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Abstract

This paper develops a model of in-kind redistribution where consumers participate in either

a private market or a government-designed program, but not both. We characterize when

a social planner, seeking to maximize weighted total surplus, can strictly improve upon the

laissez-faire outcome. We show that the optimal mechanism consists of three components: a

public option, nonlinear subsidies, and laissez-faire consumption. We quantify the resulting

distortions and relate them to the correlation between consumer demand and welfare weights.

Our findings reveal that while private market access constrains the social planner’s ability to

redistribute, it also strengthens the rationale for non-market allocations.
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1 Introduction

Governments often redistribute in kind by intervening in markets. Two common instruments for

in-kind redistribution are subsidy programs, which allow consumers to purchase different versions

of the good at subsidized prices, and direct provision, which offers consumers access to a standard

baseline version—sometimes referred to as the “public option.” For example, in the market for

low-income housing, housing authorities frequently provide a combination of housing assistance

programs, such as the Low-Income Housing Tax Credit in the United States, and public housing

developments. When and how should each of these instruments be used optimally?

In this paper, we answer these questions using a mechanism design approach. We begin by

considering a perfectly competitive market where consumers can purchase different quality levels

of a good at cost. We then introduce a social planner who seeks to redistribute by offering an

alternative price schedule—such as by subsidizing some quality levels and/or making a baseline

quality level freely available. Following a recent literature on redistributive mechanism design, we

model the social planner’s redistribution objective by assigning heterogeneous welfare weights to

consumers. Each consumer’s welfare weight represents the social value of giving him one unit of

money; we interpret those with high welfare weights as “poor” and those with low welfare weights

as “rich.” In addition, to focus on in-kind redistribution, we restrict the social planner’s ability

to redistribute in cash by disallowing lump-sum transfers to consumers. Instead, we model the

social planner’s opportunity cost for money (e.g., due to other redistribution programs, including

lump-sum transfers outside of the mechanism) by assigning a welfare weight to profit.

A key novel feature of our paper is the social planner’s limited control over the entire market

due to consumers’ ability to access the private market. On one hand, the social planner faces a

screening problem: she seeks to distort the quality consumption of richer consumers and redirect

surplus to poorer consumers. On the other hand, unlike standard screening problems, the social

planner faces additional participation constraints that arise because consumers have access to a

private market, which restricts the social planner’s ability to distort quality consumption and

redirect surplus. These participation constraints reflect the limited ability of housing authorities

(and other public assistance programs, which are often run by local governments) to directly tax

consumption in the private market.

Our first main result quantifies when there is scope for in-kind redistribution. As we show,

the social planner optimally intervenes if and only if the welfare weight of the poorest consumer

exceeds the welfare weight of profit. One direction of this result is intuitive: if even the poorest

consumer’s welfare weight does not exceed that of profit, the social planner cannot improve upon

1



the laissez-faire outcome and would prefer to use other programs or lump-sum transfers outside

the mechanism, as captured by her high opportunity cost for money. The reverse direction is less

obvious: if the welfare weight of the poorest consumer exceeds profit, then we demonstrate that

the social planner can always distort the quality consumption of richer consumers and redirect

surplus to poorer consumers.

The simplicity of our first result masks the complexity introduced by consumers’ ability to

access a private market. While the scope for in-kind redistribution depends on the welfare weight

of the poorest consumer, the set of consumers for whom the social planner distorts consumption

depends on the welfare weight of the average consumer. On one hand, if the welfare weight of

the average consumer exceeds that of profit, then only the participation constraint of the richest

consumer can potentially bind. In this case, the social planner optimally distorts the quality

consumption of the richest consumers and redirects surplus to the poorest consumers. On the

other hand, if the welfare weight of the average consumer does not exceed that of profit, then the

participation constraints bind for a positive measure of the richest consumers. In this case, the

social planner optimally distorts only the quality consumption of consumers in the middle, rather

than the richest consumers.

The relationship between each consumer’s welfare weight and willingness to pay introduces an

additional layer of complexity. Specifically, we consider two benchmark cases: when welfare weight

is negatively correlated with willingness to pay, and when it is positively correlated. A negative

correlation implies that consumers who consume higher quality levels (e.g., bigger apartments)

tend to be richer. When some participation constraints bind, this leads to downward distortions

for richer consumers and upward distortions for poorer consumers in the set of consumers who

benefit from the optimal redistribution program. By contrast, a positive correlation implies that

consumers who consume higher quality levels (e.g., more childcare) tend to be poorer. This leads

to upward distortions for all consumers whose quality consumption the social planner distorts.

Our second main result describes how the social planner should optimally redistribute in kind.

We show that the optimal redistribution program generally comprises three components: a public

option, a nonlinear subsidy program, and private market consumption. How these components are

structured depends on the correlation between welfare weight and willingness to pay. In the case

of negative correlation, the poorest consumers receive access to a free public option, consumers

in the middle benefit from a nonlinear subsidy program, and the richest consumers consume in

the private market, as illustrated in Figure 1(a). By contrast, in the case of positive correlation,

the richest consumers consume either the public option or in the private market, and the poorest

consumers benefit from a nonlinear subsidy program, as illustrated in Figure 1(b).

2



richer consumers

public option subsidy program private market

(a) Negative correlation between welfare weight and willingness to pay

poorer consumers

public option or private market subsidy program

(b) Positive correlation between welfare weight and willingness to pay

Figure 1: Graphical depictions of the optimal in-kind redistribution program.

In the case of negative correlation between welfare weight and willingness to pay, our second

result demonstrates how private market access can broaden the justification for using non-market

allocations. We compare our optimal redistribution program to a counterfactual scenario in which

the social planner can control the entire market. In that scenario, the social planner employs a

public option only when the welfare weight of the average consumer exceeds that of profit. In our

problem, a public option remains optimal under that condition; however, when welfare weight is

negatively correlated with willingness to pay, a public option may also be optimal even when that

condition fails to hold. This is because a public option may help to relax participation constraints

that would otherwise bind for poorer consumers, resulting in broadened justification for its use.

In the case of positive correlation between welfare weight and willingness to pay, our second

result shows how the social planner does not benefit from preventing subsidized consumers from

topping up their consumption in the private market. Unlike affordable housing programs, programs

such as childcare and disability care often do not explicitly prohibit consumers from supplementing

their subsidized consumption in the program with additional consumption in the private market.

As we show in a companion paper (Kang and Watt, 2024), the ability of consumers to top up their

consumption in the private market leads to different participation constraints and different optimal

mechanisms in general. However, we show in this paper that, when welfare weight is positively

correlated with willingness to pay, the ability of consumers to top up their consumption in the

private market does not lead to a different optimal mechanism. Positive correlation ensures better

self-targeting for those with higher welfare weights, and so the optimal mechanism is sufficiently

generous such that no subsidized consumer tops up his consumption in the private market.

Our characterization of the optimal in-kind redistribution program in this paper builds on the

Lagrangian approach and generalized ironing methods in mechanism design. The participation

constraints that arise from consumers’ ability to access a private market yield a mechanism design
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problem with type-dependent outside options.1 As we show, this gives rise mathematically to

a convex program with majorization constraints.2 We solve this problem by guessing Lagrange

multipliers à la Amador and Bagwell (2013) and showing that they are optimal using generalized

ironing methods developed by Toikka (2011).

Our paper contributes to a growing literature that analyzes redistribution through the lens

of mechanism design. While much of this literature (e.g., Che, Gale, and Kim, 2013; Condorelli,

2013; Dworczak R○ Kominers R○ Akbarpour, 2021; Akbarpour R○ Dworczak R○ Kominers, 2024;

Pai and Strack, 2024) assumes that the social planner can control the entire market, we consider

a social planner who cannot control the private market. Our paper is most closely related to

Kang (2023), who examines the equilibrium effects of a social planner’s direct provision program

on the private market. Whereas Kang focuses on a benchmark where the social planner is more

inefficient than the private market (as modeled by the restriction that the social planner can

produce only one quality level of the good), we study an alternative benchmark where the social

planner is just as efficient as the private market. In addition, while we focus on a setting where

consumers must choose between consuming in the private market or participating in the social

planner’s redistribution program, we recognize that this assumption might be less appropriate for

programs such as food stamps and public transit subsidies. These programs often allow—and

sometimes expect—consumers to supplement subsidized goods with additional purchases in the

private market. While we show in this paper that consumers’ ability to top up consumption

in the private market does not change the optimal mechanism when welfare weight is positively

correlated with willingness to pay, we examine this problem in full generality in a companion paper

(Kang and Watt, 2024). There, we show that different optimal mechanisms arise in general due

to additional implied constraints on the marginal prices that consumers face.

Finally, our paper also complements a large literature in public finance on the public provision

of private goods. Whereas this literature (e.g., Nichols and Zeckhauser, 1982; Blackorby and

Donaldson, 1988; Besley and Coate, 1991; Gahvari and Mattos, 2007) typically focuses on in-kind

redistribution on the extensive margin—that is, whether or not to provide a fixed quality level

of the good at a given price—our mechanism-design approach allows us to study the intensive

margin as well, where the social planner provides a continuum of quality levels at different prices.

1 Jullien (2000) uses optimal control to identify sufficient conditions for the solution to such a problem to exhibit
specific properties, such as separation and full participation. By contrast, the optimal mechanism in our problem
is not generally fully separating and does not induce full participation (see Figure 1).

2 Recent advances (e.g., Kleiner, Moldovanu, and Strack, 2021) have used extreme point methods to characterize
the solutions of linear—and, more generally, concave—programs with majorization constraints. However, extreme
point methods do not apply in our setting as our program is convex; hence, our solution is at an interior point.
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The remainder of this paper is organized as follows. We begin by developing a model of in-

kind redistribution in Section 2. We then present our main results: Section 3 quantifies when

there is scope for in-kind redistribution, while Section 4 characterizes the optimal redistribution

program. We use our main results to derive economic implications in Section 5 and discuss broader

takeaways in Section 6. Section 7 concludes. We provide a detailed derivation of our main results

in Appendix A and defer all other proofs to Appendix B.

2 Model

In this section, we develop a model of in-kind redistribution. To this end, we begin with a standard

model of a private market and describe the laissez-faire equilibrium. We then formulate the social

planner’s problem of optimal in-kind redistribution via mechanism design.

2.1 Setup

There is a unit mass of risk-neutral consumers who each demand a single unit of an indivisible

good. The good is available at different quality levels, denoted by q ∈ [0, A], up to a maximum

quality level A. The good is supplied competitively by producers in a private market who face a

constant marginal cost of c > 0 for each unit of quality.

While consumers have quasilinear preferences over money, they differ in their preferences over

quality. In particular, each consumer’s preferences over quality are captured by a type θ ∈ [θ, θ] ⊂
R++ that determines the utility θv(q) that he derives from consuming a good of quality q. We

assume that v : [0, A] → R+ is increasing, strictly concave, and twice continuously differentiable;

these assumptions are standard and ensure that consumers have diminishing marginal utility for

quality. For notational simplicity, we extend the domain of (v′)−1 to the entire real line, so that

(v′)−1(z) = 0 for z ≥ v′(0) and (v′)−1(z) = A for z ≤ v′(A). This allows us to write individual

demand curves as

D(p, θ) = (v′)−1
(p
θ

)
.

Each consumer is privately informed about his type, which is drawn from an absolutely continuous

cumulative distribution function F with a positive density function f on [θ, θ].
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2.2 Laissez-Faire Equilibrium

Next, we describe the laissez-faire equilibrium in the private market. As the market is competitive,

the price of a good with quality q is equal to its cost, cq. Consequently, each consumer solves the

utility maximization problem:

ULF(θ) := max
q∈[0,A]

[θv(q)− cq] .

Thus, ULF(θ) denotes the laissez-faire utility that a consumer with type θ receives by consuming

in the private market. We further let qLF(θ) denote the laissez-faire quality level of the good (i.e.,

the quality level that the consumer would choose in the private market); because v is strictly

concave, qLF(θ) is uniquely defined for each θ.

2.3 Social Planner’s Problem

We now consider the problem faced by a social planner who wishes to redistribute by designing an

alternative price schedule for different quality levels of the good. Unlike the private market’s price

schedule, which is linear because the private market is perfectly competitive, the social planner’s

price schedule might potentially be nonlinear. Each consumer can choose to consume from either

the social planner’s price schedule or the private market’s, but not both. In particular, as is the

case in our motivating example of public housing in Section 1, a consumer cannot “top up” his

consumption in the private market if he has already chosen to consume from the social planner’s

price schedule.3

The social planner shares the same production technology as producers in the private market.

In particular, the social planner faces the same marginal cost of c for each unit of quality. We

interpret this as a setting in which the social planner is equally efficient as private producers.4

For example, the social planner might be able to costlessly contract with producers in the private

market to supply affordable housing.

Because the social planner is equally efficient as private producers, we can reformulate the social

planner’s problem as one of choosing total consumption, defined as the sum of public consumption

3 This assumption is natural in the context of public housing, where it might be easier for government agencies to
prevent consumers from consuming both public housing and private housing at the same time. However, there
are other settings where consumers can top up their consumption in the private market, such as in the context
of food vouchers, where consumers who receive SNAP benefits can supplement their consumption of food and
groceries by paying in cash. The ability of consumers to top up changes the social planner’s problem significantly,
and we study this setting in a companion paper (Kang and Watt, 2024).

4 By contrast, Kang (2023) analyzes a benchmark in which the social planner is less efficient than private producers.
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(from the social planner’s price schedule) and private consumption (from the private market’s

price schedule). That is, the social planner chooses a direct mechanism (q, t), which consists of:

(i) an allocation function q : [θ, θ] → [0, A], so that q(θ) is the quality level of the good that a

consumer with type θ consumes, be it from the social planner’s price schedule or the private

market’s; and

(ii) a payment function t : [θ, θ] → R, so that t(θ) is the payment that a consumer with type θ

makes, be it to the social planner or the private market.

