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Abstract

Trade and industrial policies, while primarily intended to support domestic industries,
may unintentionally stimulate technological progress abroad. We document this mechanism
in the case of rare earth elements (REEs) – critical inputs for manufacturing at the knowledge
frontier, with low elasticity of substitution, inelastic supply, and high production and pro-
cessing concentration. To assess the importance of REEs across industries, we construct an
input-output table that includes disaggregated REE inputs. Using REE-related patents cate-
gorized by a large language model, sectoral TFP data, trade data, and physical and chemical
substitution properties of REEs, we show that the introduction of REE export restrictions by
China led to a global surge in innovation and exports in REE-intensive downstream sectors
outside of China. To rationalize these findings and quantify the global impact of the adverse
REE supply shock, we develop a quantitative general equilibrium model of trade and directed
technological change. We also propose a structural method to estimate sectoral input sub-
stitution elasticities for REEs from patent data and find REEs to be complementary inputs.
Under endogenous technologies and with complementary inputs, input supply restrictions on
REEs induce a surge in REE-enhancing innovation and lead to an expansion of REE-intensive
downstream sectors.
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1 Introduction

Governments traditionally use industrial policies to selectively promote economic activity in spe-

cific sectors. While industrial policy can aim at correcting market imperfections that misalign

private and social benefits, its final effects are complex when economic sectors are interconnected

through global value chains. Understanding the impact of industrial policy in this environment is

particularly relevant for sectors that provide essential inputs for other sectors. In the context of

geopolitical tensions and the green transition, rare earth elements (REEs) have gained increased

attention. Their distinct role as critical inputs for many manufacturing goods, with few possibil-

ities of substitution, inelastic supply, and concentration of their supply in China, has sparked a

broader debate about the fragility of global supply chains.

In this paper, we provide an empirical and quantitative analysis of the effects of China’s policy

that restricted the global supply of REEs. We advance both reduced-form causal evidence and a

general-equilibrium analysis based on a novel quantitative trade model with directed technological

change and input-output (IO) linkages. Our key finding is that policies that create an adverse

supply shock of essential inputs can trigger, across borders, innovation, long-term productivity

growth, and reallocation of economic activity towards downstream sectors that intensively use

these essential inputs. Intuitively, when inputs are gross complements, a surge in the price of

an input endogenously creates technological change that is directed at increasing the efficiency of

input use, potentially leading to an expansion of downstream sectors that intensively use the input

at the expense of other sectors. We show that REEs, because of their particular characteristics,

are susceptible to these conditions.

REEs, crucial inputs in many manufacturing products due to their chemical properties, capture

our interest due to at least four characteristics. First, REEs have broad and diverse applications at

the knowledge frontier across various industries, including electronics, lighting, aerospace, defense,

automotive, medical, and clean energy.1 Second, in many applications, REEs are difficult to

substitute with other inputs due to the high specificity of their applications (USGS, 2002), even

though their input quantities are oftentimes tiny. Third, their supply over time tends to be inelastic

due to their nature as byproducts as well as their toxic processing requirements (Nassar et al., 2015;

EPA, 2012) and long time-to-build in mining and processing. Finally, the supply for REE mining

and processing is highly concentrated. Notably, China controls approximately 60% of the mining

and 90% of the post-mine processing of these elements (BIS, 2023), distinguishing them from other

critical minerals whose production is geographically dispersed, such as Lithium.

1Critical uses include permanent magnets, which are present in electronic devices as well as vehicle motors and
wind turbines, and various chemical catalysts, which are essential for energy efficiency, environmental protection,
and renewables production, USGS (2022).
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An important challenge in assessing the importance of REE inputs for downstream industries

is that detailed information on REE-producing and -using industries is not generally explicitly

available in standard industry data and IO tables. Therefore, the first contribution that this paper

makes is the construction of a novel IO table that maps the use of REEs across industries into the

U.S. Bureau of Economic Analysis supply-use table. This IO table combines quantity information

on the REE content of all key applications of REE at the level of individual chemical elements

that we obtain from the U.S. Geological Survey with element-level price information taken from

industry sources. This augmented IO table allows us to calculate total REE requirements for each

4-digit SIC manufacturing industry.

Our second contribution is an empirical investigation of an adverse REE supply shock on REE-

using industries across the world. We exploit the rare earth crisis of 2010 as a quasi-natural

experiment. Following a territorial dispute with Japan in 2010, China increased restrictions on

its exports of REEs to the rest of the world. With China being essentially a monopolist in the

extraction and sales of most REE minerals at that time, this negative REE supply shock caused

a surge in international REE prices amid sourcing uncertainties. Global REE unit prices spiked

by factors of 10 to 45, remaining high for about five years, as REE mine output fell and export

restrictions were in place. In March 2012, the U.S. brought a case to the World Trade Organization

(WTO) Dispute Settlement Body against these export restrictions on REEs. Following a WTO

ruling, China relaxed its export restrictions on REEs in 2015, restoring access to these critical

materials on the global market. Thus, while the shock ultimately turned out to be temporary, the

duration of Chinese supply restrictions was ex ante unclear. Moreover, China’s actions revealed its

willingness to weaponize export restrictions, and it became clear that it could potentially repeat

similar measures.2

Using data on manufacturing industries across countries, we provide evidence for the impact of

Chinese export restrictions on REEs on downstream industries. Our analysis emphasizes directed

technological change by investigating the impact of an REE supply shock on innovation in down-

stream industries, in contrast to existing literature, which typically examines the restricted inputs

directly. We employ difference-in-difference estimates with continuous treatment intensity, where

the exposure of each downstream industry to the contractionary REE supply shock depends on

its total REE input requirement by chemical element and the substitutability of each element as

determined by their physical-chemical properties (Graedel et al. 2015). To measure innovation

activities downstream, we obtain the universe of granted patents across countries that mention

REEs, chemical compounds of REEs, or REE-specific technologies from the Google Patent Re-

2China eventually did reimpose restrictions on six REEs and rare earth permanent magnets in April 2025 as a
response to the second Trump administration’s new tariffs (Bradsher, 2025). This was an escalation from an earlier
ban on the exports of Gallium, Germanium, Antimony and superhard materials to the U.S. in late 2024 (Pierson
et al., 2024).
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search Database. We use a large language model (LLM) to identify those patents within the corpus

that describe key improvements of REE-using technologies and to link each individual patent to

industries cross-checked with alternative methods.

Our evidence supports the hypothesis that the supply shock triggered directed technological change

in REE-using industries: we find a surge of patenting activity outside of China for technologies that

are using REEs and improving the efficiency of those technologies, including by substituting REEs

as inputs. This surge in REE-related patents exceeds the overall growth in industry patenting. We

also complement our patent analysis with panel evidence on total factor and labor productivity.

While relative productivity increased in REE-intensive downstream industries outside of China

in response to the adverse REE supply shock, we see relative productivity declines in China’s

REE-intensive industries following the REE supply shock.

Having shown that the REE supply shock triggered an increase in innovation and productivity in

downstream industries, we assess the impact on the competitiveness of downstream industries by

studying the evolution of exports. We find that manufacturing industries outside of China that are

relatively REE-intensive expanded their exports relatively more compared to less REE-intensive

industries in the same country. On average, manufacturing industries that are one standard devia-

tion more REE-sensitive than the cross-sectoral average experienced a 0.35 percentage point (p.p.)

higher annual growth rate in exports between 2010 and 2018 compared to the period 2002-2009.

The effect on export growth was particularly large for manufacturing industries located in Europe

or Japan. By contrast, similar export growth of REE-intensive sectors did not occur within China,

where access to REEs was abundant. Aside from element-level variation, we also consider country-

level variation in the exposure to the REE supply shock. Here, we consider either historical REE

sourcing shares from China or country-specific spikes of REE import unit values. In line with our

previous results, we find that REE-using industries outside of China expanded their REE-related

patenting, productivity, and export growth relative to other industries.

Our third contribution is to quantify the impact of China’s REE export restrictions on downstream

industries using a novel quantitative general-equilibrium (GE) trade model featuring comparative

advantage based on factor abundance and directed technological change. The model integrates

a structural multi-sector gravity model of trade with a detailed IO structure (see Caliendo and

Parro, 2015; Fadinger et al., 2024) with a two-factor Heckscher-Ohlin model (Chor, 2010; Burstein

and Vogel, 2017; Morrow and Trefler, 2022) and a static variant of Acemoglu’s (2002) model of

directed technological change. In this framework, industry-level goods are differentiated by origin,

and perfectly competitive firms produce output using a combination of intermediate inputs and

a value-added bundle. The value-added bundle aggregates REE inputs and labor using a CES

function with industry-specific substitution parameters. REE inputs are traded internationally,
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with China acting as the sole supplier, thus allowing it to impose export taxes unilaterally.

We examine two model variants. In the short-run version, technology is held fixed and comparative

advantage is determined by factor abundance. Under this scenario, a Chinese export tax on REEs

raises input costs for downstream industries outside of China — especially when the elasticity of

substitution between REE inputs and labor is low and for industries that are more dependent on

REEs. This leads to a contraction of REE-intensive industries relative to labor-intensive ones in

the rest of the world, while China’s relative production of REE-intensive goods expands.

By contrast, in the long-run version of the model, technology is endogenous, and its factor bias is

shaped by firms’ targeted innovation efforts in the REE or labor input layers. A key determinant

of the direction of technological change in response to a Chinese REE export tax is the elasticity

of substitution between REEs and labor. If REEs and labor are gross complements, a negative

supply shock to REEs shifts the direction of innovation toward REE-saving technologies. In this

case, rising global REE prices increase the profitability of innovations that improve REE efficiency.

When innovation externalities are sufficiently strong, this technological response can more than

offset the direct cost increase resulting from higher REE prices, leading to a decline in downstream

production costs of REE-intensive industries relative to labor-intensive ones. As a result, REE-

intensive industries may expand relative to labor-intensive industries outside China.

We calibrate our model using detailed trade and production data from the World Input-Output

Database (WIOD) for the pre-shock year 2009. Central to the calibration are the industry-level

elasticities of substitution between REEs and labor, as well as each industry’s reliance on REE

inputs. Due to the absence of comprehensive data on REE expenditure shares, standard estimation

techniques for substitution elasticities are not applicable. As a fourth contribution, we thus develop

a novel structural estimation method for the elasticity of substitution between REEs and labor.

This approach exploits observable differences in innovation activity — measured by the relative

number of patents aimed at improving REE input efficiency — and relates them to variation in

relative REE prices. Our estimates reveal that the elasticity of substitution between REE and

labor is well below unity in most industries. Given these estimates, we calibrate industry-specific

REE input intensities using U.S. data. We find that industries with higher REE intensity exhibit

lower substitution elasticities, providing empirical support for our proposed theoretical mechanism.

In our analysis of the general-equilibrium effects of the Chinese policies on REEs, we show that

the model qualitatively and quantitatively replicates the patterns observed in our reduced-form

evidence. When technology adjusts endogenously, an increase in global REE prices — triggered by

the export restriction and a decline in global REE supply — induces a sufficiently strong directed

technological response, causing REE-intensive industries to expand relative to other industries

outside of China and to contract within China. While the policy yields a modest welfare gain for
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China, the negative impact on GDP and welfare in other countries is mitigated almost entirely by

the endogenous technological adjustment, which significantly reduces global demand for REE. We

further demonstrate that directed technological change is crucial for these outcomes. In the version

of the model with fixed technologies, global production and exports in REE-intensive industries

shift markedly in favor of China. In this scenario, China experiences a substantial economic

boom and large welfare gains due to positive terms-of-trade effects, whereas other countries suffer

considerable declines in real GDP and welfare. Overall, our analysis links the quantitative effects of

export restrictions on REE to their distinctive technological features — namely low substitutability

and inelastic supply—in a highly policy-relevant context.

