean zero shock. θc,t and θh,t represent child cognition and

health at time t, respectively, while θcp and θhp denote parental cognitive and health attributes,

both assumed to be invariant with time. The variable pt stands for the prices of goods as

described above, and θY,t represents parental resources at time t.

If θI,t represents parental investment at time t and the variables are as described above, we

model the production functions as

log θk,t+1 = βt +
1

ρt
log (δc,tθ

ρt
c,t + δh,tθ

ρt
h,t + δcp,tθ

ρt
cp + δhp,tθ

ρt
hp + δI,tθ

ρt
I,t) + νk,t (78)

35For variables without measurement error, the associated factor loading is set to 1 and the measurement error
to zero, so that the observed variable serves as its own repeated measurement.

36For further discussion on these normalization restrictions, see Attanasio et al. (2020b).
37In cases with more measurements than needed for identification, multiple combinations of covariances can

identify the same factor loading. In this case, as in Agostinelli and Wiswall (2016), we average across them.
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where k ∈ {c, h}, {δl,t} ∈ [0, 1], ρt ∈ (−∞, 1] and
∑

l δl,t = 1. Here, νk,t is an unobserved

mean zero shock. The parameter ρt determines the elasticity of substitution between inputs to

the production functions. At ρt = 0, the production function reduces to Cobb-Douglas (unit

elasticity) while ρt = 1 corresponds to perfectly substitutable inputs.

We aim to estimate the child production function for each time period t. We proceed as follows.

First, we use the repeated measurements in (76) to estimate the quasi-Bayes posterior in (27).

Given a sample distribution from this posterior, we simulate a synthetic data set and use it to

estimate the parameters appearing on the right side of (78). This leads to an induced posterior

distribution on the parameters. We then use the posterior mean to obtain point estimates of

the parameters.

A concern towards identification of the production function parameters is that parents may

choose their investment in part based on the evolution of human capital. That is, parental

investment θI,t may be endogenous. Following (Attanasio et al., 2020b), we correct for this

through a control function approach.38 In our context, given a sample distribution from the

posterior and a corresponding synthetic data set, this is achieved by using the residuals from

(77) as an extra regressor when estimating the production functions in (78).

6.2 Implementation

We use the measurements in (76) to construct the gradient-based quasi-Bayes posterior in-

troduced in Section 3.2. In this case, the joint distribution that we estimate is d = 27 di-

mensional. The posterior is defined using T = 0.5 so that the grid of restrictions is given by

B(T ) = {t ∈ Rd : ∥t∥∞≤ 0.5}. As a base measure for the Dirichlet process prior DPα, we take

α = N (0, 5Id). We place a prior on covariance matrices through a correlation and scale matrix

individually. That is, Σ = DCD where D is a diagonal scale matrix and C is a correlation

matrix. We use an LKJ prior (Lewandowski et al., 2009) with shape parameter η = 2 for C

and independent Inv-Gamma(2, 2) priors for each element of the diagonal of D.

6.3 Results

We start by examining some aspects of the marginal structure of the posterior distribution.

Specifically, we look at the distributional evolution of child cognition and parental investment

over the development period.

38This approach assumes that E[νk,t|Xt, Zt] = κk,tϵt for some constants κk,t, where Xt is the variables in
the production functions and Zt are the instruments (prices and household resources) that only appear in the
investment equation.
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Figure 7: Posterior samples for latent log cognition across the development period.

Figure 8: Posterior samples for latent log investment across the development period.

As expected, mean cognitive skills and investment increases over the development period. Cog-

nitive dispersion does seem to vary significantly over the development period. This is in contrast

to similar studies using U.S data (e.g. Agostinelli and Wiswall, 2016) where dispersion increases

significantly at later ages. In U.S based studies with a representative sample, dispersion is linked

to income inequality and available opportunities for skill growth. By contrast, households in

this sample are relatively poor and the children have limited access to such opportunities. It is

interesting that investment displays significant right skewness at age 12. This was also the case

with the observed measurements in the data. Some parents may choose to invest more heavily

in their children during adolescence as opposed to early childhood. This can be influenced by

various factors, including cultural beliefs and the perceived needs of the child at different stages

of development.
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Age 5 Age 8 Age 12

Cognition (Lagged) - 0.243 0.435
[0.065, 0.426] [0.184, 0.691]

Investment 0.572 0.406 0.421
[0.429, 0.710] [0.230, 0.578] [0.125, 0.713]

Parental Cognition 0.304 0.201 0.062
[0.184, 0.428] [0.070, 0.331] [0, 0.193]

Health (Lagged) 0.102 0.122 0.072
[0, 0.228] [0, 0.291] [0, 0.225]

Parental Health 0.022 0.029 0.011
[0, 0.099] [0, 0.109] [0, 0.064]

Elasticity ρt 0.168 0.015 -0.284
[−0.225, 0.624] [−0.359, 0.388] [−0.834, 0.150]

Table 4: Production function for cognitive skills, with 90% Bayesian Credible Band.

Table 4 provides posterior mean estimates for the child production function with the corre-

sponding 90% pointwise Bayesian credible bands. We note that the credible bands in this Table

and elsewhere are provided only to convey a general sense of Bayesian uncertainty. In particular,

they are not meant to be interpreted in the usual sense of frequentist standard errors.39

In line with previous results in the literature (e.g. Attanasio et al. 2020b), our results suggest

that (i) cognition displays persistence across the development period, (ii) parental investment

affects cognitive development at all ages, with a higher return for younger children and (ii) a

link between parental cognition and child cognition, although the effect fades out over time.

Overall, our results share many similarities. The main difference in our empirical findings

relative to the literature is that investment continues to maintain a significant impact during

adolescence, albeit lower than in early childhood. As our sample size in this setting is relatively

modest, and we do not consider estimation by relaxing only a single restriction, it is difficult to

ascertain whether our differences are due to nonparametrically modeling the latent distribution

and/or leaving free the distribution of the measurement errors. We hope to examine this more

closely in future work. To that end, we view our general methodology as complementary to

the existing literature in that it may serve as a robustness check to possible violations of these

restrictions.

39More formally, our paper only investigates estimation. Inferential results which establish the frequentist
validity of certain credible intervals would at the very least require the quasi-Bayes objective function to be
optimally-weighted. As the quasi-Bayes objective functions is an L2 norm over characteristic function based
moment restrictions, optimal weighting in this context closely resembles the definition proposed in (Carrasco and
Florens, 2000).
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Age 5 Age 8 Age 12

Resources 0.096 0.209 0.567
[−0.101, 0.297] [−0.067, 0.490] [0.189, 0.955]

Parental Cognition 0.05 0.102 0.148
[−0.070, 0.169] [−0.026, 0.232] [−0.056, 0.355]

Cognition (Lagged) - 0.038 0.101
[−0.104, 0.183] [−0.153, 0.359]

Health (Lagged) 0.007 0.012 0.028
[−0.075, 0.085] [−0.146, 0.168] [−0.212, 0.276]

Price Clothes 0.011 -0.024 -0.006
[−0.073, 0.092] [−0.120, 0.071] [−0.153, 0.138]

Price NoteBook -0.006 -0.001 0.055
[−0.080, 0.069] [−0.113, 0.111] [−0.076, 0.186]

Price Mebendazol 0.005 -0.041 -0.022
[−0.058, 0.069] [−0.145, 0.065] [−0.123, 0.079]

Price Food 0.008 0.025 -0.012
[−0.080, 0.093] [−0.095, 0.148] [−0.110, 0.084]

Table 5: Posterior means of the reduced form Investment Regression (77) Coefficients, with
90% Bayesian Credible Band.

The results from the reduced form investment regression suggest that investment is largely

linked to parental resources and to a lesser extent, parental cognition. While in principle one

would expect to observe possible links to child cognition, it is important to note that investment

is measured 3-4 years after lagged cognition. In this case, the effect may be substantially weaker.

Unfortunately, our data set does not contain information on shorter time spans to be able to

adequately discern the immediate effect.

Next, we use the estimated quasi-posterior to perform two counterfactuals. The first is a one

time income transfer of a fraction of the observed empirical mean income at age 5. The second

is a one time increase in health of a fraction of one standard deviation of health at age 1. Note

that the income transfer counterfactual uses a fixed transfer that does not vary based on the

sample drawn from the quasi-posterior. The health intervention is specific to each individual

sample of the quasi-posterior as one standard deviation of health depends on the distribution

of health for that sample. We analyze the effects separately for the poorest 25%, the middle

50% and the richest 25%. The counterfactual outcomes are shown in Figures 9 and 10.
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Figure 9: Posterior mean of change in cognition at age 12 (in units of standard deviation).
Counterfactual: age 5 income transfer of t× µ where µ is the observed empirical mean income
at age 5.

Figure 10: Posterior mean of change in cognition at age 12 (in units of standard deviation).
Counterfactual: Age 1 Health intervention of t× µ where µ is the standard deviation of health
at age 1.

Observe that, as our entire sample is relatively poor, income transfers are expected to matter

at all percentiles of the income distribution. Moreover, as illustrated in Figures 9 and 10, the

poorer segments of society benefit the greatest from an income transfer or health intervention.

Our findings suggest that early health interventions or parental subsidies may be an important

element in policies designed to target human capital development in developing countries.

44



7 Empirical Illustration II (Earnings Dynamics)

In this section, we apply our methodology to study the latent structure of permanent and

transitory components in the Panel Study of Income Dynamics (PSID) data. Our analysis

closely follows Bonhomme and Robin (2010) in which deconvolution-based methods were used

to nonparametrically estimate the latent structure.

7.1 Data and Model

We begin with a brief summary of the data and model used in Bonhomme and Robin (2010). The

data is from the PSID, between 1978 and 1987. Let yi,t denotes annual log earnings for individual

i at time period t and xi,t an associated set of regressors. The regressors are a quadratic

polynomial in age and indicators for education, race, geography and year. The OLS residuals

of yi,t on xi,t are denoted by wi,t. The residual differences are denoted by ∆wi,t = wi,t −wi,t−1.

After restricting the sample to male workers with no missing observations for ∆wi,t and a

wage growth that does not exceed 150% in absolute value, our sample size consists of n = 624

individuals. For each individual, we observe wages between 1978 and 1987, for a total of M = 10

time periods.

The model in (Bonhomme and Robin, 2010) is given by40

wi,t = fi + wP
i,t + wT

i,t , i = 1, . . . , n , t = 1, . . . ,M (79)

wP
i,t = wP

i,t−1 + ϵi,t ,

wT
i,t = ηi,t

ηi,1 = ηi,M = 0.

Here, fi is an individual level fixed effect and {ϵi,t}Mt=1 and {ηi,t}M−1
t=2 are mean zero errors.

We think of wP
i,t as the permanent component and ηi,t as the transitory component. Thus, the

distribution of the permanent component of income is determined by ϵi,t and the distribution

of the transitory component by ηi,t.

From first differencing the model in (79), we can write

∆wi,t = ϵi,t + ηi,t − ηi,t−1 , i = 1, . . . , n , t = 2, . . . ,M. (80)

We view Yi = (∆wi,2, . . . ,∆wi,M ) as the observations for i = 1, . . . , n. The model in (80) is a

special case of the multi-factor model Yi = AXi in Section 3.3. Here, A is a known matrix with

elements in {−1, 0, 1} and the latent factors are Xi = {ηi,2, . . . , ηi,M−1, ϵi,2, . . . , ϵi,M}.

7.2 Implementation

We use the measurements in (80) to construct the joint multi-factor quasi-Bayes posterior

introduced in Section 3.3. Over the M = 10 time periods, there are 17 (the dimension of Xi)

40Similar models also appear in Abowd and Card (1989); Geweke and Keane (2000); Hall and Mishkin (1982);
Horowitz and Markatou (1996).
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latent distributions that must be estimated. The posterior is defined using T = 0.5 so that the

grid of restrictions is given by B(T ) = {t ∈ Rd : ∥t∥∞≤ 0.5}. As the observed measurements in

(80) are themselves residuals from an OLS regression, they are demeaned and exhibit low finite

sample variance (see Table 6 below). For the base measure α of the Dirichlet process prior DPα,

we take α = N (0, 1). Given the dispersion in the data, we view this as a relatively weak prior.

For the standard deviation, we use Inv-Gamma(0.01, 0.01) priors. This is a commonly used as

non informative prior in settings with low dispersion.41

7.3 Results

(a) Permanent shock ϵ (b) Transitory shock η

Figure 11: Posterior Histograms for the average σ2
ϵ and σ2

η across the time period. Black dashed
line indicates posterior mean.

The posterior mean of the average variance is σ̂2
ϵ = 0.034 and σ̂2

η = 0.019 for the permanent

and transitory components, respectively. Interestingly, our estimate for the transitory compo-

nent variance matches the estimate obtained in (Bonhomme and Robin, 2010). However, our

estimate for the permanent component variance is larger (they obtained σ̂2
ϵ,BR = 0.0208). As

a consequence, we find a larger variance share being attributed to permanent shocks. To be

specific, our estimates suggest that permanent shocks account for 47% of the total variance

of wage growth residuals. Next, we examine the distribution of the permanent and transitory

components.

41The general idea is that Inverse-Gamma priors place exponentially small mass near zero and so choosing
Inv-Gamma(ϵ, ϵ) for a sufficiently small ϵ places the mode of the distribution near zero to accomodate low
dispersion settings. Gelman (2006) argues that a more robust choice is to use σ ∼ Half-Cauchy(0, V ) for a large
V . The intuition being that Half-Cauchy priors have polynomial tails near zero (hence they assign enough mass
around zero) and a large V provides robustness against large dispersion. As a robustness check, we also tried
Half-Cauchy(0, 100) priors and did not find any significant differences in the results.
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(a) Permanent shock ϵ (b) Transitory shock η

Figure 12: Posterior mean of the average standardized fη and fϵ across the time period, with
standard Gaussian overlay.

As Figure 12 illustrates, neither of the two components are Gaussian. As in Bonhomme and

Robin (2010), the estimated distributions appear to be leptokurtic and symmetric. We note

that our estimates do not have the tail wigglyness that usually accompanies deconvolution based

estimators. As a consequence, even though the estimated variance for the transitory component

is similar, the generalized deconvolution estimator in Bonhomme and Robin (2010) has a taller

mode at zero (to balance the wigglyness at the tails). Next, we compare the difference in fit

across various estimators.

Wage growth ∆wi,t

Data BR Normal Normal Mixture quasi-Bayes

Variance 0.055 0.037 0.057 0.058 0.067
Skewness 0.001 -0.02 0.00 0.00 0.00
Kurtosis 10.158 5.600 3.000 6.30 8.223

Table 6: Average moments of ∆wi,t across the time period. BR denotes the generalized decon-
volution estimator in (Bonhomme and Robin, 2010). Normal and Normal Mixture denote
maximum likelihood estimates when the permanent and transitory components follow a normal
or two-component normal mixture. quasi-Bayes denotes the joint multi-factor quasi-Bayes
(Section 3.3) posterior mean.

Table 6 compares the observed moments of the wage growth residuals with the implied moments

under various estimators. Observe that, as wage data typically exhibits many outliers, the

kurtosis in the observed data is quite large (relative to standard normality). The two component

normal mixture maximum likelihood estimate and quasi-Bayes appear to be the closest fits to

the data. The maximum likelihood estimate fits the variance exactly but performs worse at

higher moments. By contrast, the quasi-Bayes approach returns a larger variance but obtains

a better fit for the observed kurtosis in the data.
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8 Conclusion

This paper developed a quasi-Bayes framework for three classes of latent variable models. In

each case, we used the models identifying restrictions to construct a characteristic function

based quasi-likelihood. We then combined this with a prior to induce a quasi-Bayes posterior.

As the prior is supported on infinite Gaussian mixtures, our modeling framework connects with

a large empirical literature (e.g. Geweke and Keane 2000; Cunha et al. 2010; Attanasio et al.

2020a,b) that utilizes finite Gaussian mixtures to model rich forms of heterogeneity. Simulation

and empirical exercises demonstrate that our quasi-Bayes procedures are viable and perform

favorably relative to existing alternatives. We end this section by highlighting some future

directions for research.

In this paper, we provided first steps towards a characteristic function based quasi-Bayes frame-

work for latent variable models. The results could be extended to several strands of literature

that make use of identification arguments in characteristic space. Possible extensions include

nonlinear regression with measurement error (Hausman, Newey, Ichimura, and Powell, 1991;

Schennach, 2004a), instrumental variable based approaches to measurement error (e.g. Schen-

nach, 2007), random coefficient models (e.g. Hoderlein, Klemelä, and Mammen, 2010; Gautier

and Kitamura, 2013) and nonlinear earnings dynamics (Arellano, Blundell, and Bonhomme,

2017). These extensions are currently in progress.

The theory and implementation of our quasi-Bayes procedures could be expanded upon in

a variety of ways. In practice, one may choose a varying radius grid T = (T1, . . . , Td) and

consider the set of restrictions B(T) = {t ∈ Rd : |ti| ≤ Ti i = 1, . . . , d}. Empirical Bayes

selection of priors and tuning parameters that our procedures depend on is an important topic

to be investigated. One possibility is to choose the parameters to maximize the marginal

quasi-likelihood. Another possible avenue is to consider a hierarchical Bayes setup where the

prior hyperparameters are themselves modelled using a prior. A more challenging task would

be to establish the frequentist validity of quasi-Bayes credible intervals. This would, at the

very least, require the quasi-Bayes objective function to be optimally-weighted. As the quasi-

Bayes objective functions is an L2 norm over characteristic function based moment restrictions,

optimal weighting in this context closely resembles the definition proposed in Carrasco and

Florens (2000). We hope to address all these issues in future work.
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9 Appendix : Proofs

The following notation is frequently referred to in the proofs and so is listed here for convenience.

The imaginary unit is denoted by i. Let λ denote the Lebesgue measure on Rd. We denote the

diameter of a set A ⊂ Rd by D(A) = supx,y∈A∥x− y∥. Given a positive definite matrix Σ ∈ Sd
+,

we denote the ordered eigenvalues by λ1(Σ) ≤ . . . ≤ λd(Σ). To indicate the dependence of

the quasi-posterior on the data Zn and T (the radius of the ball B(T )), we will often use the

notation ν(.|Zn, T ).

Lemma 1. Given a random vector Z ∈ Rd with E(∥Z∥2) < ∞ and t ∈ Rd, define

χt(Z) = eit
′Z = cos

(
t′Z
)
+ i sin

(
t′Z
)
.

Then, there exists a universal constant D > 0 such that for every T > 0 we have

E
(

sup
∥t∥∞≤T

|En[χt(Z)]− E[χt(Z)]|
)

≤ D
max {

√
log T , 1}√
n

.

Proof of Lemma 1. It suffices to show the result for the real and imaginary part separately. We

verify it for the real part, the imaginary part is completely analogous. For the remainder of this

proof, we continue assuming χt(Z) = cos(t′Z). Let F = {χt(Z) : |t| ≤ T}. By an application

of (Giné and Nickl, 2021, Remark 3.5.14), there exists a universal constant L > 0 such that

E
(

sup
∥t∥∞≤T

|En[χt(Z)]− E[χt(Z)]|
)

≤ L√
n

∫ 8

0

√
logN[](F , ∥.∥L2(P), ϵ)dϵ.

Let {ti}Mi=1 denote a minimal δ > 0 covering of [−T, T ]d. Define the functions

ei(Z) = sup
t∈Rd:∥t∥∞≤T,∥t−ti∥∞<δ

| χt(Z)− χti(Z) | i = 1, . . . ,M.

It follows that {χti(Z) − ei , χti(Z) + ei}Mi=1 is a bracket covering for F . Since the mapping

t → χt(Z) has Lipschitz constant bounded by ∥Z∥, we obtain ∥ei∥2L2(P)≤ E(∥Z∥2)δ2. Since

M ≤ (3Tδ−1)d, it follows that there exists a universal constant L > 0 such that∫ 8

0

√
logN[](F , ∥.∥L2(P), ϵ)dϵ ≤ Lmax {

√
log T , 1}.

Lemma 2. Given a random variable Z ∈ Rd with E(∥Z∥2) < ∞ and t ∈ R, define

χt(Z) = eit
′Z = cos

(
t′Z
)
+ i sin

(
t′Z
)
.

Then, there exists a universal constant L > 0 such that for any sequence T = Tn ↑ ∞ with
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log(Tn) ⪅ n, we have that

P
(

sup
|t|≤Tn

|En[χt(Z)]− E[χt(Z)]| ≤ D

√
log Tn√
n

)
→ 1.

Proof of Lemma 2. It suffices to show the result for the real and imaginary part separately.

We verify it for the real part, the imaginary part is completely analogous. For the remainder

of this proof, we continue assuming χt(Z) = cos(t′Z). Let F = {χt(Z) : |t| ≤ Tn}. Since F
is uniformly bounded, (Giné and Nickl, 2021, Theorem 3.3.9) and Lemma 1 imply that there

exists universal constants C,D > 0 which satisfy

P
(

sup
|t|≤Tn

|En[χt(Z)]− E[χt(Z)]| > D

√
log Tn√
n

+ x

)
≤ exp

(
− x2

C[1 +
√
log Tn/

√
n ]n−1

)

for all x > 0. With x =
√
log Tn/

√
n and observing that

√
log Tn ⪅

√
n, we obtain

P
(

sup
|t|≤Tn

|En[χt(Z)]− E[χt(Z)]| ≤ L

√
log Tn√
n

)
→ 1

for some universal constant L > 0.

Lemma 3. Consider a measurable partition Rd =
⋃N

j=0 Vj and points zj ∈ Vj for j = 1, . . . , N .

Let F ∗ =
∑N

j=1wjδzj denote the discrete probability measure with weight wj at zj. Then, for

any probability measure F on Rd with
∫
Rd∥x∥2dF (x) < ∞, we have that

1.

|F [F ](t)−F [F ∗](t)| ≤ ∥t∥ sup
j=1,...,N

D(Vj) + 2
N∑
j=1

|F (Vj)− wj | .

2.

∥∇F [F ](t)−∇F [F ∗](t)∥ ≤
(∫

Rd

∥x∥2dF (x)

)1/2{ N∑
j=1

|F (Vj)− wj |
}1/2

+

(
1 + sup

v∈
⋃N

j=1 Vj

∥v∥∥t∥
)

sup
j=1,...,N

D(Vj) + sup
i=1,...,N

∥zi∥
N∑
j=1

|F (Vj)− wj | .

3.

sup
k=1,...,d

∣∣∂2
tk
F [F ](t)− ∂2

tk
F [F ∗](t)

∣∣ ≤ (∫
Rd

∥x∥4∞dF (x)

)1/2{ N∑
j=1

|F (Vj)− wj |
}1/2

+

(
2 sup
v∈

⋃N
j=1 Vj

∥v∥+ sup
v∈

⋃N
j=1 Vj

∥v∥2∥t∥
)

sup
j=1,...,N

D(Vj)

+ sup
i=1,...,N

∥zi∥2
N∑
j=1

|F (Vj)− wj | .
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Here, D(A) denotes the diameter of a set A.

Proof of Lemma 3. Observe that

F [F ](t)−F [F ∗](t)

=

∫
Rd

eit
′xdF (x)−

∫
Rd

eit
′xdF ∗(x)

=

∫
Rd

eit
′xdF (x)−

N∑
j=1

wje
it′zj

=

∫
V0

eit
′xdF (x) +

N∑
j=1

∫
Vj

(eit
′x − eit

′zj )dF (x) +
N∑
j=1

eit
′zj [F (Vj)− wj ].

Since the mapping µ → eit
′µ has Lipschitz constant at most ∥t∥ and

∑N
j=1 F (Vj) = 1, we obtain

|F [F ](t)−F [F ∗](t)| ≤ F (V0) + ∥t∥ sup
j=1,...,N

D(Vj)

N∑
j=1

F (Vj) +

N∑
j=1

|F (Vj)− wj |

≤ F (V0) + ∥t∥ sup
j=1,...,N

D(Vj) +
N∑
j=1

|F (Vj)− wj | .

Since V0 = Rd \ ∪j≥1Vj and F (Rd) = 1 =
∑N

j=1wj , we obtain

F (V0) =

N∑
j=1

wj −
N∑
j=1

F (Vj) ≤
N∑
j=1

|F (Vj)− wj | .

For the second claim, first observe that the moment condition on F ensures that the gradient

exists. By differentiating the preceding expression for F [F ](t)−F [F ∗](t), we obtain

∇F [F ](t)−∇F [F ∗](t)

= i

∫
V0

xeit
′xdF (x) + i

N∑
j=1

∫
Vj

(xeit
′x − zje

it′zj )dF (x) + i
N∑
j=1

zje
it′zj [F (Vj)− wj ].

For µ ∈ Vj , the mapping µ → µeit
′µ has Lipschitz constant at most 1 + supv∈Vj

∥v∥∥t∥ and by

Cauchy-Schwarz,
∫
V0
∥x∥dF (x) ≤ (

∫
Rd∥x∥2dF (x))1/2{F (V0)}1/2. By using the same bound for

F (V0) as above, we obtain

∥∇F [F ](t)−∇F [F ∗](t)∥

≤
(∫

Rd

∥x∥2dF (x)

)1/2{ N∑
j=1

|F (Vj)− wj |
}1/2

+

(
1 + sup

v∈∪N
j=1Vj

∥v∥∥t∥
)

sup
j=1,...,N

D(Vj)

+ sup
i=1,...,N

∥zi∥
N∑
j=1

|F (Vj)− wj | .
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For the third claim, let zj,k denote the kth element of zj . Twice differentiating (with respect to

tk) the expression for F [F ](t)−F [F ∗](t) yields

∂2
tk
F [F ](t)− ∂2

tk
F [F ∗](t)

= −
∫
V0

x2ke
it′xdF (x)−

N∑
j=1

∫
Vj

(x2ke
it′x − z2j,ke

it′zj )dF (x)−
N∑
j=1

z2j,ke
it′zj [F (Vj)− wj ].