The key assumption enabling this reformulation is that the social planner shares the same

production technology as producers in the private market. Indeed, this assumption implies that

total consumption is sufficient for determining total surplus; otherwise, if production technologies

were asymmetric between the social planner and the private market, total surplus would depend on

how the breakdown of total consumption between the social planner and the private market. This

reformulation also implicitly assumes that the social planner chooses a deterministic mechanism;

as we show below, this assumption entails no loss of generality.

We now describe three feasibility constraints on mechanisms that the social planner faces.

First, by the revelation principle (Myerson, 1981), it is without loss of generality for the social

planner to restrict attention to incentive-compatible mechanisms so that consumers report their

types truthfully:

θ ∈ argmax
θ′∈[θ,θ]

[θv(q(θ′))− t(θ′)] for any θ ∈ [θ, θ]. (IC)

Second, unlike mechanism design problems without a private market, the ability of consumers

to consume in a private market imposes type-dependent individual rationality constraints on the

mechanism. Because each consumer always has the option of consuming in the private market,

the utility that he derives from the mechanism (which describes his total consumption) must be

no less than the utility that he derives from his private market consumption:

θv(q(θ))− t(θ) ≥ ULF(θ) for any θ ∈ [θ, θ]. (IR)

Third, we focus on mechanisms for in-kind redistribution by restricting the ability of the social

planner to redistribute through lump-sum cash transfers within the mechanism. In particular, the

social planner can choose only nonnegative payment functions:

t(θ) ≥ 0 for any θ ∈ [θ, θ]. (LS)
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As such, while the social planner can give away some goods for free (i.e., setting a price of zero for

some quality levels), she cannot give consumers money. However, we do allow for cash transfers

outside of the mechanism, which we model through the social planner’s preferences over the

monetary surplus (i.e., profit) that the mechanism runs, as we now describe.

The social planner maximizes total weighted surplus, which consists of consumer surplus and

total profit (i.e., total revenue minus total cost):

(i) Consumer surplus. The social planner assigns a social welfare weight of ω(θ) to a consumer

with type θ. This represents the social value that arises from giving that consumer one unit

of money.5 Throughout, we assume that ω : [θ, θ] → R+ is continuous. Different markets

may entail different correlations between welfare weight and willingness to pay. In this paper,

we focus on two benchmarks: negative correlation and positive correlation.

In the case of negative correlation, we assume that ω is decreasing: consumers with higher

value for quality θ tend to be richer or more privileged, and because the social planner has

redistributive preferences, she assigns a lower welfare weight ω(θ) to these consumers. We

expect this to hold in markets for housing and education.

In the case of positive correlation, we assume that ω is increasing: consumers with higher

value for quality θ tend to be poorer or more disadvantaged, and because the social planner

has redistributive preferences, she assigns a higher welfare weight ω(θ) to these consumers.

We expect this to hold in markets for childcare, disability care, and inferior goods.

(ii) Total profit. The social planner assigns a social welfare weight of α ∈ R+ to total profit,

which is the difference between the total revenue generated by the mechanism and its total

cost. This represents the social planner’s shadow cost of budget. For example, we would

expect α to be high if the social planner has other redistribution programs that compete for

the same budget, such as cash transfers that happen outside of the mechanism. By contrast,

we would expect α to be low if the social planner faces significant political constraints6 that

limit her ability to redistribute outside of the mechanism.

In summary, the social planner chooses a feasible mechanism—satisfying the (IC), (IR), and

(LS) constraints—to maximize total weighted surplus. Consequently, the social planner’s problem

5 Dworczak R○ al. (2021) provide a microfoundation for this interpretation by showing that θ can be thought of
as the marginal rate of substitution between quality and money.

6 For instance, Liscow and Pershing (2022) show that the general population in the U.S. largely prefers in-kind
redistribution to cash transfers.
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can be formally written as:

max
(q,t)

∫ θ

θ

[
ω(θ) [θv(q(θ))− t(θ)]︸ ︷︷ ︸

consumer surplus

+α [t(θ)− cq(θ)]︸ ︷︷ ︸
total profit

]
dF (θ) (OBJ)

s.t. (q, t) satisfies (IC), (IR), and (LS).

Notice that the laissez-faire mechanism, (qLF, cqLF), is feasible; hence the set of feasible mechanisms

is always nonempty. In Appendix A, we formally show that a unique solution to the social planner’s

problem exists. Below, we refer to that solution as the optimal mechanism and denote it by (q∗, t∗).

3 Scope of Optimal Intervention

In this section, we present our first main result: a characterization of when the social planner can

strictly improve on the laissez-faire outcome.

Theorem 1 (scope of optimal intervention). The optimal mechanism (q∗, t∗) strictly improves on

the laissez-faire outcome if and only if maxω > α.

Theorem 1 states that the difference between the maximum consumer welfare weight and the

welfare weight of profit is a sufficient statistic for determining if the social planner should intervene.

While the statement of this result is simple, its derivation is complicated by (i) the participation

constraints that arise from consumers’ ability to access a private market and (ii) the correlation

between welfare weight and willingness to pay. Consequently, we defer the proof of Theorem 1 to

Appendix A and instead focus on conveying its nuances and intuition below.

To understand the role that participation constraints play in Theorem 1, we begin by comparing

our result to a relaxed problem where the social planner faces the constraint that U ≥ 0 instead

of the (IR) constraints. This relaxed problem can be interpreted as a “full mechanism design”

problem where the social planner can control the entire market. In this case, it is straightforward

to show that the social planner can always strictly improve on the laissez-faire outcome (we provide

details in Appendix A). This is easy to see when E[ω] > α, which implies that the social planner’s

outside options are less efficient than the redistribution program. However, even when E[ω] ≤ α,

the social planner can always distort the quality consumption of richer consumers downwards by

setting a higher marginal price for quality. As such, the quality consumption of richer consumers

is effectively taxed relative to the laissez-faire outcome.
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Unlike this relaxed problem, participation constraints in Theorem 1 restrict the social planner’s

ability to tax the quality consumption of richer consumers. For example, local housing authorities

often have limited ability to tax rental prices in the private market. Observe that:

(i) If E[ω] > α, then the participation constraints can bind for at most one type of consumer;

thus, the logic of the relaxed problem extends to Theorem 1. Indeed, E[ω] > α implies that

maxω > α, so the social planner can strictly improve on the laissez-faire outcome.

(ii) If E[ω] ≤ α, then the participation constraints generally bind for a positive measure of

consumers; thus, the logic of the relaxed problem no longer extends to Theorem 1 due to the

additional restrictions imposed by the participation constraints. In particular, Theorem 1 is

equivalent to determining when the participation constraints bind for all consumers.

Our proof of Theorem 1 reveals that the key determinant of when the participation constraints

bind for all consumers depends on the sign of the correlation between welfare weight and willingness

to pay. Below, we consider the cases of negative correlation and positive correlation separately

and show that the resulting conditions simplify to yield the sufficient statistic in Theorem 1.

(i) Negative correlation. If ω is decreasing, then the participation constraints bind for all

consumers if and only if E[ω] ≤ α and∫ θ

θ

[α− ω(s)] dF (s) ≥ 0 for every θ ∈ [θ, θ]. (1)

To understand this condition, observe that the integral in equation (1) has the same sign

of the distortion experienced by a consumer with type θ, assuming that the participation

constraint binds for the highest type, θ. Thus, this condition requires that the solution to the

relaxed problem distorts the quality consumption of all consumers upwards. Intuitively, if

participation constraints do not bind for some consumers, then their consumption levels must

be distorted upwards when the above condition holds. However, given that the participation

constraint binds for θ, the envelope theorem implies that their resulting utility must be lower

than that under the laissez-faire outcome, thereby contradicting the assumption that their

participation constraints do not bind.

This condition further simplifies to give the sufficient statistic in Theorem 1. Given that ω

is decreasing, it follows that θ 7→
∫ θ

θ
[α− ω(s)] dF (s) is quasiconvex. Thus the condition

described by equation (1) holds if and only if the gradient of θ 7→
∫ θ

θ
[α− ω(s)] dF (s) is
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nonnegative at θ = θ. Equivalently, the participation constraints bind for all consumers

when α ≥ ω(θ) = maxω. This condition implies that E[ω] ≤ α and hence is a necessary

and sufficient condition for participation constraints to bind for all consumers.

(ii) Positive correlation. If ω is increasing, then the participation constraints bind for all

consumers if and only if E[ω] ≤ α and

∫ θ

θ

[α− ω(s)] dF (s) ≥ 0 for every θ ∈ [θ, θ]. (2)

The integral in equation (2) has the opposite sign of the distortion experienced by a consumer

with type θ, assuming that the participation constraint binds for the lowest type, θ. Thus, a

symmetric argument to the one above for negative correlation conveys the intuition for why

the condition in (2) is necessary and sufficient for all participation constraints to bind.

This condition further simplifies to give the sufficient statistic in Theorem 1. Given that ω

is increasing, it follows that θ 7→
∫ θ

θ
[α− ω(s)] dF (s) is quasiconvex. Thus the condition

described by equation (2) holds if and only if the gradient of θ 7→
∫ θ

θ
[α− ω(s)] dF (s) is

nonnegative at θ = θ. Equivalently, the participation constraints bind for all consumers

when α ≥ ω(θ) = maxω. As before, this condition implies that E[ω] ≤ α; hence it is

necessary and sufficient for all participation constraints to bind.

4 Optimal Mechanisms

We now explain the second main result of this paper: a characterization of the social planner’s

optimal mechanism. To this end, we present and interpret the optimal mechanisms under negative

and positive correlation separately, and then provide intuition for these characterizations.

Our characterization of the social planner’s optimal mechanism builds on the following ironing

operator (cf. Myerson, 1981; Toikka, 2011). For any generalized function h with domain [θ, θ], let

its ironed version h : [θ, θ] → R be the nondecreasing function defined by

h(θ) := − d

dz

(
z 7→ co

∫ θ

F−1(z)

h(s) dF (s)

)∣∣∣∣∣
z=F (θ)

,

where coH is the pointwise smallest concave function that is no smaller than the given function

H : [θ, θ] → R. We denote the Dirac delta function at any point a ∈ R+ by δa.
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4.1 Optimal Mechanisms Under Negative Correlation

We begin by characterizing the optimal mechanism when welfare weight is negatively correlated

with willingness to pay.

Theorem 2 (characterization of optimal mechanisms under negative correlation). Suppose that

ω is decreasing. For any µ ∈ R, define

qµ(θ) := (v′)−1

(
c

Hµ(θ)

)
, where Hµ(θ) := θ +

µθ · δθ(θ) + µ+
∫ θ

θ
[α− ω(s)] dF (s)

αf(θ)
.

Moreover, denote µmax := −minθ∈[θ,θ]
∫ θ

θ
[α− ω(s)] dF (s), and define θH : [0, µmax] → [θ, θ] by

θH(µ) :=

max

{
θ ∈ [θ, θ] :

∫ θ

θ

[α− ω(s)] dF (s) + µ ≤ 0

}
if E[ω] ≤ α,

θ if E[ω] > α.

Let

µ∗ := min

{
µ ∈ [(E[ω]− α)+ , µmax] :

∫ θH(µ)

θ

v(qµ(s)) ds+ θv(qµ(θ))− ULF(θH(µ)) ≥ 0

}
.

Then the optimal allocation function is

q∗(θ) =

{
qLF(θ) if θH(µ

∗) < θ ≤ θ,

qµ∗(θ) for θ ≤ θ ≤ θH(µ
∗).

To understand Theorem 2, we begin by considering the case where the average welfare weight

of consumers exceeds the welfare weight of profit, E[ω] > α. In this case, θH is constant and equal

to θ for all µ ∈ [0, µmax]; so Theorem 2 states that the optimal allocation function is q∗(θ) = qµ∗(θ)

for all θ ∈ [θ, θ], where

µ∗ = min

{
µ ∈ [(E[ω]− α)+ , 0}, µmax] :

∫ θ

θ

v(qµ(s)) ds+ θv(qµ(θ))− ULF(θ) ≥ 0

}

= min

{
µ ∈ [(E[ω]− α)+ , µmax] :

∫ θ

θ

[
v(qLF(s))− v(qµ(s))

]
ds ≤ θ

[
v(qµ(θ))− v(qLF(θ))

]}
.
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In the latter inequality, observe that the left-hand side,
∫ θ

θ

[
v(qLF(s))− v(qµ(s))

]
ds, is decreasing

in µ, while the right-hand side, θ
[
v(qµ(θ))− v(qLF(θ))

]
, is increasing in µ. Note also that

θ ≤ Hµmax(θ) =⇒
∫ θ

θ

[
v(qLF(s))− v(qµmax(s))

]
ds ≤ 0 ≤ θ

[
v(qµmax(θ))− v(qLF(θ))

]
.

This, combined with the fact that the terms in the inequality are continuous in µ, implies that µ∗

is well-defined.

We now highlight three technical properties of the optimal mechanism and their corresponding

economic interpretations when E[ω] > α:

(i) µ∗ > 0: the optimal redistribution program always includes a free public option.

Observe that µ∗ > 0 because µ∗ ≥ (E[ω]− α)+ > 0 when E[ω] > α. This means that Hµ∗

has an atom at θ; hence Hµ∗—and, by extension, q∗ = qµ∗—must be flat in a neighborhood

of θ.

We interpret the resulting flat region of q∗ as a free public option. Since q∗ is increasing,

q∗(θ) is the lowest quality available in the market under the optimal redistribution program.