Related Literature: Our theoretical approach builds on the literature on modern quantitative

trade models. Seminal contributions include Eaton and Kortum (2002), Costinot and Rodŕıguez-

Clare (2014), and Caliendo and Parro (2015). Caliendo and Parro (2022) provide a comprehensive

overview of trade policy in this class of models, while Ossa (2014) analyzes strategic trade policy,

and Lashkaripour and Lugovskyy (2023) examine the interaction between trade and industrial

policies in settings with scale economies. We contribute to this literature by incorporating directed

technological change into a quantitative trade model. Although the existing literature largely

examines import tariffs, our focus is on export taxes and quantity restrictions.

In the field of innovation, our work relates to studies such as Acemoglu (1998, 2002), Acemoglu

et al. (2012), and Aghion et al. (2016) on directed technological change. The latter authors find

that firms in the auto industry innovate relatively more in clean technologies when they face

higher tax-inclusive fuel prices but document path dependence in the type of innovation (firms’

history and aggregate spillovers). In terms of a global economy, Acemoglu et al. (2015) highlight

the complex relationship between direction of technological progress and offshoring, which can

both drive skill-biased technological change and spur innovations favoring unskilled labor. More

generally, a series of papers on biased technological change, document how innovation favors a

particular input due to its relative supply or price, with Kennedy (1964) being one seminal work.

In a historical context, Hanlon (2015) finds that the blockade on cotton from the Southern U.S.

during the U.S. Civil War spurred technological progress in the use of cotton inputs from India

in a context where inputs are gross substitutes. Popp (2002) finds that higher energy prices

induced more innovation in energy-saving technology, proxied by patents. Hassler et al. (2021)

model energy-saving technological change to estimate the elasticity of substitution between energy

and labor or capital inputs. Relatedly, Blum (2010) documents empirically for a large sample of

countries that changes in countries’ relative factor endowments do not only lead to Heckscher-

Ohlin forces by shifting the output mix of economies’ but also change factor returns in the long

run, which leads to directed technological change, shifting producers’ isoquants in the long run.
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In contrast to existing work, we emphasize the propagation effects of a deliberate industrial policy

intervention targeting an essential and concentrated input—characterized by low substitutability

and inelastic supply on downstream innovation and productivity in third countries in a modern

setting. Furthermore, our quantitative GE analysis of REE tax export restrictions provides a

detailed welfare assessment of their impact on downstream innovation.

The academic literature on industrial policy is vast, as summarized in Harrison and Rodŕıguez-

Clare (2010) and Juhász et al. (2024). Empirical evidence on the effect of industrial policy is mixed,

fueling the debate. Criscuolo et al. (2019), for example, find positive effects on incumbent firms’

investment and employment but not TFP for regional policies. Bartelme et al. (2025) explore the

theoretical and empirical evidence of industrial policy subsidies based on external economies of

scale, finding limited empirical support. The analysis reveals significant variation in economies of

scale across manufacturing sectors. However, in highly open economies, the impact of such policies

appears to be minimal and not transformative. Studying industrial policy in high-tech sectors,

Barwick et al. (2024) find that targeted subsidies increase firm-level innovation but have modest

spillover effects on industry productivity. The authors highlight risks of resource misallocation,

questioning the efficiency of such interventions. Kee and Xie (2025) examine Indonesia’s export

restrictions on nickel and highlight the unintended negative impact on Indonesia’s own downstream

industries as lower domestic nickel prices enable the entry of smaller, less efficient steel-using

firms. In contrast, Juhász et al. (2024) offer a more nuanced and generally positive perspective on

industrial policy, highlighting its potential to drive structural economic transformation.

Equally rich is the literature on supply chains and trade restrictions, with a recent overview by

Fajgelbaum and Khandelwal (2022) and significant works by Grossman et al. (2024), and Bown

et al. (2023). A vast number of papers document the effects of trade restrictions on global supply

chains. Liu (2019) finds that targeted industrial policies can enhance efficiency by correcting

distortions in upstream sectors. Barattieri and Cacciatore (2023) show that protectionist trade

barriers disrupt production networks, harming downstream firms through higher input costs and

job losses. Recent studies focusing on U.S. tariffs document a ”great reallocation” of import

sourcing away from China, documenting widespread reallocation and negative effects on prices

and welfare (Amiti et al. 2019, Fajgelbaum et al. 2020, Flaaen et al. 2020, Grossman et al. 2024,

Alfaro and Chor 2023, Alfaro et al. 2025).

The paper also relates to the growing literature on the role of sanctions and geoeconomics more

broadly (Hirschman, 1945; Felbermayr et al., 2020). A large portion of this literature has analyzed

financial effects (e.g., Cipriani et al., 2023; Eichengreen et al., 2023; Itskhoki and Mukhin, 2022),

while our paper focuses on downstream production and innovation implications. Juhász (2018),

for example, finds increased mechanized cotton spinning in French regions more exposed to British
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Blockage. Moll et al. (2023) highlight the different ways in which German firms and households

adopted to the restricted imports of energy through demand reduction, increase efficiency, and

diversification to alternative sources. Our analysis stresses and quantifies the role of directed

technological change in adjusting to adverse shocks in a modern context and highlights that in

an environment of strongly complementary inputs sanctions may backfire by triggering foreign

innovation.

The remainder of the paper is organized as follows. Section 2 describes the context and policies

around REEs. Section 3 presents the data and describes the construction of the IO table and the

REE-related patent data. Section 4 presents the empirical analysis of innovation and trade effects.

We then present the model and its quantification in Section 5 and the last section concludes.

2 Background: Rare Earth Elements

2.1 Differentiating Characteristics

The U.S. Geological Survey (USGS) defines the REEs as a group of 17 elements composed of

Scandium, Yttrium, and the lanthanides.3 We note four characteristics of REEs that distinguish

them from other minerals.

First, these elements are collectively known for their unique magnetic, catalytic, and luminescent

properties, making them essential in a broad variety of high-tech and strategic applications (USGS,

2014). These include electronics, lighting, aerospace, defense, medical and green technologies.

These diverse applications arise from chemical properties that are similar across all REEs, hence

their classification as a group, although slight differences in electronic configurations give individual

elements specific specializations.4

Second, their applications usually involve small quantities but they are challenging to substitute

due to their high specificity (USGS, 2002; Graedel et al., 2015). For example, no other known

elements could replace Europium as a red phosphor for monitors or Erbium in laser repeaters

for fiber optics. Meanwhile, in principle, REE permanent magnets in electric vehicle motors

can be substituted with ferrite magnets, but this would make them about 30% heavier (Adamas

3The lanthanides include the following elements: Lanthanum (La), Cerium (Ce), Praseodymium (Pr),
Neodymium (Nd), Promethium (Pm), Samarium (Sm), Europium (Eu), Gadolinium (Gd), Terbium (Tb), Dys-
prosium (Dy), Holmium (Ho), Erbium (Er), Thulium (Tm), Ytterbium (Yb), and Lutetium (Lu).

4Salient examples of REE use are for permanent magnets (e.g., Neodymium and Samarium), as found in products
ranging from electronic speakers and medical equipment to wind turbines and catalysts (e.g., Cerium, Lanthanum)
used in petroleum refining and automobile exhausts and medical treatments (e.g. Gadolinium for magnetic resonance
imaging, Yttrium for radiation therapy). See Voncken (2016) for a list of applications by element as related to their
properties.
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Intelligence, 2023). This characteristic contributes to their low elasticity of substitution as an

input, which informs economic responses to shocks on their supply.

Third, REEs have a relatively inelastic supply due to their nature as byproducts (Nassar et al.,

2015) along with their toxic processing and handling (EPA, 2012). Despite their name, most

REEs are geologically relatively abundant. However, due to their high reactivity, REEs do not

occur as individual metals in nature the way copper and silver do, but instead as constituents

of ores and minerals (Balaram, 2019). Lanthanum, La (‘lanthanein,’ lying hidden), for example,

occurs with Cerium, Ce. The deposits were found later to contain also Praseodymium (‘prasinos,’

leek-green, and ‘didymos,’ twin) and Neodymium (‘neos,’ new twin). High similarity in their

chemical configuration, or their “chemical coherence”, makes them particularly difficult to separate

from each other (The Geological Society of London, 2011). Consequently, mining and processing

REEs involve steps that are relatively lengthy, complex, and costly (Hurst 2010). Other chemical

properties, such as radioactivity, complicate the process and add regulatory costs.5

Finally, REE production and processing are one of the most concentrated across mineral resources,

with China controlling more than 90% of post-mining processing (BIS, 2023). China possesses

abundant REE resources, including the only developed ion-adsorption clay deposits, which are the

most low-cost source for heavy REEs (Packey and Kingsnorth, 2016; USGS, 2002). This natural

endowment was compounded by China’s long history of REE promotion policies.

2.2 China’s REE Policies and Production

In 1975, China sought to promote the REE mining industry (Shen et al., 2020). Policy tools

included export-tax reimbursements starting in 1985, which coincided with China’s REE market

share growth. In 1990, the Chinese government designated REEs as a strategic resource, barring

foreign investors from ownership of mines and limiting their involvement to REE smelting and

separation projects unless through joint ventures with Chinese companies. Every REE mining or

smelting project and joint venture required approval from the state, and additional export quotas

were introduced in 1999 to address illegal production (Tse, 2011).

In the early 2000s, China emerged as the dominant player in the global production and processing

of REEs, driven by several factors including abundant reserves, low labor costs, lax environmental

5Most REE mines have Thorium, for example, which is radioactive. Cerium, Lanthanum, and Dysprosium, like
the other lanthanides, react easily with Oxygen (corroding quickly), are highly reactive to water, highly pyrophoric
(igniting spontaneously in the air), and are powerful irritants requiring particular handling protocols. REEs have
substantial metabolic effects: skin exposure can result in irritation, ulceration, delayed healing, and granuloma
formation; ocular contact can lead to conjunctivitis and corneal damage, scarring, and opacity. Inhalation of REE
dust can induce acute irritative bronchitis and pneumonitis. Most REEs are classified as mild to moderate toxic
(Harbison and Johnson 2015).
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regulations, and economies of scale. Not long before, REE processing plants in advanced economies

such as France and Japan began shutting down, culminating in the closure of California’s Mountain

Pass, the primary source of REEs before the mid-1980s (USGS, 2002). Between 1990 and 2000,

China’s production grew by more than 450%, from 16,000 to 73,000 metric tons (Tse 2011). During

this same period, production from other countries dropped by nearly 60%, from 44,000 to 16,000

metric tons. As a result, global production grew by just over 150% (from 60,000t to 91,000t).

China’s share of global REE output surged from 27% in 1990 to over 90% by 2008, supplying

the vast majority of the world’s REEs in the form of concentrates, intermediate products, and

chemicals during this period. In 2009, China’s market share in global REE mine production

reached 98% (see Figure A.1 in the Data Appendix).

2.3 The 2010 REE Supply Shock

We exploit the extreme and unprecedented 2010-2011 REE price surge by a factor of 10 (Terbium

and Europium) to 45 (Cerium) as a negative supply shock for our empirical analysis (see Figure

1).6 The price jump was triggered by new Chinese export restrictions that tightened supply and

heightened uncertainty in the context of geopolitical tensions. Beyond the extreme price spike,

the main impact of China’s export restrictions was supply uncertainty. The episode demonstrated

China’s ability—and willingness—to weaponize REEs. Concerns over China’s near-monopoly on

REEs had been minimal before 2010, as reflected in the scarcity of official reports and business

discussions.

The 2010 crisis made the risk of future disruptions evident, creating a lasting shock to REE

supply uncertainty, which we focus on in our analysis. In July 2010, China drastically reduced

the REE export quota for the second half of the year by 72%, with a stated motive of combating

illegal mining and environmental pollution (Müller et al., 2016).7 Then on September 7, 2010, a

Chinese trawler collided with Japanese coast guard boats in the Senkaku-Diaoyu waters, triggering

a diplomatic dispute. Immediate reports emerged of a ban as China halted all shipments of REE

in retaliation for Japan’s detention of a Chinese fishing boat captain. The restrictions were soon

followed by increased export tariffs on certain REE products in January 2011, and higher taxes on

REE mining and new export quotas on REE ferroalloys by May 2011 (WTO 2012, OECD 2024).