For µ = (µ1, . . . , µd) ∈ Vj and a fixed component µk the mapping µ → µ2
ke

it′µ has Lipschitz

constant at most 2 supv∈Vj
∥v∥+supv∈Vj

∥v∥2∥t∥ and by Cauchy-Schwarz, we have the bound∫
V0

x2kdF (x) ≤ (
∫
Rd∥x∥4∞dF (x))1/2{F (V0)}1/2. The claim follows from an analogous bound to

the preceding case.

Lemma 4. Consider a measurable partition Rd =
⋃N

j=0 Vj and points zj ∈ Vj for j = 1, . . . , N .

Let F ∗ =
∑N

j=1wjδzj denote the discrete probability measure with weight wj at zj. Then, there

exists a universal constant D > 0 such that for any positive definite matrix Σ ∈ Rd×d with

minimum eigenvalue σ2 > 0 and probability measure F on Rd, we have that

∥φF,Σ − φF ∗,Σ∥L2≤ D

[
σ−(d+2)/2 sup

j=1,...,N
D(Vj) + σ−d/2

N∑
j=1

|F (Vj)− wj |
]
,

∥φF,Σ − φF ∗,Σ∥B(T )≤ D

[
T (d+2)/2 sup

j=1,...,N
D(Vj) + T d/2

N∑
j=1

|F (Vj)− wj |
]
.

Proof of Lemma 4. By Lemma 3, we have

|F [F ](t)−F [F ∗](t)| ≤ ∥t∥ sup
j=1,...,N

D(Vj) + 2
N∑
j=1

|F (Vj)− wj | .

Since e−t′Σt ≤ e−∥t∥2σ2
, it follows that

∥φF,Σ − φF ∗,σ∥2L2

=

∫
Rd

|φΣ(t)|2 |F [F ](t)−F [F ∗](t)|2 dt

=

∫
Rd

e−t′Σt |F [F ](t)−F [F ∗](t)|2 dt

≤
∫
Rd

e−∥t∥2σ2 |F [F ](t)−F [F ∗](t)|2 dt

≤ 2 sup
j=1,...,N

{D(Vj)}2
∫
Rd

e−∥t∥2σ2∥t∥2dt+ 8

{ N∑
j=1

|F (Vj)− wj |
}2 ∫

Rd

e−∥t∥2σ2
dt.

The first claim follows from observing that the two integrals scale with rate at most σ−(d+2)

and σ−d, respectively. The second claim follows by an analogous argument from truncating the

integral to the set {∥t∥∞≤ T} and using the trivial bound e−t′Σt ≤ 1.
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Lemma 5. Suppose F is a probability measure supported on [−R,R]d for some R > 0. Then,

given any k ≥ 1, there exists a discrete probability measure F ′ with at most (k+1)d+1 support

points in [−R,R]d such that for every t ∈ Rd, we have

(i)
∣∣F [F ](t)−F [F ′](t)

∣∣ ≤ 2
∥t∥k+1(e

√
dR)k+1

(k + 1)k+1
,

(ii) ∥∇F [F ](t)−∇F [F ′](t)∥≤ 2
√
dR

∥t∥k(e
√
dR)k

kk
,

(iii) sup
l=1,...,d

∣∣∂2
tl
F [F ](t)− ∂2

tl
F [F ′](t)

∣∣ ≤ 2dR2 ∥t∥k−1(e
√
dR)k−1

(k − 1)k−1
.

In particular, there exists universal constants C,D > 0 such that for all T,R sufficiently large

and ϵ ∈ (0, 1), the choice k = ⌈Cmax{log
(
ϵ−1
)
, RT}⌉ satisfies

(i) sup
∥t∥∞≤T

∣∣F [F ](t)−F [F ′](t)
∣∣ ≤ Dϵ ,

(ii) sup
∥t∥∞≤T

∥∇F [F ](t)−∇F [F ′](t)∥≤ Dϵ ,

(iii) sup
∥t∥∞≤T

sup
l=1,...,d

∣∣∂2
tl
F [F ](t)− ∂2

tl
F [F ′](t)

∣∣ ≤ Dϵ.

Furthermore, the support points of F ′ can be chosen on the grid Z = {T−1ϵ(z1, . . . , zd) : zi ∈
Z , |zi| ≤ ⌈R/(T−1ϵ)⌉}, with a multiplictive penalty of at most R and R2 in cases (ii) and (iii),

respectively.

Proof of Lemma 5. Given any k ≥ 1, by (Ghosal and Van Der Vaart, 2001, Lemma A.1), there

exists a discrete measure F ′ with at most (k + 1)d + 1 support points on [−R,R]d such that∫
Rd

zl11 . . . zldd dF (z) =

∫
Rd

zl11 . . . zldd dF ′(z) ∀ 0 ≤ l1, . . . , ld ≤ k.

For any t, z ∈ Rd and j ∈ Z, a multinomial expansion yields

(t′z)j =
∑

k1+···+kd=j,k1≥0,...,kd≥0

j!

k1! . . . kd!

d∏
i=1

tkii zkii .

It follows that F and F ′ assign the same expectation to (t′z)j for every t ∈ Rd, provided that

j ≤ k. This yields

F [F ](t)−F [F ′](t) =

∫
Rd

eit
′zd(F − F ′)(z) =

∫
Rd

∞∑
j=0

(it′z)j

j!
d(F − F ′)(z)

=

∫
Rd

∞∑
j=k+1

(it′z)j

j!
d(F − F ′)(z).
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Observe that for every x ∈ R, we have the bound
∣∣∣∑∞

j=k+1(ix)
j/j!

∣∣∣ = ∣∣∣eix −∑k
j=0(ix)

j/j!
∣∣∣ ≤

|x|k+1 /(k + 1)!≤ |x|k+1 ek+1/(k + 1)k+1. For any z ∈ [−R,R]d, we have that |t′z| ≤ ∥t∥∥z∥≤
∥t∥

√
dR. Since F, F ′ are probability measures and have support contained in [−R,R]d, it follows

that

∣∣F [F ](t)−F [F ′](t)
∣∣ ≤ ∫

Rd

∣∣∣∣∣∣
∞∑

j=k+1

(it′z)j

j!

∣∣∣∣∣∣ dF +

∫
Rd

∣∣∣∣∣∣
∞∑

j=k+1

(it′z)j

j!

∣∣∣∣∣∣ dF ′

≤ 2
∥t∥k+1(e

√
dR)k+1

(k + 1)k+1
.

For the second claim, the same reasoning as above implies that F and F ′ assign the same

expectation to the vector z(t′z)j for every t ∈ Rd, provided that j ≤ k − 1. This yields

∇F [F ](t)−∇F [F ′](t) = i

∫
Rd

zeit
′zd(F − F ′)(z) = i

∫
Rd

z
∞∑
j=0

(it′z)j

j!
d(F − F ′)(z)

= i

∫
Rd

z

∞∑
j=k

(it′z)j

j!
d(F − F ′)(z).

We have ∥z∥≤
√
dR for every z in the support of F, F ′. From using the bound in the preceding

case with k replacing k + 1, it follows that

∥∇F [F ](t)−∇F [F ′](t)∥ ≤
√
dR

(∫
Rd

∣∣∣∣∣∣
∞∑
j=k

(it′z)j

j!

∣∣∣∣∣∣ dF +

∫
Rd

∣∣∣∣∣∣
∞∑
j=k

(it′z)j

j!

∣∣∣∣∣∣ dF ′
)

≤ 2
√
dR

∥t∥k(e
√
dR)k

kk
.

For the third claim, let zl denote the lth coordinate of z = (z1, . . . , zd). The same reasoning as

above implies that F and F ′ assign the same expectation to the vector z2l (t
′z)j for every t ∈ Rd,

provided that j ≤ k − 2. This yields

∂2
tl
F [F ](t)− ∂2

tl
F [F ′](t) = −

∫
Rd

z2l e
it′zd(F − F ′)(z) = −

∫
Rd

z2l

∞∑
j=0

(it′z)j

j!
d(F − F ′)(z)

= −
∫
Rd

z2l

∞∑
j=k−1

(it′z)j

j!
d(F − F ′)(z).

Since z2l ≤ ∥z∥2≤ dR2, the claim follows from an analogous bound to the preceding case.

For the final claim regarding the location of the support points, suppose F ′ =
∑N

i=1 piδµi is

a discrete probability measure that satisfies the requirements of the first part of the Lemma.

Let F ∗ =
∑N

i=1 piδµ∗
i
denote the probability measure obtained by replacing each µi with µ∗

i ∈
argmin

t∈Z
∥µi − t∥. From the definition of Z, it follows that ∥µi − µ∗

i ∥≤ DT−1ϵ. We claim F ′
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satisfies all the same bounds. For the first bound, observe that

sup
∥t∥∞≤T

∣∣F [F ′]−F [F ∗]
∣∣ = sup

∥t∥∞≤T

∣∣∣∣∣∣
N∑
j=1

pj [e
itµj − eitµ

∗
j ]

∣∣∣∣∣∣ ≤ sup
∥t∥∞≤T

sup
j=1,...,N

∣∣∣eitµj − eitµ
∗
j

∣∣∣ .
Since the mapping µ → eitµ has Lipschitz constant bounded by ∥t∥, it follows that

sup
∥t∥∞≤T

∣∣F [F ′]−F [F ∗]
∣∣ ≤ √

dT sup
j=1,...,N

∥µj − µ∗
j∥≤ Dϵ.

For the second bound, observe that for µ ∈ [−R,R]d, the mapping µ → µeitµ has Lipschitz

constant at most 1 +
√
dR∥t∥. Hence

sup
∥t∥∞≤T

∥∇F [F ′](t)−∇F [F ∗](t)∥ ≤ sup
∥t∥∞≤T

sup
j=1,...,N

∥µje
it′µj − µ∗

je
it′µ∗

j ∥

≤ D(RT + 1) sup
j=1,...,N

∥µj − µ∗
j∥

≤ DRϵ.

For the third bound, let µj,l denote the lth component of µj . On [−R,R]d, the mapping

µj → µ2
j,le

it′µj has Lipschitz constant at most 2
√
dR+ dR2∥t∥. Hence

sup
∥t∥∞≤T

sup
l=1,...,d

∣∣∂2
tl
F [F ](t)− ∂2

tl
F [F ′](t)

∣∣ ≤ sup
∥t∥∞≤T

sup
l=1,...,d

sup
j=1,...,N

∣∣∣µ2
j,le

it′µj − (µ∗
j,l)

2eit
′µ∗

j

∣∣∣
≤ D(R+R2T ) sup

j=1,...,N
∥µj − µ∗

j∥

≤ DR2ϵ.

Lemma 6. Suppose F is a probability measure supported on [−L,L]d for some L > 0 and Σ ∈
Rd×d is a positive-definite matrix with smallest eigenvalue σ2 > 0. Then, for all ϵ ∈ (0, 1), there

exists a discrete probability measure F ′ with at most Dmax {(log
(
ϵ−1
)
)d, (L/σ)d(log

(
ϵ−1
)
)d/2}

support points on [−L,L]d such that ∥φF,Σ−φF ′,Σ∥L2≤ D′σ−d/2ϵ, where D,D′ > 0 are universal

constants. Furthermore, the support points can be chosen such that infi ̸=j∥µi − µj∥≥ σϵ.

Proof of Lemma 6. Let D denote a generic universal constant that may change from line to

line. By Lemma 5, there exists a discrete measure F ′ with at most kd + 1 support points on

[−L,L]d such that

∣∣F [F ](t)−F [F ′](t)
∣∣ ≤ 2

∥t∥k(e
√
dL)k

kk
∀ t ∈ Rd.

Observe that |φΣ| = e−t′Σt/2 ≤ e−∥t∥2σ2/2. From using the preceding bound, we obtain for every
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M > 0, the estimate

∥φF,Σ − φF ′,Σ∥2L2 =

∫
Rd

|φΣ(t)|2
∣∣F [F ](t)−F [F ′](t)

∣∣2 dt
≤ D

[ ∫
∥t∥>M

|φΣ(t)|2 dt+
(
Le

√
d

k

)2k ∫
∥t∥≤M

∥t∥2kdt
]

≤ D

[ ∫
∥t∥>M

e−∥t∥2σ2
dt+

(
Le

√
d

k

)2k ∫
∥t∥≤M

∥t∥2kdt
]
.

By change of variables (to spherical coordinates) the first integral scales at rateDMd−2e−M2σ2
σ−2

and the second integral scales at rate DM2k+d/(2k + d). The choice M =
√
4 log(ϵ−1)/σ leads

to ∫
∥t∥>M

e−∥t∥2σ2
dt ≤ DMd−2e−M2σ2

σ−2 ≤ Dϵ2σ−d.

Furthermore, if k ≥ e3
√
dmax{LM, log

(
ϵ−1
)
}, we have that

(
Le

√
d

k

)2k ∫
∥t∥≤M

∥t∥2kdt ≤ D

(
Le

√
dM

k

)2k Md

2k + d
≤ Dϵ2.

The claim follows from observing that the number of support points in F ′ is N = kd + 1.

For the final claim regarding the separation of the support points, suppose F ′ =
∑N

i=1 piδµi is a

discrete probability measure that satisfies the requirements of the first part of the Lemma. Let

Z denote a maximal σϵ separated subset of [−L,L]d. For each µi, select µ
∗
i ∈ argmin

t∈Z
∥µi − t∥

and let F ∗ =
∑N

i=1 piδµ∗
i
. From the definition of Z, it follows that supNi=1∥µi−µ∗

i ∥≤ σϵ. Observe

that

∥φF ′,Σ − φF ∗,Σ∥L2 =

∥∥∥∥ N∑
j=1

pj [e
itµj − eitµ

∗
j ]e−t′Σt/2

∥∥∥∥
L2

≤ D

N∑
j=1

pj∥(eitµj − eitµ
∗
j )e−t′Σt/2∥L2

≤ D sup
j=1,...,N

∥(eitµj − eitµ
∗
j )e−t′Σt/2∥L2 .

Since the mapping µ → eitµ has Lipschitz constant bounded by ∥t∥, we obtain

∥(eitµj − eitµ
∗
j )e−t′Σt/2∥2L2 =

∫
Rd

∣∣∣eitµj − eitµ
∗
j

∣∣∣2 e−t′Σtdt

≤ D∥µj − µ∗
j∥2
∫
Rd

∥t∥2e−t′Σtdt

≤ Dσ2ϵ2
∫
Rd

∥t∥2e−t′Σtdt.

Since e−t′Σt ≤ e−∥t∥2σ2
, the integral on the right scales with rate at most Dσ−(d+2). It follows
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that

∥(eitµj − eitµ
∗
j )e−t′Σt/2∥L2≤ Dσϵσ−(d+2)/2 = Dσ−d/2ϵ.

In particular, we obtain

∥φF,Σ − φF ∗,Σ∥L2≤ ∥φF,Σ − φF ′,Σ∥L2+∥φF ∗,Σ − φF ′,Σ∥L2≤ Dσ−d/2ϵ.

Finally, note that if µ∗
i = µ∗

j for some i ̸= j, F ∗ can be reduced to a discrete measure with

N∗ ≤ N unique support points.

Lemma 7. Fix any positive definite matrix Σ0 ∈ Rd×d and denote by σ2
0, the smallest eigenvalue

of Σ0. Then, there exists a universal constant D > 0 (only depending on d) such that for any

distribution P and positive definite matrix Σ satisfying ∥Σ− Σ0∥≤ σ2
0/2, we have

∥φP,Σ − φP,Σ0∥L2≤ Dσ
−d/2−1
0 ∥Σ− Σ0∥.

Proof of Lemma 7. For any distribution P and positive definite matrix Σ, we have that

∥φP,Σ − φP,Σ0∥2L2=

∫
Rd

|F [P ](t)|2
∣∣∣e−t′Σt/2 − e−t′Σ0t

∣∣∣2 dt ≤ ∫
Rd

∣∣∣e−t′Σt/2 − e−t′Σ0t/2
∣∣∣2 dt

=

∫
Rd

e−t′Σ0t
∣∣∣1− et

′(Σ0−Σ)t/2
∣∣∣2 dt.

The mapping t → et
′(Σ0−Σ)t/2 has gradient norm at most e∥t∥

2∥Σ−Σ0∥/2∥Σ−Σ0∥∥t∥. If the bound
∥Σ− Σ0∥≤ σ2

0/2 holds, it follows that∫
Rd

e−t′Σ0t
∣∣∣1− et

′(Σ0−Σ)t/2
∣∣∣2 dt ≤ ∫

Rd

e−∥t∥2σ2
0

∣∣∣1− et
′(Σ0−Σ)t/2

∣∣∣2 dt
≤ ∥Σ− Σ0∥2

∫
Rd

e−∥t∥2σ2
0/2∥t∥2dt.

The claim follows from observing that the integral on the right scales with rate at mostDσ
−(d+2)
0 .

Lemma 8. Suppose (W,Z) ∈ Rd∗ × Rd for some d∗, d ∈ N and E(∥Z∥2) < ∞,E(∥W∥2) < ∞.

For every t ∈ Rd, define

χt(W,Z) = Weit
′Z = W cos

(
t′Z
)
+ iW sin

(
t′Z
)
.

Then, there exists a universal constant D > 0 such that for every T > 0 we have

E
(

sup
∥t∥∞≤T

∥En[χt(Z)]− E[χt(Z)]∥
)

≤ D
max {

√
log T , 1}√
n

.
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Proof of Lemma 8. It suffices to show the result for the real and imaginary part separately. We

verify it for the real part, the imaginary part is completely analogous. IfW = (W1,W2, . . . ,Wd1),

it suffices to verify the result for each vector sub component Wke
it′Z where k ∈ {1, . . . , d∗}.

Fix any k ∈ {1, . . . , d∗}. For the remainder of this proof, we continue assuming χt(W,Z) =

Wk cos(t
′Z). Define the class of functions F = {χt(W,Z) : ∥t∥∞≤ T}. Since ∥W∥ is an enve-

lope of F , an application of (Giné and Nickl, 2021, Remark 3.5.14) implies that there exists a

universal constant L > 0 such that

E
(

sup
∥t∥∞≤T

|En[χt(W,Z)]− E[χt(W,Z)]|
)

≤ L√
n

∫ 8∥W∥L2(P)

0

√
logN[](F , ∥.∥L2(P), ϵ)dϵ.

Let {ti}Mi=1 denote a minimal δ > 0 covering of [−T, T ]d. Define the functions

ei(W,Z) = sup
t∈Rd:∥t∥∞≤T,∥t−ti∥∞<δ

| χt(W,Z)− χti(W,Z) | i = 1, . . . ,M.

It follows that {χti(W,Z)− ei , χti(W,Z) + ei}Mi=1 is a bracket covering for F . Since the map-

ping t → χt(W,Z) has Lipschitz constant bounded by ∥W∥∥Z∥, Cauchy-Schwarz implies that

∥ei∥2L2(P)≤ ∥W∥2L2(P)∥Z∥2L2(P)δ
2. Since M ≤ (3Tδ−1)d, it follows that there exists a universal

constant L > 0 such that∫ 8∥W∥L2(P)

0

√
logN[](F , ∥.∥L2(P), ϵ)dϵ ≤ Lmax {

√
log T , 1}.

Lemma 9. Suppose (W,Z) ∈ Rd∗ × Rd for some d∗, d ∈ N and E(∥Z∥2) < ∞,E(∥W∥2) < ∞.

For every t ∈ Rd, define

χt(W,Z) = Weit
′Z = W cos

(
t′Z
)
+ iW sin

(
t′Z
)
.

Then, there exists a universal constant L > 0 such that for any sequence Tn ↑ ∞ with log(Tn) =

o(n), we have that

P
(

sup
∥t∥∞≤Tn

|En[χt(W,Z)]− E[χt(W,Z)]| ≤ D

√
log Tn√
n

)
→ 1.

Proof of Lemma 9. It suffices to show the result for the real and imaginary part separately. We

verify it for the real part, the imaginary part is completely analogous. IfW = (W1,W2, . . . ,Wd∗),

it suffices to verify the result for each vector sub component Wke
it′Z where k ∈ {1, . . . , d∗}.

Fix any k ∈ {1, . . . , d∗}. For the remainder of this proof, we continue assuming χt(W,Z) =

Wk cos(t
′Z). For a given sequence of deterministic constants Ln ↑ ∞, define

χ1,t(W,Z) = χt(W,Z)1{∥W∥≤ Ln} ,

χ2,t(W,Z) = χt(W,Z)1{∥W∥> Ln} .
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Observe that

(En − E)[χt(W,Z)] =
n∑

i=1

Ξ1,t(Wi, Zi) +
n∑

i=1

Ξ2,t(Wi, Zi) ,

where Ξ1,t(W,Z) = n−1[χ1,t(W,Z)−Eχ1,t(W,Z)] and Ξ2,t(W,Z) = n−1[χ2,t(W,Z)−Eχ2,t(W,Z)].

First, we derive a bound for
∑n

i=1 Ξ2,t(Wi, Zi). Observe that

P
(

sup
∥t∥∞≤Tn

∣∣∣∣∣
n∑

i=1

Ξ2,t(Wi, Zi)

∣∣∣∣∣ >
√
log(Tn)√

n

)
≤

√
n√

log(Tn)
E
(

sup
∥t∥∞≤Tn

n∑
i=1

|Ξ2,t(Wi, Zi)|
)

≤ 2
√
n√

log(Tn)
E(∥W∥1{∥W∥> Ln})

≤ 2
√
n√

log TnLn
E(∥W∥21{∥W∥> Ln}).

Since E(∥W∥2) < ∞, the term on the right is o(1) when Ln =
√
n/

√
log Tn.

It remains to bound the first sum
∑n

i=1 Ξ1,t(Wi, Zi) when Ln =
√
n/

√
log Tn. Observe that

sup
∥t∥∞≤Tn

E[ |Ξ1,t(W,Z)|2 ] ≤ n−2∥W∥2L2(P)

sup
∥t∥∞≤Tn

|Ξ1,t(W,Z)| ≤ 2n−1Ln.

The preceding bounds, Lemma 8 and (Giné and Nickl, 2021, Theorem 3.3.9) imply that there

exists universal constants C,D > 0 which satisfy

P
(

sup
∥t∥∞≤Tn

|En[χt(Z)]− E[χt(Z)]| > D

√
log Tn√
n

+ x

)
≤ exp

(
− x2

Cn−1[Ln
√
log Tn/

√
n+ ∥W∥2

L2(P)+xLn]

)

for all x > 0. The choice x =
√
log Tn/

√
n with Ln =

√
n/

√
log Tn yields

P
(

sup
∥t∥∞≤Tn

|En[χt(Z)]− E[χt(Z)]| > D

√
log Tn√
n

+

√
log Tn√
n

)
≤ exp (− E log(Tn))

for some universal constant E > 0. Since Tn ↑ ∞, the claim follows.

Lemma 10. Suppose F is a probability measure supported on [−L,L]d for some L > 0 and

Σ ∈ Rd×d is a positive-definite matrix. Then, for all ϵ ∈ (0, 1), there exists a discrete probability

measure F ′ with at most Dmax {(log
(
ϵ−1
)
)d, LdT d} support points on [−L,L]d such that ∥φF,Σ−

φF ′,Σ∥B(T )≤ D′ϵ, where D,D′ > 0 are universal constants. Furthermore, the support points can

be chosen such that infi ̸=j∥µi − µj∥≥ T−(d+2)/2ϵ.
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Proof of Lemma 10. Let D denote a generic universal constant that may change from line to

line. By Lemma 5, there exists a discrete measure F ′ with at most kd + 1 support points on

[−L,L]d such that

∣∣F [F ](t)−F [F ′](t)
∣∣ ≤ 2

∥t∥k(e
√
dL)k

kk
∀ t ∈ Rd.

From using the preceding bound and noting that the eigenvalues of Σ are non-negative, we

obtain for every M > 0, the estimate

∥φF,Σ − φF ′,Σ∥2B(T ) ≤
∫
∥t∥∞≤T

|φΣ(t)|2
∣∣F [F ](t)−F [F ′](t)

∣∣2 dt
≤ 2

(
Le

√
d

k

)2k ∫
∥t∥∞≤T

e−t′Σt∥t∥2kdt

≤ 2

(
Le

√
d

k

)2k ∫
∥t∥∞≤T

∥t∥2kdt

≤ D

(
Le

√
dT

k

)2k

T d.

The quantity on the right is bounded above by Dϵ2 if k ≥ e3
√
dmax{LT, log

(
ϵ−1
)
}. The claim

follows from observing that the number of support points in F ′ is N = kd + 1.

For the final claim regarding the separation of the support points, suppose F ′ =
∑N

i=1 piδµi is a

discrete probability measure that satisfies the requirements of the first part of the Lemma. Let Z
denote a maximal T−(d+2)/2ϵ separated subset of [−L,L]d. For each µi, select µ

∗
i ∈ argmin

t∈Z
∥µi−

t∥ and let F ∗ =
∑N

i=1 piδµ∗
i
. From the definition of Z, it follows that supNi=1∥µi − µ∗

i ∥≤ σϵ.