Consequently, q∗(θ) can be viewed as a “baseline” public option the social planner provides

in the market. Moreover, we show in the proof of Theorem 2 that µ∗ is precisely the shadow

cost of the no lump-sum transfer (LS) constraint. Given that the (LS) constraint binds, the

public option is free of charge.

(ii) θH(µ
∗) = θ: almost all consumers do not consume in the private market.

By Theorem 2, consumers with types higher than θH(µ
∗) consume in the private market.

For these consumers, not only does the optimal allocation function coincide with the laissez-

faire allocation, but the utility that they obtain must also coincide with their laissez-faire

utility by the envelope theorem. However, since θH(µ
∗) = θ when E[ω] > α, the optimal

redistribution program does not send consumers to the private market.

(iii) U∗(θ) > ULF(θ) for all θ < θ: outside of the free public option, consumers benefit from a

nonlinear subsidy program.

In the proof of Theorem 2, we show that only the (IR) constraint of the highest consumer

type can potentially bind; hence, the optimal redistribution program strictly benefits all

consumers with lower types. Consumers who do not consume the free public option purchase
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richer consumers

public option subsidy program

(a) E[ω] > α

richer consumers

subsidy program private market

(b) E[ω] ≤ α and µ∗ = 0

richer consumers

public option subsidy program private market

(c) E[ω] ≤ α and µ∗ > 0

Figure 2: Optimal in-kind redistribution programs under negative correlation.

goods of higher quality, but these goods are nonetheless subsidized relative to the private

market.

We summarize the structure of the optimal in-kind redistribution program when E[ω] > α in

Figure 2(a).

Next, we explain Theorem 2 for the case when the average welfare weight of consumers does not

exceed the welfare weight of profit, E[ω] ≤ α. In this case, µ∗ takes values between (E[ω]− α)+ = 0

and µmax (a similar argument to the one above ensures that µ∗ is well-defined).

We compare the optimal mechanism to the previous case by highlighting and interpreting four

properties when E[ω] ≤ α:

(i) The optimal redistribution program includes a free public option if and only if µ∗ > 0.

Like the previous case, µ∗ > 0 implies that the optimal allocation function must be flat in

a neighborhood of θ and that the (LS) constraint binds; hence, we can similarly interpret

this as a free public option. However, unlike the previous case, it is possible that µ∗ = 0, in

which case no free public option is provided.

(ii) Consumers with types between θH(µ
∗) and θ consume in the private market.

Unlike the previous case, θH(µ
∗) < θ in general when E[ω] ≤ α; and by Theorem 2,

consumers with types higher than θH(µ
∗) consume in the private market.

14



(iii) Consumers who do not consume the public option or in the private market benefit from a

nonlinear subsidy program.

Similar to the previous case, consumers who do not consume in the private market can still

purchase goods of higher quality than the public option, which are subsidized relative to the

private market.

(iv) For consumers with types below θH(µ
∗), quality consumption is distorted upwards for poorer

consumers and downwards for richer consumers.

The sign of the distortion for a consumer of type θ ≤ θH(µ
∗) is the same as the sign of the

difference Hµ∗(θ)− θ. In turn, the latter shares the same sign as

[Hµ∗(θ)− θ] · αf(θ) = µ∗θ · δθ(θ) + µ∗ +

∫ θ

θ

[α− ω(s)] dF (s).

Given that ω is decreasing, it follows that θ 7→
∫ θ

θ
[α− ω(s)] dF (s) is quasiconvex; hence

the above expression is quasiconvex in θ. Moreover, since Hµ∗(θH(µ
∗)) = θH(µ

∗), it follows

that there exists θ̂ ∈ [θ, θH(µ
∗)] such that q∗(θ) > qLF(θ) for θ ≤ θ < θ̂ and q∗(θ) < qLF(θ)

for θ̂ < θ ≤ θ.

We summarize the possible structures of the optimal in-kind redistribution program when

E[ω] ≤ α in Figures 2(b) and 2(c).

4.2 Optimal Mechanisms Under Positive Correlation

Next, we characterize the optimal mechanism when welfare weight is positively correlated with

willingness to pay.

Theorem 3 (characterization of optimal mechanisms under positive correlation). Suppose that ω

is increasing. For any µ ≥ 0, define

qµ(θ) := (v′)−1

(
c

Jµ(θ)

)
, where Jµ(θ) := θ +

µθ · δθ(θ)−
∫ θ

θ
[α− ω(s)] dF (s)

αf(θ)
.

Moreover, denote

θ∗L := min

{
θ ∈ [θ, θ] :

∫ θ

θ

[α− ω(s)] dF (s) ≤ 0

}
.
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Let µ∗ := (E[ω]− α)+. Then the optimal allocation function is

q∗(θ) =

{
qµ∗(θ) for θ∗L ≤ θ ≤ θ,

qLF(θ) for θ ≤ θ < θ∗L.

To explain Theorem 3, we first consider the case where the average welfare weight of consumers

exceeds the welfare weight of profit, E[ω] > α. As in our interpretation of Theorem 2, we highlight

three properties of the optimal mechanism in this case:

(i) µ∗ > 0: the optimal redistribution program always includes a free public option.

Observe that µ∗ = (E[ω]− α)+ > 0 when E[ω] > α. This means that Jµ∗ has an atom at θ;

hence Jµ∗—and, by extension, q∗ = qµ∗—must be flat in a neighborhood of θ. As in the case

of Theorem 2, we interpret the resulting flat region of q∗ as a free public option. In addition,

the proof of Theorem 3 also shows that µ∗ is the shadow cost of the no lump-sum transfer

(LS) constraint. Given that the (LS) constraint binds, the public option is free of charge.

(ii) θ∗L = θ: almost all consumers do not consume in the private market.

By Theorem 3, consumers with types lower than θ∗L consume in the private market. However,

observe that ∫ θ

θ

[α− ω(s)] dF (s) < 0 =⇒ θ∗L = θ.

Consequently, the optimal redistribution program does not send consumers to the private

market when E[ω] > α.

(iii) No participation constraints bind: the social planner is not constrained by consumers’ ability

to access the private market.

In the proof of Theorem 3, we show that no (IR) constraints bind. Thus, the social planner

is not hurt by the ability of consumers to access the private market in this case. Consumers

who do not consume the public option benefit from a nonlinear subsidy program.

We summarize the structure of the optimal in-kind redistribution program when E[ω] > α in

Figure 3(a).

Next, we explain Theorem 3 for the case when the average welfare weight of consumers does

not exceed the welfare weight of profit, E[ω] ≤ α. We highlight four properties in this case:

16



poorer consumers

public option subsidy program

(a) E[ω] > α

poorer consumers

private market subsidy program

(b) E[ω] ≤ α

Figure 3: Optimal in-kind redistribution programs under positive correlation.

(i) The optimal redistribution program never includes a free public option.

In this case, µ∗ = (E[ω]− α)+ = 0 as E[ω] ≤ α. This means that a free public option is

never provided. Intuitively, this is because a free public option benefits consumers with the

lowest consumer types, who are precisely the richest consumers in this case.

(ii) Consumers with types between θ and θ∗L consume in the private market.

Unlike the previous case, θ∗L > θ when E[ω] < α. This is because θ 7→
∫ θ

θ
[α− ω(s)] dF (s)

is quasiconvex and equal to zero at θ; however, when E[ω] < α, it is positive at θ. Thus

θ∗L > θ; consumers with types below θ∗L consume in the private market.

(iii) Consumers who do not consume in the private market benefit from a nonlinear subsidy

program.

Similar to the previous case, consumers who do not consume in the private market can still

purchase goods of higher quality, which are subsidized relative to the private market.

(iv) For consumers with types between θ∗L and θ, quality consumption is distorted upwards.

The sign of the distortion for a consumer of type θ ≥ θ∗L is the same as the sign of the

difference Jµ∗(θ)− θ. In turn, the latter shares the same sign as

[Jµ∗(θ)− θ] · αf(θ) = µ∗θ · δθ(θ)−
∫ θ

θ

[α− ω(s)] dF (s).

Given that ω is increasing, it follows that θ 7→
∫ θ

θ
[α− ω(s)] dF (s) is quasiconvex; hence

the above expression is quasiconcave in θ. Moreover, since Jµ∗(θ∗L) = θ∗L and Jµ∗(θ) = θ, it

follows that the consumption of consumers with types between θ∗L and θ is distorted upwards.
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We summarize the structure of the optimal in-kind redistribution program when E[ω] ≤ α in

Figure 3(b).

4.3 Intuition for Characterization of Optimal Mechanisms

In Appendix A, we prove Theorems 2 and 3 using a Lagrangian approach à la Amador and Bagwell

(2013). This is done in three steps: (i) guessing the binding participation constraints (i.e., guessing

their Lagrange multipliers); (ii) solving the relaxed problem by maximizing the Lagrangian; and

(iii) verifying optimality in the original problem using the Luenberger (1969) sufficiency theorem.

Here, we provide intuition for our proofs of Theorems 2 and 3. To this end, we introduce

results below that help shed light on the structure of optimal mechanisms. While none of these

results are required for the proofs of Theorems 2 and 3, they help to motivate our guesses of the

binding participation constraints in Appendix A.

4.3.1 Intuition for Optimal Mechanisms Under Negative Correlation

We first consider which participation constraints bind when welfare weight is negatively correlated

with willingness to pay.

First, it is possible that no participation constraints bind. In this case, we can solve the social

planner’s problem as we would as “full mechanism design” problem. As we show in Appendix A,

this turns out to be the case sometimes when E[ω] > α.

Second, it is possible that participation constraints bind for an interval of types, say (θ−, θ+).

In this case, it is straightforward to show that each of these types is allocated his laissez-faire

allocation: q∗(θ) = qLF(θ) for any θ ∈ (θ−, θ+). We interpret consumers in this interval as

consuming in the private market, and we say that the private market is “active.”

Lemma 1. Whenever the private market is active, the (IR) constraint binds for the consumer

with the highest type, θ.

Lemma 1 is intuitive: the social planner has no reason to subsidize the richest consumers if

she does not already subsidize a positive measure of relatively poorer consumers.

Lemma 2. There are no “gaps” between intervals on which the (IR) constraint binds: if the (IR)

constraint binds on the intervals (θ−, θ+) and (θ′−, θ
′
+), then the (IR) constraint in fact binds on

the interval (min{θ−, θ′−},max{θ+, θ′+}).
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Lemma 2 extends the logic of Lemma 1: the social planner has no reason to subsidize consumers

in the “gaps” between those who consume in the private market.

Together, Lemmas 1 and 2 imply that, whenever the private market is active, an interval of

consumers that includes the highest type θ purchases goods from the private market. While this

does not rule out the (IR) constraint binding for individual consumers outside of this interval, we

guess—and verify—that this can never be the case in our proof in Appendix A. We formally prove

Lemmas 1 and 2 in Appendix B using necessary conditions in the Lagrangian approach.

Finally, it is possible that participation constraints bind for some consumers even when the

private market is inactive. Motivated by Lemma 1, we guess that, in this case, the (IR) constraint

can only bind for the consumer with the highest type, θ. In Appendix A, we show that this is the

case sometimes when E[ω] > α.

4.3.2 Intuition for Optimal Mechanisms Under Positive Correlation

Next, we consider which participation constraints bind when welfare weight is positively correlated

with willingness to pay.

Again, it is possible that no participation constraints bind. As we show in Appendix A, this

turns out to be the case if and only if E[ω] > α.

When the private market is active, we can show that an analog of Lemma 1 and Lemma 2

hold. Specifically, the (IR) constraint binds for the consumer with the lowest type, θ, since that

consumer is the richest consumer when welfare weight is positively correlated with willingness to

pay. In addition, Lemma 2 holds in this setting; hence, whenever the private market is active, an

interval of consumers that includes the lowest type θ consumes in the private market.

Finally, we show in Appendix A that participation constraints cannot bind for some consumers

when the private market is inactive.

5 Economic Implications

We now use our main results to shed light on four aspects of optimal in-kind redistribution:

(i) identifying which consumers benefit from optimal intervention; (ii) determining when non-

market allocations in the form of a free public option are justified; (iii) understanding how the

social planner’s shadow cost of budget affects optimal redistribution; and (iv) establishing when

consumers should be prevented from topping up their consumption in the private market. We

defer all proofs to Appendix B.
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5.1 Who Benefits From Optimal Intervention?

We begin by using Theorems 2 and 3 to characterize which consumers strictly benefit from the

optimal mechanism.

5.1.1 Negative Correlation

We first study the case in which consumers’ welfare weights are negatively correlated with their

willingness to pay.

Proposition 1 (beneficiaries of optimal intervention under negative correlation). Suppose that ω

is decreasing. Let θH , µ
∗, and qµ be as defined in Theorem 2.

(i) If E[ω] ≤ α, then all consumers with types θ < θH(µ
∗) benefit from the optimal mechanism.

(ii) If E[ω] > α, then all consumers benefit from the optimal mechanism if

θv(qE[ω]−α(θ)) +

∫ θ

θ

v(qE[ω]−α(s)) ds > ULF +

∫ θ

θ

v(qLF(s)) ds.

Otherwise, all consumers except the highest type θ benefit from the optimal mechanism.

While Proposition 1 follows straightforwardly from Theorem 2, we compare our result to a

counterfactual setting where the social planner controls the entire market. Specifically, suppose

that the (IR) constraints are replaced by the restriction that U ≥ 0. As we show in Appendix A:

(i) If E[ω] ≤ α, then all consumers are hurt by the counterfactual optimal mechanism relative

to the laissez-faire outcome.

(ii) If E[ω] > α, then, as in Proposition 1, all consumers benefit from the counterfactual optimal

mechanism if

θv(qE[ω]−α(θ)) +

∫ θ

θ

v(qE[ω]−α(s)) ds > ULF +

∫ θ

θ

v(qLF(s)) ds.