REE market prices jumped at an unprecedented rate, peaking in mid to late 2011 before gradually

6REE markets are highly illiquid, making yearly price changes more discernible than higher-frequency move-
ments, which tend to be extremely noisy. For comparison, the factor price increase from the 1974 OPEC shock was
around 300%, while the REE shock was between 1000% and 4500%.

7In August 2009, China had issued a draft policy to cut the annual export quota with potential export bans on
certain heavy REEs and reduced annual REE export quotas by around 12% each year from 2005 to 2009 (see Shen
et al. 2020; Packey and Kingsnorth 2016; Pritchard 2009; Bradsher 2009, 2010). The domestic REE production
quota was also cut by 20% in 2010 (Tse, 2011).
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Figure 1: Unit Prices of Selected Rare Earths
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Notes: The figure plots indices of REE log unit prices using data from Asian Metal. The select elements are

those with complete requirement data in the USGS report (Bleiwas and Gambogi, 2013). The vertical lines denote

relevant episodes: A=Export quota cut by China; B=Senkaku-Diayou boat collision; C=Select export tariffs hike

by China; D=New export quotas on ferro-alloys by China.

declining. Global REE supply dropped by about 30,000 mt as China tightened production (Figure

A.1).

On March 13, 2012, the U.S., joined by Japan, the E.U. and Canada, requested WTO dispute

settlement consultations. A WTO panel dismissed China’s exemption argument based on con-

servation of an exhaustible natural resource and determined that the quotas were intended for

industrial policy objectives (WTO 2015) and in 2014 ruled in the plaintiff’s favor. China removed

its export quotas on REEs in 2015, replacing the quota with an export license and the export tax

with a resource tax based on value (Mancheri et al., 2019).

Supply Chain and Innovation Responses: The price spike spurred efforts to explore alter-

native sources of REEs, including new mines and processing facilities. Progress was slow and

limited, hinting at the low supply inelasticity of REEs. Mining expanded in Australia, while

firms in the U.S. continued previously ongoing efforts to reopen Mountain Pass, though it took

at least two years for new supply to reach markets, and both mines operated below planned ca-

pacity.8 Production and processing remain reliant on China. Uncertainty constrained inventory

8Mountain Pass, sold to Molycorp in 2009, reopened in 2015 but soon shut down due to bankruptcy. It resumed
operations in 2018 under MP Materials, with Chinese REE miner Leshan Shenghe holding a non-voting minority
stake (Topf, 2017; Brickley, 2017). Lynas’s plant in Malaysia commenced light REE oxides production in 2013 after
the Malaysian government approved its development in 2007 (Gholz, 2014; Lynas, 2007).

11



use. Many Japanese firms, for example, stockpiled rather than released REEs, fearing depletion

without fresh imports from China (Gholz and Hughes, 2021).9 Firms sought to find substitutes

for REEs, alternative manufacturing processes, improve efficiency and recycling efforts. Given the

small quantities of REEs used in many applications, large-scale recycling was economically nonvi-

able (Hurst, 2011). In addition, firms, from auto companies in Japan, such as Toyota and Honda,

and abroad, such as Tesla, Renault, GM, and electronic companies, such as Hitachi and Phillips,

announced efforts as soon as 2010 to create new products using less or no REEs (Banner, 2022;

Reuters, 2021; Bomgardner, 2018; Owano, 2018; Halvorson, 2022; Houser, 2023).10

3 Data Sources and Descriptive Statistics

3.1 Input-Output Table with Rare Earths

To construct an IO table with REEs, we combine data from different sources. In particular, we

capture the use of REEs from USGS and prices from BCC and Asian Metal. In Appendix A.1, we

provide details on the imputation process of REE use into the standard supply-use table.

Use of REEs: We start with the 2012 supply-use table from the Bureau of Economic Analysis,

the closest available to the time of the supply shock. The supply-use table comprises 405 BEA

industry groups, which are a slightly more aggregated version of the 6-digit 2012 NAICS codes.

This table reports the value of inorganic chemicals used by each industry—a broad category that

includes REEs. To zoom in on REEs, we augment this table with data from a USGS report on

REE inputs consumed by the U.S. in 2010 (Bleiwas and Gambogi, 2013). This report combines

secondary data on REE inputs from various sources as well as primary data from disassembling and

analyzing the manufacturer labels of numerous products. Total use of each element is computed

by multiplying the amount of each REE contained in a product by the total quantity of the

product consumed in the U.S. as obtained from consumption and trade statistics. It is the most

comprehensive REE content data available for the time around the supply shock episode. REE

use is available for seven “General Application” categories, namely alloys, batteries, automobile

9As noted by Bachmann et al. (2024), the actual response by firms and governments is consistent with the
embargo’s effectiveness in creating uncertainty on the reliability of the supply chain.

10In January 2011, GM filed a patent for a powder coating process that reduced Dy and Tb usage in REE
magnets by at least 20% preserving their magnetic properties, noting supply constraints in the filing. In July 2011,
Skyworks Solutions patented a yttrium substitute in synthetic garnets for electronic microwave devices, citing rising
costs due to restricted Yttrium supply. By 2016, Toyota cut Dy in the Prius and, in 2018, reduced Nd in electric
motor magnets by 20%. Volkswagen followed, while Nissan and BMW unveiled magnet-free motor prototypes in
2022-2023. Other industries also sought REE reductions, such as catalysts using less Cerium (Machida et al., 2017).
See Appendix B.3 for other examples.
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catalysts, fluid catalyst cracking, phosphors and diodes, and solutions.11 These categories are the

most upstream available for our purpose. We focus on estimates of the use of five broadly used

REEs: Lanthanum, Cerium, Praseodymium, Neodymium, and Dysprosium.

REE Price Data and Total Requirements: As the estimates are in metric tons, we convert

them into USD million using a combination of prices from BCC (2015) and Asian Metal, both at

the element level. Finally, we use the supply-use table, augmented with imputed REE data, to

compute the total requirements matrix (Leontief inverse). The entries of this matrix indicate the

amount of input each industry receives from every other industry, accounting for both direct and

indirect linkages. Table A.4 in the Data Appendix lists the most REE-intensive industries. The

top using industry by total requirement is SIC 3691 (Storage batteries), which uses Lanthanum.

Another REE-intensive industry is SIC 3625 (Relays and Industrial Controls), which employs

Neodymium, Praseodymium, and Dysprosium.

3.2 Patent Data

Our primary measure for shifts in the direction of technological change is based on patent data. We

obtain the universe of granted patents related to REEs from the Google Patent Research database.

REE Patents: As a first step, we identify patents as broadly related to REEs and link them to

individual elements when their title or abstract contains specific keywords that include either the

name of the elements themselves, their chemical compounds, or some key related technologies, such

as technologies related to permanent magnets (Table A.5 in the Data Appendix lists the keywords).

By the end of the sample period, around 30,000 distinct REE patents had been granted worldwide.

We assign each patent to a country based on the location of the patent assignee, focusing on the

top 50 countries by GDP. These countries are grouped into the following regions: Europe, the

United States and Canada, China, Russia, South Korea, Japan, Australia, and the Rest of the

World. Table A.1 in the Data Appendix lists the countries in the sample. In the next step, we

link each patent in our sample to a corresponding industry. This task is non-trivial, as patents are

classified by technological fields rather than by industries. Given the substantial share of patents

filed by non-corporate entities and the absence of a comprehensive global patent–firm matching

database, we employ a large language model (LLM) to assign patents in our sample to industries.

11We exclude phosphors and diodes due to the presence of Europium and Terbium, whose estimates in dollar value
become highly uncertain when multiplied by their high per-unit prices, which are one to two orders of magnitudes
larger than for the rest of the elements. We also exclude solutions because the report provides no precise point
estimates for this category’s input element use.
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Specifically, we extract and parse the title and abstract of each patent, and prompt the LLM

(GPT4 from OpenAI) to identify the SIC code that best corresponds to the described technology.

Furthermore, we refine the sample of REE-related patents by instructing the LLM to classify each

patent according to whether it pertains to a technology that enhances the efficiency of using REEs

or facilitates substitution away from REEs.12

As a consistency check of our patent classification, we regress the cross-section of patent stocks

measured at the industry-element level on its total requirement share from our IO table, including a

full set of SIC industry fixed effects. An industry with a REE requirement for a specific element that

is one standard deviation above the sample mean has, on average, 8.5% more patents mentioning

this REE. We present examples of such patents in Appendix A.8.

Non REE Patents: One concern with our approach to measuring directed technological change

is that we might pick up overall innovation in the industry and not necessarily innovation that is

directed explicitly towards increasing the efficiency of REEs. We address this concern by controlling

for the overall stock of patents in a given region-industry. Since the number of patents by region-

industry is not directly observable, we proceed as follows. First, we draw a large random sample

of patents and let the LLM allocate them to SIC industry codes. We then scale these numbers

across regions by the number of granted patents that each region has when considering the full

sample of manufacturing patents for that year.

3.3 Trade and Industry Data

We use data on exports of 4-digit SIC level manufacturing industries for the 50 largest economies

in the world from 2002 until 2018 from UN Comtrade. We build a country-industry panel of

total factor productivity and labor productivity to measure the effect on productivity across coun-

tries and industries. For Japan and the U.S., we have productivity measures from the Japanese

Manufacturing Census and the NBER CES manufacturing database, respectively. For the other

countries, we rely on data from the UNIDO Indstat database. Appendix A.4 provides details on

the productivity data. To control for industry characteristics, we obtain the average capital and

labor intensity from the NBER CES manufacturing database.

We construct a country-industry proxy of how strongly an industry is targeted by industrial policy

using the subsidy database from the Global Trade Alert (GTA). This proxy is the share of subsidies

12As an illustrative example, consider U.S. patent US-8586678-B2 with the title ”Blends of linear and branched
neodymium-catalyzed rubber formulations for use in golf balls.” The LLM. classifies this patented technology as
improving the usage of REEs and assigns it to SIC 3949 ”Sporting and Athletic Goods, n.e.c.” which includes golf
equipment.
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– counted as the number of policy measures – going to a given country-industry relative to the

total number of subsidy policies worldwide.

3.4 Descriptive Patterns

Figure 2 shows composite REE price indices (log USD) over the sample period. Prices surged

around 2010, peaked shortly after, then declined sharply and stabilized at a lower level. At the

individual REE level, prices rose by a factor of 10 to 45. This spike reflects the global supply

shock triggered by Chinese policy interventions in the REE market. Although prices did not

remain elevated in the long run, their subsequent decline was driven by a medium-term increase

in supply—primarily resulting from the relaxation of Chinese export restrictions and, to a lesser

extent, limited entry by foreign producers—as well as a reduction in demand attributable to

innovation. As we show in the empirical analysis below, the strong innovation response suggests

that downstream industries anticipated that China’s export restrictions might be permanent or

might recur in the future.

Figure 2 depicts additional descriptive patterns present in the data. Panel (a) highlights how firms

communicate about the negative REE supply shock. We scrape earnings calls of international firms

and count sentences that mention REEs or related keywords. We then use an LLM to categorize

those sentences. “Expand” denotes sentences about the expansion of REE production (including

mining and refining), “Innovate” denotes innovations in REEs, which are further subdivided into

production of REEs (“Produce”) or usage substitution (“Substitute”). The mentions rise sharply

around the 2010 price spike, particularly for innovation-related topics. Within the innovation cate-

gory, most mentions discuss substitution, highlighting a heightened focus on exploring alternatives

in response to the price shock.