Observe that

∥φF ′,Σ − φF ∗,Σ∥B(T ) =

∥∥∥∥ N∑
j=1

pj [e
itµj − eitµ

∗
j ]e−t′Σt/2

∥∥∥∥
B(T )

≤ D

N∑
j=1

pj∥(eitµj − eitµ
∗
j )e−t′Σt/2∥B(T )

≤ D sup
j=1,...,N

∥(eitµj − eitµ
∗
j )e−t′Σt/2∥B(T ).

Since the mapping µ → eitµ has Lipschitz constant bounded by ∥t∥, we obtain

∥(eitµj − eitµ
∗
j )e−t′Σt/2∥2B(T ) ≤

∫
∥t∥∞≤T

∣∣∣eitµj − eitµ
∗
j

∣∣∣2 e−t′Σtdt

≤ D∥µj − µ∗
j∥2
∫
∥t∥∞≤T

∥t∥2e−t′Σtdt

≤ DT−(d+2)ϵ2
∫
∥t∥∞≤T

∥t∥2dt.
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The integral on the right scales with rate at most DT d+2. It follows that

∥φF,Σ − φF ∗,Σ∥B(T )≤ ∥φF,Σ − φF ′,Σ∥B(T )+∥φF ∗,Σ − φF ′,Σ∥B(T )≤ Dϵ.

Finally, note that if µ∗
i = µ∗

j for some i ̸= j, F ∗ can be reduced to a discrete measure with

N∗ ≤ N unique support points.

Lemma 11. Fix any positive definite matrix Σ0 ∈ Rd×d and denote by σ2
0, the smallest eigen-

value of Σ0. Then, there exists a universal constant D > 0 (only depending on d) such that for

any distribution P and positive definite matrix Σ satisfying ∥Σ− Σ0∥≤ σ2
0/2, we have

∥φP,Σ − φP,Σ0∥B(T )≤ DT (d+2)/2∥Σ− Σ0∥.

Proof of Lemma 11. For any distribution P and positive definite matrix Σ, we have that

∥φP,Σ − φP,Σ0∥2B(Tn)
≤
∫
∥t∥∞≤T

|F [P ](t)|2
∣∣∣e−t′Σt/2 − e−t′Σ0t

∣∣∣2 dt ≤ ∫
∥t∥∞≤T

∣∣∣e−t′Σt/2 − e−t′Σ0t/2
∣∣∣2 dt

=

∫
∥t∥∞≤T

e−t′Σ0t
∣∣∣1− et

′(Σ0−Σ)t/2
∣∣∣2 dt.

The mapping t → et
′(Σ0−Σ)t/2 has gradient norm at most e∥t∥

2∥Σ−Σ0∥/2∥Σ−Σ0∥∥t∥. If the bound
∥Σ− Σ0∥≤ σ2

0/2 holds, it follows that∫
∥t∥∞≤T

e−t′Σ0t
∣∣∣1− et

′(Σ0−Σ)t/2
∣∣∣2 dt ≤ ∫

∥t∥∞≤T
e−∥t∥2σ2

0

∣∣∣1− et
′(Σ0−Σ)t/2

∣∣∣2 dt
≤ ∥Σ− Σ0∥2

∫
∥t∥∞≤T

e−∥t∥2σ2
0/2∥t∥2dt

≤ D∥Σ− Σ0∥2T d+2.

Lemma 12. Suppose F ∼ DPα where the base measure α is a Gaussian measure on Rd. Fix

any q ∈ N. Then, there exists a universal constant C > 0 such that for any sequence un ↑ ∞,

P
({∫

∥x∥qdF (x)

}1/q

> un

)
≤ 2e−Cu2

n

holds for all sufficiently large n.

Proof of Lemma 12. Suppose α = N(µ,Σ) for some mean vector µ ∈ Rd and positive definite

covariance matrix Σ ∈ Sd
+. Without loss of generality, it suffices to verify the result with µ = 0.

By the stick breaking representation of DPα we can write

F
d
=

∞∑
i=1

piδZi ,

∫
∥x∥qdF (x)

d
=

∞∑
i=1

pi∥Zi∥q,
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where (Z1, Z2, . . . )
i.i.d∼ α is independent of (p1, p2, . . . ) and (pi)

∞
i=1 are non-negative random

variables with
∑∞

i=1 pi = 1. For an element w = (w1, w2, . . . ) with wi ∈ Rd, the ℓq(Rd) norm

is given by ∥w∥q=
∑∞

i=1∥wi∥q. Conditional on (pi)
∞
i=1, let Z = (p

1/q
i Z1, p

1/q
2 Z2, . . . ). Define

γ = (E∥Z1∥q)1/q and note that E∥Z∥q=
∑∞

i=1 piE∥Zi∥q= γq < ∞. In particular, we can view

Z (defined conditional on (pi)
∞
i=1) as a mean-zero Gaussian random element on ℓq(Rd). From

an application of (Giné and Nickl, 2021, Theorem 2.1.20), it follows that

P
(
∥Z∥> u+ γ

)
≤ 2e

− u2

2γ2 ∀ u > 0.

The bound holds conditionally. However, as the term on the right is independent of (pi)
∞
i=1, it

also holds unconditionally and we obtain

P
({∫

∥x∥qdF (x)

}1/q

> u+ γ

)
≤ 2e

− u2

2γ2 ∀ u > 0.

The claim follows by letting u = un and noting that un > 2γ for all sufficiently large n.

Lemma 13. For d ≥ 2, let Ω ⊂ Rd denote a ball (with respect to any norm) of radius R. Let

f : Ω → C be such that ∇f ∈ C(Ω). Then, there exists a universal constant C > 0 such that

∥f∥L2(Ω)≤ C

(
R∥∇f∥L2(Ω)+

√
R∥f∥L2(∂Ω)

)
,

where L2(∂Ω) is the L2 norm on ∂Ω with respect to the d− 1 dimensional Hausdorff measure.

Proof of Lemma 13. Let λ(.) denote the Lebesgue measure on Rd. Denote the d−1 dimensional

Hausdorff measure byHd−1. Define the exponents

p =
2d

d+ 2
, q =

2(d− 1)

d
.

An application of (Maggi and Villani, 2005, Theorem 1.2) on the real and complex parts of f

separately implies that there exists a universal constant D > 0 (that depends only on p) such

that

∥f∥L2(Ω)≤ D(∥∇f∥Lp(Ω)+∥f∥Lq(∂Ω)).

Since Ω is a ball of radius R, there exists a universal constant C > 0 such that

Hd−1(∂Ω) ≤ CRd−1 , λ(Ω) ≤ CRd.
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By Hölder’s inequality, it follows that

∥∇f∥pLp(Ω)=

∫
Ω
∥∇f∥pdλ =

∫
Ω
∥∇f∥

2d
d+2dλ ≤

(∫
Ω
∥∇f∥2dλ

) d
d+2

[λ(Ω)]
2

d+2 .

Taking the p = 2d/(d+2) root on both sides of the preceding inequality and using the estimate

on λ(Ω) implies that there exists a universal constant C > 0 such that

∥∇f∥Lp(Ω)≤ C∥∇f∥L2(Ω)R.

Similarly, for the boundary term, Hölder’s inequality yields

∥f∥qLq(∂Ω)=

∫
∂Ω

|f |q dHd−1 =

∫
∂Ω

|f |
2(d−1)

d dHd−1 ≤
(∫

∂Ω
|f |2 dHd−1

) d−1
d

[Hd−1(∂Ω)]1/d.

Taking the q = 2(d− 1)/d root on both sides and using the estimate on Hd−1(∂Ω) implies that

there exists a universal constant C > 0 such that

∥f∥Lq(∂Ω)≤ C∥f∥L2(∂Ω)

√
R.

Proof of Theorem 1. The proof proceeds through several steps which we outline below. We use

D > 0 as a generic universal constant that may change from line to line. For ease of notation,

we suppress the dependence of m = mn and G = Gn on n

Depending on whether the model is mildly or severely ill-posed, define λ as follows.

λ =

max{χ−1(d+ 2) + d/2, d+ 1} mildly ill-posed

max{χ−1(d+ 2) + d/2, d+ 1, d/ζ + 1/2} severely ill-posed.

Let ϵ2n = n−1(log n)λ.

(i) First, we derive a lower bound for the normalizing constant of the posterior measure.

Specifically, we aim to show that there exists a C > 0 such that∫
exp

(
− n

2
∥φ̂Y − φ̂ϵφP,Σ∥2B(Tn)

)
dνα,G(P,Σ) ≥ exp (− Cnϵ2n) (81)

holds with P probability approaching 1.

Since m = mn ≍ n, an application of Lemma 2 implies that

∥φ̂Y − φY ∥2B(Tn)
=

∫
B(Tn)

|φ̂Y (t)− φY (t)|2 dt ≤ D
T d
n log(Tn)

n
,

∥φ̂ϵ − φϵ∥2B(Tn)
=

∫
B(Tn)

|φ̂ϵ(t)− φϵ(t)|2 dt ≤ D
T d
n log(Tn)

n
.
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with P probability approaching 1. On this set (and using that |φP,Σ| ≤ 1 ) we obtain

∥φ̂Y − φ̂ϵφP,Σ∥2B(Tn)
≤ D

(
∥φY − φϵφP,Σ∥2B(Tn)

+
T d
n log(Tn)

n

)
≤ D

(
∥φY − φϵφP,Σ∥2B(Tn)

+ϵ2n

)
,

where the last inequality follows from the definition of Tn and ϵ2n.

It follows that∫
exp

(
− nD∥φ̂Y − φ̂ϵφP,Σ∥2B(Tn)

)
dνα,G(P,Σ)

≥ exp
(
−nDϵ2n

) ∫
exp

(
− nD∥φY − φϵφP,Σ∥2B(Tn)

)
dνα,G(P,Σ).

By Condition 4.2, the mixing distribution F0 satisfies F0(t ∈ Rd : ∥t∥> z) ≤ C exp(−C ′zχ).

There exists a universal constantR > 0 such that the cube In = [−R(log ϵ−1
n )1/χ, R(log ϵ−1

n )1/χ]d

satisfies 1 − F0(In) ≤ Dϵn. Denote the probability measure induced from the restriction

of F0 to In by

F 0(A) =
F (A ∩ In)

F (In)
∀ Borel A ⊆ Rd.

Note that the restricted probability measure satisfies

sup
t∈Rd

∣∣∣φF0(t)− φF 0
(t)
∣∣∣ = sup

t∈Rd

∣∣∣∣∫
Rd

eit
′xd(F − F 0)(x)

∣∣∣∣ ≤ ∥F0 − F 0∥TV ≤ 1− F0(In) ≤ Dϵn.

By Condition 4.2, fX = ϕΣ0 ⋆ F0. As the eigenvalues of Σ0 are bounded away from zero,

it follows that

∥φY − φϵφF 0,Σ0
∥2B(Tn)

≤ D∥φY − φϵφF 0,Σ0
∥2L2 = ∥φϵφF0,Σ0 − φϵφF 0,Σ0

∥2L2

=

∫
Rd

|φΣ0(t)|
2 |φϵ(t)|2

∣∣∣φF0(t)− φF 0
(t)
∣∣∣2 dt

≤
∫
Rd

|φΣ0(t)|
2
∣∣∣φF0(t)− φF 0

(t)
∣∣∣2 dt

≤ Dϵ2n

∫
Rd

e−t′Σ0tdt

≤ Dϵ2n.

Let ι = max{d, d/χ + d/2}. By Lemma 6, there exists a discrete probability measure

F ∗
0 =

∑N
i=1 piδµi where N = D( log

(
ϵ−1
n

)
)ι and µi ∈ In, that satisfies

∥φϵφF 0,Σ0
− φϵφF ∗

0 ,Σ0∥B(Tn)≤ D∥φF 0,Σ0
− φF ∗

0 ,Σ0∥L2≤ Dϵn.

From the second claim of Lemma 6, we can also assume without loss of generality that

the support points separation satisfies infk ̸=j∥µk − µj∥≥ c0ϵn for some constant c0 > 0
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(depending only on Σ0). From combining the preceding bounds, it follows that∫
exp

(
− nD∥φY − φϵφP,Σ∥2B(Tn)

)
dνα,G(P,Σ)

≥ exp
(
−nDϵ2n

) ∫
exp

(
− nD∥φϵφF 0,Σ0

− φϵφP,Σ∥2B(Tn)

)
dνα,G(P,Σ)

≥ exp
(
−nDϵ2n

) ∫
exp

(
− nD∥φϵφF ∗

0 ,Σ0 − φϵφP,Σ∥2B(Tn)

)
dνα,G(P,Σ).

Observe that if ∥Σ− Σ0∥ is sufficiently small, Lemma 7 implies that for any distribution

P we have

∥φϵφP,Σ − φϵφP,Σ0∥2B(Tn)
≤ D∥φP,Σ − φP,Σ0∥2L2≤ D∥Σ− Σ0∥2.

In particular, for all such (P,Σ), this implies

∥φϵφF ∗
0 ,Σ0 − φϵφP,Σ∥B(Tn)≤ D∥φϵφF ∗

0 ,Σ0 − φϵφP,Σ0∥L2+D∥Σ− Σ0∥.

From the preceding bounds, it follows that∫
exp

(
− nD∥φϵφF ∗

0 ,Σ0 − φϵφP,Σ∥2B(Tn)

)
dνα,G(P,Σ)

≥
∫
(P,Σ):∥Σ−Σ0∥≤Dϵn,∥φF∗

0 ,Σ0
−φP,Σ0

∥L2≤Dϵn

exp

(
− nD∥φϵφF ∗

0 ,Σ0 − φϵφP,Σ∥2B(Tn)

)
dνα,G(P,Σ)

≥ exp
(
−nDϵ2n

) ∫
(P,Σ):∥Σ−Σ0∥≤Dϵn,∥φF∗

0 ,Σ0
−φP,Σ0

∥L2≤Dϵn

dνα,G(P,Σ).

Let Vi = {t ∈ Rd : ∥t − µi∥≤ c0ϵn/2} for i = 1, . . . , N and V0 = Rd \
⋃N

i=1 Vi. From the

definition of the {µi}Ni=1, it follows that {V0, V1, . . . , VN} is a disjoint partition of Rd. For

any fixed (P,Σ), an application of Lemma 4 yields

∥φP,Σ0 − φF ∗
0 ,Σ0∥L2 ≤ D

(
ϵdn +

N∑
j=1

|P (Vj)− pj |
)
.

Define Gn = {(P,Σ) :
∑N

j=1 |P (Vj)− pj | ≤ ϵn, ∥Σ − Σ0∥≤ ϵn}. The preceding bounds

imply that∫
(P,Σ):∥Σ−Σ0∥≤Dϵn,∥φF∗

0 ,Σ0
−φP,Σ0

∥L2≤Dϵn

dνα,G(P,Σ) ≥
∫
Gn

dνα,G(P,Σ).

Since the prior is a product measure να,G = DPα ⊗G, the integral appearing on the right

can be expressed as∫
Gn

dνα,G(P,Σ) =

∫
Σ:∥Σ−Σ0∥≤ϵn

∫
P :

∑N
j=1|P (Vj)−pj |≤ϵn

dDPα(P )dG(Σ).

As DPα is constructed using a Gaussian base measure α, it is straightforward to verify
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that infNj=1 α(Vj) ≥ Cϵdn exp
(
−C ′(log ϵ−1

n )2/χ
)
for universal constants C,C ′ > 0. By def-

inition of DPα, (P (V1), . . . , P (VN )) ∼ Dir(N,α(V1), . . . , α(VN )). As N = D{log
(
ϵ−1
n

)
}ι,

an application of (Ghosal and Van der Vaart, 2017, Lemma G.13) implies∫
P :

∑N
j=1|P (Vj)−pj |≤ϵn

dDPα(P ) ≥ C exp (− C ′(log ϵ−1
n )ι+max{2/χ,1}) = C exp (− C ′(log ϵ−1

n )λ)

≥ C exp (− C ′′nϵ2n)

for universal constants C,C ′, C ′′ > 0.

It remains to bound the outer integral. The law of G = Gn is given by Ω/σ2
n where Ω ∼ L

and L is a probability measure on Sd
+ that satisfies Assumption 2. By Assumption 2 and

the definition of σ2
n, there exists a universal constant C,C ′, C ′′ > 0 such that∫

Σ:∥Σ−Σ0∥≤ϵn

dG(Σ) =

∫
Σ:∥Σ−σ2

nΣ0∥≤σ2
nϵn

dL(Σ) ≥ C exp (− C ′σ−2κ
n ) ≥ C exp

(
−C ′′nϵ2n

)
The estimate for the lower bound of the normalizing constant follows from combining all

the preceding bounds.

(ii) Next, we establish a preliminary local concentration bound under the prior. Observe that

for any E > 0, we have∫
(P,Σ):∥φ̂Y −φ̂ϵφP,Σ∥2B(Tn)

>2Eϵ2n

exp

(
− n

2
∥φ̂Y − φ̂ϵφP,Σ∥2B(Tn)

)
dνα,G(P,Σ) ≤ exp (− nEϵ2n).

The law of G = Gn is given by Ω/σ2
n where Ω ∼ L and L is a probability measure on

Sd
+ that satisfies Assumption 2. By Assumption 2, it follows that for every E′ > 0, there

exists E > 0 such that∫
Σ:∥Σ−1∥>Eσ2

n(nϵ
2
n)

1/κ

dG(Σ) =

∫
Σ:∥Σ−1∥>E(nϵ2n)

1/κ

dL(Σ) ≤ exp (− E′nϵ2n).

As the prior is a product measure να,G = DPα ⊗ G and ∥φ̂Y − φ̂ϵφP,Σ∥2B(Tn)
≥ 0, the

preceding bound implies∫
Σ:∥Σ−1∥>Eσ2

n(nϵ
2
n)

1/κ

exp

(
− n

2
∥φ̂Y − φ̂ϵφP,Σ∥2B(Tn)

)
dνα,G(P,Σ)

≤
∫
Σ:∥Σ−1∥>Eσ2

n(nϵ
2
n)

1/κ

dG(Σ)

≤ exp (− E′nϵ2n).

From combining the preceding bounds, it follows that for any E′ > 0 we can pick E > 0
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sufficiently large such that∫
(P,Σ):∥φ̂Y −φ̂ϵφP,Σ∥2B(Tn)

≤Eϵ2n,∥Σ−1∥≤Eσ2
n(nϵ

2
n)

1/κ

exp

(
− n

2
∥φ̂Y − φ̂ϵφP,Σ∥2B(Tn)

)
dνα,G(P,Σ)

≥ exp (− E′nϵ2n).

(iii) We prove the main statement of the theorem. From the bounds derived in steps (i) and

(ii), it follows that for any C ′ > 0, there exists a M > 0 such that

να,G

(
∥φ̂Y − φ̂ϵφP,Σ∥2B(Tn)

≤ M2ϵ2n, ∥Σ−1∥≤ M2σ2
n(nϵ

2
n)

1/κ

∣∣∣∣Zn, Tn

)
≥ 1− exp

(
−C ′nϵ2n

)
holds with P probability approaching 1.

For any choice of (P,Σ) satisfying ∥φ̂Y − φ̂ϵφP,Σ∥B(Tn)≤ Mϵn, an application of Lemma 2

(and noting that |φP,Σ| ≤ 1) yields

∥φY − φϵφP,Σ∥B(Tn) ≤ ∥φY − φ̂Y ∥B(Tn)+∥(φϵ − φ̂ϵ)φP,Σ∥B(Tn)+∥φ̂Y − φ̂ϵφP,Σ∥B(Tn)

≤ ∥φY − φ̂Y ∥B(Tn)+∥φϵ − φ̂ϵ∥B(Tn)+∥φ̂Y − φ̂ϵφP,Σ∥B(Tn)

≤ D

√
T d
n log Tn√
n

+ ∥φ̂Y − φ̂ϵφP,Σ∥B(Tn)

≤ Dϵn + ∥φ̂Y − φ̂ϵφP,Σ∥B(Tn)

≤ Dϵn.

Let τT = sup∥t∥∞≤T |φϵ(t)|−1. Since φY = φXφϵ, the preceding bound implies that

Dϵn ≥ ∥φY − φϵφP,Σ∥B(Tn) = ∥(φX − φP,Σ)φϵ∥B(Tn)

≥ τ−1
Tn

∥(φX − φP,Σ)1{t ∈ B(Tn)}∥L2 .

It remains to examine the bias from truncating the L2 norm to the set B(Tn). Sup-

pose ∥Σ−1∥≤ M2σ2
n(nϵ

2
n)

1/κ holds. It follows that there exists a c > 0 for which λ1(Σ) ≥
c(nϵ2n)

−1/κσ−2
n holds. From the definition of σ2

n, we have T
2
n(nϵ

2
n)

−1/κσ−2
n ≍ (log n)(log logn)

in the mildly ill-posed case. In the severely ill-posed case, we have

T 2
n(nϵ

2
n)

−1/κσ−2
n ≍

(log n)(log log n) ζ ∈ (0, 2)

log n ζ = 2.
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It follows that there exists a universal constant C > 0 such that

∥(φX − φP,Σ)1{∥t∥∞> Tn}∥2L2 ≤ 2∥φX1{∥t∥∞> Tn}∥2L2+2∥φP,Σ1{∥t∥∞> Tn}∥2L2

≤ 2

∫
∥t∥∞>Tn

e−t′Σ0tdt+ 2

∫
∥t∥∞>Tn

e−t′Σtdt

≤ 2

∫
∥t∥∞>Tn

e−t′Σ0tdt+ 2

∫
∥t∥∞>Tn

e−c∥t∥2σ−2
n (nϵ2n)

−1/κ
dt

≤ D

[
e−CT 2

nT d−2
n + σ−2

n (nϵ2n)
−1/κe−CT 2

nσ
−2
n (nϵ2n)

−1/κ
T d−2
n

]
.

For all mildly ill-posed models and severely ill-posed with ζ ∈ (0, 2), the preceding bound

reduces to Dn−1. For severely ill-posed models with ζ = 2 it reduces to Dn−2K for some

constant K ∈ (0, 1/2] (that depends on, among other factors, the smallest eigenvalue of

Σ0).

We verify the conclusion of the theorem. Suppose that the model is mildly ill-posed or

severely ill-posed with ζ ∈ (0, 2). From combining the preceding bounds (and noting that

n−1 ⪅ τTnϵn), it follows that for every C ′ > 0, there exists a M > 0 such that

να,G

(
∥φX − φP,Σ∥L2≤ MτTnϵn |Zn, Tn

)
≥ 1− exp

(
−C ′nϵ2n

)
.

holds with P probability approaching 1. If the model is severely ill-posed with constant

K as specified above, we have

να,G

(
∥φX − φP,Σ∥L2≤ MτTnϵn + n−K |Zn, Tn

)
≥ 1− exp

(
−C ′nϵ2n

)
holds with P probability approaching 1.

For mildly ill-posed models, the claim follows from observing that

τTnϵn ≍ (log n)(λ+ζ)/2

√
n

(log log n)ζ/2.

Similarly, for severely ill-posed models with ζ ∈ (0, 2] and Tn = (c0 log n)
1/ζ for some c0

satisfying c0R = γ < 1/2, we have

τTnϵn ≍ n−1/2(log n)λ/2eγ logn = nγ−1/2(log n)λ/2.

Proof of Corollary 1. The analysis is analogous to that of Theorem 1. Let τT = sup∥t∥∞≤T |φϵ(t)|−1.

From the proof of that result, it follows that for any C ′ > 0, there exists a M > 0 such that

να,G

(
∥φX − φP,Σ∥2B(Tn)

≤ M2τ2Tn
ϵ2n, ∥Σ−1∥≤ M2σ2

n(nϵ
2
n)

1/κ

∣∣∣∣Zn, Tn

)
≥ 1− exp

(
−C ′nϵ2n

)
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holds with P probability approaching 1. For any (P,Σ) an application of Cauchy-Schwarz yields∫
B(Tn)

|φX(t)− φP,Σ(t)| dt ≤ DT d/2
n ∥φX − φP,Σ∥B(Tn).

In particular, convergence rates for the quantity on the right imply convergence rates for the

left up to a multiplicative factor of T
d/2
n . It remains to examine the bias from truncating

the L1 norm to the set B(Tn). Suppose ∥Σ−1∥≤ M2σ2
n(nϵ

2
n)

1/κ holds. It follows that there

exists a c > 0 for which λ1(Σ) ≥ c(nϵ2n)
−1/κσ−2

n holds. From the definition of σ2
n, we have

T 2
n(nϵ

2
n)

−1/κσ−2
n ≍ (log n)(log log n) in the mildly ill-posed case. In the severely ill-posed case,

we have

T 2
n(nϵ

2
n)

−1/κσ−2
n ≍

(log n)(log logn) ζ ∈ (0, 2)

log n ζ = 2.

It follows that there exists a universal constant C > 0 such that

∥(φX − φP,Σ)1{∥t∥∞> Tn}∥L1 ≤ ∥φX1{∥t∥∞> Tn}∥L1+∥φP,Σ1{∥t∥∞> Tn}∥L1

≤
∫
∥t∥∞>Tn

e−t′Σ0t/2dt+

∫
∥t∥∞>Tn

e−t′Σt/2dt

≤
∫
∥t∥∞>Tn

e−t′Σ0t/2dt+

∫
∥t∥∞>Tn

e−c∥t∥2σ−2
n (nϵ2n)

−1/κ/2dt

≤ D

[
e−CT 2

nT d−2
n + σ−2

n (nϵ2n)
−1/κe−CT 2

nσ
−2
n (nϵ2n)

−1/κ
T d−2
n

]
.

For all mildly ill-posed models and severely ill-posed with ζ ∈ (0, 2), the preceding bound

reduces to Dn−1/2. For severely ill-posed models with ζ = 2 it reduces to Dn−K for some

constant K ∈ (0, 1/2] (that depends on, among other factors, the smallest eigenvalue of Σ0).