Otherwise, unlike Proposition 1, let θ̂ be the consumer type defined by

θ̂ := min

{
θ ∈ [θ, θ] : θv(qE[ω]−α(θ)) +

∫ θ

θ

v(qE[ω]−α(s)) ds ≤ ULF +

∫ θ

θ

v(qLF(s)) ds

}
.
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Then, all consumers with types θ < θ̂ benefit from the counterfactual optimal mechanism,

while all consumers with types θ > θ̂ are hurt.

This comparison shows how the social planner’s response to binding participation constraints

varies depending on whether the average consumer welfare weight is higher than the welfare weight

of profit. If E[ω] ≤ α, despite the fact that all participation constraints are violated under the

counterfactual optimal mechanism, the social planner responds by targeting the redistribution

program to poorer consumers. In this case, the social planner responds to binding participation

constraints by making some consumers indifferent between the optimal mechanism and the laissez-

faire outcome and restricting subsidies to the poorer consumers. By contrast, if E[ω] > α, the

social planner does not respond by targeting the redistribution program to poorer consumers, and

subsidies remain unrestricted. Instead, the social planner makes all consumers (except the highest

type θ) better off because sufficiently large benefits of doing so accrue to poorer consumers.

5.1.2 Positive Correlation

We now consider the case in which consumers’ welfare weights are positively correlated with their

willingness to pay.

Proposition 2 (beneficiaries of optimal intervention under positive correlation). Suppose that ω

is increasing. Let θ∗L be as defined in Theorem 3.

(i) If E[ω] ≤ α, then all consumers with types θ > θ∗L benefit from the optimal mechanism.

(ii) If E[ω] > α, then all consumers benefit from the optimal mechanism.

While Proposition 2 follows straightforwardly from Theorem 3, we again compare our result to

the same counterfactual setting where the social planner controls the entire market. As we show

in Appendix A:

(i) If E[ω] ≤ α, then all consumers are hurt by the counterfactual optimal mechanism relative

to the laissez-faire outcome if∫ θ

θ

v(qE[ω]−α(s)) ds < ULF +

∫ θ

θ

v(qLF(s)) ds.

Otherwise, let θ̂ be the consumer type defined by

θ̂ := min

{
θ ∈ [θ, θ] :

∫ θ

θ

v(qE[ω]−α(s)) ds ≥ ULF +

∫ θ

θ

v(qLF(s)) ds

}
.
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Then, all consumers with types θ < θ̂ are hurt by the counterfactual optimal mechanism,

while all consumers with types θ > θ̂ benefit.

(ii) If E[ω] > α, then, as in Proposition 2, all consumers benefit from the counterfactual optimal

mechanism.

Because participation constraints can bind only if E[ω] ≤ α, this comparison shows that the

social planner’s response is to target the redistribution program to poorer consumers in this case.

While participation constraints are violated for types θ < θ̂ under the counterfactual optimal

mechanism, it can be shown that θ∗L < θ̂. Consequently, not all consumers whose participation

constraints are violated under the counterfactual optimal mechanism are made indifferent by the

social planner: a positive measure of consumers with types between θ∗L and θ̂ are made strictly

better off.

Together, Propositions 1 and 2 highlight that when consumers can access a private market, the

social planner targets the optimal redistribution program by restricting it to poorer consumers—

but only if E[ω] ≤ α. This contrasts with Theorem 1: even though the social planner optimally

intervenes whenever maxω > α, this intervention is limited to only some consumers in the market

when E[ω] ≤ α.

5.2 When Should Non-Market Allocations Be Used?

Next, we use Theorems 2 and 3 to characterize when non-market allocations—in the form of a

free public option—should be used.

Proposition 3 (optimality of non-market allocations). Let θH and qµ be as defined in Theorem 2.

(i) When ω is decreasing, a free public option is optimal if and only if either (a) E[ω] > α, or

(b) E[ω] ≤ α and ∫ θH(0)

θ

v(q0(s)) ds+ θv(q0(θ)) < ULF(θH(0)).

(ii) When ω is increasing, a free public option is optimal if and only if E[ω] > α.

Proposition 3 shows that, when welfare weight is negatively correlated with willingness to pay,

the ability of consumers to access a private market broadens the justification for using non-market

allocations. Indeed, as we show in Appendix A, a social planner who can control the entire

market uses a free public option if and only if E[ω] > α. When consumers have access to a private
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market, a free public option remains optimal in this case, but it may also be optimal even when

E[ω] ≤ α under the additional condition specified in Proposition 3. As the condition formalizes,

this broadened justification for non-market allocations arises because a free public option may

help to relax participation constraints that would otherwise be binding for poorer consumers.

5.3 How Does Budget Affect Optimal Redistribution?

We now turn our attention to how the social planner’s outside options—reflected in her shadow

cost of budget, α—affect the design of her optimal redistribution program.

A higher shadow cost of budget clearly reduces the scope of redistribution. On one hand, this

is intuitive: as alternative redistribution programs available to the social planner become more

effective, she increasingly prefers to rely on those options. On the other hand, this follows directly

from Theorem 1: as α increases, the condition maxω > α becomes less likely to hold, reducing

the likelihood that the social planner can strictly improve upon the laissez-faire outcome.

However, when the social planner still chooses to intervene, it is less clear how a higher shadow

cost of budget impacts the structure of the optimal redistribution program. To address this, we

analyze the comparative statics of the optimal mechanisms described by Theorems 2 and 3 with

respect to α.

Proposition 4 (comparative statics of optimal mechanisms with respect to α). Let θH , θ
∗
L, and

µ∗ be as defined in Theorems 2 and 3.

(i) Suppose that ω is decreasing. Then θH(µ
∗) increases with α and µ∗ decreases with α.

(ii) Suppose that ω is increasing. Then both θ∗L and µ∗ decrease with α.

Proposition 4 shows that as the shadow cost of budget increases, the optimal redistribution

program benefits fewer consumers (cf. Propositions 1 and 2) and reduces the scope of non-market

allocations (cf. Proposition 3). The first result is intuitive: as the social planner’s outside options

improve, she reduces in-kind redistribution to each consumer, relying more on other programs

captured by α. The second result, however, is less straightforward and demonstrates how a free

public option acts as a substitute for the social planner’s other available redistribution programs.

While our analysis has focused on comparative statics with respect to α, similar results apply

when considering ω, which we interpret as the strength of the social planner’s redistribution

motive. Specifically, a social planner who assigns a welfare weight function ωH to consumers is

said to have a stronger redistribution motive than one who assigns ωL, if ωH(θ) ≥ ωL(θ) for all
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θ ∈ [θ, θ]. Similar to the discussion above, a social planner with a stronger redistribution motive

optimally intervenes more frequently, benefits more consumers when she does, and utilizes a free

public option more often.

5.4 When Should Topping Up Be Prevented?

Finally, we examine the question of when consumers should be prevented from topping up their

consumption in the private market.

The issue of topping up has received some attention in the literature on in-kind redistribution.

While many studies focus exclusively on either the allowance or prohibition of topping up (with

Currie and Gahvari, 2008 providing a comprehensive survey), Blomquist and Christiansen (1998)

offer a comparative analysis of both approaches. Using a Mirrleesian model where consumers with

different wage rates trade off labor and leisure, Blomquist and Christiansen show that topping up

should be allowed if and only if the demand for the publicly provided good decreases with leisure.

The issue of topping up is also relevant to public policy. For instance, motivated by concerns

about unequal access to education due to wealth and socioeconomic privilege, China launched

strict regulations that made it impractical for private tutors to operate (Palmer, 2021). As such,

consumers can no longer top up their consumption of education in the private tutoring market,

and must instead choose between attending a public school or a private school. South Korea

has previously attempted to ban private tutoring due to concerns about educational inequality

(Chandler, 2011), while Singapore is now considering related policies to address similar concerns

(Zhang and Mokhtar, 2024).

In this subsection, we show that topping up should be prevented when welfare weight is

negatively correlated with willingness to pay, but not when they are positively correlated. Our

mechanism-design approach complements the work of Blomquist and Christiansen in two key

ways. First, we focus on an individual market where redistribution is driven by the correlation

between consumers’ heterogeneous consumption preferences and exogenously determined welfare

weights, rather than by the interaction between consumption and labor market decisions.7

Second, we characterize optimal mechanisms in a richer environment, where the social planner

can design a price schedule for different quality levels of the publicly provided good, rather than

simply deciding whether or not to offer the good at a fixed level and price.

7 As Pai and Strack (2024) show, optimal mechanisms derived for consumption in individual markets can also be
endogenized in a richer model with labor choice and income taxation.
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In our setting, the social planner never benefits from allowing consumers to top up. This arises

from the fact that the social planner faces tighter participation constraints when consumers are

given the option to top up their public allocation by consuming in the private market. As we show

in our companion paper (Kang and Watt, 2024), the participation constraints when consumers

are allowed to top up are given by U ≥ ULF and

q(θ) ≥ qLF(θ) for any θ ∈ [θ, θ]. (IR’)

In particular, the total consumption q(θ) of each consumer must be at least equal to his laissez-faire

consumption qLF(θ): whenever his public allocation is less than his laissez-faire consumption, he

chooses to top up his consumption in the private market. Because U ≥ ULF, the (IR’) constraints

above imply the (IR) constraints by the envelope theorem (cf. Milgrom and Segal, 2002). In turn,

the tighter (IR’) constraints further restrict the social planner’s ability to redistribute.

Given that the social planner always weakly benefits from preventing topping up, we examine

when the social planner strictly benefits from doing so:

Proposition 5 (optimal prevention of topping up).

(i) When ω is decreasing, the social planner strictly benefits from preventing topping up if and

only if maxω > α.

(ii) When ω is increasing, the social planner never benefits from preventing topping up.

Proposition 5 states that when welfare weight is negatively correlated with willingness to pay,

the social planner strictly benefits from preventing topping up whenever there is scope for in-kind

redistribution; however, when welfare weight is positively correlated with willingness to pay, the

social planner derives no benefit from preventing topping up. Part (i) of Proposition 5 follows

from Theorems 1 and 2: the optimal allocation characterized in Theorem 2 is always distorted

downwards for types just below θH(µ
∗), so the social planner must strictly benefit from preventing

topping up whenever there is scope for in-kind redistribution, as characterized by Theorem 1.

Part (ii) of Proposition 5 then follows from the fact that the optimal allocation characterized in

Theorem 3 satisfies the tighter (IR’) constraints.

Consequently, Proposition 5 suggests that a positive correlation between welfare weight and

willingness to pay not only ensures that in-kind redistribution programs are self-targeting, but also

reduces the need for monitoring to prevent consumers from topping up. Proposition 5 may thus

shed light on why many governments, especially in developing countries, choose to redistribute by
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subsidizing inferior goods like public transit, agricultural products, and basic staples such as coarse

bread and cassava.8 While the self-targeting property of subsidizing inferior goods has long been

recognized (see, e.g., Nichols and Zeckhauser, 1982), our Proposition 5 proposes a complementary

explanation: when welfare weight is positively correlated with willingness to pay (as is often

the case for inferior goods), governments can maximize the effectiveness of in-kind redistribution

without needing to allocate resources to prevent consumers from topping up in private markets.

6 Discussion

To illustrate the practical implications and limitations of our findings, we now apply our results to

real-world applications of in-kind redistribution. Specifically, we focus on: (i) low-income housing;

(ii) childcare services and disability care; and (iii) food assistance programs.

Low-Income Housing. As noted in the introduction, our research questions and model are

motivated by the market for low-income housing. In many of these markets, even among those

eligible for public housing, there is substantial residual heterogeneity in both willingness to pay for

quality (such as apartment size) and socioeconomic situation.9 These factors are likely negatively

correlated: for instance, a full-time MBA student and a minimum-wage worker may have similar

current incomes, but the MBA student, with higher future earning potential, is expected to be

more willing and able to rent a larger apartment.

On one hand, our findings provide some support for policies that are currently in place. In

many countries, housing assistance programs represent a significant public expenditure (Currie

and Gahvari, 2008). When the correlation between willingness to pay for housing quality and

socioeconomic status is stronger among eligible consumers (as reflected in the welfare weights)

than in other markets (as captured by the shadow cost of budget), Theorem 1 justifies housing

assistance. Housing assistance programs typically include a mix of instruments, such as public

housing developments and nonlinear subsidies like the Low-Income Housing Tax Credit (LIHTC)

program in the United States. These instruments—whether by design or circumstance—target

different segments of the population: for example, LIHTC tenants have higher average incomes

8 Subsidies for inferior goods have also long been advocated by both economists and policymakers. For example,
in the Public Expenditure Handbook: A Guide to Public Policy Issues in Developing Countries published by the
International Monetary Fund, Mackenzie (1991) recommends that “[m]arketed goods with a negative income
elasticity (i.e., inferior goods) are ideal candidates for a redistributive subsidy.”

9 For example, Waldinger (2021) and van Dijk (2019) document significant heterogeneities among individuals
eligible for public housing in Cambridge, Massachusetts, and Amsterdam, respectively.
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than those who live in public housing developments (Collinson, Ellen, and Ludwig, 2016). While

identifying the exact optimal mechanism is likely complex in practice, our Theorem 2 indicates

that this tiered structure of housing assistance programs is sensible: consumers with the lowest

willingness to pay (e.g., minimum-wage workers) should consume a public option or participate

in a subsidy program, while those with the highest willingness to pay (e.g., MBA students)

should participate in a subsidy program or turn to the private market. The size of housing

assistance programs also varies widely from country to country; in Singapore, for example, 78.7%

of the population resides in some type of government-subsidized housing (Department of

Statistics, Singapore, 2021). As our Proposition 4 suggests, this variation may potentially be

attributed to differing redistributive preferences and budget constraints across cities or countries.

On the other hand, our findings also demonstrate how current policies might be inadequate.