Panel (b) depicts counts of newly granted patents that relate to REE. These patents generally

increase over time, particularly in magnet and catalyst technologies, indicating a growing emphasis

on innovation in these areas. However, the trend strongly accelerates after 2010, in line with the

idea that the price spike may have catalyzed greater investment in technological development and

innovation related to REEs. Overall, Figure 2 suggests that the sharp increase in REE prices

around 2010 significantly influenced producer behavior and innovation activities. Finally, the

surge in patenting is hump-shaped and disappears after 2015, once Chinese export restrictions

have been lifted. This indicates that it was not driven by a permanent sectoral shift towards green

technologies, such as electric vehicles and wind turbines, but rather by a temporary price hike of

REEs.
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Figure 2: The REE Supply Shock, Earnings Calls, and Innovation
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Notes: The figure presents mentions of REEs in firms’ earnings calls (a), and patents related to REEs (b). Subfigure

(a) depicts the count of REE mentions in global firms’ earnings calls, categorized by topic using an LLM. Topics

include ”Expand” (expansion/diversification of REE production) and ”Innovation” (innovations in REE production

or usage). Innovation mentions are further split into ”Produce” (innovating REE production) and ”Substitute”

(reducing/substituting REE use). Data is sourced from NL Analytics. Subfigure (b) shows the yearly count of

new patents granted related to REE technologies, identified through keyword analysis in patent abstracts. Data is

sourced from Google Patents.
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4 Empirical Analysis

4.1 Directed Technological Change

Innovation in Downstream REE-Using Industries: As a starting point, we explore whether

the negative REE supply shock had an impact on the direction of technological change in down-

stream manufacturing industries across the world and in China, using patent data. We consider a

differences-in differences specification with variable treatment intensity. We estimate the following

count model for patents:

yrst = βREE Sensitivitys × post t + γ∆rst + ηrs + ηrt + ϵrst. (1)

The outcome variable yrst is the stock of granted REE patents for the 4-digit SIC manufacturing

industry s from region r in year t, considering the sample window from 2002 until 2018. Our

coefficient of interest β is the coefficient on an interaction term of the industry’s REE sensitivity

measure REE Sensitivitys described below with a step dummy postt which is one from the year

2010 onward. This corresponds to the period after China first implemented export restrictions and

proxies for regime change in the supply-chain environment related to REEs.

We include a full set of region-by-industry and region-by-year fixed effects that control for the

average level of patenting at the region-industry level and region-specific shocks, respectively, as

well as a set of industry-region-period-specific control variables that we describe below. Note that

the inclusion of region by industry fixed effects implies that the identification is based on time

variation in patent stocks within a given industry-region pair, so that we effectively investigate the

impact of the treatment on patent flows.

As a measure for the exposure of an industry s to the REE supply shock, we make use of the

element-level total requirements from our constructed IO table and an index of element-level REE

complementarity from Graedel et al. (2015). This complementarity stems from the physical and

chemical properties of elements, not economic factors, and is based on expert assessment. Dys-

prosium, for example, ranks as the least substitutable, while Samarium is the most. Between two

industries using equal REE amounts, the one relying on harder-to-substitute elements faces greater

exposure to REE supply shocks. For instance, industries needing Dysprosium for permanent mag-

net motors –with inadequate substitutes– are more exposed than those using REEs in nickel-metal

hydride batteries, which can be replaced by lithium-ion alternatives.

To construct the exposure variable REE Sensitivitys, we multiply total requirements tres of each

REE e for industry s with the index of complementarity comple (ranging between 0 if perfect
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substitutes are available to 100 if an element cannot be substituted at all) and aggregate over the

REE inputs:

REE Sensitivitys =
∑
e

tres × comple. (2)

This variable measures the exposure of industry s to the REE supply shock. REE Sensitivitys is

high if the total requirements of REE inputs are large and these REE inputs are very complemen-

tary.

We estimate (1) using Poisson pseudo-maximum likelihood estimation. An important control

variable that we include throughout all specifications, is the total patent stock in industry s from

region r during year t (in logs) to proxy for overall movements in the industry’s innovation activity

that might be unrelated to innovation in REE-related activities. This alleviates concerns that

our estimates may pick up region-industry-specific trends, such as a general surge in patenting

in industries that are affected by the green transformation. A further related concern is that the

surge in economic activity of REE-intensive industries may be driven by local subsidies or an

increase in demand for their output (e.g., because some of REE-intensive industries are important

for the green transformation). We thus additionally control for the capital and labor intensity of

each industry (time-invariant) as well as for the (time-invariant) industry-region-specific subsidy

intensity (from the Global Trade Alert database), all interacted with the treatment-period dummy

postt. Furthermore, we control for a time-varying country-industry-specific demand proxy. This

demand proxy is the lagged weighted GDP growth of the top 10 importing countries in year

t (measured in midpoint growth rates) by industry-region. We cluster standard errors at the

country-industry level, following Abadie et al. (2023).

Table 1 reports our estimates of (1). The sample only counts those patents that the LLM identifies

as patents that either improve the efficiency of REEs or help to substitute the use of REEs. We find

that industries that are more sensitive to the REE supply shock innovated more in the treatment

period than before compared to less affected industries. For the non-China subsample, a one

standard-deviation higher value of REE sensitivity is associated with 7.4% larger stock of REE-

enhancing patents after the 2010 supply shock. This effect was particularly strong in European

countries, the U.S. and Japan. Perhaps not surprisingly, industries more sensitive to REE inputs

also patented slightly more REE technologies in China during the treatment period compared to

industries. However, this difference in patenting behavior was much less pronounced than in other

economies and is statistically indistinguishable from zero.

Productivity Effects: Next, we study the impact of the policy change on measures of produc-

tivity of REE-using industries. We estimate the following difference-in-differences specification,
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Table 1: Patents in Rare-Earth Intense Manufacturing Industries

REE-Enhancing Patents

NONCHN ALL USA EUR JPN CHN
(1) (2) (3) (4) (5) (6)

REE Sens. × Post 15.46*** 14.36*** 17.91** 18.43*** 25.65** 2.886
(4.943) (5.155) (7.227) (6.026) (11.05) (19.35)

Observations 5,561 7,606 1,200 1,140 972 2,045
Clusters 387 531 81 74 66 144

Controls Yes Yes Yes Yes Yes Yes
Region × Ind F.E. Yes Yes Yes Yes Yes Yes
Region × Year F.E. Yes Yes Yes Yes Yes Yes

Notes: The table presents coefficient estimates of β from the regression: yrst = βREE Sens.s × postt + γ∆rst + ηrs + ηrt + ϵrst

with Poisson pseudo-maximum likelihood estimation. The outcome yrst represents granted REE-related patents that improve the

efficiency of REE or help find ways to substitute REE usage. The sample includes 4-digit SIC manufacturing industries (with at least

one REE-related patent) from 2002-2018 across 8 regions. Regions capture the location of the patent assignee and include Australia,

China, European Union, Korea, Russia, Japan, U.S. and the Rest of the World. The treatment intensity REE Sens.s is a weighted

sum of an REE element-specific complementarity index (ranging from 0 to 100), with weights based on total requirement shares for

industry s: REE Sens.s =
∑

e tres × comple. postt is a dummy variable set to 1 for 2010 and later years (post-China’s REE export

restrictions). Region subsamples include non-China, all regions, the U.S., European economies, Japan, and China. All regressions

include region-industry and region-year fixed effects. The control vector ∆rst includes time-invariant measures of industry s’s capital

and labor intensity from the NBER CES manufacturing database, and subsidy fractions from the Global Trade Alert database, all

interacted with postt as well as the log of the total stock of granted patents in region-industry rs in year t. It also includes a lagged

demand control at the region-industry-year level, constructed by taking the log of the weighted yearly real GDP of the top 10 importer

countries for that region-industry. The top 10 importer countries are identified by ranking importer countries by trade value in the

period 1996-2009. In the cases of USA and CHN, this demand control is excluded due to high collinearity with the fixed effects. Standard

errors (in parentheses) are clustered at the region-industry level. * p < 0.10, ** p < 0.05, *** p < 0.01.
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using productivity growth as the outcome variable:

yist = βREE Sensitivitys × post t + γ∆ist + ηis + ηit + ϵist. (3)

The outcome variable yist is the annualized growth rate of productivity for the 4-digit SIC manu-

facturing industry s by country i during year t, again considering the sample window from 2002

until 2018. The annualized productivity growth rate for the period t is computed using the mid-

point of t and t− 1 as the denominator. The coefficient of interest β is again the coefficient on an

interaction term of our REE Sensitivitys measure with the treatment dummy postt. All estimations

include a full set of country-industry and country-year fixed effects ηis and ηit. We also include

the time-varying industry controls described above (demand, subsidies, industry characteristics),

weight regressions using export weights13 and cluster standard errors at the country-industry level.

The regression results presented in Table 2 highlight the impact of the REE supply shock on

productivity growth of REE-using manufacturing industries across different country groups. The

top panel focuses on total factor productivity (TFP) growth, while the bottom panel examines

labor productivity growth. In the full sample (column 2), there is a positive and significant impact

of REE shock exposure on both TFP and labor productivity growth. A one standard-deviation

higher value in REE sensitivity is associated with 0.19 and 0.16 percentage-point higher growth rate

of TFP and labor productivity, respectively, after the REE supply shock. More exposed European

and Japanese industries in particular experience a significant increase in TFP (columns 4 and

5).14 Japanese industries with a one standard-deviation higher REE sensitivity boast around 0.5

percentage-point higher growth rate in productivity, both using the TFP and labor productivity

measures. In contrast, Chinese industries (columns 6 and 12) show a negative response, with a

significant decline in TFP growth and an insignificant but negative coefficient for labor productivity

growth. These results suggest that while REE-using industries in some economies, particularly in

Europe and Japan, adapted to the Chinese REE policy with productivity gains, Chinese industries

themselves faced relative productivity losses.

4.2 Trade Effects

Effects on Downstream Manufacturing Exports: Next, we study how manufacturing ex-

ports from third countries and from China itself respond to the Chinese REE export restrictions,

using 4-digit SIC trade data from UN Comtrade for our set of sample countries over the period

13We use the share of export values wis = exportsis/
∑

i,s exportsis in the period 2002-2004 as weights.
14European economies in our sample of 50 countries include Austria, Belgium, Switzerland, Czech Republic, Ger-

many, Denmark, Spain, Finland, France, United Kingdom, Ireland, Italy, Netherlands, Norway, Poland, Portugal,
Romania, and Sweden.
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Table 2: Productivity Growth of Rare-Earth Intense Manufacturing Industries

Annualized Growth: Total Factor Productivity

NONCHN ALL USA EUR JPN CHN

(1) (2) (3) (4) (5) (6)

REE Sens. × Post 0.498* 0.466* 0.479* 0.555** 1.029*** -2.142***
(0.260) (0.259) (0.281) (0.242) (0.370) (0.742)

Observations 183,818 186,770 6,323 88,055 5,679 2,952
Clusters 14,981 15,350 452 6,306 414 369

Annualized Growth: Labor Productivity

NONCHN ALL USA EUR JPN CHN

(7) (8) (9) (10) (11) (12)

REE Sens. × Post 0.391** 0.377** 0.0825 0.202 1.039** -0.633
(0.176) (0.175) (0.565) (0.159) (0.417) (0.764)

Observations 183,818 186,770 6,323 88,055 6,482 2,952
Clusters 14,981 15,350 452 6,306 436 369

Controls Yes Yes Yes Yes Yes Yes
Country × Ind F.E. Yes Yes Yes Yes Yes Yes
Country × Year F.E. Yes Yes Yes Yes Yes Yes

Notes: The table presents coefficient estimates of β from the regression: yist = βREE Sens.s × postt + γ∆ist + ηis + ηit + ϵist, where

yist represents the annualized growth rate of productivity for country-industry is in year t, TFP (upper panel) or labor productivity

measured as value added per worker (lower panel). The annualized growth is calculated using the midpoint between t and t− 1 as the

denominator. The sample includes 4-digit SIC manufacturing industries from 2002-2018 across the 50 largest economies. The treatment

intensity REE Sens.s is a weighted sum of an REE element-specific complementarity index (ranging from 0 to 100), with weights based

on total requirement shares for industry s: REE Sens.s =
∑

e tres × comple. postt is a dummy variable set to 1 for 2010 and later

years (post-China’s REE export restrictions). Country subsamples include non-China, all countries, the U.S., European economies,

Japan, and China. For the country subsamples of the U.S. and Japan, we use the data from NBER-CES Manufacturing Database

and Japan’s Annual Manufacturing Census, respectively (see Appendix A.4 for notes). All regressions include country-industry and

country-year fixed effects. The control vector ∆ist includes time-invariant measures of industry s’s capital and labor intensity from

the NBER CES manufacturing database, and subsidy fractions from the Global Trade Alert database, all interacted with postt, and

the lagged weighted average growth rate of GDP of the ten largest importers from is. Regressions are weighted by the share of export

values wis = exportsis/
∑

i,s exportsis from 2002-2004. Standard errors (in parentheses) are clustered at the country-industry level. *

p < 0.10, ** p < 0.05, *** p < 0.01.
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from 2002 until 2018.