From combining the preceding bounds, we obtain (similarly to the concluding remarks in the

proof of Theorem 1) contraction rates for ∥φX−φP,Σ∥L1 . The claim then follows from observing

that ∥fX − ϕP,Σ∥L∞≤ ∥φX − φP,Σ∥L1 .

Proof of Theorem 2. The proof proceeds through several steps which we outline below. We use

D > 0 as a generic universal constant that may change from line to line. For ease of notation,

we suppress the dependence of m = mn and G = Gn on n.

Define

αn = ϵ1/(p+ζ)
n , ϵ2n =

(log n)λ+d/2

n
2(p+ζ)

2(p+ζ)+d

, λ =

χ−1(d+ 2) χ < 2

d/χ+ 1 χ ≥ 2.

(i) First, we derive a lower bound for the normalizing constant of the posterior measure.
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Specifically, we aim to show that there exists a C > 0 such that∫
exp

(
− n

2
∥φ̂Y − φ̂ϵφP,Σ∥2B(Tn)

)
dνα,G(P,Σ) ≥ exp (− Cnϵ2n) (82)

holds with P probability approaching 1.

Since m = mn ≍ n, an application of Lemma 2 implies that

∥φ̂Y − φY ∥2B(Tn)
=

∫
B(Tn)

|φ̂Y (t)− φY (t)|2 dt ≤ D
T d
n log(Tn)

n
,

∥φ̂ϵ − φϵ∥2B(Tn)
=

∫
B(Tn)

|φ̂ϵ(t)− φϵ(t)|2 dt ≤ D
T d
n log(Tn)

n
.

with P probability approaching 1. On this set (and using that |φP,Σ| ≤ 1 ) we obtain

∥φ̂Y − φ̂ϵφP,Σ∥2B(Tn)
≤ D

(
∥φY − φϵφP,Σ∥2B(Tn)

+
T d
n log(Tn)

n

)
≤ D

(
∥φY − φϵφP,Σ∥2B(Tn)

+ϵ2n

)
,

where the last inequality follows from the definition of Tn and ϵn. It follows that∫
exp

(
− n

2
∥φ̂Y − φ̂ϵφP,Σ∥2B(Tn)

)
dνα,G(P,Σ)

≥ exp
(
−nDϵ2n

) ∫
exp

(
− nD∥φY − φϵφP,Σ∥2B(Tn)

)
dνα,G(P,Σ).

By Condition 4.3, there exists universal constants χ,C,M < ∞ and a mixing distribution

Sαn supported on the cube In = [−C(log ϵ−1
n )1/χ, C(log ϵ−1

n )1/χ]d that satisfies

∥fX ⋆ fϵ − ϕSαn ,α
2
nI

⋆ fϵ∥L2≤ Dϵ2n.

Note that F [fX ⋆fϵ] = φXφϵ and F [ϕSαn ,α
2
nI

⋆fϵ] = φϵφSαn ,α
2
nI
. As the Fourier transform

preserves L2 distance (up to a constant), it follows that

∥φY − φϵφSαn ,α
2
nI
∥2B(Tn)

≤ D∥φY − φϵφSαn ,α
2
nI
∥2L2 = D∥φXφϵ − φϵφSαn ,α

2
nI
∥2L2

≤ D∥fX ⋆ fϵ − ϕSαn ,α
2
nI

⋆ fϵ∥2L2

≤ Dα2(p+ζ)
n

≤ Dϵ2n.

From combining the preceding bounds, we obtain∫
exp

(
− nD∥φY − φϵφP,Σ∥2B(Tn)

)
dνα,G(P,Σ)

≥ exp (− nDϵ2n)

∫
exp

(
− nD∥φϵφSαn ,α

2
nI

− φϵφP,Σ∥2B(Tn)

)
dνα,G(P,Σ).
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Fix any (P,Σ) in the support of να,G. Since |φϵ| ≤ 1, we have that

∥φϵφSαn ,α
2
nI

− φϵφP,Σ∥B(Tn)≤ ∥φSαn ,α
2
nI

− φP,Σ∥B(Tn).

By an application of Lemma 10, there exists a discrete probability measure Fαn =∑N
i=1 piδµi with N ≤ DT d

n{log
(
ϵ−1
n

)
}d/χ and µi ∈ In that satisfies

∥φSαn ,α
2
nI

− φFαn ,α
2
nI
∥B(Tn)≤ Dϵn.

From the second claim of Lemma 10, we can also assume without loss of generality that the

support points have separation satisfying infk ̸=j∥µk −µj∥≥ ϵnT
−(d+2)/2
n . From combining

the preceding bounds, it follows that∫
exp

(
− nD∥φϵφSαn ,α

2
nI

− φϵφP,Σ∥2B(Tn)

)
dνα,G(P,Σ)

≥ exp
(
−nDϵ2n

) ∫
exp

(
− nD∥φFαn ,α

2
nI

− φP,Σ∥2B(Tn)

)
dνα,G(P,Σ).

Define the set

Ωn =

{
Σ ∈ Sd

+ : λj(Σ) ∈
[

α2
n

1 + ϵnT
−(d+2)/2
n

, α2
n

]
∀ j = 1, . . . , d.

}
Observe that for any distribution P and Σ ∈ Ωn, an application of Lemma 11 yields

∥φP,α2
nI

− φP,Σ∥B(Tn)≤ DT (d+2)/2
n ∥Σ− α2

nI∥ = DT (d+2)/2
n max

j=1,...,d

∣∣λj(Σ)− α2
n

∣∣
≤ Dϵn.

It follows that∫
exp

(
− nD∥φFαn ,α

2
nI

− φP,Σ∥2B(Tn)

)
dνα,G(P,Σ)

≥
∫
Σ∈Ωn

exp

(
− nD∥φFαn ,α

2
nI

− φP,Σ∥2B(Tn)

)
dνα,G(P,Σ)

≥ exp
(
−nDϵ2n

) ∫
Σ∈Ωn

exp

(
− nD∥φFαn ,α

2
nI

− φP,α2
nI
∥2B(Tn)

)
dνα,G(P,Σ).

Define Vi = {t ∈ Rd : ∥t − µi∥≤ ϵ2nT
−(d+2)/2
n } for i = 1, . . . , N and V0 = Rd \

⋃N
i=1 Vi.

From the definition of the {µi}Ni=1, it follows that {V0, V1, . . . , VN} is a disjoint partition

of Rd. For any fixed distribution P an application of Lemma 4 yields

∥φP,α2
nI

− φFαn ,α
2
nI
∥B(Tn) ≤ D

[
ϵn + T d/2

n

N∑
j=1

|P (Vj)− pj |
]
.
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The preceding bound implies that∫
Σ∈Ωn

exp

(
− nD∥φFαn ,α

2
nI

− φP,α2
nI
∥2B(Tn)

)
dνα,G(P,Σ)

≥
∫
(P,Σ):Σ∈Ωn,

∑N
j=1|P (Vj)−pj |≤ϵnT

−d/2
n

exp

(
− nD∥φFαn ,α

2
nI

− φP,α2
nI
∥2B(Tn)

)
dνα,G(P,Σ)

≥ exp
(
−nDϵ2n

) ∫
(P,Σ):Σ∈Ωn,

∑N
j=1|P (Vj)−pj |≤ϵnT

−d/2
n

dνα,G(P,Σ).

Since the prior is a product measure να,G = DPα ⊗G, the integral appearing on the right

can be expressed as ∫
Σ∈Ωn

∫
P :

∑N
j=1|P (Vj)−pj |≤ϵnT

−d/2
n

dDPα(P )dG(Σ).

As DPα is constructed using a Gaussian base measure α, it is straightforward to verify

that infNj=1 α(Vj) ≥ Cϵ2dn T
−d(d+2)/2
n exp

(
−C ′(log ϵ−1

n )2/χ
)
for universal constants C,C ′ >

0. By definition of DPα, (P (V1), . . . , P (VN )) ∼ Dir(N,α(V1), . . . , α(VN )). As N =

DT d
n{log

(
ϵ−1
n

)
}d/χ, an application of (Ghosal and Van der Vaart, 2017, Lemma G.13)

and the definition of (Tn, ϵ
2
n) implies∫

P :
∑N

j=1|P (Vj)−pj |≤ϵnT
−d/2
n

dDPα(P ) ≥ C exp (− C ′T d
n{log ϵ−1

n }d/χ+max{2/χ,1})

≥ C exp
(
−C ′nϵ2n

)
.

It remains to bound the outer integral. The law of G = Gn is given by Ω/σ2
n where Ω ∼ L

and L is a probability measure on Sd
+ that satisfies Assumption 2. By Assumption 2 and

the definition of (α2
n, σ

2
n, ϵ

2
n), there exists a universal constant C,C ′, C ′′ > 0 such that∫

Σ∈Ωn

dG(Σ) =

∫
Σ∈σ2

nΩn

dL(Σ) ≥ C exp (− C ′σ−2κ
n α−2κ

n ) ≥ C exp
(
−C ′′nϵ2n

)
.

The estimate for the lower bound of the normalizing constant follows from combining all

the preceding bounds.

(ii) Next, we establish a preliminary local concentration bound under the prior. Observe that

for any E > 0, we have∫
(P,Σ):∥φ̂Y −φ̂ϵφP,Σ∥2B(Tn)

>2Eϵ2n

exp

(
− n

2
∥φ̂Y − φ̂ϵφP,Σ∥2B(Tn)

)
dνα,G(P,Σ) ≤ exp (− nEϵ2n).

The law of G = Gn is given by Ω/σ2
n where Ω ∼ L and L is a probability measure on

Sd
+ that satisfies Assumption 2. By Assumption 2, it follows that for every E′ > 0, there
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exists E > 0 such that∫
Σ:∥Σ−1∥>Eσ2

n(nϵ
2
n)

1/κ

dG(Σ) =

∫
Σ:∥Σ−1∥>E(nϵ2n)

1/κ

dL(Σ) ≤ exp (− E′nϵ2n).

As the prior is a product measure να,G = DPα ⊗ G and ∥φ̂Y − φ̂ϵφP,Σ∥2B(Tn)
≥ 0, the

preceding bound implies∫
Σ:∥Σ−1∥>Eσ2

n(nϵ
2
n)

1/κ

exp

(
− n

2
∥φ̂Y − φ̂ϵφP,Σ∥2B(Tn)

)
dνα,G(P,Σ)

≤
∫
Σ:∥Σ−1∥>Eσ2

n(nϵ
2
n)

1/κ

dG(Σ)

≤ exp (− E′nϵ2n).

From combining the preceding bounds, it follows that for any E′ > 0 we can pick E > 0

sufficiently large such that∫
(P,Σ):∥φ̂Y −φ̂ϵφP,Σ∥2B(Tn)

≤Eϵ2n,∥Σ−1∥≤Eσ2
n(nϵ

2
n)

1/κ

exp

(
− n

2
∥φ̂Y − φ̂ϵφP,Σ∥2B(Tn)

)
dνα,G(P,Σ)

≥ exp (− E′nϵ2n).

(iii) We prove the main statement of the theorem. From the bounds derived in steps (i) and

(ii), it follows that for any C ′ > 0, there exists a M > 0 such that

να,G

(
∥φ̂Y − φ̂ϵφP,Σ∥2B(Tn)

≤ M2ϵ2n, ∥Σ−1∥≤ M2σ2
n(nϵ

2
n)

1/κ

∣∣∣∣Zn, Tn

)
≥ 1− exp

(
−C ′nϵ2n

)
holds with P probability approaching 1.

For any choice of (P,Σ) satisfying ∥φ̂Y − φ̂ϵφP,Σ∥B(Tn)≤ Mϵn, an application of Lemma 2

(and noting that |φP,Σ| ≤ 1) yields

∥φY − φϵφP,Σ∥B(Tn) ≤ ∥φY − φ̂Y ∥B(Tn)+∥(φϵ − φ̂ϵ)φP,Σ∥B(Tn)+∥φ̂Y − φ̂ϵφP,Σ∥B(Tn)

≤ ∥φY − φ̂Y ∥B(Tn)+∥φϵ − φ̂ϵ∥B(Tn)+∥φ̂Y − φ̂ϵφP,Σ∥B(Tn)

≤ D

√
T d
n log Tn√
n

+ ∥φ̂Y − φ̂ϵφP,Σ∥B(Tn)

≤ Dϵn + ∥φ̂Y − φ̂ϵφP,Σ∥B(Tn)

≤ Dϵn.

Since φY = φXφϵ and inf∥t∥∞≤Tn
|φϵ(t)| ≥ τ−1

Tn
, the preceding bound implies that

Dϵn ≥ ∥φY − φϵφP,Σ∥B(Tn) = ∥(φX − φP,Σ)φϵ∥B(Tn)

≥ τ−1
Tn

∥(φX − φP,Σ)1{t ∈ B(Tn)}∥L2 .
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It remains to examine the bias from truncating the L2 norm to the set B(Tn). Sup-

pose ∥Σ−1∥≤ M2σ2
n(nϵ

2
n)

1/κ holds. It follows that there exists a c > 0 for which λ1(Σ) ≥
c(nϵ2n)

−1/κσ−2
n holds. From the definition of σ2

n, we have T
2
n(nϵ

2
n)

−1/κσ−2
n ≍ (log n)(log logn).

Since fX ∈ Hp(M), we have that∫
∥t∥∞>Tn

|φX(t)|2 dt ≤ DT−2p
n .

It follows that there exists a universal constant C > 0 such that

∥(φX − φP,Σ)1{∥t∥∞> Tn}∥2L2 ≤ 2∥φX1{∥t∥∞> Tn}∥2L2+2∥φP,Σ1{∥t∥∞> Tn}∥2L2

≤ 2

∫
∥t∥∞>Tn

|φX(t)|2 dt+ 2

∫
∥t∥∞>Tn

e−t′Σtdt

≤ 2

∫
∥t∥∞>Tn

|φX(t)|2 dt+ 2

∫
∥t∥∞>Tn

e−c∥t∥2σ−2
n (nϵ2n)

−1/κ
dt

≤ D

[
T−2p
n + σ−2

n (nϵ2n)
−1/κe−CT 2

nσ
−2
n (nϵ2n)

−1/κ
T d−2
n

]
.

Since T 2
n(nϵ

2
n)

−1/κσ−2
n ≍ (log n)(log log n), the preceding bound reduces to DT−2p

n . From

combining the preceding bounds (and noting that T−p
n ⪅ τTnϵn), it follows that for every

C ′ > 0, there exists a M > 0 such that

να,G

(
∥φX − φP,Σ∥L2≤ MτTnϵn |Zn, Tn

)
≥ 1− exp

(
−C ′nϵ2n

)
.

holds with P probability approaching 1. The claim follows from observing that

τTnϵn ≍ T ζ
nϵn ≍ n−p/[2(p+ζ)+d](log n)(λ+ζ)/2+d/4.

Proof of Theorem 3. The proof proceeds through several steps which we outline below. We use

D > 0 as a generic universal constant that may change from line to line. Define

ϵ2n = n−1(log n)λ , λ =

χ−1(d+ 2) + d/2 χ < 2

d+ 1 χ ≥ 2.

(i) First, we derive a lower bound for the normalizing constant of the posterior measure.

Specifically, we aim to show that there exists a C > 0 such that∫
exp

(
− n

2
∥φ̂Y2∇ log(φP,Σ)− φ̂Y1,Y2∥2B(Tn)

)
dνα,G(P,Σ) ≥ exp (− Cnϵ2n) (83)

holds with P probability approaching 1.

Fix ϵ > 0 sufficiently small. By Condition 4.5, the mixing distribution F0 satisfies F0(t ∈
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Rd : ∥t∥> z) ≤ C exp(−C ′zχ) for some C,C ′ > 0. Fix a universal constant R > 0

such that exp(−C ′zχ) ≤ ϵ for every z > R(log ϵ−1)1/χ. In particular, note that the cube

I = [−R(log ϵ−1)1/χ, R(log ϵ−1)1/χ]d satisfies 1 − F0(I) ≤ Dϵ. Denote the probability

measure induced from the restriction of F0 to I by

F 0(A) =
F0(A ∩ I)

F0(I)
∀ Borel A ⊆ Rd.

Observe that

sup
t∈Rd

∣∣∣φF0(t)− φF 0
(t)
∣∣∣ = sup

t∈Rd

∣∣∣∣∫
Rd

eit
′xd(F − F 0)(x)

∣∣∣∣ ≤ ∥F0 − F 0∥TV ≤ 1− F0(I) ≤ Dϵ.

For all sufficiently large M > 0, the tail bound on the mixing distribution F0 implies

E[∥X∥1{∥X∥> M}] =
∫ ∞

0
P(∥X∥> M, ∥X∥> t)dt

≤ MP(∥X∥> M) +

∫ ∞

M
P(∥X∥> t)dt

≤ D

[
M exp

(
−C ′Mχ

)
+

∫ ∞

M
exp
(
−C ′tχ

)
dt

]
≤ D

[
M exp

(
−C ′Mχ

)
+ exp

(
−C ′Mχ

)
M1−χ

]
.

It follows that

sup
t∈Rd

∥∇φF0(t)−∇φF 0
(t)∥ = sup

t∈Rd

∥∥∥∥∫
Rd

xeit
′xd(F0 − F 0)(x)

∥∥∥∥
≤ sup

t∈Rd

∥∥∥∥∫
x∈I

xeit
′xd(F0 − F 0)

∥∥∥∥+ sup
t∈Rd

∥∥∥∥∫
x/∈I

xeit
′xdF0

∥∥∥∥
≤ D

[
(log ϵ−1)1/χ∥F0 − F 0∥TV +(log ϵ−1)1/χϵ

]
≤ D(log ϵ−1)1/χϵ.

By Condition 4.5, inf∥t∥∞≤Tn
|φF0(t)| ≥ c exp

(
−c′T 2

n

)
for some c, c′ > 0. Since T 2

n ⪅ log(n),

it follows that there exists a C1 > 0 such that

inf
∥t∥∞≤Tn

|φF0(t)| ≥ n−C1 .

In particular, we can choose L > 1 large enough such that the choice ϵ = ϵLn implies F 0

has support contained in the cube In = [−E(log ϵ−1
n )1/χ, E(log ϵ−1

n )1/χ]d for some universal

constant E > 0 and Tnn
C1(log ϵ−L

n )1/χϵLn ≤ ϵn. Since sup∥t∥∞≤Tn
∥∇ logφF0(t)∥⪅ Tn, it
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follows that

sup
∥t∥∞≤Tn

∥∇ logφF0(t)∥

∣∣∣φF0(t)− φF 0
(t)
∣∣∣

|φF0(t)|
≤ sup

∥t∥∞≤Tn

∥∇ logφF0(t)∥
|φF0(t)|

sup
t∈Rd

∣∣∣φF0(t)− φF 0
(t)
∣∣∣ ≤ Dϵn

sup
∥t∥∞≤Tn

∥∇φF0(t)−∇φF 0
(t)∥

|φF0(t)|
≤ sup

∥t∥∞≤Tn

|φF0(t)|
−1 sup

t∈Rd

∥∇φF0(t)−∇φF 0
(t)∥≤ Dϵn.

Since ϵn ↓ 0, observe that the preceding bound also implies∣∣∣φF 0
(t)
∣∣∣ ≥ |φF0(t)| −

∣∣∣φF0(t)− φF 0
(t)
∣∣∣ ≥ |φF0(t)| −Dϵn |φF0(t)| ≥

1

2
|φF0(t)|

for all sufficiently large n.

It follows that

sup
∥t∥∞≤Tn

∥∇ logφF0(t)−∇ logφF 0
(t)∥

= sup
∥t∥∞≤Tn

∥∥∥∥∇ logφF0(t)
φF 0

(t)− φF0(t)

φF 0
(t)

+
∇φF0(t)−∇φF 0

(t)

φF 0
(t)

∥∥∥∥
≤ sup

∥t∥∞≤Tn

( ∣∣∣∣∣φF 0
(t)− φF0(t)

φF 0
(t)

∣∣∣∣∣ ∥∇ logφF0(t)∥+
∥∥∥∥∇φF0(t)−∇φF 0

(t)

φF 0
(t)

∥∥∥∥)
≤ 2 sup

∥t∥∞≤Tn

( ∣∣∣∣φF 0
(t)− φF0(t)

φF0(t)

∣∣∣∣ ∥∇ logφF0(t)∥+
∥∥∥∥∇φF0(t)−∇φF 0

(t)

φF0(t)

∥∥∥∥)
≤ Dϵn.

Next, we show that F 0 can be suitably approximated by a discrete measure. Let ι =

max{d, d/χ + d/2}. By Lemma 5, there exists a discrete measure F ′ =
∑N

i=1 piδµi with

at most N = D(log ϵ−1
n )ι support points on In such that

sup
∥t∥∞≤Tn

∣∣∣φF 0
(t)− φF ′(t)

∣∣∣ ≤ T−1
n n−C1ϵn

sup
∥t∥∞≤Tn

∥∇φF 0
(t)−∇φF ′(t)∥≤ n−C1ϵn.

From the final claim of Lemma 5, we can also assume without loss of generality that the

support points satisfy infk ̸=j∥µk−µj∥≥ ϵL2
n for some L2 > 1. Observe that 2 inf∥t∥∞≤Tn

∣∣∣φF 0
(t)
∣∣∣ ≥

inf∥t∥∞≤Tn
|φF0(t)| ≥ n−C1 and

sup
∥t∥∞≤Tn

∥∇ logφF 0
(t)∥ ≤ sup

∥t∥∞≤Tn

∥∇ logφF0(t)−∇ logφF 0
(t)∥+ sup

∥t∥∞≤Tn

∥∇ logφF0(t)∥

≤ D(ϵn + Tn)

≤ DTn.
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The preceding bounds imply

sup
∥t∥∞≤Tn

∥∇ logφF 0
(t)∥

∣∣∣φF 0
(t)− φF ′(t)

∣∣∣∣∣∣φF 0
(t)
∣∣∣ ≤ Dϵn , sup

∥t∥∞≤Tn

∥∇φF 0
(t)−∇φF ′(t)∥∣∣∣φF 0

(t)
∣∣∣ ≤ Dϵn.

From an analogous argument to the bound for F0 and F 0, it follows that

sup
∥t∥∞≤Tn

∥∇ logφF 0
(t)−∇ logφF ′(t)∥≤ Dϵn.

Fix any L3 > L2 sufficiently large such that

T 2
nn

C1ϵL3
n ≤ ϵn , nC1

√
nϵn
√
log nϵL3/2

n ≤ ϵn , Tnn
C1(log ϵ−1

n )1/χϵL3
n ≤ ϵn.

Define Vi = {t ∈ In : ∥t − µi∥≤ ϵL3
n } for i = 1, . . . , N and set V0 = Rd \

⋃N
i=1 Vi. From

the definition of the {µi}Ni=1, it follows that {V0, V1, . . . , VN} is a disjoint partition of

Rd. By Lemma 3, for any distribution P that satisfies
∫
Rd∥x∥2dP (x) ≤ nϵ2n log n and∑N

j=1 |P (Vj)− pj | ≤ ϵL3
n , we have that

sup
∥t∥∞≤Tn

∥∇ logφF ′(t)∥|φP (t)− φF ′(t)|
|φF ′(t)|

≤ Dϵn , sup
∥t∥∞≤Tn

∥∇φP (t)−∇φF ′(t)∥
|φF ′(t)|

≤ Dϵn.

For all such P , an analogous argument to the bound for F0 and F 0 implies that

sup
∥t∥∞≤Tn

∥∇ logφP (t)−∇ logφF ′(t)∥≤ Dϵn.

From combining all the preceding bounds, observe that such all such P also satisfy

sup
∥t∥∞≤Tn

∥∇ logφP (t)−∇ logφF0(t)∥≤ Dϵn

sup
∥t∥∞≤Tn

∥∇ logφP (t)∥≤ Dϵn + sup
∥t∥∞≤Tn

∥∇ logφF0(t)∥≤ DTn.

Given any positive definite Σ, the preceding bound also implies that

sup
∥t∥∞≤Tn

∥∇ logφP,Σ(t)∥≤ sup
∥t∥∞≤Tn

[
∥∇ logφP (t)∥+∥∇ logφΣ(t)∥

]
≤ D

(
Tn + Tn∥Σ∥

)
.

By Lemma 2 and 9, we have∫
B(Tn)

|φ̂Y2(t)− φY2(t)|
2 dt ≤ D

T d
n log(Tn)

n
,∫

B(Tn)
∥φ̂Y1,Y2(t)− φY1,Y2(t)∥2dt ≤ D

T d
n log(Tn)

n
.
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with P probability approaching 1. On this set, when P satisfies the conditions specified

above and ∥Σ∥≤ D, we have that

∥φ̂Y2∇ logφP,Σ − φ̂Y1,Y2∥2B(Tn)
≤ D

[
∥φY2∇ logφP,Σ − φY1,Y2∥2B(Tn)

+
T d+1
n log(Tn)

n

]
≤ D

[
∥φY2∇ logφP,Σ − φY1,Y2∥2B(Tn)

+ϵ2n

]
.

Define the set

Gn =

{
(P,Σ) : ∥Σ− Σ0∥≤ ϵ2n,

∫
Rd

∥x∥2dP (x) ≤ nϵ2n log(n) ,
N∑
j=1

|P (Vj)− pj | ≤ ϵL3
n

}
.