For example, public housing in the United States is often subject to rationing, as evidenced by long

waitlists for public housing developments. Our Theorem 2 indicates that, at least when the social

planner can contract costlessly with private producers, rationing through allocation probability can

never be optimal: the social planner can achieve better outcomes by implementing a deterministic

allocation and adjusting the quality of housing provided.10 In addition, our Proposition 3 provides

theoretical support for universal access to housing—which has been advocated in policy discussions

(Sitaraman and Alstott, 2019)—under specific conditions on consumer welfare weights and the

shadow cost of budget.

Childcare Services and Disability Care. Our model and results can also be applied to the

markets for childcare and disability care, albeit with some key distinctions. First, rather than

interpreting q as the quality of care, we treat it as the quantity of care consumed. Second, instead

of wealth or income, we interpret ω more broadly to reflect social priorities, such as placing greater

weight on individuals with more children or those with more severe disabilities.

Given that the demand for care likely increases with these social priorities, we expect our results

for the case of positive correlation to hold. Specifically, our Theorem 3 supports subsidizing all

individuals with sufficiently high demand for care. If society places a sufficiently high value on

redistributing to these individuals, or if other forms of redistribution are less effective—such as

in cases where lump-sum cash transfers might lead to strategic behavior, like healthy individuals

pretending to have disabilities—our Proposition 3 provides justification for universal (free) access

to a baseline level of care, which has been advocated in policy proposals (Sitaraman and Alstott,

10 However, as Kang (2023) shows, rationing through allocation probability can be optimal when the social planner
is less efficient than the private market (e.g., she can contract on only one quality level to be publicly provided).
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2019). While our model assumes that individuals are not allowed to supplement their care through

the private market, this restriction is not binding in practice; as our Proposition 5 indicates, this

constraint is not a limitation in the optimal program.

Food Assistance Programs. Finally, our model has limited applicability to food assistance

programs. On one hand, our model and results apply when demand for subsidized food is positively

correlated with welfare weight. For instance, in developing countries, governments often subsidize

basic staples like coarse bread and cassava, which are inferior goods (Mackenzie, 1991). In these

cases, Proposition 5 suggests that the optimal redistribution program is nonetheless characterized

by Theorem 3: although consumers have the option to supplement consumption in the private

market, they do not do so under the optimal mechanism. On the other hand, our model and results

do not apply when demand for the food product is negatively correlated with welfare weight.

For example, food voucher programs in developed countries, such as the Supplemental Nutrition

Assistance Program in the United States, often allow—if not expect—participants to top up their

food consumption in the private market. In these cases, willingness to pay for everyday groceries

is likely negatively correlated with socioeconomic status, even among eligible individuals. While

the results in this paper do not directly address such cases, we provide a corresponding analysis

of the optimal redistribution program in a companion paper (Kang and Watt, 2024).

7 Concluding Remarks

The ability of consumers to access the private market is a defining feature of many real-world

redistribution programs, and—as we have shown in this paper—its inclusion in analyses affects

the design of optimal mechanisms in substantial and realistic ways. By developing a mechanism

design model of in-kind redistribution that incorporates these participation constraints, we have

quantified when a social planner can strictly improve on the laissez-faire outcome and characterized

the optimal redistribution program as a combination of a free public option, nonlinear subsidies,

and the laissez-faire allocation. Our results highlight that while private market access limits the

scope of in-kind redistribution, it also strengthens the case for non-market allocations, such as free

public options.

In closing, while we have focused on private market access as the source of these participation

constraints, the same constraints can also be interpreted as a Pareto improvement requirement.

Specifically, such a requirement arises when a social planner with full control over the entire

market designs a mechanism that benefits all consumers relative to the laissez-faire outcome—an
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idea that naturally fits within political economy models of reform with consensus or majority

voting, as noted by Fuchs and Skrzypacz (2015). Extending our approach in this paper to such

models offers a promising avenue for future research.
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Appendix A Derivation of Main Results

In this appendix, we derive our main results, Theorems 1 to 3. To this end, we solve the social

planner’s problem stated at the end of Section 2:

max
(q,t)

∫ θ

θ

[
ω(θ) [θv(q(θ))− t(θ)]︸ ︷︷ ︸

consumer surplus

+α [t(θ)− cq(θ)]︸ ︷︷ ︸
total profit

]
dF (θ)

s.t. (q, t) satisfies (IC), (IR), and (LS).

A.1 Preliminary Analysis

We begin by characterizing the (IC) and (LS) constraints in order to rewrite the social planner’s

problem in a more tractable form. As these characterizations are relatively well-known, we state

them without proof.

Claim 1. A mechanism (q, t) satisfies (IC) if and only if q is nondecreasing and

θv(q(θ))− t(θ) = θv(q(θ))− t(θ)︸ ︷︷ ︸
=:U

+

∫ θ

θ

v(q(s)) ds.

Claim 1 follows from standard arguments in the mechanism design literature. Myerson’s (1981)

lemma implies that, given an allocation function q, there exists a payment function t such that (q, t)

is incentive-compatible if and only if q is nondecreasing. The envelope theorem of Milgrom and

Segal (2002) uniquely identifies what the payment function must be, up to an additive constant,

U , equal to the utility that the lowest consumer type receives under the mechanism.

Claim 2. An incentive-compatible mechanism (q, t) satisfies (LS) if and only if U ≤ θv(q(θ)).

Claim 2 shows that the social planner’s restriction to mechanisms without lump-sum transfers

is equivalent to imposing an upper bound on U in terms of the quality q(θ) allocated to the lowest

consumer type. When (LS) binds, t(θ) = 0; that is, the social planner allocates the good for free

to the lowest consumer type.

We now reformulate the social planner’s problem in utility space rather than allocation space.

To this end, we make the change of variables ν := v ◦ q; we refer to ν henceforth as the subutility

function induced by the mechanism. Since v is increasing by assumption, Claim 1 implies that

any incentive-compatible mechanism induces a nondecreasing subutility function.
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Next, we apply Claim 1 to rewrite the (IR) constraints and the social planner’s objective.

Let ULF be the utility that the lowest consumer type receives under the laissez-faire mechanism,

and let νLF be the subutility function induced by the laissez-faire mechanism. Then the envelope

theorem (cf. Claim 1) implies that the (IR) constraints can be written as

U +

∫ θ

θ

ν(s) ds ≥ ULF +

∫ θ

θ

νLF(s) ds for any θ ∈ [θ, θ].

Moreover, for notational convenience, extend the domain of v−1 to R and its range to the extended

real line R := R ∪ {+∞} by defining

Ψ(ν̂) :=

{
v−1(ν̂) if ν̂ ∈ [v(0), v(A)],

+∞ otherwise.

Then the envelope theorem also allows us to rewrite the social planner’s objective by eliminating

dependence on the payment function:

(OBJ) = [E[ω]− α]U +

∫ θ

θ

[[
αθ −

∫ θ

θ
[α− ω(s)] dF (s)

f(θ)

]
ν(θ)− αcΨ(ν(θ))

]
dF (θ).

We summarize the above analysis by rewriting the social planner’s problem. Denote the set of

nondecreasing functions by I :=
{
h : [θ, θ] → R is nondecreasing

}
. Then Claims 1 and 2 allow us

to rewrite the social planner’s problem as follows:

max
U∈R, ν∈I

{
[E[ω]− α]U +

∫ θ

θ

[[
αθ −

∫ θ

θ
[α− ω(s)] dF (s)

f(θ)

]
ν(θ)− αcΨ(ν(θ))

]
dF (θ)

}

s.t.


U ≤ θν(θ),

U +

∫ θ

θ

ν(s) ds ≥ ULF +

∫ θ

θ

νLF(s) ds for any θ ∈ [θ, θ].

We conclude this subsection by making four observations about the social planner’s problem

that are clearer from this rewriting.

1. Existence of solution. It is relatively straightforward to see that an optimal solution

to the social planner’s problem exists. To see this, we endow I with the L1 topology and

observe that the social planner’s objective is continuous in (U, ν). Without loss of generality,
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we focus on the set K :=
{
h ∈ I : [θ, θ] → [v(0), v(A)]

}
. By the Helly selection theorem and

the dominated convergence theorem, K is compact; hence the constrained set (as a closed

subset of K) is also compact. Finally, (ULF, νLF) ∈ K satisfies the constraints; hence the

constrained set is nonempty. We thus conclude that an optimal solution exists.

2. Uniqueness of solution. We now argue that the optimal solution to the social planner’s

problem is unique. Suppose on the contrary that (U1, ν1) and (U2, ν2) are distinct optimal

solutions, and consider (U∗, ν∗) = ((U1 + U2)/2, (ν1 + ν2)/2). Clearly, ν∗ is nondecreasing,

and (U∗, ν∗) satisfies the constraints (since the constraints are linear). However, v−1 is strictly

convex since v is increasing and strictly concave by assumption; hence Jensen’s inequality

implies that the social planner’s objective is strictly larger under (U∗, ν∗), contradicting the

optimality of (U1, ν1) and (U2, ν2).

3. Optimality of deterministic mechanisms. Next, we observe that the social planner’s

restriction to deterministic mechanisms entails no loss of generality. This follows from a

similar argument to that used above for uniqueness: For any given stochastic mechanism χ

(i.e., a probability distribution over deterministic mechanisms), we consider the deterministic

mechanism (U∗, ν∗) corresponding to the arithmetic average of all deterministic mechanisms

in the support of χ. Jensen’s inequality then implies that the social planner’s objective is

weakly larger under (U∗, ν∗) than under χ.

4. Convex program with majorization constraints. Finally, we point out that the social

planner’s problem can be written as a convex program with majorization constraints. To

illustrate, suppose that the (IR) constraint binds for the highest type: U = U
LF
. (As we

show in Lemma 1, this holds when the private market is active and when welfare weight is

negatively correlated with willingness to pay.) Then the (IR) constraints can be rewritten

as ∫ θ

θ

ν(s) ds ≥
∫ θ

θ

νLF(s) ds for any θ ∈ [θ, θ].

Since ν and νLF are nondecreasing, this condition is equivalent to ν weakly majorizing νLF.

This argument can be adapted for any type θ̂ whose (IR) constraint binds by partitioning the

type space into two intervals, [θ, θ̂] and [θ̂, θ]: the social planner’s problem on each segment

is a convex program with majorization constraints.

Recent papers (e.g., Kleiner et al., 2021; Akbarpour R○ al., 2024) solve linear programs

with majorization constraints and show that their solutions coincide with extreme points of
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the constrained set. However, extreme point methods do not apply in our setting as our

program is strictly convex (as v is strictly concave since consumers have diminishing marginal

utility); hence our solution is at an interior point. As such, we have to develop an alternate

approach to solving our problem. We note that our approach provides an alternate way of

recovering solutions to linear programs with majorization constraints by approximating any

linear objective with strictly convex functions.

A.2 Full Mechanism Design

In this subsection, to convey intuition about the social planner’s problem, we solve a relaxation of

the social planner’s problem where the (IR) constraints are ignored and the lower bound U ≥ 0 is

instead imposed. This relaxation corresponds to the assumption that the social planner has full

control over the market (i.e., consumers can be prevented from consuming in the private market).

A.2.1 Case #1: E[ω] ≤ α

We begin by supposing that E[ω] ≤ α. Since α represents the social planner’s shadow cost of

budget, this case captures settings where the social planner has other redistribution programs

competing for the same budget, such as cash transfers that happen outside of the mechanism.

We now use standard tools from the mechanism design literature to solve the social planner’s

problem. Since E[ω] ≤ α, the social planner can do no better than to choose the lowest possible

value for U : U∗ = 0. Consequently, the social planner’s problem can be further simplified:

max
ν∈I

∫ θ

θ

[[
αθ −

∫ θ

θ
[α− ω(s)] dF (s)

f(θ)

]
︸ ︷︷ ︸

=:αJ(θ)

ν(θ)− αcΨ(ν(θ))

]
dF (θ).

In the above expression, J can be thought of as a “virtual welfare function”: it is the analog in

our problem to the virtual valuation function (which obtains when ω ≡ 0) in mechanism design

problems where the social planner’s objective is to maximize profit.

To solve this problem, let ψ denote the derivative of Ψ. Then the optimal subutility function

in the solution to the social planner’s problem is (cf. Toikka, 2011)

ν∗(θ) = ψ−1

(
J(θ)

c

)
.
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Negative correlation. To interpret this solution, we first consider the case where welfare weight

is negatively correlated with willingness to pay—that is, ω is decreasing. The solution to the

social planner’s problem in this case has two notable features. First, the good is never offered to

consumers for free, since the (LS) constraint never binds. Second, the social planner optimally

distorts quality levels downwards from the laissez-faire quality levels. To see this, observe that

J(θ) = θ −
∫ θ

θ
[α− ω(s)] dF (s)

αf(θ)
≤ θ because

∫ θ

θ

[α− ω(s)] dF (s) ≥ 0.

In turn, this implies that

J(θ) ≤ θ =⇒ ν∗(θ) = ψ−1

(
J(θ)

c

)
≤ ψ−1

(
θ

c

)
= νLF(θ).

Intuitively, these two features arise from the fact that the social planner has other redistribution

programs available to her that are more efficient on the margin—as captured by the higher shadow

cost of budget, α ≥ E[ω]. Consequently, she would prefer to redistribute with those programs

instead of the good. When she has full control of the market, she uses the good to tax consumers; by

using quality to screen consumers, she can set different marginal tax rates for different consumers.