We again estimate (3) on various sub-samples and alternatively include all countries except China,

all countries, the U.S., European economies, Japan and China, using export growth as outcome

variable. All estimations include a full set of country-industry and country-year fixed effects ηis

and ηit and the set of time-varying industry controls (demand, subsidies, industry characteristics).

Estimated standard errors are again corrected for clustering at the country-industry level and we

weight by the start-of-sample export shares.

The upper panel of Table 3 presents the results from specification (3) using export growth as the

outcome variable. The coefficient β on the interaction term REE Sensitivitys × postt is positive

and statistically significant at the 1% level in column (1) for the sample of countries excluding

China. This indicates that, outside China, exports of industries more reliant on REE inputs grew

significantly faster relative to less sensitive sectors within the same country during the treatment

period compared to before. Quantitatively, a one-standard-deviation higher value in REE sen-

sitivity is associated with a 0.35 percentage point larger midpoint growth rate of exports. The

coefficient remains positive across all samples except for the case of China, where it is negative

but not statistically significant. The effects are particularly pronounced for European countries

and for Japan, while they are more moderate in the U.S.15

The bottom panel of Table 3 presents results from specifications where the outcome variable is

defined as the difference between the midpoint export growth rate of a given country-industry

outside China and the one of the corresponding industry in China, thereby differencing out any

industry-specific shocks. We find that, relative to the same Chinese manufacturing industries,

exports of more exposed industries outside of China grew significantly more in response to the

REE supply shock.

To make sure that our results are not driven by pre-trends in REE-intensive industries compared to

other industries, Figure 3 visualizes the total exports of high REE-sensitivity industries versus all

other industries. The two trends were parallel before the event in 2010 aside from the slight shift

around the trade collapse of the Global Financial Crisis. Moreover, in line with the results in Table

3, we do observe an increase in REE-intensive manufacturing exports relative to other exports

starting after the Chinese REE exports restrictions. Note that, consistent with the innovation

channel, the relative increase in exports takes some time build up and starts to decline again after

sanctions are lifted in 2015.

15In Appendix A.7, we use UN Comtrade trade data disaggregated at the finer 6-digit HS product code level. At
this level, we can separate the effect on the growth of export values into price growth and the growth of physical
quantities. We find that the positive effect on exports outside China was not driven by price increases but mostly
by increases in quantity.
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Table 3: Downstream Export Growth – Rare-Earth Intense Manufacturing Industries

Annualized Growth: Exports Value

NONCHN ALL USA EUR JPN CHN

(1) (2) (3) (4) (5) (6)

RE Sens. × Post 0.880*** 0.812*** 0.155 0.639* 1.685** -0.804
(0.254) (0.245) (0.770) (0.340) (0.803) (0.800)

Observations 271,740 277,723 6,048 107,895 5,979 5,983
Clusters 17,249 17,623 378 6,754 375 374

Differences in Annualized Export Growth to China

NONCHN ALL USA EUR JPN

(7) (8) (9) (10) (11)

RE Sens. × Post 3.548*** 3.382*** 3.133*** 3.540*** 2.920**
(0.502) (0.482) (0.945) (0.709) (1.398)

Observations 270,342 276,325 5,987 107,321 5,951
Clusters 17,159 17,533 375 6,722 374

Controls Yes Yes Yes Yes Yes Yes
Country x Ind F.E. Yes Yes Yes Yes Yes Yes
Country x Year F.E. Yes Yes Yes Yes Yes Yes

Notes: The table presents coefficient estimates of β from the regression: yist = βREE Sens.s × postt + γ∆ist + ηis + ηit + ϵist, where

yist represents the annualized growth rate of export values for country-industry is in year t (upper panel) and the difference between

the annualized growth rate of export values for country-industry is and the corresponding growth rate of the same industry s in China

(lower panel). The annualized growth is calculated using the midpoint between t and t − 1 as the denominator. The sample includes

4-digit SIC manufacturing industries from 2002-2018 across the 50 largest economies. The treatment intensity REE Sens.s is a weighted

sum of an REE element-specific complementarity index (ranging from 0 to 100), with weights based on total requirement shares for

industry s: REE Sens.s =
∑

e tres × comple. postt is a dummy variable set to 1 for 2010 and later years (post-China’s REE export

restrictions). Country subsamples include non-China, all countries, the U.S., European economies, Japan, and China. All regressions

include country-industry and country-year fixed effects. The control vector ∆ist includes time-invariant measures of industry s’s capital

and labor intensity from the NBER CES manufacturing database, and country-industry-specific industrial subsidy fractions from the

Global Trade Alert database, all interacted with postt and the lagged weighted average growth rate of GDP of the ten largest importers

from is. Regressions are weighted by the share of export values wis = exportsis/
∑

i,s exportsis from 2002-2004. Standard errors (in

parentheses) are clustered at the country-industry level. * p < 0.10, ** p < 0.05, *** p < 0.01.
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Figure 3: High and Low REE Sensitivity Industries: Patents, Productivity, and Exports
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Notes: The figure provides evidence of parallel trends in REE-enhancing patents, TFP, and exports of high REE

sensitivity industries and all other industries before 2010. It plots the average, weighted by initial values in 2002-

2004, of patents stock growth, TFP growth, and exports values of manufacturing industries that are classified in the

top 25 percentile of REE sensitivity (red line), and the same variables for all other manufacturing industries (black

line). Growth rates are annualized growth calculated using the midpoint between t and t− 1 as the denominator.

The sample includes 4-digit SIC manufacturing industries from 2002-2018 across the 50 largest economies excluding

China. REE sensitivity is constructed following equation (2). The plotted values are normalized to the value in the

base year 2003 (for patents and total factor productivity) or 2002 (for exports value).24



Alternative Treatment Measures: While using the index of complementarity in (2) has the

appeal that it is directly related to the production functions of REE using industries and the

chemical properties of elements, we can use UN Comtrade to construct alternative measures of

exposure to the Chinese REE supply shock that vary at the country-industry level instead of

varying only across industries. Our first measure of country-industry REE sensitivity uses the

country-level price spike in unit values of REE imports interacted with the total requirements of

REE of each industry (aggregated across elements):16

REE Sensitivityis =

(∑
e

tres

)
× (ln(max REE import pricei)− ln(REE import price 2009i)) .

(4)

Alternatively, we build a second country-industry treatment indicator that uses pre-shock import

shares of REE elements in country c sourced from China relative to REEs sourced from a larger

set of countries (China, the U.S., Australia, Russia or India) again interacted with the total

requirement of REEs of industry s:

REE Sensitivityis =

(∑
e

tres

)
× REE imports from CHNi

REE imports from CHN, USA, AUS, RUS, INDi

. (5)

For both shock measures, we consider HS codes 284690, 284610, and 280530 as REE relevant

and weigh them by initial import shares. Appendix Table A.8 reports the estimates based on

both alternative shock measures using the different regional samples. In line with our previous

results, we find that export growth of downstream industries increased relatively more in those

country-industries where the REE supply shock was relatively more important.

5 A Quantitative Model of Trade and Directed Technolog-

ical Change

Having presented the empirical evidence, in this section, we develop a model that can generate

REE biased innovation and technological change in response to a negative REE supply shock.

The model embeds static directed technical change (Acemoglu, 2002) into a quantitative general-

equilibrium gravity model of international trade (Caliendo and Parro, 2015; Fadinger et al., 2024).

The model features two production factors (tradable REE and non-tradable labor) and flexibly

combines standard Heckscher-Ohlin forces of comparative advantage and directed technological

change. In response to a REE export tax by China, the REE factor becomes scarcer outside

16We have used different benchmarks for the price level, obtaining similar results.
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of China. Absent directed technological change, this leads to a cost increase that is more pro-

nounced in REE-intensive industries and shifts comparative advantage and production towards

labor-intensive industries. By contrast, in the presence of endogenous technology and comple-

mentarity between REE and labor inputs, the increase in REE factor costs triggers innovation

that is biased towards REEs, leading to productivity gains in REE-intensive sectors relative to

labor-intensive ones outside China. This technology effect counteracts Heckscher-Ohlin forces,

and, depending on the magnitude of the productivity response, may weaken or dominate the for-

mer. In addition, the model features intermediates and inter-industry linkages, which generate

amplification of policy changes, as price changes of the REE factor are passed on to downstream

customers and other industries. Such amplification is necessary to obtain quantitatively accurate

trade and welfare predictions (Caliendo and Parro, 2015).

The production side of the model is structured in four layers: final goods, Armington industry

bundles, tradable industry goods, and factor-biased innovation activities. Figure 4 illustrates the

model’s structure. At the most upstream level, monopolistically competitive innovation firms

invent and produce differentiated varieties of labor and REE-specific inputs. These varieties are

then used, together with material inputs, to produce country- and industry-specific tradable goods.

The tradable goods are aggregated into non-tradable, industry-specific Armington bundles within

each country. At the most downstream level, these Armington bundles are further aggregated into

non-tradable final goods, which serve either consumption or investment in innovation.

5.1 Setup

There are many countries, indexed by i = 1, .., I and j = 1, ...J and industries, indexed by

s = 1, ..., S. The first country subindex denotes the location of consumption and the second

subindex the location of production.

5.1.1 Tradable Industries

Industry goods are country-specific and tradable. The value-added production function of the

country-specific industry goods combines quantities of REE and labor input bundles YRis and

YLis:

V Ais =

[
γsY

εs−1
εs

Ris + (1− γs)Y
εs−1
εs

Lis

] εs
εs−1

(6)

A key parameter in (6) is the industry-specific elasticity of substitution between REE and labor

input bundles, denoted by εs. The value of εs determines if REE are gross substitutes (εs > 1) or
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complements (εs < 1) with labor in the production of industry value added. This elasticity will

later govern the direction of technological change in response to changes in relative factor prices.

In addition, γs ∈ [0, 1] determines the dependence of industry s on REE input. The higher the

value of γs, the more dependent a given industry is on the REE bundle.

In a further stage, value added is combined with a Cobb-Douglas aggregate of material bundles

Miss′ used by industry s and produced by industries s′. Here, ϕiss′ denotes the IO coefficients

(expenditure shares of country i industry s on goods produced by industry s′). The production

function for gross output and the resource constraint of the industry goods are given by

Yis = ΨisV Aϕis

is

S∏
s′

M
ϕiss′
iss′ =

∑
j

djisYjis, (7)

where Ψis ≡ ϕ−ϕis

is

∏
s′ ϕ

−ϕiss′
iss′ is a constant normalizing the production function. Output Yis is

used in all countries, where Yjis denotes the quantity of the industry-s good that is produced in

country i and used by country j and djis ≥ 1 denotes iceberg-type trade costs with diis = 1.