From combining all the preceding bounds, it follows that∫
exp

(
− n

2
∥φ̂Y2∇ log(φP,Σ)− φ̂Y1,Y2∥2B(Tn)

)
dνα,G(P,Σ)

≥
∫
Gn

exp

(
− n

2
∥φ̂Y2∇ log(φP,Σ)− φ̂Y1,Y2∥2B(Tn)

)
dνα,G(P,Σ)

≥ exp (− nDϵ2n)

∫
Gn

exp

(
− nD∥φY2∇ logφP,Σ − φY1,Y2∥2B(Tn)

)
dνα,G(P,Σ).

Since φY1,Y2 = φY2∇ logφX and φX = φF0,Σ0 , the preceding integral can be expressed as∫
Gn

exp

(
− nD∥φY2∇ logφF,Σ − φY1,Y2∥2B(Tn)

)
dνα,G(P,Σ)

=

∫
Gn

exp

(
− nD∥φY2(∇ logφP,Σ −∇ logφF0,Σ0)∥2B(Tn)

)
dνα,G(P,Σ).

For every (P,Σ) ∈ Gn, the preceding bounds imply that

sup
∥t∥∞≤Tn

∥∇ logφP,Σ −∇ logφF0,Σ0∥

= sup
∥t∥∞≤Tn

∥(∇ logφP −∇ logφF0) + (∇ logφΣ −∇ logφΣ0)∥

≤ sup
∥t∥∞≤Tn

∥∇ logφP −∇ logφF0∥+ sup
∥t∥∞≤Tn

∥∇ logφΣ −∇ logφΣ0∥

≤ Dϵn +D∥Σ− Σ0∥Tn

≤ Dϵn ,

where we used that ∥Σ− Σ0∥≤ ϵ2n and ϵ2nTn ≤ ϵn. Since ∥φY2∥L2< ∞, it follows that∫
Gn

exp

(
− nD∥φY2(∇ logφP,Σ −∇ logφF0,Σ0)∥2B(Tn)

)
dνα,G(P,Σ)

≥ exp (− nDϵ2n)

∫
Gn

dνα,G(P,Σ).
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Define the sets

Gn,1 =

{
(P,Σ) : ∥Σ− Σ0∥≤ ϵ2n ,

N∑
j=1

|P (Vj)− pj | ≤ ϵL3
n

}
,

Gn,2 =

{
(P,Σ) : ∥Σ− Σ0∥≤ ϵ2n,

∫
Rd

∥x∥2dP (x) > nϵ2n log(n) ,
N∑
j=1

|P (Vj)− pj | ≤ ϵL3
n

}
.

Observe that Gn = Gn,1 \ Gn,2 and hence∫
Gn

dνα,G(P,Σ) =

∫
Gn,1

dνα,G(P,Σ)−
∫
Gn,2

dνα,G(P,Σ). (84)

For the second term in (84), we have∫
Gn,2

dνα,G(P,Σ) ≤
∫
P :

∫
Rd∥x∥2dP (x)>nϵ2n log(n)

dνα,G(P,Σ)

≤
∫
P :

∫
Rd∥x∥2dP (x)>nϵ2n log(n)

dDPα(P )

≤ exp
(
−Dnϵ2n log n

)
,

where the second inequality is due to να,G being a product measure να,G = DPα ⊗G and

the third inequality follows from an application of Lemma 12.

For the first term in (84), we have that∫
Gn,1

dνα,G(P,Σ) =

∫
Σ:∥Σ−Σ0∥≤ϵ2n

∫
P :

∑N
j=1|P (Vj)−pj |≤ϵ

L3
n

dDPα(P )dG(Σ).

As DPα is constructed using a Gaussian base measure α, it is straightforward to verify

that infNj=1 α(Vj) ≥ CϵL3d
n exp

(
−C ′(log ϵ−1

n )2/χ
)
for universal constants C,C ′ > 0. By def-

inition of DPα, (P (V1), . . . , P (VN )) ∼ Dir(N,α(V1), . . . , α(VN )). As N = D{log
(
ϵ−1
n

)
}ι,

an application of (Ghosal and Van der Vaart, 2017, Lemma G.13) implies∫
P :

∑N
j=1|P (Vj)−pj |≤ϵn

dDPα(P ) ≥ C exp (− C ′(log ϵ−1
n )ι+max{2/χ,1}) = C exp (− C ′(log ϵ−1

n )λ)

≥ C exp (− C ′′nϵ2n).

It remains to bound the outer integral. By Assumption 2, there exists a universal constant

C > 0 and q > 0 such that ∫
Σ:∥Σ−Σ0∥≤ϵ2n

dG(Σ) ≥ Cϵqn. (85)
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From combining the preceding bounds, it follows from (84) that∫
Gn

dνα,G(P,Σ) =

∫
Gn,1

dνα,G(P,Σ)−
∫
Gn,2

dνα,G(P,Σ)

≥ C exp
(
−C ′′nϵ2n

)
− exp

(
−Dnϵ2n log n

)
≥ exp

(
−Dnϵ2n

)
.

The estimate for the lower bound of the normalizing constant follows from combining all

the preceding bounds.

(ii) We prove the main statement of the theorem. Observe that for any E > 0, we have∫
(P,Σ):∥φ̂Y2

∇ log(φP,Σ)−φ̂Y1,Y2
∥2B(Tn)

>2Eϵ2n

exp

(
− n

2
∥φ̂Y2∇ log(φP,Σ)− φ̂Y1,Y2∥2B(Tn)

)
dνα,G(P,Σ)

≤ exp (− nEϵ2n).

From combining the preceding bound with the one derived in step (i), it follows that for

any C ′ > 0, there exists a M > 0 such that

να,G

(
∥φ̂Y2∇ log(φP,Σ)− φ̂Y1,Y2∥2B(Tn)

≤ M2ϵ2n

∣∣∣∣Zn, Tn

)
≥ 1− exp

(
−C ′nϵ2n

)
.

holds with P probability approaching 1.

By an application of Lemma 9, we have that

∥φ̂Y1,Y2 − φY1,Y2∥B(Tn)≤ Dϵn

holds with P probability approaching 1.

Since φY1,Y2 = φY2∇ logφF0,Σ0 and sup∥t∥∞≤Tn
∥∇ logφF0,Σ0∥≤ DTn, an application of

Lemma 2 implies that

∥φ̂Y2∇ logφF0,Σ0 − φY1,Y2∥B(Tn)≤ Dϵn

holds with P probability approaching 1.

From combining the preceding bounds, it follows that for any C ′ > 0, there exists a M > 0

such that

να,G

(
∥φ̂Y2(∇ logφP,Σ −∇ logφF0,Σ0)∥2B(Tn)

≤ M2ϵ2n

∣∣∣∣Zn, Tn

)
≥ 1− exp

(
−C ′nϵ2n

)
holds with P probability approaching 1.

Since Tn = (c0 log n)
1/2 for some c0 satisfying c0R = γ < 1/2, an application of Lemma 2
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implies that

sup
∥t∥∞≤Tn

|φ̂Y2(t)− φY2(t)|
|φY2(t)|

≤ Dn−1/2+γ
√
log logn

with P probability approaching 1. As the quantity on the right converges to zero, it follows

that

|φ̂Y2(t)| ≥ |φY2(t)| − |φ̂Y2(t)− φY2(t)| ≥
1

2
|φY2(t)| ≥

1

2
n−γ

uniformly over the set {∥t∥∞≤ Tn}, with P probability approaching 1. It follows that for

any C ′ > 0, there exists a M > 0 such that

να,G

(
∥∇ logφP,Σ −∇ logφF0,Σ0∥2B(Tn)

≤ M2n2γϵ2n

∣∣∣∣Zn, Tn

)
≥ 1− exp

(
−C ′nϵ2n

)
holds with P probability approaching 1. The claim follows from observing that

ϵnn
γ ≍ n−1/2+γ(log n)λ/2.

Proof of Theorem 4. We use D > 0 as a generic universal constant that may change from line

to line. Define

ϵ2n = n−1(log n)λ , λ =

 3
χ + 1

2 χ < 2

2 χ ≥ 2.

The proof continues from the conclusion of Theorem 3 with a few modifications to the preceding

bounds to account for the change in covariance prior. For ease of notation, we suppress the

dependence of G = Gn on n.

(i) First, we derive a lower bound for the normalizing constant of the posterior measure.

Specifically, we aim to show that there exists a C > 0 such that∫
exp

(
− n

2
∥φ̂Y2∇ log(φP,Σ)− φ̂Y1,Y2∥2B(Tn)

)
dνα,G(P,Σ) ≥ exp (− Cnϵ2n) (86)

holds with P probability approaching 1.

The argument is identical to part (i) of Theorem 3 except that Equation (85) is replaced

with the following argument. The law of G is given by Ω/σ2
n where Ω ∼ L and L is

a probability measure on Sd
+ that satisfies Assumption 2. By Assumption 2 and the
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definition of (σ2
n, ϵ

2
n), there exists universal constant C,C ′, C ′′ > 0 such that∫

Σ:∥Σ−Σ0∥≤ϵ2n

dG(Σ) =

∫
Σ:∥Σ−σ2

nΣ0∥≤σ2
nϵ

2
n

dL(Σ) ≥ C exp (− C ′σ−2κ
n ) ≥ C exp

(
−C ′′nϵ2n

)
.

The lower bound for the normalizing constant then follows from the conclusion of part (i)

of Theorem 3.

(ii) Next, we establish a preliminary local concentration bound under the prior. Observe that

for any E > 0, we have∫
(P,Σ):∥φ̂Y2

∇ log(φP,Σ)−φ̂Y1,Y2
∥2B(Tn)

>2Eϵ2n

exp

(
− n

2
∥φ̂Y2∇ log(φP,Σ)− φ̂Y1,Y2∥2B(Tn)

)
dνα,G(P,Σ)

≤ exp (− nEϵ2n).

The law of G is given by Σ/σ2
n where Σ ∼ L and L is a probability measure on Sd

+ that

satisfies Assumption 2. By Assumption 2, it follows that for every E′ > 0, there exists

E > 0 such that∫
Σ:∥Σ−1∥>Eσ2

n(nϵ
2
n)

1/κ

dG(Σ) =

∫
Σ:∥Σ−1∥>E(nϵ2n)

1/κ

dL(Σ) ≤ exp (− E′nϵ2n).

As the prior is a product measure να,G = DPα⊗G and ∥φ̂Y2∇ log(φP,Σ)− φ̂Y1,Y2∥2B(Tn)
≥ 0,

the preceding bound implies∫
Σ:∥Σ−1∥>Eσ2

n(nϵ
2
n)

1/κ

exp

(
− n

2
∥φ̂Y2∇ log(φP,Σ)− φ̂Y1,Y2∥2B(Tn)

)
dνα,G(P,Σ)

≤
∫
Σ:∥Σ−1∥>Eσ2

n(nϵ
2
n)

1/κ

dG(Σ)

≤ exp (− E′nϵ2n).

From combining the preceding bounds, it follows that for any E′ > 0 we can pick E > 0

sufficiently large such that∫
(P,Σ):∥φ̂Y2

∇ log(φP,Σ)−φ̂Y1,Y2
∥2B(Tn)

≤Eϵ2n,

∥Σ−1∥≤Eσ2
n(nϵ

2
n)

1/κ

exp

(
− n

2
∥φ̂Y2∇ log(φP,Σ)− φ̂Y1,Y2∥2B(Tn)

)
dνα,G(P,Σ)

≥ 1− exp (− E′nϵ2n).

(iii) We prove the main statement of the theorem. From the bounds derived in steps (i) and

(ii), it follows that for any C ′ > 0, there exists a M > 0 such that

να,G

(
∥φ̂Y2∇ log(φP,Σ)− φ̂Y1,Y2∥2B(Tn)

≤ M2ϵ2n, ∥Σ−1∥≤ M2σ2
n(nϵ

2
n)

1/κ

∣∣∣∣Zn, Tn

)
≥ 1− exp

(
−C ′nϵ2n

)
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holds with P probability approaching 1.

By an application of Lemma 9, we have that

∥φ̂Y1,Y2 − φY1,Y2∥B(Tn)≤ Dϵn

holds with P probability approaching 1.

Since φY1,Y2 = φY2∇ logφF0,Σ0 and sup∥t∥∞≤Tn
∥∇ logφF0,Σ0∥≤ DTn, an application of

Lemma 2 implies that

∥φ̂Y2∇ logφF0,Σ0 − φY1,Y2∥B(Tn)≤ Dϵn

holds with P probability approaching 1.

From combining the preceding bounds, it follows that for any C ′ > 0, there exists a M > 0

such that

να,G

(
∥φ̂Y2(∇ logφP,Σ −∇ logφF0,Σ0)∥2B(Tn)

≤ M2ϵ2n, ∥Σ−1∥≤ M2σ2
n(nϵ

2
n)

1/κ

∣∣∣∣Zn, Tn

)
≥ 1− exp

(
−C ′nϵ2n

)
holds with P probability approaching 1.

Since Tn = (c0 log n)
1/2 for some c0 satisfying c0R = γ < 1/2, an application of Lemma 2

implies that

sup
∥t∥∞≤Tn

|φ̂Y2(t)− φY2(t)|
|φY2(t)|

≤ Dn−1/2+γ
√
log logn

with P probability approaching 1. As the quantity on the right converges to zero, it follows

that

|φ̂Y2(t)| ≥ |φY2(t)| − |φ̂Y2(t)− φY2(t)| ≥
1

2
|φY2(t)| ≥

1

2
n−γ .

uniformly over the set {∥t∥∞≤ Tn}, with P probability approaching 1. It follows that for

any C ′ > 0, there exists a M > 0 such that

να,G

(
∥∇ logφP,Σ −∇ logφF0,Σ0∥2B(Tn)

≤ M2n2γϵ2n, ∥Σ−1∥≤ M2σ2
n(nϵ

2
n)

1/κ

∣∣∣∣Zn, Tn

)
≥ 1− exp

(
−C ′nϵ2n

)
.

holds with P probability approaching 1.

In dimension d = 1, the fundemental theorem of calculus, Cauchy-Schwarz and the initial
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value condition ∇ logφX(0) = ∇ logφP,Σ(0) = 0 imply that

|logφF0,Σ0(t)− logφP,Σ(t)| =
∣∣∣∣∫ t

0
[∇ logφF0,Σ0(s)−∇ logφP,Σ(s)]ds

∣∣∣∣
≤
√
Tn∥∇ logφF0,Σ0 −∇ logφP,Σ∥B(Tn)

holds for every t ∈ B(Tn). Furthermore, for every fixed t ∈ Rd, the mean value theorem

implies that

|φF0,Σ0(t)− φP,Σ(t)| ≤ sup
st∈[0,1]

∣∣∣est logφF0,Σ0
(t)+(1−st) logφP,Σ(t)

∣∣∣ |logφF0,Σ0(t)− logφP,Σ(t)| .

Since |φF0,Σ0 | ≤ 1 and |φP,Σ| ≤ 1 (as they are characteristic function of random variables),

the preceding bound reduces to

|φF0,Σ0(t)− φP,Σ(t)| ≤ |logφF0,Σ0(t)− logφP,Σ(t)| .

From combining the preceding bounds and noting that the Lebesgue measure of B(Tn) is

of order Tn, it follows that there exists a universal constant D > 0 such that

∥φF0,Σ0 − φP,Σ∥B(Tn)≤ DTn∥∇ logφF0,Σ0 −∇ logφP,Σ∥B(Tn).

It follows that for any C ′ > 0, there exists a M > 0 such that

να,G

(
∥φP,Σ − φF0,Σ0∥B(Tn)≤ MTnn

γϵn, ∥Σ−1∥≤ M2σ2
n(nϵ

2
n)

1/κ

∣∣∣∣Zn, Tn

)
≥ 1− exp

(
−C ′nϵ2n

)
.

holds with P probability approaching 1.

It remains to examine the bias from truncating the L2 norm to the set B(Tn). Suppose

∥Σ−1∥≤ M2σ2
n(nϵ

2
n)

1/κ holds. It follows that there exists a c > 0 for which λ1(Σ) ≥
c(nϵ2n)

−1/κσ−2
n holds. From the definition of σ2

n, we have T 2
n(nϵ

2
n)

−1/κσ−2
n ≍ log n. It

follows that there exists a universal constant C > 0 such that

∥(φF0,Σ0 − φP,Σ)1{∥t∥∞> Tn}∥2L2 ≤ 2∥φF0,Σ01{∥t∥∞> Tn}∥2L2+2∥φP,Σ1{∥t∥∞> Tn}∥2L2

≤ 2

∫
∥t∥∞>Tn

e−t′Σ0tdt+ 2

∫
∥t∥∞>Tn

e−t′Σtdt

≤ 2

∫
∥t∥∞>Tn

e−t′Σ0tdt+ 2

∫
∥t∥∞>Tn

e−c∥t∥2σ−2
n (nϵ2n)

−1/κ
dt

≤ D

[
e−CT 2

nT d−2
n + σ−2

n (nϵ2n)
−1/κe−CT 2

nσ
−2
n (nϵ2n)

−1/κ
T d−2
n

]
.

From substituting T 2
n(nϵ

2
n)

−1/κσ−2
n ≍ log n, the preceding bound reduces to Dn−2K for

some constant K ∈ (0, 1/2] (that depends on, among other factors, the smallest eigenvalue
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of Σ0).

With constant K as specified above, it follows that for any C ′ > 0, there exists M > 0

such that

να,G

(
∥φF0,Σ0 − φP,Σ∥L2≤ MTnn

γϵn + n−K |Zn, Tn

)
≥ 1− exp

(
−C ′nϵ2n

)
holds with P probability approaching 1. The claim follows from observing that

Tnn
γϵn ≍ n−1/2+γ(log n)λ/2+1/2.

Proof of Theorem 5. The proof proceeds through several steps which we outline below. We use

D > 0 as a generic universal constant that may change from line to line. Define

ϵ2n = n−1(log n)λ , λ =

χ−1(d+ 2) + d/2 χ < 2

d+ 1 χ ≥ 2.

For ease of notation, we supress the dependence of G = Gn on n.

(i) First, we derive a lower bound for the normalizing constant of the posterior measure.

Specifically, we aim to show that there exists a C > 0 such that∫
exp

(
− n

2
∥φ̂Y2∇ log(φP,Σ)− φ̂Y1,Y2∥2∂, B(T )

)
dνα,G(P,Σ) ≥ exp (− Cnϵ2n) (87)

holds with P probability approaching 1.

The argument to verify this is completely analogous to part (i) of Theorem 3. To be

specific, all the estimates in that proof hold uniformly over ∥t∥∞≤ Tn and so they also

hold over the set {tz : ∥z∥∞≤ Tn , t ∈ [0, 1]}. Furthermore, as Hd−1(∂B(Tn)) ≤ DT d−1
n ,

Lemma 2 and 9 imply that∫
∂B(Tn)

|φ̂Y2(t)− φY2(t)|
2 dHd−1(t) ≤ D

T d−1
n log(Tn)

n
,∫

∂B(Tn)
∥φ̂Y1,Y2(t)− φY1,Y2(t)∥2dHd−1(t) ≤ D

T d−1
n log(Tn)

n

holds with P probability approaching 1. The only other significant change is that Equation

(85) is replaced with the following argument. The law of G is given by Ω/σ2
n where Ω ∼ L

and L is a probability measure on Sd
+ that satisfies Assumption 2. By Assumption 2 and

the definition of σ2
n, there exists a universal constant C,C ′, C ′′ > 0 such that∫

Σ:∥Σ−Σ0∥≤ϵ2n

dG(Σ) =

∫
Σ:∥Σ−σ2

nΣ0∥≤σ2
nϵ

2
n

dL(Σ) ≥ C exp (− C ′σ−2κ
n ) ≥ C exp

(
−C ′′nϵ2n

)
.
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(ii) Next, we establish a preliminary local concentration bound under the prior. Observe that

for any E > 0, we have∫
(P,Σ):∥φ̂Y2

∇ log(φP,Σ)−φ̂Y1,Y2
∥2
∂, B(T )

>2Eϵ2n

exp

(
− n

2
∥φ̂Y2∇ log(φP,Σ)− φ̂Y1,Y2∥2∂, B(T )

)
dνα,G(P,Σ)

≤ exp (− nEϵ2n).

The law of G is given by Σ/σ2
n where Σ ∼ L and L is a probability measure on Sd

+ that

satisfies Assumption 2. By Assumption 2, it follows that for every E′ > 0, there exists

E > 0 such that∫
Σ:∥Σ−1∥>Eσ2

n(nϵ
2
n)

1/κ

dG(Σ) =

∫
Σ:∥Σ−1∥>E(nϵ2n)

1/κ

dL(Σ) ≤ exp (− E′nϵ2n).

As the prior is a product measure να,G = DPα ⊗ G and ∥φ̂Y − φ̂ϵφP,Σ∥2B(Tn)
≥ 0, the

preceding bound implies∫
Σ:∥Σ−1∥>Eσ2

n(nϵ
2
n)

1/κ

exp

(
− n

2
∥φ̂Y2∇ log(φP,Σ)− φ̂Y1,Y2∥2∂, B(T )

)
dνα,G(P,Σ)

≤
∫
Σ:∥Σ−1∥>Eσ2

n(nϵ
2
n)

1/κ

dG(Σ)

≤ exp (− E′nϵ2n).

From combining the preceding bounds, it follows that for any E′ > 0 we can pick E > 0

sufficiently large such that∫
(P,Σ):∥φ̂Y2

∇ log(φP,Σ)−φ̂Y1,Y2
∥2
∂, B(T )

≤Eϵ2n,

∥Σ−1∥≤Eσ2
n(nϵ

2
n)

1/κ

exp

(
− n

2
∥φ̂Y2∇ log(φP,Σ)− φ̂Y1,Y2∥2∂, B(T )

)
dνα,G(P,Σ)

≥ 1− exp (− E′nϵ2n).

(iii) We prove the main statement of the theorem. From the bounds derived in steps (i) and

(ii), it follows that for any C ′ > 0, there exists a M > 0 such that

να,G

(
∥φ̂Y2∇ log(φP,Σ)− φ̂Y1,Y2∥2∂, B(T )≤ M2ϵ2n, ∥Σ−1∥≤ M2σ2

n(nϵ
2
n)

1/κ

∣∣∣∣Zn, Tn

)
≥ 1− exp

(
−C ′nϵ2n

)
holds with P probability approaching 1.

By an application of Lemma 9, we have that

∥φ̂Y1,Y2 − φY1,Y2∥∂, B(T )≤ Dϵn
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holds with P probability approaching 1.

Since φY1,Y2 = φY2∇ logφF0,Σ0 and sup∥t∥∞≤Tn
∥∇ logφF0,Σ0∥≤ DTn, an application of

Lemma 2 implies that

∥φ̂Y2∇ logφF0,Σ0 − φY1,Y2∥∂, B(T )≤ Dϵn

holds with P probability approaching 1.

From combining the preceding bounds, it follows that for any C ′ > 0, there exists a M > 0

such that

να,G

(
∥φ̂Y2(∇ logφP,Σ −∇ logφF0,Σ0)∥2∂, B(T )≤ M2ϵ2n, ∥Σ−1∥≤ M2σ2

n(nϵ
2
n)

1/κ

∣∣∣∣Zn, Tn

)
≥ 1− exp

(
−C ′nϵ2n

)
holds with P probability approaching 1.

Since Tn = (c0 log n)
1/2 for some c0 satisfying c0R = γ < 1/2, an application of Lemma 2

implies that

sup
∥t∥∞≤Tn

|φ̂Y2(t)− φY2(t)|
|φY2(t)|

≤ Dn−1/2+γ
√
log logn

with P probability approaching 1. As the quantity on the right converges to zero, it follows

that

|φ̂Y2(t)| ≥ |φY2(t)| − |φ̂Y2(t)− φY2(t)| ≥
1

2
|φY2(t)| ≥

1

2
n−γ .

uniformly over the set {∥t∥∞≤ Tn}, with P probability approaching 1. It follows that for

any C ′ > 0, there exists a M > 0 such that

να,G

(
∥∇ logφP,Σ −∇ logφF0,Σ0∥2∂, B(T )≤ M2n2γϵ2n, ∥Σ−1∥≤ M2σ2

n(nϵ
2
n)

1/κ

∣∣∣∣Zn, Tn

)
≥ 1− exp

(
−C ′nϵ2n

)
.

holds with P probability approaching 1.

As φP,Σ and φF0,Σ0 are characteristic functions, they satisfy the initial value condition

logφP,Σ(0) = logφF0,Σ0(0) = 0. In particular, every z ∈ ∂B(Tn) can be expressed as

logφP,Σ(z)− logφF0,Σ0(z) =

∫ 1

0
⟨∇ logφP,Σ(tz)−∇ logφF0,Σ0(tz), z⟩dt.

By Cauchy-Schwarz and Jensen’s inequality, this implies that

|logφP,Σ(z)− logφF0,Σ0(z)|
2 ≤ ∥z∥2

∫ 1

0
∥∇ logφP,Σ(tz)−∇ logφF0,Σ0(tz)∥2dt.
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In particular since ∥z∥≤ DTn for every z ∈ ∂B(Tn), we obtain the bound∫
∂B(Tn)

|logφP,Σ(z)− logφF0,Σ0(z)|
2 dHd−1(z)

≤ T 2
n

∫
∂B(Tn)

∫ 1

0
∥∇ logφP,Σ(tz)−∇ logφF0,Σ0(tz)∥2dtdHd−1(z).

Suppose (P,Σ) is such that ∥∇ logφP,Σ−∇ logφF0,Σ0∥2∂, B(T )≤ M2n2γϵ2n. By definition of

the metric, this means that∫
B(Tn)

∥∇ logφP,Σ −∇ logφF0,Σ0∥2dt ≤ M2n2γϵ2n ,∫
∂B(Tn)

∫ 1

0
∥∇ logφP,Σ(tz)−∇ logφF0,Σ0(tz)∥2dtdHd−1(z) ≤ M2n2γϵ2n.