Positive correlation. We next consider the case where welfare weight is positively correlated

with willingness to pay—that is, ω is increasing. Again, the solution to the social planner’s

problem has two notable features. First, as before, the good is never offered to consumers for free,

since the (LS) constraint never binds. Second, the social planner optimally distorts quality levels

upwards for consumers with higher types and downwards for consumers with lower types. This is

because, when ω is increasing, θ 7→
∫ θ

θ
[α− ω(s)] dF (s) is quasiconvex. In turn, this implies that

there exists θ̂ ∈ [θ, θ] such that

J(θ)

{
≥ θ for θ ≥ θ̂,

≤ θ for θ ≤ θ̂
=⇒ ν∗(θ)

{
≥ νLF(θ) for θ ≥ θ̂,

≤ νLF(θ) for θ ≤ θ̂.

Intuitively, these two features arise from the fact that the positive correlation between welfare

weight and willingness to pay helps the social planner to target her redistribution program at

consumers with higher welfare weights. Consequently, even though the social planner has other

redistribution programs available to her that are more efficient on the margin, she might still wish

to subsidize the good for some consumers while taxing the good for other consumers.
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A.2.2 Case #2: E[ω] > α

We now consider the case where E[ω] > α. This case captures settings where the social planner’s

outside options are less efficient, such as when there are political considerations that restrict the

social planner from using cash transfers.

We again use standard tools from the mechanism design literature to solve the social planner’s

problem. Since E[ω] > α, the (LS) constraint now binds; standard arguments imply that the

optimal Lagrange multiplier for the (LS) constraint must be µ∗ = E[ω] − α > 0. Consequently,

the social planner’s optimal subutility function ν∗ solves

max
ν∈I

∫ θ

θ

[[
αJ(θ) +

E[ω]− α

f(θ)
· θδθ(θ)

]
ν(θ)− αcΨ(ν(θ))

]
dF (θ).

Thus we deduce that

ν∗(θ) = ψ−1

(
1

c
·
(
s 7→ J(s) +

E[ω]− α

αf(s)
· θδθ(s)

)
(θ)

)
.

Negative correlation. Suppose that welfare weight is negatively correlated with willingness to

pay. As before, we point out two notable features of the solution to the social planner’s problem.

First, the lowest quality of the good, ν∗(θ), is now made available for free to a positive mass of

consumers with the lowest types. Equivalently, the social planner optimally imposes a (binding)

minimum quality level for goods sold in the market in order to ensure that the poorest consumers

are allocated a higher quality level than what they would otherwise consume. Second, the social

planner optimally distorts quality levels upwards for low-type consumers—and downwards for

high-type consumers—from the laissez-faire quality levels. Under additional assumptions about

the social welfare weight function (e.g., ω(θ) > α for any θ ∈ [θ, θ]), the social planner optimally

distorts quality levels upwards for all consumers.

Intuitively, these two features arise from the fact that the good is more efficient on the margin

than other redistribution programs available to the social planner. Consequently, she uses the good

to redistribute to low-type consumers, while raising revenue from taxes outside of the mechanism.

Depending on the social welfare weights, the social planner might also tax higher quality levels of

the good that high-type consumers consume.

Positive correlation. Finally, consider the case where welfare weight is positively correlated

with willingness to pay. Similar to the case of negative correlation, the lowest quality of the good
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is made available for free to a positive mass of consumers with the lowest types. The social planner

optimally distorts upwards for all consumers relative to the laissez-faire quality levels.

Because the good is more efficient on the margin than other redistribution programs available to

the social planner, the social planner redistributes with the good. The positive correlation between

welfare weight and willingness to pay also helps the social planner to target her redistribution

program at consumers with higher welfare weights. As such, the social planner subsidizes the

good to benefit all consumers and raises revenue from taxes outside of the mechanism.

A.3 Partial Mechanism Design: Negative Correlation

We now solve the social planner’s problem with the original (IR) constraints, assuming that welfare

weight is negatively correlated with willingness to pay (i.e., ω is decreasing).

A.3.1 Case #1: E[ω] ≤ α

We begin by supposing that E[ω] ≤ α. Following the approach of Amador and Bagwell (2013), we

solve the social planner’s problem in three steps: (i) guessing Lagrange multipliers; (ii)maximizing

the Lagrangian; and (iii) applying the Luenberger (1969) sufficiency theorem.

Guessing Lagrangian multipliers.

Let µ ∈ R+ and the nondecreasing function Λ : [θ, θ] → R (where we normalize Λ(θ) = α − E[ω]

without loss of generality) respectively denote the Lagrange multipliers for the (LS) constraint

and the (IR) constraint, so that the Lagrangian for the social planner’s problem can be written as

L(U, ν;µ,Λ) = [E[ω]− α− µ]U +

∫ θ

θ

[
U − ULF +

∫ θ

θ

[
ν(s)− νLF(s)

]
ds

]
dΛ(θ)

+

∫ θ

θ

[[
αθ −

∫ θ

θ
[α− ω(s)] dF (s)

f(θ)
+
µθδθ(θ)

f(θ)

]
ν(θ)− αcΨ(ν(θ))

]
dF (θ)

= − [µ+ Λ(θ)]U −
∫ θ

θ

[
ULF +

∫ θ

θ

νLF(s) ds

]
dΛ(θ)

+

∫ θ

θ

[[
αθ +

∫ θ

θ
[α− ω(s)] dF (s) + µθδθ(θ)− Λ(θ)

f(θ)

]
ν(θ)− αcΨ(ν(θ))

]
dF (θ).
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Let µmax := −minθ∈[θ,θ]
∫ θ

θ
[α− ω(s)] dF (s). For each µ ∈ [0, µmax], define the function

θH(µ) := max

{
θ ∈ [θ, θ] :

∫ θ

θ

[α− ω(s)] dF (s) ≤ −µ
}
.

Also, for each µ ∈ R, define

νµ(θ) := ψ−1

(s 7→ s

c
+

∫ s

θ
[α− ω(z)] dF (z) + µθδθ(s) + µ

αcf(s)

)∣∣∣∣∣
[θ,θH(µ)]

 (θ). (A.1)

We guess the optimal Lagrange multiplier for the (LS) constraint to be

µ∗ := min

{
µ ∈ [0, µmax] :

∫ θH(µ)

θ

νµ(s) ds+ θνµ(θ)− ULF(θH(µ)) ≥ 0

}
. (A.2)

Observe that µ∗ is well-defined because (i) the left-hand side of the inequality in equation (A.2) is

continuous in µ; and (ii) the inequality holds when µ = µmax. Here, observation (ii) follows from

the fact that νµmax ≥ νLF pointwise by construction, which implies that∫ θH(µmax)

θ

νµmax(s) ds+ θνµmax(θ) ≥
∫ θH(µmax)

θ

νLF(s) ds+ θνLF(θ)

≥
∫ θH(µmax)

θ

νLF(s) ds+ ULF = ULF(θH(µmax)).

Below, we denote θ∗H := θH(µ
∗). In addition, we guess the optimal Lagrange multiplier for the

(IR) constraint to be

Λ∗(θ) :=


∫ θ

θ

[α− ω(s)] dF (s) if θ > θ∗H ,

−µ∗ otherwise.

(A.3)

Note that Λ∗ is nondecreasing by construction. This is because θ 7→
∫ θ

θ
[α− ω(s)] dF (s) is

quasiconvex:
∂

∂θ

∫ θ

θ

[α− ω(s)] dF (s) = [α− ω(θ)] f(θ),

which crosses zero at most once since ω is decreasing.
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Maximizing the Lagrangian.

Given these guesses for µ∗ and Λ∗, we set

U∗ :=

U
LF(θ∗H)−

∫ θ∗H

θ

ν∗(s) ds if µ∗ = 0,

θν∗(θ) if µ∗ > 0.

Moreover, we define the subutility function ν∗ as follows:

ν∗(θ) =

{
νLF(θ) if θ ≥ θ∗H ,

νµ∗(θ) otherwise.

We now demonstrate that ν∗ is nondecreasing and maximizes the Lagrangian given the Lagrange

multipliers µ∗ and Λ∗.

(1) ν∗ is nondecreasing.

It suffices to verify that νµ∗(θ∗H) ≤ νLF(θ∗H). If µ
∗ = 0, then observe that

∫ θ

θ

[α− ω(s)] dF (s) ≤ 0 =⇒ θ

c
+

∫ θ

θ
[α− ω(s)] dF (s)

αcf(θ)
≤ θ

c
for any θ < θ∗H .

In turn, this implies that ψ(νµ∗(θ)) ≤ θ/c ≤ θ∗H/c = ψ(νLF(θ∗H)) for θ ≤ θ∗H .

If µ∗ > 0, suppose on the contrary that νµ∗(θ∗H) > νLF(θ∗H). This can happen only if θ∗H lies

in a pooling region on νµ∗ ; let this pooling region be denoted by [θ−, θ
∗
H ] ⊂ [θ, θ∗H ]. On one

hand, if θ− = θ, then∫ θ∗H

θ

νµ∗(s) ds+ θνµ∗(θ) =

∫ θ∗H

θ

νµ∗(θ∗H) ds+ θνµ∗(θ∗H) = θ∗Hνµ∗(θ∗H) > ULF(θ∗H).

However, recall from the construction of µ∗ that, because the left-hand side of inequality in

equation (A.2) is continuous in µ and µ∗ > 0,

ULF(θ∗H) =

∫ θ∗H

θ

νµ∗(s) ds+ θνµ∗(θ), a contradiction.
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On the other hand, if θ− ̸= θ, then

ψ(νµ∗(θ−)) =
θ−
c

+

∫ θ−
θ

[α− ω(s)] dF (s) + µ∗

αcf(θ−)
= ψ(νµ∗(θ∗H)) > ψ(νLF(θ∗H)) =

θ∗H
c
.

In turn, this implies that
∫ θ−
θ

[α− ω(s)] dF (s) + µ∗ ≥ 0. Since θ 7→
∫ θ

θ
[α− ω(s)] dF (s) is

quasiconvex, it follows that∫ θ

θ

[α− ω(s)] dF (s) + µ∗ ≥ 0 for any θ ∈ [θ, θ−].

Consequently, ν∗µ(θ) ≥ νLF(θ) for any θ ∈ [θ, θ−]; hence a similar argument as before yields

ULF(θ∗H) =

∫ θ∗H

θ

νµ∗(s) ds+ θνµ∗(θ)

=

∫ θ−

θ

νµ∗(s) ds+

∫ θ∗H

θ−

νµ∗(θ∗H) ds+ θνµ∗(θ) ≥ ULF(θ−) +

∫ θ∗H

θ−

νµ∗(θ∗H) ds.

But this yields the following contradiction:

ULF(θ∗H)− ULF(θ−) =

∫ θ∗H

θ−

νLF(s) ds ≥
∫ θ∗H

θ−

νµ∗(θ∗H) ds >

∫ θ∗H

θ−

νLF(θ∗H) ds.

(2) ν∗ maximizes the Lagrangian.

It suffices to verify that, for any ν ∈ I satisfying the (IR) constraint, the following variational

inequality is satisfied:

∫ θ

θ

[ν∗(θ)− ν(θ)]

[
θ

c
+

∫ θ

θ
[α− ω(s)] dF (s) + µ∗θδθ(θ)− Λ∗(θ)

αcf(θ)
− ψ(ν∗(θ))

]
dF (θ) ≥ 0.

Clearly, by our construction of Λ∗ in equation (A.3),

∫ θ

θ∗H

[ν∗(θ)− ν(θ)]

[
θ

c
+

∫ θ

θ
[α− ω(s)] dF (s) + µ∗θδθ(θ)− Λ∗(θ)

αcf(θ)
− ψ(ν∗(θ))

]
︸ ︷︷ ︸

=0 for θ∈[θ∗H ,θ]

dF (θ) = 0.
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Consequently, it suffices to show that

∫ θ∗H

θ

[ν∗(θ)− ν(θ)]

[
θ

c
+

∫ θ

θ
[α− ω(s)] dF (s) + µ∗θδθ(θ) + µ∗

αcf(θ)
− ψ(ν∗(θ))

]
dF (θ) ≥ 0.

However, this follows from our construction of νµ∗ in equation (A.1) (cf. Toikka, 2011).

Following the above discussion, we conclude that (U∗, ν∗) maximizes the Lagrangian, given the

Lagrange multipliers µ∗ and Λ∗:

(U∗, ν∗) ∈ argmax
U∈R+, ν∈I

L(U, ν;µ∗,Λ∗).

Note that the results of Toikka (2011) imply that the ν∗ can be alternatively be written as

ν∗(θ) = ψ−1

(s 7→ s

c
+

∫ s

θ
[α− ω(z)] dF (z) + µ∗θδθ(s)− Λ∗(s)

αcf(s)

)
(θ)

 . (A.4)

Applying the Luenberger sufficiency theorem.

We now apply the Luenberger sufficiency theorem. To this end, observe that:

(1) (U∗, ν∗) satisfies the (LS) constraint.

If µ∗ > 0, then U∗ = θν∗(θ) by construction. If µ∗ = 0, then

U∗ = ULF(θ∗H)−
∫ θ∗H

θ

ν∗(s) ds ≤ θν∗(θ),

where the inequality follows from the construction of µ∗ in equation (A.2).

(2) (U∗, ν∗) satisfies the (IR) constraint.

Observe that our construction of U∗ (for the case of µ∗ = 0) and equation (A.2) (for the

case of µ∗ > 0) imply that

U∗ +

∫ θ∗H

θ

ν∗(s) ds = ULF(θ∗H) = ULF +

∫ θ∗H

θ

νLF(s) ds.

Since ν∗(θ) = νLF(θ) for θ ∈ [θ∗H , θ], it follows that the (IR) constraint holds for all θ ∈ [θ∗H , θ].
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It remains to check that the (IR) constraint holds for all θ ∈ [θ, θ∗H ]. To this end, observe

that the following generalized function is quasiconvex:

θ 7→
∫ θ

θ

[α− ω(s)] dF (s) + µ∗θδθ(θ) + µ∗.