Note that when ϕis tends to unity, so that material inputs are absent, the model converges to

the production structure of Acemoglu (2002). Instead, when γs tends to zero, such that labor is

the only production factor, we are back to the workhorse quantitative trade model (Caliendo and

Parro, 2015).17

5.1.2 Innovation and Directed Technological Change

In each country-industry, firms in the Ris and Lis layers are perfectly competitive and use a CES

bundle of differentiated inputs (yRis(a) or yLis(a)) to produce the REE input bundle YRis or the

labor input bundle YLis. These inputs cannot be traded across countries, and the technology to

produce them does not diffuse. The production functions of the layers Ris and Lis are given by:

YRis = ERis

[∫ ARis

0

yRis(a)
µs−1
µs da

] µs
µs−1

, YLis = ELis

[∫ ALis

0

yLis(a)
µs−1
µs da

] µs
µs−1

(8)

Here, the terms ERis = Aδ
Ris and ELis = Aδ

Lis are externalities from the measures ARis, ALis of

input varieties on downstream productivity. If δ > 0, spillovers are positive, while if δ < 0, there

17We model REE inputs as part of value added rather than as separate material inputs, primarily due to data
limitations. Specifically, a highly disaggregated input-output (IO) table that identifies REE as a distinct input is
available only for the U.S., but not for other countries. For the purposes of the quantitative analysis, we therefore
rely on the WIOD database, which features more aggregated industry classifications and does not report REE-
specific IO linkages. This modeling choice allows us to estimate sector-specific elasticities of substitution between
REE and labor input bundles, ϵs, using patent data, and to calibrate the REE expenditure shares, γs, based on the
U.S. IO table, as described in Section 6.1.
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are negative spillovers. If δ = 0, spillover effects are absent.18

The corresponding price indices for the REE and labor input bundles are:

PRis = E−1
Ris

[∫ ARis

0

pRis(a)
1−µsda

] 1
1−µs

, PLis = E−1
Lis

[∫ ALis

0

pLis(a)
1−µsda

] 1
1−µs

(9)

The inverse demand faced by an input firm that produces a given input variety a is:

pRis(a) = E
(µs−1)

µs

Ris PRisY
1
µs

RisyRis(a)
−1
µs , pLis(a) = E

(µs−1)
µs

Ris PLisY
1
µs

LisyLis(a)
−1
µs (10)

The measures ARis of REE input firms and ALis of labor input firms denote the state of technol-

ogy. They are endogenous and determined by free entry into innovation. Input firms only sell

domestically, operate under monopolistic competition, and hold a patent for their variety. For

simplicity, we assume that input firms and their patent die after one period and are replaced by

new entrants. Varieties of inputs are imperfect substitutes with elasticity of substitution µs > 1.

Each REE (labor) input variety is produced with a linear technology with the factor REE (labor)

ris (lis) as input:

yRis(a) = ris(a), yLis(a) = lis(a) (11)

Input firms maximize profits, taking their inverse demand (10) and production technology (11) as

given. Solving their profit-maximization problem yields the optimal prices of inputs

pRis(a) = pRis =
µs

µs − 1
wRi, pLis(a) = pLis =

µs

µs − 1
wLi, (12)

which correspond to a markup over factor prices wRi (wLi), and and the variable profits of input

monopolists

πRis =
pRisris
µs

=
1

µs

(
µs

µs − 1

)1−µs

P µs

RisE
µs−1
Ris YRisw

1−µs

Ri , (13)

πLis =
pLislis
µs

=
1

µs

(
µs

µs − 1

)1−µs

P µs

LisE
µs−1
Ris YLisw

1−µs

Li .

Inventing an input patent is associated with fixed costs fRi (or fLi) which are paid in units of the

18The formulation of these spillover effects follows Benassy (1996) and allows disentangling love for variety from
markups. Spillover effects are absent in Acemoglu (2002) and not required to generate directed technological change
in response to changes in factor prices. However, they determine the strength of the technology response and the
response of revenue in downstream industries to changes in relative factor prices. In particular, negative spillovers
increase the technology response to changes in factor prices by increasing prices of input bundles and thus profits of
innovators if inputs are complements (see equation (43) below). For example, they could result from (unmodeled)
competition for a scarce factor.
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final good in country i with price Pi. Note that since PRis = E−1
RisA

1
1−µs

Ris pis and YRis = ERisA
µs

µs−1

Ris ris,

we have that pRisris = PRisYRis/ARis and similarly, pLislis = PLisYLis/ALis. Free entry implies that

inventing a new patent allows input firms to exactly recoup the innovation fixed cost:

ΠRis =
pRisris
µs

=
PRisYRis

ARisµs

= fRisPi, ΠLis =
pLislis
µs

=
PLisYLis

ALisµs

= fLisPi (14)

Taking ratios of the free-entry conditions yields the relative technology bias:

ARis

ALis

=
PRisYRis

PLisYLis

fLis
fRis

(15)

Thus, the relative technology bias depends on the relative revenues of firms in the Ris compared

to the Lis sector and any change in relative revenues will shift the relative technology bias.

5.1.3 Final Goods and Armington Industry Bundles

We now specify the remainder of the model. At the most downstream level, there is a non-

tradable final good Yi, that is produced and used in each country. This final good can be used for

two purposes. A part of its production serves final consumer demand (denoted by Ci), while the

remainder is used to pay the fixed costs of innovation (denoted by
∑

sARisfRis and
∑

sALisfLis).

The final good is produced with a CES production function that combines Armington bundles of

industry goods. The production function and resource constraint of the final good are given by

Yi =

[∑
s

α
1
ρ

isQ
ρ−1
ρ

is

] ρ
ρ−1

= Ci +
∑
s

ARisfRis +
∑
s

ALisfLis, (16)

where Qis corresponds to the quantity of industry-s Armington bundle used in the production of

the final good.

The Armington bundles Mis are produced with a CES technology that aggregates the tradable

industry-s inputs Yijs from all countries j = 1, ..., J with an elasticity of substitution σs > 1. These

Armington bundles serve two purposes. Either they are used as an input in the production of final

goods (as Qis), or they are used as intermediates in the production of tradable goods (as Miss′).

The production function and resource constraint of the Armington goods are given by

Mis =

[∑
j

Y
σs−1
σs

ijs

] σs
σs−1

= Qis +
∑
s′

Miss′ , (17)

where Miss′ is the quantity of industry-s Armington bundles used in industry s′ within country i.
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The associated CES price index of the industry-s Armington bundle in country i is

Pis =

[∑
j

P 1−σs
ijs

] 1
1−σs

, (18)

with Pijs being the price of the country-specific industry s goods used in country i and produced

in country j. The aggregate price index of the final good in country i is

Pi =

[∑
s

αisP
1−ρ
is

] 1
1−ρ

. (19)

Assuming perfect competition in Armington bundles, the bilateral trade value shares, measuring

the import values of i from j relative to the total expenditure in country i, are given by:

λijs =
PijsYijs

PisMis

=

(
Pijs

Pis

)1−σs

. (20)

5.1.4 Trade and Industrial Policy

We assume that China is the only country that has endowments of a homogeneous REE factor

RC that can be traded. It additionally disposes of a non-discriminatory gross ad-valorem export

tax τXC ≥ 1 on the exports of REEs. Therefore, the price of REE inputs in country j is equal to

wRj = τXCwRC .

5.1.5 Goods and Factor Markets

Denote the revenues of industry s in country i by Revis = PiisYis. Product markets for industry

Armington bundles clear if the industry’s revenue equals expenditure on the industry’s goods:

Revis =
∑
j

λjis

[
αjs

(
Pjs

Pj

)1−ρ

(wLjLj + IC × wRCRC + Tj − TBj −NFIAj) +
∑
s′

ϕss′jRevs′j

]
.

(21)

Here, IC is an indicator variable that equals unity when j is China and zero for all other countries

j. TBj is the (exogenous) trade imbalance and

NFIAj =

−wRj

∑S
s=1

∫ ARjs

0
rjs(a)da, if j ̸= C∑

j ̸=C wRj

∑S
s=1

∫ ARjs

0
rjs(a)da, if j = C

(22)
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Figure 4: Model Structure
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Notes: The figure depicts the general equilibrium structure of the model.

are net factor incomes from abroad, NFIAj, arising from the use of the tradable REE factor for

countries other than China and for China, respectively. Total export tax revenue on net exports

of REEs are fully rebated to consumers with lump-sum transfers Tj:

Tj = IC × (τXC − 1)wRC(RC −
∑
s

ARjCrCs)

Labor is immobile across countries, and labor markets clear for each country:

∑
s

∫ ALsi

0

ls(a)da = Li (23)

By contrast, the REE factor is tradable and the REE market clears at the world level:

∑
j

∑
s

∫ ARjs

0

rjs(a)da = RC (24)
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5.2 Equilibrium

An equilibrium in this model determines a solution for (i) factor prices wRC for China and wLi ∀i;
(ii) revenues, prices and trade shares for tradable country-industry pairs Revis ∀i, s, Pis ∀i, s, Pi

∀i, λijs ∀i, j, s, Pijs ∀i, j, s and (iii) the size of input layers PLisYLis ∀i, s, PRisYRis ∀i, s.

This solution is determined by (i) I × S equations (25), determining Revis; (ii) I × J × S equa-

tions (28) determining λijs; (iii) I × J × S equations (29) determining Pijs; (iv) I × S equations

(30) determining Pis; (v) I equations (31) determining Pi; (vi) 2 × I × S equations of type (32)

determining PRisYRis and PLisYLis; (vii) I equations (35) determining wLi and (viii) 1 equation

(36), determining wRC . Further, note that wRi = wRCτXC .

Market clearing for Armington goods is given by:

Revis =
∑
j

λjis× (25)[
αjs

(
Pjs

Pj

)1−ρ

(wLjLj + IC × wRCRC + Tj − TBj −NFIAj) +
∑
s

ϕss′jRevjs

]
∀i, s,

with net factor incomes from abroad being:

NFIAj =

−
∑S

s=1

(
µs−1
µs

)
(PRjsYRjs), ∀j ̸= C∑

j ̸=C

∑S
s=1

(
µs−1
µs

)
(PRjsYRjs), ∀j = C

(26)

Transfers Tj are given by:

Tj = IC × (τXC − 1)[wRCRC −
∑
s

(
µs − 1

µs

)
τ−1
RCs(PRCsYRCs)], (27)

where IC is an indicator that equals unity for j = China.

Bilateral trade shares are:

λijs =

(
Pijs

Pis

)1−σs

∀i, j, s (28)

Bilateral prices are given by:

Pijs =dijs[γ
εs
s

(
PRjsYRjs

µsfRjsPj

)δ(εs−1)+ εs−1
µs−1

(
µs

µs − 1

)1−εs

(wRj)
1−εs+ (29)

(1− γs)
εs

(
PLjsYLjs

µsfLjsPj

)δ(εs−1)+ εs−1
µs−1

(
µs

µs − 1

)1−εs

(wLj)
1−εs ]

ϕis
1−εs

∏
s′

P
ϕjss′
js ∀i, j, s
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Industry-level price indices are defined as:

Pis =

[∑
j

P 1−σs
ijs

] 1
1−σs

∀i, s (30)

Aggregate price levels are given by:

Pi =

[∑
s

αisP
1−ρ
is

] 1
1−ρ

∀i (31)

Revenues of the Ris and Lis layers are given by:

PRisYRis =γsϕisRevis× (32)γs + (1− γs)

(
(1− γs)fRis

γsfLis

) (εs−1){µsκs+(µs−1)2εsδ}
(µs−εs)[µs−εs−δ(µs−1)(εs−1)]

(
ris
lis

) (1−εs){δ(µs−1)2(εs−1)+(µs−1)κs}
(µs−εs)κs

−1

∀i, s,

PLisYLis =(1− γs)ϕisRevis× (33)(1− γs) + γs

(
(1− γs)fRis

γsfLis

) (1−εs){µsκs+(µs−1)2εsδ}
(µs−εs)κs

(
ris
lis

) (εs−1){δ(µs−1)2(εs−1)+(µs−1)κs}
(µs−εs)κs

−1

∀i, s,

where κs ≡ µs − εs + δ(µs − 1)(1− εs) and

ris
lis

=
fRis

fLis

wLi

wRi

∀i, s. (34)

Labor markets clear in each country:

∑
s

(
µs − 1

µs

)
(PLisYLis) = wLiLi ∀i (35)

The REE market clears at the world level:∑
j

∑
s

(
µs − 1

µs

)
(PRjsYRjs)τ

−1
XC = wRCRC (36)

The Model with Exogenous Technology: For comparison, we also consider a version of the

model where ARis and ALis are exogenously given and do not respond to policy. In this case, the

free entry conditions do not hold. With exogenous technology, equilibrium equations (32) need to
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be replaced by:

PRisYRis =γsϕisRevis× (37)[
γs + (1− γs)

(
γs

1− γs

)1−εs (ARis

ALis

)(1−εs)(δ+ µs
µs−1

−1)(wLi

wRi

)1−εs
]−1

PLisYLis =(1− γs)ϕisRevis× (38)[
(1− γs) + γs

(
γs

1− γs

)εs−1(
ARis

ALis

)(εs−1)(δ+ µs
µs−1

−1)(wLi

wRi

)εs−1
]−1

Moreover, (29) becomes:

Pijs =dijs[γ
εs
s (ARis)

δ(εs−1)+ εs−1
µs−1

(
µs

µs − 1

)1−εs

w1−εs
Rj + (39)

(1− γs)
εs (ALis)

δ(εs−1)+ εs−1
µs−1

(
µs

µs − 1

)1−εs

w1−εs
Lj ]

ϕis
1−εs

∏
s′

P
ϕjss′
js

The remaining equilibrium conditions are unaffected.