From the preceding bounds and the Poincaré inequality (Lemma 13), it follows that there

exists a universal constant D > 0 such that

∥logφP,Σ − logφF0,Σ0∥2B(Tn)
≤ DM2T 3

nn
2γϵ2n.

Since |φX(t)− φP,Σ(t)| ≤ |logφX(t)− logφP,Σ(t)| for every t ∈ Rd, it follows that for any

C ′ > 0, there exists a M > 0 such that

να,G

(
∥φP,Σ − φF0,Σ0∥B(Tn)≤ MT 1.5

n nγϵn, ∥Σ−1∥≤ M2σ2
n(nϵ

2
n)

1/κ

∣∣∣∣Zn, Tn

)
≥ 1− exp

(
−C ′nϵ2n

)
.

holds with P probability approaching 1.

It remains to examine the bias from truncating the L2 norm to the set B(Tn). Suppose

∥Σ−1∥≤ M2σ2
n(nϵ

2
n)

1/κ holds. It follows that there exists a c > 0 for which λ1(Σ) ≥
c(nϵ2n)

−1/κσ−2
n holds. From the definition of σ2

n, we have T 2
n(nϵ

2
n)

−1/κσ−2
n ≍ log n. It

follows that there exists a universal constant C > 0 such that

∥(φF0,Σ0 − φP,Σ)1{∥t∥∞> Tn}∥2L2 ≤ 2∥φF0,Σ01{∥t∥∞> Tn}∥2L2+2∥φP,Σ1{∥t∥∞> Tn}∥2L2

≤ 2

∫
∥t∥∞>Tn

e−t′Σ0tdt+ 2

∫
∥t∥∞>Tn

e−t′Σtdt

≤ 2

∫
∥t∥∞>Tn

e−t′Σ0tdt+ 2

∫
∥t∥∞>Tn

e−c∥t∥2σ−2
n (nϵ2n)

−1/κ
dt

≤ D

[
e−CT 2

nT d−2
n + σ−2

n (nϵ2n)
−1/κe−CT 2

nσ
−2
n (nϵ2n)

−1/κ
T d−2
n

]
.

From substituting T 2
n(nϵ

2
n)

−1/κσ−2
n ≍ log n, the preceding bound reduces to Dn−2K for

some constant K ∈ (0, 1/2] (that depends on, among other factors, the smallest eigenvalue

of Σ0).

With constant K as specified above, it follows that for any C ′ > 0, there exists M > 0
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such that

να,G

(
∥φF0,Σ0 − φP,Σ∥L2≤ MT 1.5

n nγϵn + n−K |Zn, Tn

)
≥ 1− exp

(
−C ′nϵ2n

)
holds with P probability approaching 1. The claim follows from observing that

T 1.5
n nγϵn ≍ n−1/2+γ(log n)λ/2+3/4.

Proof of Theorem 6. The proof proceeds through several steps which we outline below. We use

D > 0 as a generic universal constant that may change from line to line. For ease of notation,

we suppress the dependence of G = Gn on n.

Let β = max{0, d− 2} and define

α2
n = (ϵ2nT

−β
n )

1
ζ+s , ϵ2n =

(log n)λ+d/2

n
2(s+ζ)−β

2(s+ζ)+d−β

, λ =

χ−1(d+ 2) χ < 2

d/χ+ 1 χ ≥ 2.

(i) First, we derive a lower bound for the normalizing constant of the posterior measure.

Specifically, we aim to show that there exists a C > 0 such that∫
exp

(
− n

2
∥φ̂Y2∇ log(φP,Σ)− φ̂Y1,Y2∥2∂, B(T )

)
dνα,G(P,Σ) ≥ exp (− Cnϵ2n) (88)

holds with P probability approaching 1.

As Hd−1(∂B(Tn)) ≤ DT d−1
n , Lemma 9 implies that∫

B(Tn)
∥φ̂Y1,Y2(t)− φY1,Y2(t)∥2dt ≤ D

T d
n log(Tn)

n
,∫

∂B(Tn)
∥φ̂Y1,Y2(t)− φY1,Y2(t)∥2dHd−1(t) ≤ D

T d−1
n log(Tn)

n
.

holds with P probability approaching 1. On this set, it follows that∫
exp

(
− n

2
∥φ̂Y2∇ log(φP,Σ)− φ̂Y1,Y2∥2∂, B(T )

)
dνα,G(P,Σ)

≥ exp
(
−nDϵ2n

) ∫
exp

(
− nD

2
∥φ̂Y2∇ log(φP,Σ)− φY1,Y2∥2∂, B(T )

)
dνα,G(P,Σ).

Observe that φY1,Y2 = φY2∇ logφX . By Condition 4.6, there exists universal constants

χ,C,M < ∞ and a mixing distribution Sαn supported on the cube In = [−C(log ϵ−1
n )1/χ, C(log ϵ−1

n )1/χ]d

that satisfies

∥φY2(∇ logφX −∇ logφSαn ,α
2
nI
)∥2∂, B(Tn)

≤ DT β
nα

2(ζ+s)
n ≤ Dϵ2n.

89



It follows that∫
exp

(
− nD

2
∥φ̂Y2∇ log(φP,Σ)− φY1,Y2∥2∂, B(T )

)
dνα,G(P,Σ)

≥ exp
(
−nDϵ2n

) ∫
exp

(
− nD

2
∥φ̂Y2∇ log(φP,Σ)− φY2∇ log

(
φSαn ,α

2
nI

)
∥2∂, B(T )

)
dνα,G(P,Σ).

By Condition 4.6 and the definition of (αn, Tn), there exists a C1 > 0 such that

inf
∥t∥∞≤Tn

∣∣φSαn
(t)
∣∣ ≥ n−C1 .

Next, we show that Sαn can be suitably approximated by a discrete measure. Fix any γ > 1

such that ϵ2γn T d
n ≤ Dϵ2n. By Lemma 5, there exists a discrete measure F ′ =

∑N
i=1 piδµi

with at most N = D(log ϵ−1
n )d/χT d

n support points on In such that

sup
∥t∥∞≤Tn

∣∣φSαn
(t)− φF ′(t)

∣∣ ≤ n−C1ϵγn

sup
∥t∥∞≤Tn

∥∇φSαn
(t)−∇φF ′(t)∥≤ n−C1ϵγn.

From the final claim of Lemma 5, we can also assume without loss of generality that

the support points satisfy infk ̸=j∥µk − µj∥≥ ϵL2
n for some L2 > 0. By Condition 4.6,

sup∥t∥∞≤Tn
∥∇ logφSαn

(t)∥≤ D. From the preceding bounds, it follows that

sup
∥t∥∞≤Tn

∥∇ logφSαn
(t)∥

∣∣φSαn
(t)− φF ′(t)

∣∣∣∣φSαn
(t)
∣∣ ≤ Dϵγn

sup
∥t∥∞≤Tn

∥∇φSαn
(t)−∇φF ′(t)∥∣∣φSαn

(t)
∣∣ ≤ Dϵγn.

Since ϵn ↓ 0, observe that the preceding bound also implies

|φF ′(t)| ≥
∣∣φSαn

(t)
∣∣− ∣∣φSαn

(t)− φF ′(t)
∣∣ ≥ ∣∣φSαn

(t)
∣∣−Dϵn

∣∣φSαn
(t)
∣∣ ≥ 1

2

∣∣φSαn
(t)
∣∣

for all sufficiently large n and ∥t∥≤ Tn. It follows that

sup
∥t∥∞≤Tn

∥∇ logφSαn
(t)−∇ logφF ′(t)∥

= sup
∥t∥∞≤Tn

∥∥∥∥∇ logφSαn
(t)

φF ′(t)− φSαn
(t)

φF ′(t)
+

∇φSαn
(t)−∇φF ′(t)

φF ′(t)

∥∥∥∥
≤ sup

∥t∥∞≤Tn

( ∣∣∣∣φF ′(t)− φSαn
(t)

φF ′(t)

∣∣∣∣ ∥∇ logφSαn
(t)∥+

∥∥∥∥∇φSαn
(t)−∇φF ′(t)

φF ′(t)

∥∥∥∥)
≤ 2 sup

∥t∥∞≤Tn

( ∣∣∣∣φF ′(t)− φSαn
(t)

φSαn
(t)

∣∣∣∣ ∥∇ logφSαn
(t)∥+

∥∥∥∥∇φSαn
(t)−∇φF ′(t)

φSαn
(t)

∥∥∥∥)
≤ Dϵγn.
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Fix any L3 > L2 sufficiently large such that

nC1Tnϵ
L3
n ≤ ϵγn , nC1

√
nϵn
√
log nϵL3/2

n ≤ ϵγn , nC1Tn(log ϵ
−1
n )1/χϵL3

n ≤ ϵγn.

Define Vi = {t ∈ In : ∥t − µi∥≤ ϵL3
n } for i = 1, . . . , N and set V0 = Rd \

⋃N
i=1 Vi. From

the definition of the {µi}Ni=1, it follows that {V0, V1, . . . , VN} is a disjoint partition of

Rd. By Lemma 3, for any distribution P that satisfies
∫
Rd∥x∥2dP (x) ≤ nϵ2n log n and∑N

j=1 |P (Vj)− pj | ≤ ϵL3
n , we have that

sup
∥t∥∞≤Tn

∥∇ logφF ′(t)∥|φP (t)− φF ′(t)|
|φF ′(t)|

≤ Dϵγn , sup
∥t∥∞≤Tn

∥∇φP (t)−∇φF ′(t)∥
|φF ′(t)|

≤ Dϵγn.

For all such P , an analogous argument to the bound for Sαn and F ′ implies that

sup
∥t∥∞≤Tn

∥∇ logφP (t)−∇ logφF ′(t)∥≤ Dϵγn.

From combining all the preceding bounds, observe that all such P also satisfy

sup
∥t∥∞≤Tn

∥∇ logφP (t)−∇ logφSαn
(t)∥≤ Dϵγn

sup
∥t∥∞≤Tn

∥∇ logφP (t)∥≤ Dϵγn + sup
∥t∥∞≤Tn

∥∇ logφSαn
(t)∥≤ D.

Given any positive definite Σ with ∥Σ∥≤ Dα2
n the preceding bound also implies that

sup
∥t∥∞≤Tn

∥∇ logφP,Σ(t)∥≤ sup
∥t∥∞≤Tn

[
∥∇ logφP (t)∥+∥∇ logφΣ(t)∥

]
≤ D(1 + Tnα

2
n)

≤ D ,

where the last inequality follows from Tnα
2
n ⪅ 1. By Lemma 2, we have that∫

B(Tn)
∥φ̂Y2(t)− φY2(t)∥2dt ≤ D

T d
n log(Tn)

n
,∫

∂B(Tn)
∥φ̂Y2(t)− φY2(t)∥2dHd−1(t) ≤ D

T d−1
n log(Tn)

n

holds with P probability approaching 1. On this set, when (P,Σ) satisfy the preceding

requirements, we have that

∥φ̂Y2∇ logφP,Σ − φY1,Y2∥2B(Tn)
≤ D

[
∥φY2∇ logφP,Σ − φY1,Y2∥2B(Tn)

+
T d
n log(Tn)

n

]
≤ D

[
∥φY2∇ logφP,Σ − φY1,Y2∥2B(Tn)

+ϵ2n

]
.
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Define the sets

Ωn =

{
Σ ∈ Sd

+ : λj(Σ) ∈
[

α2
n

1 + ϵγnT
−1
n

, α2
n

]
∀ j = 1, . . . , d.

}

Gn =

{
(P,Σ) : Σ ∈ Ωn,

∫
Rd

∥x∥2dP (x) ≤ nϵ2n log(n) ,
N∑
j=1

|P (Vj)− pj | ≤ ϵL3
n

}
.

From combining the all the preceding bounds, it follows that∫
exp

(
− nD∥φ̂Y2∇ log(φP,Σ)− φY2∇ log

(
φSαn ,α

2
nI

)
∥2∂, B(T )

)
dνα,G(P,Σ)

≥
∫
Gn

exp

(
− nD∥φ̂Y2∇ log(φP,Σ)− φY2∇ log

(
φSαn ,α

2
nI

)
∥2∂, B(T )

)
dνα,G(P,Σ)

≥ exp (− nDϵ2n)

∫
Gn

exp

(
− nD∥φY2 [∇ log(φP,Σ)−∇ log

(
φSαn ,α

2
nI

)
]∥2∂, B(T )

)
dνα,G(P,Σ).

For every (P,Σ) ∈ Gn, the preceding bounds imply that

sup
∥t∥∞≤Tn

∥∇ logφP,Σ −∇ logφSαn ,α
2
nI
∥

= sup
∥t∥∞≤Tn

∥(∇ logφP −∇ logφSαn
) + (∇ logφΣ −∇ logφα2

nI
)∥

≤ sup
∥t∥∞≤Tn

∥∇ logφP −∇ logφSαn
∥+ sup

∥t∥∞≤Tn

∥∇ logφΣ −∇ logφα2
nI
∥

≤ Dϵγn +D∥Σ− α2
nI∥Tn

≤ Dϵγn.

Since ∥φY2∥L2< ∞ and γ > 1 is such that T d
nϵ

2γ
n ≤ Dϵ2n, it follows (from the change of

variables and coarea argument in 26) that∫
Gn

exp

(
− nD∥φY2(∇ logφP,Σ −∇ logφSαn ,α

2
nI
)∥2∂, B(Tn)

)
dνα,G(P,Σ)

≥ exp (− nDϵ2n)

∫
Gn

dνα,G(P,Σ).

Define the sets

Gn,1 =

{
(P,Σ) : Σ ∈ Ωn ,

N∑
j=1

|P (Vj)− pj | ≤ ϵL3
n

}
,

Gn,2 =

{
(P,Σ) : Σ ∈ Ωn,

∫
Rd

∥x∥2dP (x) > nϵ2n log(n) ,

N∑
j=1

|P (Vj)− pj | ≤ ϵL3
n

}
.

Observe that Gn = Gn,1 \ Gn,2. It follows that∫
Gn

dνα,G(P,Σ) =

∫
Gn,1

dνα,G(P,Σ)−
∫
Gn,2

dνα,G(P,Σ).
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For the second term, observe that∫
Gn,2

dνα,G(P,Σ) ≤
∫
P :

∫
Rd∥x∥2dP (x)>nϵ2n log(n)

dνα,G(P,Σ)

≤
∫
P :

∫
Rd∥x∥2dP (x)>nϵ2n log(n)

dDPα(P )

≤ exp
(
−Dnϵ2n log n

)
,

where the second inequality is due to να,G being a product measure να,G = DPα ⊗G and

the third inequality follows from an application of Lemma 12.

For the first term, we have that∫
Gn,1

dνα,G(P,Σ) =

∫
Σ:Σ∈Ωn

∫
P :

∑N
j=1|P (Vj)−pj |≤ϵ

L3
n

dDPα(P )dG(Σ).

As DPα is constructed using a Gaussian base measure α, it is straightforward to verify that

infNj=1 α(Vj) ≥ CϵL3d
n exp

(
−C ′(log ϵ−1

n )2/χ
)
for universal constants C,C ′ > 0. By definition

of DPα, (P (V1), . . . , P (VN )) ∼ Dir(N,α(V1), . . . , α(VN )). As N = D{log
(
ϵ−1
n

)
}d/χT d

n , an

application of (Ghosal and Van der Vaart, 2017, Lemma G.13) implies∫
P :

∑N
j=1|P (Vj)−pj |≤ϵ

L3
n

dDPα(P ) ≥ C exp (− C ′T d
n(log ϵ

−1
n )d/χ+max{2/χ,1}) = C exp (− C ′T d

n(log ϵ
−1
n )λ)

≥ C exp (− C ′′nϵ2n).

It remains to bound the outer integral. The law of G = Gn is given by Ω/σ2
n where Ω ∼ L

and L is a probability measure on Sd
+ that satisfies Assumption 2. By Assumption 2 and

the definition of (α2
n, σ

2
n, ϵ

2
n), there exists a universal constant C,C ′, C ′′ > 0 such that∫

Σ∈Ωn

dG(Σ) =

∫
Σ∈σ2

nΩn

dL(Σ) ≥ C exp (− C ′σ−2κ
n α−2κ

n ) ≥ C exp
(
−C ′′nϵ2n

)
.

It follows that ∫
Gn

dνα,G(P,Σ) =

∫
Gn,1

dνα,G(P,Σ)−
∫
Gn,2

dνα,G(P,Σ)

≥ C exp
(
−C ′′nϵ2n

)
− exp

(
−Dnϵ2n log n

)
≥ exp

(
−Dnϵ2n

)
.

The estimate for the lower bound of the normalizing constant follows from combining all

the preceding bounds.

(ii) Next, we establish a preliminary local concentration bound under the prior. Observe that
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for any E > 0, we have∫
(P,Σ):∥φ̂Y2

∇ log(φP,Σ)−φ̂Y1,Y2
∥2
∂, B(T )

>2Eϵ2n

exp

(
− n

2
∥φ̂Y2∇ log(φP,Σ)− φ̂Y1,Y2∥2∂, B(T )

)
dνα,G(P,Σ)

≤ exp (− nEϵ2n).

The law of G is given by Σ/σ2
n where Σ ∼ L and L is a probability measure on Sd+ that

satisfies Assumption 2. By Assumption 2, it follows that for every E′ > 0, there exists

E > 0 such that∫
Σ:∥Σ−1∥>Eσ2

n(nϵ
2
n)

1/κ

dG(Σ) =

∫
Σ:∥Σ−1∥>E(nϵ2n)

1/κ

dL(Σ) ≤ exp (− E′nϵ2n).

As the prior is a product measure να,G = DPα ⊗ G and ∥φ̂Y − φ̂ϵφP,Σ∥2B(Tn)
≥ 0, the

preceding bound implies∫
Σ:∥Σ−1∥>Eσ2

n(nϵ
2
n)

1/κ

exp

(
− n

2
∥φ̂Y2∇ log(φP,Σ)− φ̂Y1,Y2∥2∂, B(T )

)
dνα,G(P,Σ)

≤
∫
Σ:∥Σ−1∥>Eσ2

n(nϵ
2
n)

1/κ

dG(Σ)

≤ exp (− E′nϵ2n).

From combining the preceding bounds, it follows that for any E′ > 0 we can pick E > 0

sufficiently large such that∫
(P,Σ):∥φ̂Y2

∇ log(φP,Σ)−φ̂Y1,Y2
∥2
∂, B(T )

≤Eϵ2n,

∥Σ−1∥≤Eσ2
n(nϵ

2
n)

1/κ

exp

(
− n

2
∥φ̂Y2∇ log(φP,Σ)− φ̂Y1,Y2∥2∂, B(T )

)
dνα,G(P,Σ)

≥ 1− exp (− E′nϵ2n).

(iii) We prove the main statement of the theorem. From the bounds derived in steps (i) and

(ii), it follows that for any C ′ > 0, there exists a M > 0 such that

να,G

(
∥φ̂Y2∇ log(φP,Σ)− φ̂Y1,Y2∥2∂, B(T )≤ M2ϵ2n, ∥Σ−1∥≤ M2σ2

n(nϵ
2
n)

1/κ

∣∣∣∣Zn, Tn

)
≥ 1− exp

(
−C ′nϵ2n

)
holds with P probability approaching 1.

By an application of Lemma 9, we have that

∥φ̂Y1,Y2 − φY1,Y2∥∂, B(T )≤ Dϵn

holds with P probability approaching 1.
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Since φY1,Y2 = φY2∇ logφX and sup∥t∥∞≤Tn
∥∇ logφX∥≤ D, an application of Lemma 2

implies that

∥φ̂Y2∇ logφX − φY1,Y2∥∂, B(T )≤ Dϵn

holds with P probability approaching 1.

From combining the preceding bounds, it follows that for any C ′ > 0, there exists a M > 0

such that

να,G

(
∥φ̂Y2(∇ logφP,Σ −∇ logφX)∥2∂, B(T )≤ M2ϵ2n, ∥Σ−1∥≤ M2σ2

n(nϵ
2
n)

1/κ

∣∣∣∣Zn, Tn

)
≥ 1− exp

(
−C ′nϵ2n

)
holds with P probability approaching 1.

An application of Lemma 2 implies that

sup
∥t∥∞≤Tn

|φ̂Y2(t)− φY2(t)|
|φY2(t)|

≤ DT ζ
n

√
log n√
n

with P probability approaching 1. As the quantity on the right converges to zero, we also

have

|φ̂Y2(t)| ≥ |φY2(t)| − |φ̂Y2(t)− φY2(t)| ≥
1

2
|φY2(t)|

uniformly over the set {∥t∥∞≤ Tn}. It follows that for any C ′ > 0, there exists a M > 0

such that

να,G

(
∥∇ logφP,Σ −∇ logφX∥2∂, B(T )≤ M2T 2ζ

n ϵ2n, ∥Σ−1∥≤ M2σ2
n(nϵ

2
n)

1/κ

∣∣∣∣Zn, Tn

)
≥ 1− exp

(
−C ′nϵ2n

)
.

holds with P probability approaching 1.

As φP,Σ and φX are characteristic functions, they satisfy the initial value condition

logφP,Σ(0) = logφX(0) = 0. In particular, every z ∈ ∂B(Tn) can be expressed as

logφP,Σ(z)− logφX(z) =

∫ 1

0
⟨∇ logφP,Σ(tz)−∇ logφX(tz), z⟩dt.

By Cauchy-Schwarz and Jensen’s inequality, this implies that

|logφP,Σ(z)− logφX(z)|2 ≤ ∥z∥2
∫ 1

0
∥∇ logφP,Σ(tz)−∇ logφX(tz)∥2dt.
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In particular since ∥z∥≤ DTn for every z ∈ ∂B(Tn), we obtain the bound∫
∂B(Tn)

|logφP,Σ(z)− logφX(z)|2 dHd−1(z)

≤ T 2
n

∫
∂B(Tn)

∫ 1

0
∥∇ logφP,Σ(tz)−∇ logφX(tz)∥2dtdHd−1(z).

Suppose (P,Σ) is such that ∥∇ logφP,Σ − ∇ logφX∥2∂, B(T )≤ M2T 2ζ
n ϵ2n. By definition of

the metric, this means that∫
B(Tn)

∥∇ logφP,Σ −∇ logφX∥2dt ≤ M2T 2ζ
n ϵ2n ,∫

∂B(Tn)

∫ 1

0
∥∇ logφP,Σ(tz)−∇ logφX(tz)∥2dtdHd−1(z) ≤ M2T 2ζ

n ϵ2n.

From the preceding bounds and the Poincaré inequality (Lemma 13), it follows that there

exists a universal constant D > 0 such that

∥logφP,Σ − logφX∥2B(Tn)
≤ DM2T 3+2ζ

n ϵ2n.

Since |φX(t)− φP,Σ(t)| ≤ |logφX(t)− logφP,Σ(t)| for every t ∈ Rd, it follows that for any

C ′ > 0, there exists a M > 0 such that

να,G

(
∥φP,Σ − φX∥B(Tn)≤ MT 1.5+ζ

n ϵn, ∥Σ−1∥≤ M2σ2
n(nϵ

2
n)

1/κ

∣∣∣∣Zn, Tn

)
≥ 1− exp

(
−C ′nϵ2n

)
.

holds with P probability approaching 1.

It remains to examine the bias from truncating the L2 norm to the set B(Tn). Suppose

∥Σ−1∥≤ M2σ2
n(nϵ

2
n)

1/κ holds. It follows that there exists a c > 0 for which λ1(Σ) ≥
c(nϵ2n)

−1/κσ−2
n holds. From the definition of σ2

n, we have T
2
n(nϵ

2
n)

−1/κσ−2
n ≍ log n log logn.

Since fX ∈ Hp(M), we have that∫
∥t∥∞>Tn

|φX(t)|2 dt ≤ DT−2p
n .

It follows that there exists a universal constant C > 0 such that

∥(φX − φP,Σ)1{∥t∥∞> Tn}∥2L2 ≤ 2∥φX1{∥t∥∞> Tn}∥2L2+2∥φP,Σ1{∥t∥∞> Tn}∥2L2

≤ 2

∫
∥t∥∞>Tn

|φX(t)|2 dt+ 2

∫
∥t∥∞>Tn

e−t′Σtdt

≤ 2

∫
∥t∥∞>Tn

|φX(t)|2 dt+ 2

∫
∥t∥∞>Tn

e−c∥t∥2σ−2
n (nϵ2n)

−1/κ
dt

≤ D

[
T−2p
n + σ−2

n (nϵ2n)
−1/κe−CT 2

nσ
−2
n (nϵ2n)

−1/κ
T d−2
n

]
.
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Since T 2
n(nϵ

2
n)

−1/κσ−2
n ≍ (log n)(log log n), the preceding bound reduces to DT−2p

n . From

combining the preceding bounds, it follows that for every C ′ > 0, there exists a M > 0

such that

να,G

(
∥φX − φP,Σ∥L2≤ M(T 1.5+ζ

n ϵn + T−p
n )

∣∣∣∣Zn, Tn

)
≥ 1− exp

(
−C ′nϵ2n

)
.

holds with P probability approaching 1. The claim follows from observing that

T 3+2ζ
n ϵ2n ≍ (log n)λ+d/2+ζ+3/2

n
2s−β−3

2(s+ζ)+d−β

.