This implies that ν∗(θ) crosses νLF(θ) at most once (from above) for θ ∈ (θ, θ∗H); hence it

suffices to check that the (IR) constraint holds for θ = θ. On one hand, if µ∗ > 0, then

equation (A.2) implies that

θν∗(θ) +

∫ θ∗H

θ

ν∗(s) ds = ULF(θ∗H) = ULF +

∫ θ∗H

θ

νLF(s) ds.

Rearranging yields∫ θ∗H

θ

[
νLF(s)− ν∗(s)

]
ds = θν∗(θ)− ULF ≥ θ

[
ν∗(θ)− νLF(θ)

]
≥ 0.

In turn, this means that

U∗ = ULF(θ∗H)−
∫ θ∗H

θ

ν∗(s) ds ≥ ULF(θ∗H)−
∫ θ∗H

θ

νLF(s) ds = ULF.

On the other hand, if µ∗ = 0, then ν∗(θ) ≤ νLF(θ) for any θ ∈ [θ, θ∗H ]; hence

U∗ = ULF(θ∗H)−
∫ θ∗H

θ

ν∗(s) ds ≥ ULF(θ∗H)−
∫ θ∗H

θ

νLF(s) ds = ULF.

(3) The complementary slackness conditions are satisfied.

It is clear that

µ∗ [θν∗(θ)− U∗] = 0.

Moreover, observe that

∫ θ

θ

[
U∗ − ULF +

∫ θ

θ

[
ν∗(s)− νLF(s)

]
ds

]
dΛ∗(θ)

=

∫ θ

θ∗H

[
U∗ − ULF +

∫ θ

θ

[
ν∗(s)− νLF(s)

]
ds

]
dΛ∗(θ).
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Observe that our construction of U∗ (for the case of µ∗ = 0) and equation (A.2) (for the

case of µ∗ > 0) imply that

U∗ +

∫ θ∗H

θ

ν∗(s) ds = ULF(θ∗H) = ULF +

∫ θ∗H

θ

νLF(s) ds.

Since ν∗(θ) = νLF(θ) for θ ∈ [θ∗H , θ], it follows that the desired complementary slackness

condition holds.

A.3.2 Case #2: E[ω] > α

We now consider the case where E[ω] > α. Instead of the social planner’s problem, however, we

study the following relaxation.

max
U∈R, ν∈I

{
[E[ω]− α]U +

∫ θ

θ

[[
αθ −

∫ θ

θ
[α− ω(s)] dF (s)

f(θ)

]
ν(θ)− αcΨ(ν(θ))

]
dF (θ)

}

s.t.


U ≤ θν(θ),

U +

∫ θ

θ

ν(s) ds ≥ ULF +

∫ θ

θ

νLF(s) ds.

This relaxation requires the (IR) constraint to hold only for the highest consumer type, θ, rather

than for all consumer types. We begin by solving this relaxed problem, and then we subsequently

demonstrate that its solution also solves the social planner’s problem.

First, suppose that the (IR) constraint is slack. In this case, the solution to the relaxed problem

coincides with the solution to the full mechanism design problem studied in Section A.2.2:

U∗ = θν∗(θ) and ν∗(θ) = ψ−1

((
s 7→ J(s)

c
+

E[ω]− α

αcf(s)
· θδθ(s)

)
(θ)

)
. (A.5)

In order for the (IR) constraint to be slack, we require that

U∗ +

∫ θ

θ

ν∗(s) ds > ULF +

∫ θ

θ

νLF(s) ds. (A.6)

We now argue that, if this condition holds, then the solution must also solve the social planner’s

problem. Indeed, suppose that the (IR) constraint is violated for some type θ̂ ∈ [θ, θ]. Then
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θ̂ ̸= θ since U∗ ≥ ULF by construction. Moreover, since quality is distorted upwards for low types

(cf. Section A.2.2), the envelope theorem (cf. Claim 1) implies that the (IR) constraint is satisfied

by these low types; hence quality is distorted downwards at θ̂. Consequently, quality is distorted

downwards for all types θ ∈ [θ̂, θ]; thus the envelope theorem implies that the (IR) constraint must

in fact also be violated for the highest type, θ. But this contradicts the condition (A.6), which

requires that the (IR) constraint is satisfied for the highest type. We conclude that, under the

condition (A.6), the solution to the social planner’s problem is in fact given by equation (A.5).

Next, suppose that (A.6) fails to hold, so that the (IR) constraint binds in the relaxed problem.

In this case, the solution to the relaxed problem no longer coincides with the solution to the full

mechanism design problem studied in Section A.2.2. However, we know that the relaxed problem

nonetheless admits a solution since (ULF, νLF) satisfies both the (LS) constraint and the (relaxed)

(IR) constraint. Denote the solution to the relaxed problem by (U∗, ν∗), and denote the optimal

Lagrange multipliers for the (LS) and relaxed (IR) constraints by µ∗, λ∗ ≥ 0 respectively. Then

µ∗ − λ∗ = E[ω]− α. On one hand, if µ∗ > 0, then the solution can be written as

U∗ = θν∗(θ) and ν∗(θ) = ψ−1

((
s 7→ J(s)

c
+
α− E[ω] + µ∗ + µ∗θδθ(s)

αcf(s)

)
(θ)

)
. (A.7)

While this differs from equation (A.5) in that λ∗ > 0 when the (IR) constraint binds, a similar

argument as before implies that the (IR) constraint must in fact hold for every type. On the other

hand, if µ∗ = 0, then note that λ∗ = α − E[ω] < 0, a contradiction. Consequently, the solution

to the social planner’s problem is in fact generally given by equation (A.7), regardless of whether

the condition (A.6) holds.

A.4 Partial Mechanism Design: Positive Correlation

Finally, we solve the social planner’s problem with the original (IR) constraints, assuming that

welfare weight is positively correlated with willingness to pay (i.e., ω is increasing).

A.4.1 Case #1: E[ω] ≤ α

We begin by supposing that E[ω] ≤ α. We follow our approach in Appendix A.3 by guessing

Lagrangian multipliers, maximizing the Lagrangian, and then applying the Luenberger sufficiency

theorem.
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Guessing Lagrangian multipliers.

Let µ ∈ R+ and the nondecreasing function Λ : [θ, θ] → R (where we normalize Λ(θ) = 0 without

loss of generality) respectively denote the Lagrange multipliers for the (LS) constraint and the

(IR) constraint, so that the Lagrangian for the social planner’s problem can be written as

L(U, ν;µ,Λ) = [E[ω]− α− µ]U +

∫ θ

θ

[
U − ULF +

∫ θ

θ

[
ν(s)− νLF(s)

]
ds

]
dΛ(θ)

+

∫ θ

θ

[[
αθ −

∫ θ

θ
[α− ω(s)] dF (s)

f(θ)
+
µθδθ(θ)

f(θ)

]
ν(θ)− αcΨ(ν(θ))

]
dF (θ)

=
[
E[ω]− α− µ+ Λ(θ)

]
U −

∫ θ

θ

[
ULF +

∫ θ

θ

νLF(s) ds

]
dΛ(θ)

+

∫ θ

θ

[[
J(θ) +

µθδθ(θ) + Λ(θ)− Λ(θ)

f(θ)

]
ν(θ)− αcΨ(ν(θ))

]
dF (θ).

Define

θ∗L := min

{
θ ∈ [θ, θ] :

∫ θ

θ

[α− ω(s)] dF (s) ≥ α− E[ω]

}
.

Also, define

ν0(θ) := ψ−1

(s 7→ s

c
−
∫ θ

s
[α− ω(z)] dF (z)

αcf(s)

)∣∣∣∣∣
[θ∗L,θ]

 (θ). (A.8)

We guess the Lagrange multipliers µ∗ = 0 and

Λ∗(θ) :=


α− E[ω] if θ > θ∗L,∫ θ

θ

[α− ω(s)] dF (s) if θ ≤ θ∗L.
(A.9)

Note that Λ∗ is nondecreasing by construction. This is because θ 7→
∫ θ

θ
[α− ω(s)] dF (s) is

quasiconcave:
∂

∂θ

∫ θ

θ

[α− ω(s)] dF (s) = [α− ω(θ)] f(θ),

which crosses zero at most once since ω is increasing.
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Maximizing the Lagrangian.

Given these guesses for µ∗ and Λ∗, we set U∗ = ULF. Moreover, we define the subutility function

ν∗ as follows:

ν∗(θ) =

{
ν0(θ) if θ ≥ θ∗L,

νLF(θ) otherwise.

We now demonstrate that ν∗ is nondecreasing and maximizes the Lagrangian given the Lagrange

multipliers µ∗ and Λ∗.

(1) ν∗ is nondecreasing.

It suffices to verify that ν0(θ
∗
L) ≥ νLF(θ∗L). Indeed, observe that

∫ θ

θ

[α− ω(s)] dF (s) ≤ 0 =⇒ θ

c
−
∫ θ

θ
[α− ω(s)] dF (s)

αcf(θ)
≥ θ

c
for any θ ≥ θ∗L.

In turn, this implies that ψ(ν0(θ)) ≥ θ/c ≥ θ∗L/c = ψ(νLF(θ∗L)) for θ ≥ θ∗L.

(2) ν∗ maximizes the Lagrangian.

It suffices to verify that, for any ν ∈ I satisfying the (IR) constraint, the following variational

inequality is satisfied:

∫ θ

θ

[ν∗(θ)− ν(θ)]

[
θ

c
+

Λ∗(θ)− Λ∗(θ)−
∫ θ

θ
[α− ω(s)] dF (s)

αcf(θ)
− ψ(ν∗(θ))

]
dF (θ) ≥ 0.

Clearly, by our construction of Λ∗ in equation (A.9),

∫ θ∗L

θ

[ν∗(θ)− ν(θ)]

[
θ

c
+

∫ θ

θ
[α− ω(s)] dF (s)− Λ∗(θ)

αcf(θ)
− ψ(ν∗(θ))

]
︸ ︷︷ ︸

=0 for θ∈[θ,θ∗L]

dF (θ) = 0.

Consequently, it suffices to show that

∫ θ

θ∗L

[ν∗(θ)− ν(θ)]

[
θ

c
−
∫ θ

θ
[α− ω(s)] dF (s)

αcf(θ)
− ψ(ν∗(θ))

]
dF (θ) ≥ 0.

However, this follows from our construction of ν0 in equation (A.8) (cf. Toikka, 2011).
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Following the above discussion, we conclude that (U∗, ν∗) maximizes the Lagrangian, given the

Lagrange multipliers µ∗ and Λ∗:

(U∗, ν∗) ∈ argmax
U∈R+, ν∈I

L(U, ν;µ∗,Λ∗).

Note that the results of Toikka (2011) imply that the ν∗ can be alternatively be written as

ν∗(θ) = ψ−1

(s 7→ s

c
+

∫ s

θ
[α− ω(z)] dF (z)− Λ∗(s)

αcf(s)

)
(θ)

 . (A.10)

Applying the Luenberger sufficiency theorem.

We now apply the Luenberger sufficiency theorem. To this end, observe that:

(1) (U∗, ν∗) satisfies the (LS) constraint.

Since U∗ = ULF ≥ θνLF(θ) = θν∗(θ), we conclude that the (LS) constraint holds.

(2) (U∗, ν∗) satisfies the (IR) constraint.

Since U∗ = ULF and ν∗ ≥ νLF, it follows from the envelope theorem (cf. Claim 1) that the

(IR) constraint holds for all θ ∈ [θ, θ].

(3) The complementary slackness conditions are satisfied.

Since µ∗ = 0, it is clear that µ∗ [θν∗(θ)− U∗] = 0.

Moreover, observe that

∫ θ

θ

[
U∗ − ULF +

∫ θ

θ

[
ν∗(s)− νLF(s)

]
ds

]
dΛ∗(θ) =

∫ θ∗L

θ

∫ θ

θ

[
ν∗(s)− νLF(s)

]
ds = 0.

It follows that the desired complementary slackness condition holds.
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A.4.2 Case #2: E[ω] > α

Finally, we consider the case where E[ω] > α. Instead of the social planner’s problem, however,

we study the following relaxation.

max
U∈R, ν∈I

{
[E[ω]− α]U +

∫ θ

θ

[[
αθ −

∫ θ

θ
[α− ω(s)] dF (s)

f(θ)

]
ν(θ)− αcΨ(ν(θ))

]
dF (θ)

}
s.t. U ≤ θν(θ).

The solution to this relaxed problem coincides exactly with the solution to the full mechanism

design problem studied in Section A.2.2:

U∗ = θν∗(θ) and ν∗(θ) = ψ−1

((
s 7→ J(s)

c
+

E[ω]− α

αcf(s)
· θδθ(s)

)
(θ)

)
. (A.11)

Since ω(·) is increasing and E[ω] − α > 0, it follows that the distortion term is nonnegative for

every consumer type. Consequently, we have

ν∗(θ) ≥ νLF(θ) ∀ θ ∈ [θ, θ].

In particular, we see that U∗ = θν∗(θ) ≥ θνLF(θ) ≥ ULF. Moreover, for any θ ∈ [θ, θ], we must

have ∫ θ

θ

ν∗(s) ds ≥
∫ θ

θ

νLF(s) ds.

It follows that, for any θ ∈ [θ, θ], the (IR) constraint is satisfied:

U∗ +

∫ θ

θ

ν∗(s) ds ≥ ULF +

∫ θ

θ

νLF(s) ds.

A.5 Proof of Theorem 1

As equations (A.5), (A.7) and (A.11) indicate, the social planner can always strictly improve on

the laissez-faire outcome if E[ω] > α, which implies that maxω > α. Below, we focus on the case

where E[ω] ≤ α.