5.3 Discussion

Direction of Innovation Bias: Using the model, we can analytically determine the direction

in which the innovation bias, measured by the ratio ARis

ALis
, shifts in response to changes in the factor

input ratio ris
lis

for each country-industry pair is.

To illustrate this, we first take the ratio of the production functions for the Ris and Lis input

layers, as given in equation (8):

YRis

YLis

=
ERis

ELis

(
ARis

ALis

) µs
µs−1 ris

lis
. (40)

Next, combining this expression with the relative demand equation

YRis

YLis

=

(
γs

1− γs

)ε(
PRis

PLis

)−ε

, (41)

we derive an expression for the relative revenues of firms in the Ris and Lis sectors:

PRisYRis

PLisYLis

=
γs

1− γs

(
ERis

ELis

) εs−1
εs
(
ARis

ALis

) µs
µs−1

εs−1
εs
(
ris
lis

) εs−1
εs

(42)
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Combining (42) with (15), and assuming that ERis/ELis = (ARis/ALis)
δ, we can solve for the

relative technology bias as a function of the input ratio:

ARis

ALis

=

(
fLis
fRis

γs
1− γs

) (µs−1)εs
κs

(
ris
lis

) (µs−1)(εs−1)
κs

(43)

When µs > 1 (a necessary condition to ensure well-defined profit maximization by monopolistic

producers) and εs < 1 (indicating that REEs and labor are gross complements), the expression

in (43) is decreasing in ris
lis

if δ ≥ 0, or if |δ|< µs−εs
(µs−1)(εs−1)

and δ < 0. Under these conditions,

a negative REE supply shock — i.e., a decline in ris
lis

— biases innovation toward increasing the

efficiency of REE inputs.

The underlying intuition is as follows: with complementary inputs, the price effect (arising from

an increase in PRis/PLis) dominates the negative market size effect (due to reduced ris/lis). Con-

sequently, developing technologies that enhance the productivity of the REE-intensive sector Ris

becomes relatively more profitable than innovations in the labor-intensive sector Lis.

Moreover, provided that κs > 0, the sensitivity of the technology bias to changes in ris
lis

increases

with the magnitude of negative δ. This reflects the role of negative spillovers: when inputs are

complementary, such spillovers reduce the productivity of competitors, raising the price of the input

bundle (PRis/PLis) and thereby increasing the profitability of innovation despite falling output

levels. This effect is captured in the expression for relative revenue (44), which results from

substituting (43) into (42):

PRisYRis

PLisYLis

=

(
fLis
fRis

)µs(εs−1)κs+(µs−1)2εsδ(εs−1)
(µs−εs)κs

(
γs

1− γs

) εs(µs−1)κs+(µs−1)2εsδ(εs−1)
(µs−εs)κs

(44)

(
ris
lis

) (µs−1)(εs−1)κs+(µs−1)2(εs−1)2δ
(µs−εs)κs

Similar to the case of technology bias, the expression for relative revenue is decreasing in ris
lis

under

analogous conditions, implying that a negative REE supply shock raises the relative profitability

of the Ris sector.

By contrast, the relative output of the REE sector, YRis/YLis, increases with the input ratio ris
lis
:

YRis

YLis

=

(
fLis
fRis

γs
1− γs

)µsεsκs+δ(µs−1)2ε2s
(µs−εs)κs

(
ris
lis

) δ(µs−1)2εs(εs−1)+(µs−1)εsκs
(µs−εs)κs

(45)
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Figure 5: Factor Prices and the Direction of Technological Change

0 wRi/wLi0

ucis
ucis′

A′′

A

A′

0

1

2

3

Notes: The figure plots possible adjustments in response to an increase in the relative REE factor price for two

industries s and s′, where industry s′ is more reliant on REE. Curves A, A′ and A′′ depict different relative unit

costs depending on the direction of technological change.

Finally, the optimal factor input ratio is inversely related to the relative price of REEs:

ris
lis

=
fRis

fLis

wLi

wRi

Impact on Comparative Advantage: By comparing the expressions for unit costs under

endogenous (29) and exogenous technologies (39), we gain insight into how the competitiveness

of downstream industries and comparative advantage responds to an increase in the price of the

REE factor.

Under exogenous technology, an increase in wRj raises production costs — an effect that is more

pronounced in industries with higher REE intensity (factor cost effect). According to the trade-

share equation (20), this reduces bilateral exports of REE-intensive industries relative to labor-

intensive ones. This effect captures standard Heckscher-Ohlin forces of comparative advantage.

By contrast, under endogenous technology, an increase in wRj also induces a technological response

via an associated increase in PRisYRis (the technology effect). If this effect is sufficiently strong, it

can outweigh the factor cost effect, thereby enhancing the relative competitiveness of REE-intensive

industries. As a result, exports of these industries may increase relative to those of labor-intensive

industries despite the rise in input costs.

This can be illustrated with the help of Figure 5. The figure shows relative unit costs for two
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industries s and s′ and highlights potential equilibrium adjustments in response to an increase

in the relative price of REE. Since these relative unit-cost curves are downward sloping in the

relative price of REE wRi/wLi, sector s
′ is relatively more REE-intensive. Starting from an initial

equilibrium at point 0, an increase in the price of REE leads to a new equilibrium with new relative

unit costs. When technologies are exogenously fixed, the adjustment occurs along the A curve to

the new equilibrium point 1: the REE-intensive sector loses some of its competitiveness compared

to the labor-intensive one due to the relatively intensive use of the REE factor, whose relative

price has risen.

However, if the response of the technology bias towards REE is sufficiently strong, the new relative

unit-cost curve shifts upwards (denoted as A′) such that at this alternative equilibrium point 2,

the competitiveness of the REE-intensive industry increases relative to the labor-intensive one.

Alternatively, if the bias of innovation were to shift in the opposite direction (e.g. if REE and

labor were gross substitutes), relative unit costs would become A′′. In this alternative equilibrium

(point 3), the technology response would amplify standard Heckscher-Ohlin forces and the REE-

intensive industry would further lose relative competitiveness compared to the case of exogenous

technology. As our model flexibly nests all these cases of the response of comparative advantage

to an export tax on REEs, we need to calibrate the model in order to obtain the qualitative and

quantitative general-equilibrium response of trade, production and welfare.

6 Quantification

In this section, we first calibrate the model to a baseline economy that matches moments from

before the REE export restrictions. We then provide a quantitative assessment of the REE crisis

and study the impact that the REE crisis would have had in a counterfactual economy without

endogenous technological change.

6.1 Taking the Model to the Data

We calibrate the model to a baseline economy in 2009, the year before the REE supply shock.

We aggregate the world IO tables to 5 regions: China, Europe, Japan, the U.S., and the rest

of the world (RoW), including all remaining countries. We consider 14 industries: 12 sectors in

manufacturing, agriculture and an aggregated service sector.

Estimating the Substitution Elasticity for REE: A key object in our calibration is the

industry-specific substitution elasticity between REE and labor (εs) since this elasticity governs
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the response of input costs and innovation to a REE supply shock. To shift the direction of

innovation towards REEs in response to a positive REE price shock, like in the empirical findings,

REEs need to be gross complementary inputs (εs < 1). While input elasticities of substitution

are typically estimated from variation in input expenditure shares this information is not available

at the country-industry level for REEs. Instead, we exploit the model structure to identify this

elasticity of substitution from the relation between relative factor prices and the shift in the

direction of innovation in each industry.

Our model implies the following structural relationship between relative patents ARis/ALis and

relative factor prices wRi/wLi that we exploit to estimate εs:

log

(
ARis

ALis

)
= βs log

(
wRi

wLi

)
+ δs + uis, (46)

where the coefficient of interest is βs ≡ (1−εs)(µs−1)
κs

, δs ≡ εs(µs−1)
κs

log
(

γs
1−γs

)
is an industry fixed

effect, and the structural error term is uis ≡ µs−1
κs

log
(

fLis

fRis

)
.19 This equation can be estimated

from data on the relative number of REE patents, REE unit import values and wages. We use

our patent data, classified with the LLM algorithm described in Section 3.2. The REE unit

value for each country is obtained by dividing the value of REE imports by that country with

the physical quantity. Finally, labor costs for each country are calculated from the Penn World

Tables. We estimate (46) separately for each 2-digit manufacturing SIC code, using a panel of

our 5 regions over the sample period from 2002 to 2018. We then aggregate the resulting REE

elasticity of substitution estimates to the level of WIOD industries by taking averages weighted

by value added.

Calibrating the REE Intensity: Another important parameter in the quantification exercise is

the REE intensity of each industry γs. From cost minimization, we obtain the following expression

for the REE expenditure share in value added:

PRisYRis

PVAisVAis

=
1

1 +
(

1−γs
γs

)1/εs (
PLis

PRis

)1−εs
. (47)

Given the sectoral total requirements of REE for the U.S. from our IO table presented in Section

3.1, combined with data on value added, prices PRis and PLis, and estimates for εs, we can back

out γs for all industries s.
20

19We refer to Appendix B.1 for a derivation.
20REE total requirements represent the value of REE required for each dollar of final demand. Therefore, we can

obtain the ratio of REE expenditure to value added on the left-hand side by multiplying the REE total requirement
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Table 4 presents the estimates of εs and γs by industry, sorted by descending values of εs. We

estimate εs ∈ [0.674, 1.215], with point estimates below unity in most industries. It stands out that

those industries with the lowest substitution elasticity are also the most REE-intensive industries.

Given these estimates for γs and εs, we iterate in the calibration over the innovation fix costs to

exactly match the relative patents ARis

ALis
for each country-industry pair in the baseline economy.

Matching World Input-Output Data: For each country-industry pair, we match bilateral

trade shares λijs, consumption expenditure shares αis (Pis/Pi)
1−ρ, the value-added shares in gross

output ϕis and the direct requirement shares in gross output ϕiss′ directly from the data, using

trade and production data from the World Input-Output Tables (WIOD, 2012 release). At the

country level, we calibrate the size of labor endowments across countries according to country-

level employment data adjusted for human-capital differences from the Penn World Tables. We

calibrate the model to fit real GDP differences across countries, taking differences in price levels

Pi across economies into account which we also obtain from the Penn World Tables.

Aggregate Parameters: We set the trade elasticity σs equal to 6 for all industries, a standard

value in the literature (Costinot and Rodŕıguez-Clare, 2014). We choose a substitution elasticity in

the innovation layer µs of 6.5, implying a markup of 18%, consistent with estimates from De Loecker

and Eeckhout (2018). The elasticity of final demand is set to 1.36, following Redding and Weinstein

(2024). We calibrate the parameter δ that governs the strength of innovation spillovers to -0.1 to

match the empirical estimate of the policy on directed technological change across sectors outside

of China.21

6.2 Quantitative Assessment of the Rare-Earth Crisis

Export Tax and Supply Restriction: Starting from the calibrated baseline world economy,

we are now in the position to provide a quantitative assessment of the Chinese industrial policy

regarding REEs. Consistent with the fact that China introduced export restrictions in combination

with an overall reduction in REE supply, we consider the introduction of an REE export tax on all

countries, combined with a reduction of REE supply. Since the direct parameters of the Chinese

REE industrial policy are not observable, we need to identify them from observable data. While

for each industry with its ratio of final demand to value added, calculated from the supply-use table. Since this ratio
is based on U.S. data, we also use U.S. data for labor cost, REE unit import prices and patent data to calculate
the ideal price indices PLis and PRis.