Proof of Theorem 7. The proof proceeds through several steps which we outline below. We use

D > 0 as a generic universal constant that may change from line to line. Define

ϵ2n = n−1(log n)λ , λ =

χ−1(d+ 2) + d/2 χ < 2

d+ 1 χ ≥ 2.

(i) First, we derive a lower bound for the normalizing constant of the posterior measure.

Specifically, we aim to show that there exists a C > 0 such that∫
exp

(
− n

2
∥φ̂2

Y(Q∗
kV̂Y − (logφP,σ2)′′(t′Ak))∥2B(T )

)
dνα,G(P, σ

2) ≥ exp (− Cnϵ2n) (89)

holds with P probability approaching 1.

Note that |t′Ak| ≤
√
d∥t∥∞∥Ak∥≤

√
dTn∥Ak∥ uniformly over t ∈ B(T ). Since the

preceding constant is finite, it suffices to work under the setting where |t′Ak| ≤ DTn.

Fix ϵ > 0 sufficiently small. By Condition 4.8, the mixing distribution F0 satisfies

F0(t ∈ R : |t| > z) ≤ C exp(−C ′zχ). Hence, there exists a universal constant R > 0

such that the cube I = [−R(log ϵ−1)1/χ, R(log ϵ−1)1/χ] satisfies 1 − F0(I) ≤ Dϵ. Denote

the probability measure induced from the restriction of F0 to I by

F 0(A) =
F0(A ∩ I)

F0(I)
∀ Borel A ⊆ R.

Observe that

sup
t∈R

∣∣∣φF0(t)− φF 0
(t)
∣∣∣ = sup

t∈R

∣∣∣∣∫
Rd

eit
′xd(F − F 0)(x)

∣∣∣∣ ≤ ∥F0 − F 0∥TV ≤ 1− F0(I) ≤ Dϵ.

97



For r = 1, 2 and all sufficiently large M > 0, the tail bound on F0 implies

E[|X|r 1{|X| > M}] =
∫ ∞

0
P( |X|r > M r, |X|r > t)dt

≤ M rP( |X| > M) +

∫ ∞

Mr

P(Xr > t)dt

≤ D

[
M r exp

(
−C ′Mχ

)
+

∫ ∞

Mr

exp
(
−C ′tχ/r

)
dt

]
≤ D[M r exp

(
−C ′Mχ

)
+M1−χ exp

(
−C ′Mχ

)
]

≤ DM r exp
(
−C ′Mχ

)
.

For r = 1, 2 it follows that

sup
t∈R

∣∣∣∂r
tφF0(t)− ∂r

tφF 0
(t)
∣∣∣ = sup

t∈R

∣∣∣∣∫
R
xreit

′xd(F0 − F 0)(x)

∣∣∣∣
≤ sup

t∈R

∣∣∣∣∫
x∈I

xreit
′xd(F0 − F 0)

∣∣∣∣+ sup
t∈R

∣∣∣∣∫
x/∈I

xreit
′xdF0

∣∣∣∣
≤ D

[
(log ϵ−1)r/χ∥F0 − F 0∥TV +(log ϵ−1)r/χϵ

]
≤ D(log ϵ−1)r/χϵ.

We can write (logφF0)
′′ − (logφF 0

)′′ as

(logφF0)
′′ − (logφF 0

)′′

= (logφF0)
′′
(φ2

F 0
− φ2

F0
)

φ2
F 0

+
φF0(φ

′′
F0

− φ′′
F 0

)

φ2
F 0

+
φ′′
F 0

(φF0 − φF 0
)

φ2
F 0

+
(φ′

F 0
)2 − (φ′

F0
)2

φ2
F 0

.

Since inf |t|≤DTn
|φF0(t)| ≥ C exp

(
−C ′T 2

n

)
for some C,C ′ > 0 and T 2

n ⪅ log(n), there exists

a C1 > 0 such that

inf
|t|≤DTn

|φF0(t)| ≥ n−C1 .

Let L > 1 be such that n2C1(log ϵ−L
n )2/χϵLn ≤ ϵn. The choice ϵ = ϵLn implies F 0 has

support contained in the cube In = [−E(log ϵ−1
n )1/χ, E(log ϵ−1

n )1/χ] for some universal

constant E > 0. Since ϵn ↓ 0, we also have that∣∣∣φF 0
(t)
∣∣∣ ≥ |φF0(t)| −

∣∣∣φF0(t)− φF 0
(t)
∣∣∣ ≥ |φF0(t)| −Dϵn |φF0(t)| ≥

1

2
|φF0(t)| ≥

1

2
n−C1

for all sufficiently large n and |t| ≤ DTn. Since |(logφF0)
′′| ,
∣∣φ′

F0

∣∣ , ∣∣φ′′
F0

∣∣ are bounded

by a universal constant D and n2C1(log ϵ−L
n )2/χϵLn ≤ ϵn, the preceding expression for

(logφF0)
′′ − (logφF 0

)′′ implies that

sup
|t|≤DTn

∣∣∣(logφF0)
′′(t)− (logφF 0

)′′(t)
∣∣∣ ≤ Dn2C1(log ϵ−L

n )2/χϵLn ≤ Dϵn.

Next, we show that F 0 can be suitably approximated by a discrete measure. Let ι =
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max{d, d/χ + d/2}. By Lemma 5, there exists a discrete measure F ′ =
∑N

i=1 piδµi with

at most N = D(log ϵ−1
n )ι support points on In such that

sup
|t|≤DTn

∣∣∣∂r
tφF 0

(t)− ∂r
tφF ′(t)

∣∣∣ ≤ n−2C1ϵn r = 0, 1, 2.

From the final claim of Lemma 5, we can also assume without loss of generality that the

support points satisfy infk ̸=j∥µk−µj∥≥ ϵL2
n for some L2 > 0. Observe that 2 inf |t|≤DTn

∣∣∣φF 0
(t)
∣∣∣ ≥

inf |t|≤DTn
|φF0(t)| ≥ n−C1 and

sup
|t|≤DTn

∣∣∣(logφF 0
)′′(t)

∣∣∣ ≤ sup
|t|≤DTn

∣∣∣(logφF0)
′′(t)− (logφF 0

)′′(t)
∣∣∣+ sup

|t|≤DTn

∣∣(logφF0)
′′(t)

∣∣
≤ D(ϵn +D)

≤ D.

From the preceding bounds and an analogous expression to that of (logφF0)
′′−(logφF 0

)′′,

it follows that

sup
|t|≤DTn

∣∣∣(logφF 0
)′′(t)− (logφF ′)′′(t)

∣∣∣ ≤ Dϵn.

Fix any L3 > L2 sufficiently large such that

n2C1+1ϵ2n log(n)ϵ
L3/2
n ≤ ϵn , n2C1(log ϵn)

2/χTnϵ
L3
n ≤ ϵn.

Define Vi = {t ∈ In : |t− µi| ≤ ϵL3
n } for i = 1, . . . , N and set V0 = R \

⋃N
i=1 Vi. From

the definition of the {µi}Ni=1, it follows that {V0, V1, . . . , VN} is a disjoint partition of R.
By Lemma 3, for any distribution P that satisfies (

∫
R |x|4 dP (x))1/4 ≤

√
nϵn

√
log n and∑N

j=1 |P (Vj)− pj | ≤ ϵL3
n , we have that

sup
|t|≤Tn

|∂r
tφF ′(t)− ∂r

tφP (t)| ≤ n−2C1ϵn r = 0, 1, 2.

For all such P , the preceding bound and an analogous expression to that of (logφF0)
′′ −

(logφF 0
)′′, yields

sup
|t|≤DTn

∣∣(logφF ′)′′(t)− (logφP )
′′(t)

∣∣ ≤ Dϵn.

From combining all the preceding bounds, observe that all such P also satisfy

sup
|t|≤DTn

∣∣(logφP )
′′(t)− (logφF0)

′′(t)
∣∣ ≤ Dϵn

sup
|t|≤DTn

∣∣(logφP )
′′(t)

∣∣ ≤ Dϵn + sup
|t|≤DTn

∣∣(logφF0)
′′(t)

∣∣ ≤ D.
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Given any σ2 ≥ 0, the preceding bound also implies that

sup
|t|≤DTn

∣∣(logφP,σ2)′′(t)
∣∣ ≤ sup

|t|≤DTn

[ ∣∣(logφP )
′′(t)

∣∣+ ∣∣(logφσ2)′′(t)
∣∣ ]

≤ D(1 + σ2).

Observe that the (l, k) element of φ̂2
Y(t)[∇∇′ log φ̂Y(t)] is given by

−φ̂Y(t)En[YlYke
it′Y] + En[Yle

it′Y]En[Yke
it′Y].

From this representation and an application of Lemma 2 and 9, we have that

∥φ̂2
YQ∗

kV̂Y − φ2
YQ∗

kVY∥2B(T )≤ D
T d
n log(Tn)

n
≤ Dϵ2n.

with P probability approaching 1. On this set, when P is specified as above and σ2 ≤ D,

we have that

∥φ̂2
Y(Q∗

kV̂Y − (logφP,σ2)′′(t′Ak))∥2B(Tn)

≤ D

[
∥φ2

Y(Q∗
kVY − (logφP,σ2)′′(t′Ak))∥2B(Tn)

+ϵ2n

]
.

Define the set

Gn =

{
(P, σ2) :

∣∣σ2 − σ2
0

∣∣ ≤ ϵ2n,

∫
R
|x|4 dP (x) ≤ n2ϵ4n(log n)

2 ,
N∑
j=1

|P (Vj)− pj | ≤ ϵL3
n

}
.

From combining the all the preceding bounds, it follows that∫
exp

(
− n

2
∥φ̂2

Y(Q∗
kV̂Y − (logφP,σ2)′′(t′Ak))∥2B(Tn)

)
dνα,G(P, σ

2)

≥
∫
Gn

exp

(
− n

2
∥φ̂2

Y(Q∗
kV̂Y − (logφP,σ2)′′(t′Ak))∥2B(Tn)

)
dνα,G(P, σ

2)

≥ exp (− nDϵ2n)

∫
Gn

exp

(
− nD∥φ2

Y(Q∗
kVY − (logφP,σ2)′′(t′Ak))∥2B(Tn)

)
dνα,G(P, σ

2).

Since Q∗
kVY(t) = (logφX)′′(t′Ak) and φX = φF0,σ2

0
, the preceding integral can be ex-

pressed as∫
Gn

exp

(
− nD∥φ2

Y(Q∗
kVY − (logφP,σ2)′′(t′Ak))∥2B(Tn)

)
dνα,G(P, σ

2)

=

∫
Gn

exp

(
− nD∥φ2

Y[(logφF0,σ2
0
)′′(t′Ak)− (logφP,σ2)′′(t′Ak)]∥2B(Tn)

)
dνα,G(P, σ

2).

For every (P,Σ) ∈ Gn, the preceding bounds imply that

sup
∥t∥∞≤Tn

∣∣∣(logφF0,σ2
0
)′′(t′Ak)− (logφP,σ2)′′(t′Ak)

∣∣∣ ≤ Dϵn.
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Since ∥φ2
Y∥L2< ∞, the preceding bound implies that∫

Gn

exp

(
− nD∥φ2

Y[(logφF0,σ2
0
)′′(t′Ak)− (logφP,σ2)′′(t′Ak)]∥2B(Tn)

)
dνα,G(P, σ

2)

≥ exp
(
−nDϵ2n

) ∫
Gn

dνα,G(P, σ
2).

Define the sets

Gn,1 =

{
(P, σ2) :

∣∣σ2 − σ2
0

∣∣ ≤ ϵ2n,
N∑
j=1

|P (Vj)− pj | ≤ ϵL3
n

}
,

Gn,2 =

{
(P, σ2) :

∣∣σ2 − σ2
0

∣∣ ≤ ϵ2n,

∫
R
|x|4 dP (x) > n2ϵ4n(log n)

2 ,
N∑
j=1

|P (Vj)− pj | ≤ ϵL3
n

}
.

Observe that Gn = Gn,1 \ Gn,2. Hence∫
Gn

dνα,G(P, σ
2) =

∫
Gn,1

dνα,G(P, σ
2)−

∫
Gn,2

dνα,G(P, σ
2).

For the second term, observe that∫
Gn,2

dνα,G(P, σ
2) ≤

∫
P :

∫
R|x|

4dP (x)>n2ϵ4n(logn)
2

dνα,G(P, σ
2)

≤
∫
P :

∫
R|x|

4dP (x)>n2ϵ4n(logn)
2

dDPα(P )

≤ exp
(
−Dnϵ2n log n

)
,

where the second inequality is due to να,G being a product measure να,G = DPα ⊗G and

the third inequality follows from an application of Lemma 12.

For the first term, we have that∫
Gn,1

dνα,G(P, σ
2) =

∫
σ2:|σ2−σ2

0|≤ϵ2n

∫
P :

∑N
j=1|P (Vj)−pj |≤ϵ

L3
n

dDPα(P )dG(σ2).

As DPα is constructed using a Gaussian base measure α, it is straightforward to verify

that infNj=1 α(Vj) ≥ CϵL3d
n exp

(
−C ′(log ϵ−1

n )2/χ
)
for universal constants C,C ′ > 0. By def-

inition of DPα, (P (V1), . . . , P (VN )) ∼ Dir(N,α(V1), . . . , α(VN )). As N = D{log
(
ϵ−1
n

)
}ι,

an application of (Ghosal and Van der Vaart, 2017, Lemma G.13) implies∫
P :

∑N
j=1|P (Vj)−pj |≤ϵ

L3
n

dDPα(P ) ≥ C exp (− C ′(log ϵ−1
n )ι+max{2/χ,1}) = C exp (− C ′(log ϵ−1

n )λ)

≥ C exp (− C ′′nϵ2n)

It remains to bound the outer integral. The law of G is given by Ω/σ2
n where Ω ∼ L and

L is a probability measure on R+ that satisfies Assumption 2. By Assumption 2 and the
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definition of σ2
n, there exists a universal constant C,C ′, C ′′ > 0 such that∫

σ2:|σ2−σ2
0|≤ϵ2n

dG(σ2) =

∫
σ2:|σ2−σ2

nσ
2
0|≤σ2

nϵ
2
n

dL(σ2) ≥ C exp (− C ′σ−2κ
n ) ≥ C exp

(
−C ′′nϵ2n

)
.

It follows that ∫
Gn

dνα,G(P, σ
2) =

∫
Gn,1

dνα,G(P, σ
2)−

∫
Gn,2

dνα,G(P, σ
2)

≥ C exp
(
−C ′′nϵ2n

)
− exp

(
−Dnϵ2n log n

)
≥ exp

(
−Dnϵ2n

)
.

The estimate for the lower bound of the normalizing constant follows from combining all

the preceding bounds.

(ii) Next, we establish a preliminary local concentration bound under the prior. Observe that

for any E > 0, we have∫
(P,σ2):∥φ̂2

Y(Q
∗
kV̂Y−(logφP,σ2 )′′(t′Ak))∥2B(Tn)

>2Eϵ2n

exp

(
− n

2
∥φ̂2

Y(Q∗
kV̂Y − (logφP,σ2)′′(t′Ak))∥2B(Tn)

)
dνα,G(P,Σ)

≤ exp (− nEϵ2n).

The law of G is given by Σ/σ2
n where Σ ∼ L and L is a probability measure on Sd

+ that

satisfies Assumption 2. By Assumption 2, it follows that for every E′ > 0, there exists

E > 0 such that∫
σ2:|σ−2|>Eσ2

n(nϵ
2
n)

1/κ

dG(σ2) =

∫
σ2:|σ−2|>E(nϵ2n)

1/κ

dL(σ2) ≤ exp (− E′nϵ2n).

As the prior is a product measure να,G = DPα⊗G and ∥φ̂2
Y(Q∗

kV̂Y−(logφP,σ2)′′(t′Ak))∥2B(Tn)
≥

0, the preceding bound implies∫
σ2:|σ−2|>Eσ2

n(nϵ
2
n)

1/κ

exp

(
− n

2
∥φ̂2

Y(Q∗
kV̂Y − (logφP,σ2)′′(t′Ak))∥2B(Tn)

)
dνα,G(P, σ

2)

≤
∫
σ2:|σ−2|>Eσ2

n(nϵ
2
n)

1/κ

dG(σ2)

≤ exp (− E′nϵ2n).

From combining the preceding bounds, it follows that for any E′ > 0 we can pick E > 0

sufficiently large such that∫
(P,σ2):∥φ̂2

Y(Q
∗
kV̂Y−(logφP,σ2 )′′(t′Ak))∥2B(Tn)

≤Eϵ2n,

|σ−2|≤Eσ2
n(nϵ

2
n)

1/κ

exp

(
− n

2
∥φ̂2

Y(Q∗
kV̂Y − (logφP,σ2)′′(t′Ak))∥2B(Tn)

)
dνα,G(P, σ

2)

≥ 1− exp (− E′nϵ2n).
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(iii) We prove the main statement of the theorem. From the bounds derived in steps (i) and

(ii), it follows that for any C ′ > 0, there exists a M > 0 such that

να,G

(
∥φ̂2

Y(Q∗
kV̂Y − (logφP,σ2)′′(t′Ak))∥2B(Tn)

≤ M2ϵ2n, ∥Σ−1∥≤ M2σ2
n(nϵ

2
n)

1/κ

∣∣∣∣Zn, Tn

)
≥ 1− exp

(
−C ′nϵ2n

)
holds with P probability approaching 1.

The (l, k) element of φ̂2
Y(t)V̂Y(t) is given by

−φ̂Y(t)En[YlYke
it′Y] + En[Yle

it′Y]En[Yke
it′Y].

From this representation and an application of Lemma 2 and 9, we have that

∥φ̂2
YQ∗

kV̂Y − φ2
YQ∗

kVY∥B(T )≤ Dϵn.

Since Q∗
kVY(t) = (logφF0,σ2

0
)′′(t′Ak) and

∣∣∣( logφF0,σ2
0
)′′(t′Ak)

∣∣∣ ≤ D, an application of

Lemma 2 implies that

∥φ̂2
Y( logφF0,Σ0)

′′(t′Ak)− φ2
YQ∗

kVY∥B(Tn)≤ Dϵn

holds with P probability approaching 1.

From combining the preceding bounds, it follows that for any C ′ > 0, there exists a M > 0

such that

να,G

(
∥φ̂2

Y[( logφF0,σ2
0
)′′(t′Ak)− ( logφP,σ2)′′(t′Ak)]∥2B(Tn)

≤ M2ϵ2n,
∣∣σ−2

∣∣ ≤ M2σ2
n(nϵ

2
n)

1/κ

∣∣∣∣Zn, Tn

)
≥ 1− exp

(
−C ′nϵ2n

)
holds with P probability approaching 1. Since Tn = (c0 log n)

1/2 for some c0 satisfying

2c0R = γ < 1/2, an application of Lemma 2 implies that

sup
∥t∥∞≤Tn

∣∣φ̂2
Y(t)− φ2

Y(t)
∣∣∣∣φ2

Y(t)
∣∣ ≤ Dn−1/2+γ

√
log log n

with P probability approaching 1. As the quantity on the right converges to zero, it follows

that

∣∣φ̂2
Y(t)

∣∣ ≥ ∣∣φ2
Y(t)

∣∣− ∣∣φ̂2
Y(t)− φ2

Y(t)
∣∣ ≥ 1

2

∣∣φ2
Y(t)

∣∣ ≥ 1

2
n−γ .

uniformly over the set {∥t∥∞≤ Tn}, with P probability approaching 1. It follows that for
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any C ′ > 0, there exists a M > 0 such that

να,G

(
∥( logφF0,σ2

0
)′′(t′Ak)− ( logφP,Σ)

′′(t′Ak)∥2B(Tn)
≤ M2n2γϵ2n, ∥σ−2∥≤ M2σ2

n(nϵ
2
n)

1/κ

∣∣∣∣Zn, Tn

)
≥ 1− exp

(
−C ′nϵ2n

)
holds with P probability approaching 1.

Recall that we use the posterior measure

να,G(. | T, k,Zn) ∼ Z − E[Z] where Z ∼ να,G(.|T, k,Zn). (90)

Denote the characteristic function of a demeaned Gaussian mixture φP,σ2 by φP,σ2 . For

any distribution Z, we have (logφZ)
′′ = (logφZ−E[Z])

′′. From this observation and the

preceding inequalities for να,G, it follows that

να,G

(
∥( logφF0,σ2

0
)′′(t′Ak)− ( logφP,σ2)′′(t′Ak)∥2B(Tn)

≤ M2n2γϵ2n,
∣∣σ−2

∣∣ ≤ M2σ2
n(nϵ

2
n)

1/κ

∣∣∣∣Zn, Tn

)
≥ 1− exp

(
−C ′nϵ2n

)
holds with P probability approaching 1.

Denote the elements of Ak by Ak = (a1, . . . , aL). Fix any i such that ai ̸= 0. Without

loss of generality, let i = 1 and ai > 0. Consider the change of variables

z1 = t′Ak , z2 = t2 , . . . , zL = tL.

The Jacobian of the change of variables (t1, . . . , tL) → (z1, . . . , zL) is given by J(z1, . . . , zL) =

a−1
1 . Let cL = inft∈B(Tn) t

′Ak and cU = supt∈B(Tn) t
′Ak. It follows that for any non-

negative Borel function f : R → R+, we have that∫
B(Tn)

f(t′Ak)dt = |a1|−1 (2Tn)
d−1

∫ cU

cL

f(z1)dz1.

In particular, since cU ≥ a1Tn and cL ≤ −a1Tn, we have ∥f∥2B(a1Tn)
≤ DT 1−d

n ∥f(t′Ak)∥2B(Tn)

for some universal constant D > 0. It follows that for any C ′ > 0, there exists a M > 0

such that

να,G

(
∥( logφF0,σ2

0
)′′(.)− ( logφP,σ2)′′(.)∥2B(a1Tn)

≤ M2n2γT 1−d
n ϵ2n,

∣∣σ−2
∣∣ ≤ M2σ2

n(nϵ
2
n)

1/κ

∣∣∣∣Zn, Tn

)
≥ 1− exp

(
−C ′nϵ2n

)
holds with P probability approaching 1. Since the Gaussian mixture and the true latent

distribution are demeaned, we have (logφF0,σ2
0
)′(0) = (logφP,σ2)′(0) = 0. From the
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Fundemental theorem of calculus and Cauchy-Schwarz, we obtain

∣∣∣(logφF0,σ2
0
)′(t)− (logφP,σ2)′(t)

∣∣∣ = ∣∣∣∣∫ t

0
[( logφF0,σ2

0
)′′(s)− (logφP,σ2)′′(s)]ds

∣∣∣∣
≤

√
a1
√
Tn∥( logφF0,σ2

0
)′′(.)− ( logφP,σ2)′′(.)∥B(a1Tn)

for every t ∈ B(a1Tn). As all characteristic functions satisfy logφ(0) = 0, we similarly

obtain∣∣∣logφF0,σ2
0
(t)− logφP,σ2(t)

∣∣∣ = ∣∣∣∣∫ t

0
[(logφF0,σ2

0
)′(s)− (logφP,Σ)

′(s)]ds

∣∣∣∣
≤

√
a1
√
Tn∥( logφF0,σ2

0
)′(.)− ( logφP,σ2)′(.)∥B(a1Tn)

for every t ∈ B(a1Tn). Furthermore, for every fixed t ∈ R, the mean value theorem implies

that∣∣∣φF0,σ2
0
(t)− φP,Σ(t)

∣∣∣ ≤ sup
st∈[0,1]

∣∣∣est logφF0,σ
2
0
(t)+(1−st) logφP,σ2 (t)

∣∣∣ ∣∣∣logφF0,σ2
0
(t)− logφP,σ2(t)

∣∣∣ .
Since |φX | ≤ 1 and

∣∣φP,σ2

∣∣ ≤ 1 (as they are characteristic function of random variables),

the preceding bound reduces to∣∣∣φF0,σ2
0
(t)− φP,σ2(t)

∣∣∣ ≤ ∣∣∣logφF0,σ2
0
(t)− logφP,σ2(t)

∣∣∣ .
From combining all the preceding bounds, it follows that there exists a universal constant

D > 0 such that

∥φF0,σ2
0
− φP,σ2∥B(a1Tn)≤ DT 2

n∥( logφF0,σ2
0
)′′(.)− ( logφP,σ2)′′(.)∥B(a1Tn).

It follows that for any C ′ > 0, there exists a M > 0 such that

να,G

(
∥φF0,σ2

0
− φP,σ2∥2B(a1Tn)

≤ M2n2γT 5−d
n ϵ2n,

∣∣σ−2
∣∣ ≤ M2σ2

n(nϵ
2
n)

1/κ

∣∣∣∣Zn, Tn

)
≥ 1− exp

(
−C ′nϵ2n

)
holds with P probability approaching 1.

It remains to examine the bias from truncating the L2 norm to the set B(a1Tn). Sup-

pose
∣∣σ−2

∣∣ ≤ M2σ2
n(nϵ

2
n)

1/κ holds. It follows that there exists a c > 0 for which

σ2 ≥ c(nϵ2n)
−1/κσ−2

n holds. From the definition of σ2
n, we have T 2

n(nϵ
2
n)

−1/κσ−2
n ≍ log n.
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It follows that there exists a universal constant C > 0 such that

∥(φF0,σ2
0
− φP,σ2)1{|t| > a1Tn}∥2L2 ≤ 2∥φF0,σ2

0
1{|t| > a1Tn}∥2L2+2∥φP,σ21{∥t∥∞> a1Tn}∥2L2

≤ 2

∫
|t|>a1Tn

e−t2σ2
0dt+ 2

∫
|t|>a1Tn

e−t2σ2
dt

≤ 2

∫
|t|>a1Tn

e−t2σ2
0dt+ 2

∫
|t|>a1Tn

e−ct2σ−2
n (nϵ2n)

−1/κ
dt

≤ D

[
e−CT 2

nT d−2
n + σ−2

n (nϵ2n)
−1/κe−CT 2

nσ
−2
n (nϵ2n)

−1/κ
T d−2
n

]
.