When welfare weight is negatively correlated with willingness to pay, the social planner can

strictly improve on the laissez-faire outcome if and only if θH(µ
∗) > θ. If µ∗ > 0, then

equations (A.2) to (A.4) imply that the social planner can strictly improve on the laissez-faire
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outcome; moreover, µ∗ > 0 also implies that µmax > 0, which means that maxω > α. If µ∗ = 0,

then θH(µ
∗) > θ implies there exists some θ̂ ∈ [θ, θ] such that

∫ θ̂

θ

[α− ω(s)] dF (s) > 0.

Since θ 7→
∫ θ

θ
[α− ω(s)] dF (s) is quasiconvex and evaluates to zero at θ = θ, the condition above

holds if maxω > α. Conversely, if maxω > α, then either µ∗ > 0 (in which case we obtain the

desired result) or µ∗ = 0; similar arguments as those above then show that θH(µ
∗) > θ.

When welfare weight is positively correlated with willingness to pay, the social planner can

strictly improve on the laissez-faire outcome if and only if θ∗L < θ. Then there exists some θ̂ ∈ [θ, θ]

such that ∫ θ

θ̂

[α− ω(s)] dF (s) < 0.

Since θ 7→
∫ θ

θ
[α− ω(s)] dF (s) is quasiconvex and evaluates to zero at θ = θ, the condition above

holds if maxω > α. This argument extends to the converse direction too.

A.6 Proof of Theorem 2

If E[ω] ≤ α, then equations (A.2) to (A.4) provide the expression of the optimal allocation function

q∗ in Theorem 2. If E[ω] > α, then equations (A.5) and (A.7) provide the expression of the optimal

allocation function q∗ inTheorem 2.

A.7 Proof of Theorem 3

If E[ω] ≤ α, then equations (A.9) and (A.10) provide the expression of the optimal allocation

function q∗ in Theorem 3. If E[ω] > α, then equation (A.11) provides the expression of the

optimal allocation function q∗ inTheorem 3.
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Appendix B Additional Proofs

B.1 Proof of Lemma 1

Suppose that the private market is active, so there exists an interval of types (θ−, θ+) such that

q∗(θ) = qLF(θ) for any θ ∈ (θ−, θ+). Let κ ∈ (θ−, θ+). Similar to our approach Appendix A, we

use Claims 1 and 2 to rewrite the social planner’s problem (given the optimal U∗) as follows:

max
ν∈I

∫ θ

κ

[[
αθ −

∫ θ

θ
[α− ω(s)] dF (s)

f(θ)

]
ν(θ)− αcΨ(ν(θ))

]
dF (θ)

s.t.

∫ θ

κ

ν(s) ds ≥
∫ θ

κ

νLF(s) ds for any θ ∈ [κ, θ].

We proceed by considering the necessary conditions that the optimal subutility function ν∗ must

satisfy. To this end, we let Λ denote the Lagrange multiplier for the (IR) constraint. We can then

write the Lagrangian as

L(ν; Λ) =
∫ θ

κ

[[
αθ +

Λ(θ)−
∫ θ

θ
[α− ω(s)] dF (s)

f(θ)

]
ν(θ)− αcΨ(ν(θ)) + Λ(θ)νLF(θ)

]
dF (θ).

The necessary conditions for the Lagrange approach (Luenberger, 1969) ensure that there exists

a nonincreasing function Λ∗ : [θ, θ] → R+ such that

ψ(ν∗(θ)) =

(
s 7→ s

c
+

Λ∗(s)−
∫ θ

s
[α− ω(z)] dF (z)

αcf(s)

)∣∣∣∣∣
[κ,θ]

(θ) for any θ ∈ [κ, θ].

Moreover, since the (IR) constraint binds for (κ, θ+), observe that for any θ ∈ (κ, θ+),

0 = ψ(νLF(θ))− ψ(ν∗(θ)) =
Λ∗(θ)−

∫ θ

θ
[α− ω(s)] dF (s)

αcf(θ)
=⇒ Λ∗(θ) =

∫ θ

θ

[α− ω(s)] dF (s).

Since θ 7→
∫ θ

θ
[α− ω(s)] dF (s) is a quasiconcave function when ω is decreasing, the (IR) constraint

can bind only for types θ such that ω(θ) ≤ α (i.e., sufficiently high types).

Now, suppose that there is a “gap” between two open subintervals of [κ, θ] where the (IR)

constraint binds. Denote this “gap” by (κ−, κ+). To show that such a “gap” cannot happen, it

suffices to show that the following condition holds for any nondecreasing subutility function ν ∈ I
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such that
∫ θ

κ−
ν(s) ds ≥

∫ θ

κ−
νLF(s) ds for any θ ∈ (κ−, κ+), and

∫ κ+

κ−
ν(s) ds =

∫ κ+

κ−
νLF(s) ds:

∫ κ+

κ−

[
νLF(θ)− ν(θ)

] [J(θ)
c

− θ

c

]
dF (θ) ≥ 0.

This is the variational inequality that verifies that νLF is optimal on this interval. But this

variational inequality is equivalent to

∫ κ+

κ−

[
ν(θ)− νLF(θ)

] ∫ θ

θ

[α− ω(s)] dF (s) dθ ≥ 0

⇐⇒
∫ κ+

κ−

[α− ω(θ)]︸ ︷︷ ︸
≥0

∫ θ

κ−

[
ν(s)− νLF(s)

]
ds︸ ︷︷ ︸

≥0

dF (θ) ≥ 0.

Clearly, the latter inequality holds. Consequently, there can be no “gaps” in the region where the

(IR) constraint binds: if the (IR) constraint binds over a region in [κ, θ], then this region must be

an interval.

Finally, suppose that the (IR) constraint binds over the interval (κ−, κ+), but κ+ < θ. Then

we repeat the above argument on the interval (κ+, θ): it suffices to show that

∫ θ

κ+

[
νLF(θ)− ν(θ)

] [J(θ)
c

− θ

c

]
dF (θ) ≥ 0

⇐⇒
∫ θ

κ+

[
ν(θ)− νLF(θ)

] ∫ θ

θ

[α− ω(s)] dF (s) dθ ≥ 0

⇐⇒
∫ θ

κ+

[α− ω(θ)]︸ ︷︷ ︸
≥0

∫ θ

κ+

[
ν(s)− νLF(s)

]
ds︸ ︷︷ ︸

≥0

dF (θ) ≥ 0.

So, if the (IR) constraint binds, it must bind on an interval in [κ, θ] that ends at the highest

possible type θ. Thus, if the (IR) constraint binds for some type κ ∈ [θ, θ], it must also bind for θ.

B.2 Proof of Lemma 2

Our proof of Lemma 1 did not address whether or when the (IR) constraint binds in [θ, κ]. We

now analyze when the (IR) constraint binds in [θ, θ] by using Lemma 1: that we can, without loss

of generality, take κ = θ to be where the (IR) constraint binds.
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We modify the social planner’s problem by first rewriting the (LS) constraint. Observe that

the utility of the lowest type, U , can be expressed as

U = U
LF −

∫ θ

θ

ν(s) ds.

Thus the (LS) constraint can be equivalently written as

U ≤ θν(θ) ⇐⇒
∫ θ

θ

ν(s) ds+ θν(θ) ≥ U
LF
.

We therefore write the social planner’s problem as follows:

max
ν∈I

∫ θ

θ

[[
αθ +

∫ θ

θ
[α− ω(s)] dF (s)

f(θ)

]
︸ ︷︷ ︸

=:αH(θ)

ν(θ)− αcΨ(ν(θ))

]
dF (θ)

s.t.


∫ θ

θ

ν(s) ds+ θν(θ) ≥ U
LF
,∫ θ

θ

ν(s) ds ≤
∫ θ

θ

νLF(s) ds.

Denote the Lagrange multiplier function for the (IR) constraint by Λ : [θ, θ] → R+, which is a

nondecreasing function satisfying Λ(θ) = 0. Let µ ∈ R+ be the Lagrange multiplier for the (LS)

constraint. The Lagrangian can thus be written as

L(ν; Λ, µ) =
∫ θ

θ

[[
H(θ) +

µ+ µθ · δθ(θ)− Λ(θ)

αf(θ)

]
ν(θ)− cΨ(ν(θ))

]
dF (θ).

As before, we use necessary conditions to pin down what the optimal Lagrange multiplier

function Λ∗ must satisfy. First, observe that the necessary conditions for the Lagrange approach

(Luenberger, 1969) ensures that there exists a nondecreasing function Λ∗ : [θ, θ] → R+ such that

ψ(ν∗(θ)) =

(
s 7→ H(s)

c
+
µ∗ + µ∗θ · δθ(s)− Λ∗(s)

αcf(s)

)
(θ) ∀ θ ∈ [θ, θ].
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Moreover, if the (IR) constraint binds for an interval (θ−, θ+), then

ψ(ν∗(θ)) = ψ(νLF(θ)) =
H(θ)

c
+
µ∗ + µ∗θ · δθ(θ)− Λ∗(θ)

αcf(θ)
.

This implies that

Λ∗(θ) =

[
H(θ)

c
− ψ(νLF(θ))

]
αcf(θ) + µ∗ + µ∗θδθ=θ ∀ θ ∈ (θ−, θ+). (B.1)

Observe that [
H(θ)

c
− ψ(νLF(θ))

]
αcf(θ) =

∫ θ

θ

[α− ω(s)] dF (s),

which is a quasiconvex function in θ since ∂
∂θ

∫ θ

θ
[α− ω(s)] dF (s) = [α− ω(θ)] f(θ), which crosses

zero at most once since ω is nonincreasing. Moreover, the quasiconvexity of the right-hand side

of (B.1) is preserved when we add µ∗ + µ∗θδθ. Therefore, the (IR) constraint can bind only for

sufficiently high types (i.e., when ω(θ) ≤ α).

Now, suppose that there is a “gap” between two open intervals where the (IR) constraint

binds. Denote this “gap” by (κ−, κ+). To show that such a “gap” cannot happen, it suffices

to show that for any ν ∈ I such that
∫ θ

κ−
ν(s) ds ≥

∫ θ

κ−
νLF(s) ds for any θ ∈ (κ−, κ+), and∫ κ+

κ−
ν(s) ds =

∫ κ+

κ−
νLF(s) ds,

∫ κ+

κ−

[
νLF(θ)− ν(θ)

] [H(θ)

c
− θ

c

]
dF (θ) ≥ 0.

This is the variational inequality that verifies that νLF is optimal on this interval. But this

variational inequality is equivalent to∫ κ+

κ−

[
νLF(θ)− ν(θ)

] ∫ θ

θ

[α− ω(s)] dF (s) dθ ≥ 0

⇐⇒
∫ κ+

κ−

[α− ω(θ)]︸ ︷︷ ︸
≥0

∫ θ

κ−

[
ν(s)− νLF(s)

]
ds︸ ︷︷ ︸

≥0

dF (θ) ≥ 0.

Clearly, the latter inequality holds. Consequently, there can be no “gaps” in the region where the

(IR) constraint binds: if the (IR) constraint binds over a region in [θ, θ], then this region must be

an interval.
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B.3 Proof of Proposition 1

Proposition 1 follows from applying the envelope theorem (cf. Claim 1) to the characterization of

the optimal allocation function given by Theorem 2.

B.4 Proof of Proposition 2

Proposition 2 follows from applying the envelope theorem (cf. Claim 1) to the characterization of

the optimal allocation function given by Theorem 3.

B.5 Proof of Proposition 3

Given that θ > 0 by assumption, the optimal mechanism includes a free public option if and

only if µ∗ > 0. The result of Proposition 3 then follow from the characterizations of µ∗ given by

Theorems 2 and 3.

B.6 Proof of Proposition 4

(i) When ω is decreasing, we rewrite µ∗ as

min

{
µ ∈ [(E[ω]− α)+ , µmax] :

∫ θ

θ

[
v(qLF(s))− v(qµ(s))

]
ds ≤ θ

[
v(qµ(θ))− v(qLF(θ))

]}
.

Observe that µ 7→
∫ θ

θ

[
v(qLF(s))− v(qµ(s))

]
ds is pointwise decreasing in α while µ 7→

θ
[
v(qµ(θ))− v(qLF(θ))

]
is pointwise increasing in α. Since the former is a decreasing function

of µ and the latter is an increasing function of µ, we conclude that µ∗ must decrease with

α. Moreover, θH is a decreasing function of µ; hence θH(µ
∗) increases with α.

(ii) When ω is increasing, observe that θ∗L decreases with α since θ 7→
∫ θ

θ
[α− ω(s)] dF (s) is

pointwise decreasing in α. Moreover, µ∗ = (E[ω]− α)+ also decreases with α.

B.7 Proof of Proposition 5

(i) When ω is decreasing, it suffices to show that the optimal allocation characterized in

Theorem 2 is always distorted downwards for types just below θH(µ
∗), so the social planner

must strictly benefit from preventing topping up whenever there is scope for in-kind

redistribution, as characterized by Theorem 1. On one hand, if E[ω] ≤ α, then we consider
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two cases: either µ∗ = 0 or µ∗ > 0. If µ∗ = 0, then it is easy to see from equation (A.4)

that the distortion for types just below θH(µ
∗) is negative. If µ∗ > 0, then the distortion

for those types can fail to be negative only if the distortion for all types in (θ, θH(µ
∗)) is

positive; but this is impossible since µ∗ > 0 and equation (A.2) together imply that

θν∗(θ) +

∫ θ∗H

θ

ν∗(s) ds = ULF(θ∗H) = ULF +

∫ θ∗H

θ

νLF(s) ds.

On the other hand, if E[ω] > α, then a similar argument applies using equation (A.7) instead.

(ii) When ω is increasing, it suffices to show that the optimal allocation characterized in

Theorem 3 satisfy the stronger (IR’) constraints. This is easy to see from equations (A.10)

and (A.11), as we discuss in Appendix A following those equations.
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