From substituting T 2
n(nϵ

2
n)

−1/κσ−2
n ≍ log n, the preceding bound reduces to Dn−2K for

some constant K ∈ (0, 1/2] (that depends on, among other factors, σ2
0).

With constant K as specified above, it follows that for any C ′ > 0, there exists M > 0

such that

να,G

(
∥φF0,σ2

0
− φP,σ2∥L2≤ MT (5−d)/2

n nγϵn + n−K |Zn, Tn

)
≥ 1− exp

(
−C ′nϵ2n

)
holds with P probability approaching 1. The claim follows from observing that

T (5−d)/2
n nγϵn ≍ n−1/2+γ(log n)λ/2+(5−d)/4.

Proof of Theorem 8. The proof proceeds through several steps which we outline below. We use

D,D′ > 0 as a generic universal constant that may change from line to line. Define

α2
n = ϵ

2
s+ζ
n , ϵ2n =

(log n)λ+d/2

n
2(s+2ζ)

2(s+2ζ)+d

, λ =

χ−1(d+ 2) χ < 2

d/χ+ 1 χ ≥ 2.

(i) First, we derive a lower bound for the normalizing constant of the posterior measure.

Specifically, we aim to show that there exists a C > 0 such that∫
exp

(
− n

2
∥φ̂2

Y(Q∗
kV̂Y − (logφP,σ2)′′(t′Ak))∥2B(T )

)
dνα,G(P, σ

2) ≥ exp (− Cnϵ2n) (91)

holds with P probability approaching 1.

Note that |t′Ak| ≤
√
d∥t∥∞∥Ak∥≤

√
dTn∥Ak∥ uniformly over t ∈ B(Tn). Since the

preceding constant is finite, it suffices to work under the setting where |t′Ak| ≤ D′Tn.

Observe that the (l, k) element of φ̂2
Y(t)[∇∇′ log φ̂Y(t)] is given by

−φ̂Y(t)En[YlYke
it′Y] + En[Yle

it′Y]En[Yke
it′Y].

106



From this representation and an application of Lemma 2 and 9, it follows that

∥φ̂2
YQ∗

kV̂Y − φ2
YQ∗

kVY∥2B(T )≤ D
T d
n log(Tn)

n
≤ Dϵ2n

with P probability approaching 1. On this set, it follows that∫
exp

(
− n

2
∥φ̂2

Y(Q∗
kV̂Y − (logφP,σ2)′′(t′Ak))∥2B(Tn)

)
dνα,G(P, σ

2)

≥ exp (− nDϵ2n)

∫
exp

(
− nD∥φ2

YQ∗
kVY − φ̂2

Y(logφP,σ2)′′(t′Ak)∥2B(Tn)

)
dνα,G(P, σ

2).

From the model, we have that Q∗
kVY(t) = (logφXk

)′′(t′Ak). By Condition 4.9, there

exists universal constants χ,C,M < ∞ and a mixing distribution Sαn supported on

In = [−C(log ϵ−1
n )1/χ, C(log ϵ−1

n )1/χ] that satisfies

∥φ2
Y(t)[( logφSαn ,α

2
n
)′′(t′Ak)− ( logφXk

)′′(t′Ak)]∥2B(T )≤ Dα4ζ+2s
n ≤ Dϵ2n.

It follows that∫
exp

(
− nD∥φ2

YQ∗
kVY − φ̂2

Y(logφP,σ2)′′(t′Ak)∥2B(Tn)

)
dνα,G(P, σ

2)

≥ exp
(
−nDϵ2n

) ∫
exp

(
− nD∥φ2

Y( logφSαn ,α
2
n
)′′(t′Ak)− φ̂2

Y(logφP,σ2)′′(t′Ak)∥2B(Tn)

)
dνα,G(P, σ

2).

By Condition 4.9 and the definition of (αn, Tn), there exists a C1 > 0 such that

inf
|t|≤D′Tn

∣∣φSαn
(t)
∣∣ ≥ n−C1 .

Next, we show that Sαn can be suitably approximated by a discrete measure. By Lemma

5, there exists a discrete measure F ′ =
∑N

i=1 piδµi with at most N = D(log ϵ−1
n )d/χT d

n

support points on In such that

sup
|t|≤D′Tn

∣∣∂r
tφSαn

(t)− ∂r
tφF ′(t)

∣∣ ≤ n−2C1ϵn r = 0, 1, 2.

From the final claim of Lemma 5, we can also assume without loss of generality that the

support points satisfy infk ̸=j∥µk−µj∥≥ ϵL2
n for some L2 > 0. From the preceding bounds,

we obtain

sup
|t|≤D′Tn

sup
r=0,1,2

∣∣∂r
tφSαn

(t)− ∂r
tφF ′(t)

∣∣∣∣φSαn
(t)
∣∣2 ≤ Dϵn.

Since ϵn ↓ 0, observe that this also implies

|φF ′(t)| ≥
∣∣φSαn

(t)
∣∣− ∣∣φSαn

(t)− φF ′(t)
∣∣ ≥ ∣∣φSαn

(t)
∣∣−Dϵn

∣∣φSαn
(t)
∣∣ ≥ 1

2

∣∣φSαn
(t)
∣∣

for all sufficiently large n and |t| ≤ D′Tn. We write the difference (logφSαn
)′′ − (logφF ′)′′
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as

(logφSαn
)′′ − (logφF ′)′′

= (logφSαn
)′′
(φ2

F ′ − φ2
Sαn

)

φ2
F ′

+
φSαn

(φ′′
Sαn

− φ′′
F ′)

φ2
F ′

+
φ′′
F ′(φSαn

− φF ′)

φ2
F ′

+
(φ′

F ′)2 − (φ′
Sαn

)2

φ2
F ′

.

By Condition 4.9, we have
∣∣(logφSαn

)′′
∣∣ ≤ D and supr=1,2

∣∣∂r
tφSαn

∣∣ ≤ D. From the

preceding representation and bounds, we then obtain

sup
|t|≤D′Tn

∣∣(logφSαn
)′′(t)− (logφF ′)′′(t)

∣∣ ≤ Dϵn.

Fix any L3 > L2 sufficiently large such that

n2C1+1ϵ2n log(n)ϵ
L3/2
n ≤ ϵn , n2C1(log ϵn)

2/χTnϵ
L3
n ≤ ϵn.

Define Vi = {t ∈ In : |t− µi| ≤ ϵL3
n } for i = 1, . . . , N and set V0 = R \

⋃N
i=1 Vi. From

the definition of the {µi}Ni=1, it follows that {V0, V1, . . . , VN} is a disjoint partition of R.
By Lemma 3, for any distribution P that satisfies (

∫
R |x|4 dP (x))1/4 ≤

√
nϵn

√
log n and∑N

j=1 |P (Vj)− pj | ≤ ϵL3
n , we have that

sup
|t|≤D′Tn

|∂r
tφF ′(t)− ∂r

tφP (t)| ≤ n−2C1ϵn r = 0, 1, 2.

For all such P , the preceding bound and an analogous expression to that of (logφSαn
)′′ −

(logφF ′)′′, yields

sup
|t|≤D′Tn

∣∣(logφF ′)′′(t)− (logφP )
′′(t)

∣∣ ≤ Dϵn.

From combining all the preceding bounds, observe that all such P also satisfy

sup
|t|≤D′Tn

∣∣(logφP )
′′(t)− (logφSαn

)′′(t)
∣∣ ≤ Dϵn

sup
|t|≤D′Tn

∣∣(logφP )
′′(t)

∣∣ ≤ Dϵn + sup
|t|≤D′Tn

∣∣(logφSαn
)′′(t)

∣∣ ≤ D.

Given any σ2 ≤ D, the preceding bound also implies that

sup
|t|≤D′Tn

∣∣(logφP,σ2)′′(t)
∣∣ ≤ sup

|t|≤D′Tn

[ ∣∣(logφP )
′′(t)

∣∣+ ∣∣(logφσ2)′′(t)
∣∣ ]

≤ D(1 + σ2)

≤ D.
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By Lemma 2, we have that∫
B(Tn)

|φ̂Y(t)− φY(t)|2 dt ≤ D
T d
n log(Tn)

n
≤ Dϵ2n

holds with P probability approaching 1. On this set, when (P, σ2) satisfy the preceding

requirements, we have that

∥φ̂2
Y(logφP,σ2)′′(t′Ak)− φ2

Y(logφP,σ2)′′(t′Ak)∥2B(Tn)
≤ Dϵ2n.

Define the sets

Ωn =

{
σ2 ∈ R+ : σ2 ∈

[
α2
n

1 + ϵn
, α2

n

]}
.

Gn =

{
(P, σ2) : σ2 ∈ Ωn,

∫
R
|x|4 dP (x) ≤ n2ϵ4n(log n)

2 ,

N∑
j=1

|P (Vj)− pj | ≤ ϵL3
n

}
.

From combining the preceding bounds, it follows that∫
exp

(
− nD∥φ2

Y( logφSαn ,α
2
n
)′′(t′Ak)− φ̂2

Y(logφP,σ2)′′(t′Ak)∥2B(Tn)

)
dνα,G(P, σ

2)

≥
∫
Gn

exp

(
− nD∥φ2

Y( logφSαn ,α
2
n
)′′(t′Ak)− φ̂2

Y(logφP,σ2)′′(t′Ak)∥2B(Tn)

)
dνα,G(P, σ

2)

≥ exp (− nDϵ2n)

∫
Gn

exp

(
− nD∥φ2

Y[( logφSαn ,α
2
n
)′′(t′Ak)− (logφP,σ2)′′(t′Ak)]∥2B(Tn)

)
dνα,G(P, σ

2).

For every (P, σ2) ∈ Gn, the preceding bounds also imply that

sup
|t|≤D′Tn

∣∣(logφP,σ2)′′(t)− (logφSαn ,α
2
n
)′′(t)

∣∣
≤ sup

|t|≤D′Tn

∣∣(logφP )
′′(t)− (logφSαn

)′′(t)
∣∣+ sup

|t|≤D′Tn

∣∣(logφσ2)′′(t)− (logφα2
n
)′′(t)

∣∣
≤ Dϵn +D

∣∣σ2 − α2
n

∣∣
≤ Dϵn.

Since ∥φ2
Y∥L2< ∞, we obtain that∫

Gn

exp

(
− nD∥φ2

Y[( logφSαn ,α
2
n
)′′(t′Ak)− (logφP,σ2)′′(t′Ak)]∥2B(Tn)

)
dνα,G(P, σ

2)

≥ exp (− nDϵ2n)

∫
Gn

dνα,G(P, σ
2).
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Define the sets

Gn,1 =

{
(P, σ2) : σ2 ∈ Ωn,

N∑
j=1

|P (Vj)− pj | ≤ ϵL3
n

}
,

Gn,2 =

{
(P, σ2) : σ2 ∈ Ωn,

∫
R
|x|4 dP (x) > n2ϵ4n(log n)

2 ,
N∑
j=1

|P (Vj)− pj | ≤ ϵL3
n

}
.

Observe that Gn = Gn,1 \ Gn,2. Hence∫
Gn

dνα,G(P, σ
2) =

∫
Gn,1

dνα,G(P, σ
2)−

∫
Gn,2

dνα,G(P, σ
2).

For the second term, observe that∫
Gn,2

dνα,G(P, σ
2) ≤

∫
P :

∫
R|x|

4dP (x)>n2ϵ4n(logn)
2

dνα,G(P, σ
2)

≤
∫
P :

∫
R|x|

4dP (x)>n2ϵ4n(logn)
2

dDPα(P )

≤ exp
(
−Dnϵ2n log n

)
,

where the second inequality is due to να,G being a product measure να,G = DPα ⊗G and

the third inequality follows from an application of Lemma 12.

For the first term, we have that∫
Gn,1

dνα,G(P, σ
2) =

∫
σ2∈Ωn

∫
P :

∑N
j=1|P (Vj)−pj |≤ϵ

L3
n

dDPα(P )dG(σ2).

As DPα is constructed using a Gaussian base measure α, it is straightforward to verify

that infNj=1 α(Vj) ≥ CϵL3d
n exp

(
−C ′(log ϵ−1

n )2/χ
)
for universal constants C,C ′ > 0. By def-

inition of DPα, (P (V1), . . . , P (VN )) ∼ Dir(N,α(V1), . . . , α(VN )). As N = D{log
(
ϵ−1
n

)
}ι,

an application of (Ghosal and Van der Vaart, 2017, Lemma G.13) implies∫
P :

∑N
j=1|P (Vj)−pj |≤ϵ

L3
n

dDPα(P ) ≥ C exp (− C ′(log ϵ−1
n )ι+max{2/χ,1}) = C exp (− C ′(log ϵ−1

n )λ)

≥ C exp (− C ′′nϵ2n).

It remains to bound the outer integral. The law of G = Gn is given by Ω/σ2
n where Ω ∼ L

and L is a probability measure on R+ that satisfies Assumption 2. By Assumption 2 and

the definition of (α2
n, σ

2
n, ϵ

2
n), there exists a universal constant C,C ′, C ′′ > 0 such that∫

σ2∈Ωn

dG(σ2) =

∫
σ2∈σ2

nΩn

dL(σ2) ≥ C exp (− C ′σ−2κ
n α−2κ

n ) ≥ C exp
(
−C ′′nϵ2n

)
.
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It follows that ∫
Gn

dνα,G(P, σ
2) =

∫
Gn,1

dνα,G(P, σ
2)−

∫
Gn,2

dνα,G(P, σ
2)

≥ C exp
(
−C ′′nϵ2n

)
− exp

(
−Dnϵ2n log n

)
≥ exp

(
−Dnϵ2n

)
.

The estimate for the lower bound of the normalizing constant follows from combining all

the preceding bounds.

(ii) Next, we establish a preliminary local concentration bound under the prior. Observe that

for any E > 0, we have∫
(P,σ2):∥φ̂2

Y(Q
∗
kV̂Y−(logφP,σ2 )′′(t′Ak))∥2B(Tn)

>2Eϵ2n

exp

(
− n

2
∥φ̂2

Y(Q∗
kV̂Y − (logφP,σ2)′′(t′Ak))∥2B(Tn)

)
dνα,G(P,Σ)

≤ exp (− nEϵ2n).

The law of G is given by Σ/σ2
n where Σ ∼ L and L is a probability measure on Sd

+ that

satisfies Assumption 2. By Assumption 2, it follows that for every E′ > 0, there exists

E > 0 such that∫
σ2:|σ−2|>Eσ2

n(nϵ
2
n)

1/κ

dG(σ2) =

∫
σ2:|σ−2|>E(nϵ2n)

1/κ

dL(σ2) ≤ exp (− E′nϵ2n).

As the prior is a product measure να,G = DPα⊗G and ∥φ̂2
Y(Q∗

kV̂Y−(logφP,σ2)′′(t′Ak))∥2B(Tn)
≥

0, the preceding bound implies∫
σ2:|σ−2|>Eσ2

n(nϵ
2
n)

1/κ

exp

(
− n

2
∥φ̂2

Y(Q∗
kV̂Y − (logφP,σ2)′′(t′Ak))∥2B(Tn)

)
dνα,G(P, σ

2)

≤
∫
σ2:|σ−2|>Eσ2

n(nϵ
2
n)

1/κ

dG(σ2)

≤ exp (− E′nϵ2n).

From combining the preceding bounds, it follows that for any E′ > 0 we can pick E > 0

sufficiently large such that∫
(P,σ2):∥φ̂2

Y(Q
∗
kV̂Y−(logφP,σ2 )′′(t′Ak))∥2B(Tn)

≤Eϵ2n,

|σ−2|≤Eσ2
n(nϵ

2
n)

1/κ

exp

(
− n

2
∥φ̂2

Y(Q∗
kV̂Y − (logφP,σ2)′′(t′Ak))∥2B(Tn)

)
dνα,G(P, σ

2)

≥ 1− exp (− E′nϵ2n).

(iii) We prove the main statement of the theorem. From the bounds derived in steps (i) and
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(ii), it follows that for any C ′ > 0, there exists a M > 0 such that

να,G

(
∥φ̂2

Y(Q∗
kV̂Y − (logφP,σ2)′′(t′Ak))∥2B(Tn)

≤ M2ϵ2n, ∥Σ−1∥≤ M2σ2
n(nϵ

2
n)

1/κ

∣∣∣∣Zn, Tn

)
≥ 1− exp

(
−C ′nϵ2n

)
holds with P probability approaching 1.

The (l, k) element of φ̂2
Y(t)V̂Y(t) is given by

−φ̂Y(t)En[YlYke
it′Y] + En[Yle

it′Y]En[Yke
it′Y].

From this representation and an application of Lemma 2 and 9, we have that

∥φ̂2
YQ∗

kV̂Y − φ2
YQ∗

kVY∥B(T )≤ Dϵn.

Since Q∗
kVY(t) = (logφXk

)′′(t′Ak) and
∣∣( logφXk

)′′(t′Ak)
∣∣ ≤ D, an application of Lemma

2 implies that

∥φ̂2
Y( logφX)′′(t′Ak)− φ2

YQ∗
kVY∥B(Tn)≤ Dϵn

holds with P probability approaching 1.

From combining the preceding bounds, it follows that for any C ′ > 0, there exists a M > 0

such that

να,G

(
∥φ̂2

Y[( logφXk
)′′(t′Ak)− ( logφP,σ2)′′(t′Ak)]∥2B(Tn)

≤ M2ϵ2n,
∣∣σ−2

∣∣ ≤ M2σ2
n(nϵ

2
n)

1/κ

∣∣∣∣Zn, Tn

)
≥ 1− exp

(
−C ′nϵ2n

)
holds with P probability approaching 1.

An application of Lemma 2 implies that

sup
∥t∥∞≤Tn

∣∣φ̂2
Y(t)− φ2

Y(t)
∣∣∣∣φ2

Y(t)
∣∣ ≤ DT 2ζ

n

√
log n√
n

.

with P probability approaching 1. As the quantity on the right converges to zero, it follows

that

∣∣φ̂2
Y(t)

∣∣ ≥ ∣∣φ2
Y(t)

∣∣− ∣∣φ̂2
Y(t)− φ2

Y(t)
∣∣ ≥ 1

2

∣∣φ2
Y(t)

∣∣
uniformly over the set {∥t∥∞≤ Tn}, with P probability approaching 1. It follows that for
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any C ′ > 0, there exists a M > 0 such that

να,G

(
∥( logφXk

)′′(t′Ak)− ( logφP,Σ)
′′(t′Ak)∥2B(Tn)

≤ M2T 4ζ
n ϵ2n, ∥σ−2∥≤ M2σ2

n(nϵ
2
n)

1/κ

∣∣∣∣Zn, Tn

)
≥ 1− exp

(
−C ′nϵ2n

)
holds with P probability approaching 1.

Recall that we use the posterior measure

να,G(. | T, k,Zn) ∼ Z − E[Z] where Z ∼ να,G(.|T, k,Zn). (92)

Denote the characteristic function of a demeaned Gaussian mixture φP,σ2 by φP,σ2 . For

any distribution Z, we have (logφZ)
′′ = (logφZ−E[Z])

′′. From this observation and the

preceding inequalities for να,G, it follows that

να,G

(
∥( logφXk

)′′(t′Ak)− ( logφP,σ2)′′(t′Ak)∥2B(Tn)
≤ M2T 4ζ

n ϵ2n,
∣∣σ−2

∣∣ ≤ M2σ2
n(nϵ

2
n)

1/κ

∣∣∣∣Zn, Tn

)
≥ 1− exp

(
−C ′nϵ2n

)
holds with P probability approaching 1.

Denote the elements of Ak by Ak = (a1, . . . , aL). Fix any i such that ai ̸= 0. Without

loss of generality, let i = 1 and ai > 0. Consider the change of variables

z1 = t′Ak , z2 = t2 , . . . , zL = tL.

The Jacobian of the change of variables (t1, . . . , tL) → (z1, . . . , zL) is given by J(z1, . . . , zL) =

a−1
1 . Let cL = inft∈B(Tn) t

′Ak and cU = supt∈B(Tn) t
′Ak. It follows that for any non-

negative Borel function f : R → R+, we have that∫
B(Tn)

f(t′Ak)dt = |a1|−1 (2Tn)
d−1

∫ cU

cL

f(z1)dz1.

In particular, since cU ≥ a1Tn and cL ≤ −a1Tn, we have ∥f∥2B(a1Tn)
≤ DT 1−d

n ∥f(t′Ak)∥2B(Tn)

for some universal constant D > 0. It follows that for any C ′ > 0, there exists a M > 0

such that

να,G

(
∥( logφXk

)′′(.)− ( logφP,σ2)′′(.)∥2B(a1Tn)
≤ M2T 4ζ

n T 1−d
n ϵ2n,

∣∣σ−2
∣∣ ≤ M2σ2

n(nϵ
2
n)

1/κ

∣∣∣∣Zn, Tn

)
≥ 1− exp

(
−C ′nϵ2n

)
holds with P probability approaching 1. Since the Gaussian mixture and the true la-

tent distribution are demeaned, we have (logφXk
)′(0) = (logφP,σ2)′(0) = 0. From the

113



Fundemental theorem of calculus and Cauchy-Schwarz, we obtain

∣∣(logφXk
)′(t)− (logφP,σ2)′(t)

∣∣ = ∣∣∣∣∫ t

0
[( logφXk

)′′(s)− (logφP,σ2)′′(s)]ds

∣∣∣∣
≤

√
a1
√
Tn∥( logφXk

)′′(.)− ( logφP,σ2)′′(.)∥B(a1Tn)

for every t ∈ B(a1Tn). As all characteristic functions satisfy logφ(0) = 0, we similarly

obtain

∣∣logφXk
(t)− logφP,σ2(t)

∣∣ = ∣∣∣∣∫ t

0
[(logφXk

)′(s)− (logφP,Σ)
′(s)]ds

∣∣∣∣
≤

√
a1
√
Tn∥( logφXk

)′(.)− ( logφP,σ2)′(.)∥B(a1Tn)

for every t ∈ B(a1Tn). Furthermore, for every fixed t ∈ R, the mean value theorem implies

that

∣∣φXk
(t)− φP,Σ(t)

∣∣ ≤ sup
st∈[0,1]

∣∣∣est logφXk
(t)+(1−st) logφP,σ2 (t)

∣∣∣ ∣∣logφXk
(t)− logφP,σ2(t)

∣∣ .
Since |φXk

| ≤ 1 and
∣∣φP,σ2

∣∣ ≤ 1 (as they are characteristic function of random variables),

the preceding bound reduces to

∣∣φXk
(t)− φP,σ2(t)

∣∣ ≤ ∣∣logφXk
(t)− logφP,σ2(t)

∣∣ .
From combining all the preceding bounds, it follows that there exists a universal constant

D > 0 such that

∥φXk
− φP,σ2∥B(a1Tn)≤ DT 2

n∥( logφXk
)′′(.)− ( logφP,σ2)′′(.)∥B(a1Tn).

It follows that for any C ′ > 0, there exists a M > 0 such that

να,G

(
∥φXk

− φP,σ2∥2B(a1Tn)
≤ M2T 4ζ+5−d

n ϵ2n,
∣∣σ−2

∣∣ ≤ M2σ2
n(nϵ

2
n)

1/κ

∣∣∣∣Zn, Tn

)
≥ 1− exp

(
−C ′nϵ2n

)
holds with P probability approaching 1.

It remains to examine the bias from truncating the L2 norm to the set B(a1Tn). Sup-

pose
∣∣σ−2

∣∣ ≤ M2σ2
n(nϵ

2
n)

1/κ holds. It follows that there exists a c > 0 for which

σ2 ≥ c(nϵ2n)
−1/κσ−2

n holds. From the definition of σ2
n, we have T 2

n(nϵ
2
n)

−1/κσ−2
n ≍ log n.
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It follows that there exists a universal constant C > 0 such that

∥(φXk
− φP,σ2)1{|t| > a1Tn}∥2L2 ≤ 2∥φXk

1{|t| > a1Tn}∥2L2+2∥φP,σ21{∥t∥∞> a1Tn}∥2L2

≤ 2

∫
|t|>a1Tn

|φXk
(t)|2 dt+ 2

∫
|t|>a1Tn

e−t2σ2
dt

≤ 2

∫
|t|>a1Tn

|φXk
(t)|2 dt+ 2

∫
|t|>a1Tn

e−ct2σ−2
n (nϵ2n)

−1/κ
dt

≤ D

[
T−2p
n + σ−2

n (nϵ2n)
−1/κe−CT 2

nσ
−2
n (nϵ2n)

−1/κ
T d−2
n

]
.

Since T 2
n(nϵ

2
n)

−1/κσ−2
n ≍ (log n)(log log n), the preceding bound reduces to DT−2p

n . From

combining the preceding bounds, it follows that for every C ′ > 0, there exists a M > 0

such that

να,G

(
∥φX − φP,Σ∥L2≤ M(T 2ζ+(5−d)/2

n ϵn + T−p
n )

∣∣∣∣Zn, Tn

)
≥ 1− exp

(
−C ′nϵ2n

)
.

holds with P probability approaching 1. The claim follows from observing that

T 4ζ+(5−d)
n ϵ2n ≍ (log n)λ+2ζ+5/2

n
2s+d−5

2(s+2ζ)+d

.
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