21We regress the change in relative patents in the calibrated data on sectoral REE sensitivity, using normalized
values of γs

εs
and compare this estimate with a normalized estimate from column (1) of Table 1 as the empirical

counterpart.
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Table 4: Estimates of εs and γs

Manufacturing Industry εs γs

Transport equipment 0.674 0.00278
Basic metals and fabricated metal 0.755 0.00319
Mining, petroleum and coal products 0.837 0.00112
Rubber and plastics 0.839 0.00021
Chemicals and chemical products 0.939 0.00003
Other non-metallic mineral products 0.959 0.00009
Machinery 0.976 0.00052
Computer and electronic products 0.985 0.00028
Wood and paper products 1.072 0.00010
Food, beverages and tobacco 1.138 0.00004
Furniture and misc. manufacturing 1.205 0.00003
Textiles and textile products 1.215 0.00003

Notes: The table shows estimates of the REE elasticity of substitution εs and REE intensity γs used in the quantification.

mine output contracted by about 25% (see Figure A.1 in the Appendix), additional tightening

arose from reduced refined REE compounds as well as export quotas for certain REE-related HS

codes. Likewise, the mix of Chinese trade policy instruments does not map into a single statutory

export tax rate. We therefore discipline the policy using two statistics on prices. First, we infer

an export tax equivalent of τXC = 8 from the average wedge between FOB and EXW REE prices

(measured in RMB), which captures export-related frictions. Second, note that the export tax

τXC only determines the REE price wedge between China and the rest of the world but not the

global level of scarcity. We therefore choose the REE supply restriction for a given τXC = 8 to

match the average increase of relative factor prices wRi

wLi
outside of China, observed over a longer

horizon between the pre-recession year 2007 and 2017. This yields a 40% reduction in global REE

supply RC .

Directed Technological Change and Exports: Figure 6 visualizes the innovation response

and subsequent change in exports across industries in response to the change in Chinese REE

policies. Panel (a) depicts directed technological change, measured by the relative change in the

industry-level innovation bias ∆(ARis/ALis) and averaged across countries outside of China. There

is substantial heterogeneity in the shift of the innovation bias. As discussed before in Subsection

5.3, the shift in the innovation bias towards the REE factor is stronger, the lower the elasticity of

substitution εs of an industry is. In industries where REEs are a complementary input (εs < 1),

the innovation bias shifts towards REE. In the other industries, the innovation bias shifts towards
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the labor factor. Quantitatively, the innovation response is large as the shift in the innovation bias

ranges between 19.4 p.p. (for transport equipment) and -11.5 p.p. (for textiles).

In a next step, we assess the export response to the REE supply shock. Panel (b) of Figure 6 depicts

the change in industry-level exports for countries other than China. For a better comparison, we

normalize exports with the global exports of the respective industry. While industry exports fall

throughout all industries in response to the REE supply restrictions, it is noteworthy that this

decline is minimal throughout all industries. More importantly and consistent with the empirical

estimates, the more REE-intensive industries contract relatively less.

Impact on GDP and Welfare: We now turn to a discussion of the general-equilibrium effects

of the Chinese REE policies. In Figure 7, we show the impact on real GDP. The global response of

value added highlights the importance of directed technological change in cushioning the response

to the Chinese REE policies. While there have been real GDP losses outside of China, these losses

were very small throughout, in the range of 0.002% to 0.004%. The Chinese gain in real GDP due

to the policy is also fairly small, around 0.02%.

We use our model quantification to infer the welfare consequences of China’s policy. We measure

welfare in terms of real consumption of the final good. Thus, changes in real value added need to

be adjusted for primary incomes from the tradable REE factor input and for REE tax revenues to

obtain real gross national expenditures of each region on the non-tradable final good. We deduct

investment for innovation from gross national expenditures to obtain real consumption. Conse-

quently, while more innovation raises GDP, it also reduces the part of gross national expenditures

that is available for consumption due to the presence of innovation fix costs. The REE policies in-

creased China’s real consumption by about 0.2% while they had negligible welfare costs on regions

outside China. In the U.S., the consumption decline was around 0.006% and the consumption

decline in Europe and Japan was even smaller.

Fixed Technologies To highlight the role of directed technological change to cushion the general-

equilibrium impact of the REE supply shock, we contrast these results with a counterfactual

scenario under fixed technologies. Under this counterfactual, we examine the impact that the

same Chinese policies would have had on real GDP if technologies had remained fixed at their

initial levels, without allowing for technological change. In such a counterfactual world, as Figure

7 shows, real GDP losses outside of China would have been sizable. The real GDP loss in the

U.S. would have been above 0.5%, in Europe and Japan around 0.3%. Conversely, China would

gain much more from the policy in a world without endogenous technology response than under

directed technological change. Holding technologies fixed, the restrictive REE policies would have

caused a gain of more than 1.8% in real GDP for China.
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Figure 6: Directed Technological Change and Exports

(a) Directed Technological Change
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Notes: The figure plots relative changes in ARis/ALis outside of China (measured in % change from the baseline economy) in response

to the introduction of the Chinese REE export tax. Regions are weighted according to real GDP in the baseline economy.
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Figure 7: Effect on Real GDP
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Notes: The figure plots relative changes in real GDP (measured in % change from the baseline economy) in response to the introduction

of the Chinese REE policies.

Figure 8: Effect on Gross National Expenditures
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Notes: The figure plots relative changes in real gross national expenditures (measured in % change from the baseline economy) in

response to the introduction of the Chinese REE policies.
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With exogenously fixed technologies, these relative losses in real consumption would have been

much larger, with around 5.0% in the U.S. and more than 3.0% in Europe and Japan (Figure

8). Since a direct comparison of welfare effects between the factual model and the counterfactual

under fixed technologies would be biased due to a lack of investments under fixed technologies, as

there are no innovation fixed costs, we compare differences in real gross national expenditures in

Figure 8. Changes in gross national expenditures would also have been a lot larger under fixed

technologies, with China gaining more than 10% and other regions losing between 2.8% and 4.3%.

Increased REE Usage Finally, we use the structure of our model to study the counterfactual GDP

impact of the identical Chinese REE policies in a world that uses more REEs. By 2025, the

production and usage of REEs has approximately doubled compared to levels before the REE

crisis. Hence, we consider the effect of the 40% supply restriction in combination with an export

tax rate of τXC = 8 in a world with a twice as large REE endowment. While the effects on

real GDP under endogenous technologies are similarly small, the impact of that policy under

exogenous technologies would have been higher. It would have caused a GDP gain of 2.1% for

China (compared to 1.8%) and a loss of 0.6% for the U.S. (compared to 0.5%) and losses between

0.3% and 0.4% for Europe and Japan (compared to 0.3%).

7 Conclusion

How did export restrictions on REEs affect downstream industries both globally and domestically?

To address this question, we construct a detailed IO table that accounts for individual REE inputs,

allowing us to assess their significance for specific industries. Our empirical analysis provides

robust evidence that the export restrictions imposed by China between 2010 and 2015 stimulated

a strong innovation response in REE-intensive downstream industries outside of China. To measure

REE-biased innovation, we classify patents from downstream industries across the world based on

whether they substitute for or enhance the efficiency of REE usage. Our findings further indicate a

significant increase in total factor productivity and exports in the most exposed industries outside

of China, relative to less affected industries. Furthermore, we do not observe a comparable increase

in total factor productivity or exports within the respective Chinese industries.

To quantify the general-equilibrium effects of China’s export restrictions, we then develop a novel

quantitative trade model that incorporates directed technological change. We calibrate the model

using trade and production data. Leveraging the model structure, we estimate the elasticity

of substitution between REEs and labor, finding that these inputs are complementary in most

industries. Consistent with our reduced-form evidence, our model predicts that an increase in

the international REE price - caused by a Chinese export tax and supply restriction - induces
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technological change aimed at reducing REE usage, that is sufficiently strong to offset the impact

of rising input costs. In contrast to a counterfactual economy with exogenously fixed technologies,

we show that the endogenous innovation response outside of China has prevented large real GDP

and welfare losses while the positive GDP and welfare impact on China was largely dampened

compared to a counterfactual world with fixed technologies.
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Flaaen, A., A. Hortaçsu, and F. Tintelnot (2020): “The Production Relocation and Price

Effects of US Trade Policy: The Case of Washing Machines,” American Economic Review, 110,

2103–2127.

Gholz, E. (2014): “Rare Earth Elements and National Security,” Tech. rep., Council on Foreign

Relations.

Gholz, E. and L. Hughes (2021): “Market Structure and Economic Sanctions: The 2010 Rare

Earth Elements Episode as a Pathway Case of Market Adjustment,” Review of International

48



Political Economy, 28, 611–634.

Graedel, T. E., E. M. Harper, N. T. Nassar, and B. K. Reck (2015): “On the Materials

Basis of Modern Society,” Proceedings of the National Academy of Sciences, 112, 6295–6300.

Grossman, G. M., E. Helpman, and S. J. Redding (2024): “When Tariffs Disrupt Global

Supply Chains,” American Economic Review, 114, 988–1029.

Halvorson, B. (2022): “Preview Drive: 2023 Nissan Ariya Electric Crossover Reboots Brand’s

EVs from the inside Out,” https://www.greencarreports.com/news/1135407 2023-nissan-ariya-

electric-test-drive-review.

Hanlon, W. W. (2015): “Necessity Is the Mother of Invention: Input Supplies and Directed

Technical Change,” Econometrica, 83, 67–100.

Harbison, R. and D. Johnson (2015): “Rare Earth Metals,” in Hamilton and Hardy’s Indus-

trial Toxicology: Sixth Edition, 199–204.
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A Empirical Appendix

A.1 Imputing REEs into the Supply-Use Table

We first convert REE use numbers from the USGS report (Bleiwas and Gambogi, 2013), which are

in metric tons, to USD million using a combination of prices from BCC (2015) and Asian Metal,

both at the element level. BCC reports global consumption of REEs by element, both in metric

tons and USD million units, giving us the prices per unit. For elements not reported by BCC, we

impute their prices by extrapolating from Asian Metal, which reports prices in Chinese markets.

We also extrapolate the numbers to 2012 using the compounded annual growth rate of overall rare

earth consumption from 2010 to 2012, which is based on data from USGS Mineral Commodity

Summaries.

For imputation into the supply-use table, we match each ”general category” of REE content from

the USGS report into its corresponding NAICS code, which the BEA’s SUT uses. Table A.2

presents this matching, which determines which using sectors (columns) we assign the REE use

numbers to. For instance, we match the “Fluid Cracking Catalysts” category with “Petroleum

Refineries” column. Unfortunately, not all categories of REEs applications can be neatly matched

to NAICS. This is an issue especially for the category of permanent magnets, which is the largest

in metric tons and USD value. The closest match is the NAICS code for “Other fabricated metal

manufacturing.” While this NAICS code includes permanent magnets, it also includes industrial

pattern manufacturing, steel wool manufacturing, and various others.

To alleviate this lack of granularity in the input sector “Other fabricated metal manufacturing”,

we split it into magnet and non-magnet production. We then draw from the list of the final use

of permanent magnets from Alonso et al. (2023) and BCC (2015) to assign NAICS codes, which

would use inputs from the newly split magnet sector, while the rest would take inputs from the

artificial non-magnet sector. Table A.3 presents the list of magnet-using sectors along with the split

weights. For example, the NAICS sector “Turbine and turbine generator set units manufacturing”

takes USD 55 million of inputs from “Other fabricated metal manufacturing”. Since we assigned

this sector as magnet-using with full weight in our IO table, it would take all USD 55 million of

inputs from “Other fabricated metal manufacturing – Magnets” and none from “Other fabricated

metal manufacturing – Non-magnets”.

Meanwhile, we assign REEs as an input to the NAICS code for “Other Basic Inorganic Chemical

Manufacturing” for the supplying sectors (rows). This is the closest match for rare earth oxides,

which are the form of REE inputs reported in the USGS report. We split this NAICS code into six

rows: five for the individual REEs specified in our raw data source and one for non-REEs. We then

impute the numbers into the corresponding supply-use pairs, e.g. the USD value of Nd for magnets
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is assigned to the cell with the supplying NAICS of “Other Basic Inorganic Chemical Manufacturing

– Nd” and the using NAICS of “Other fabricated metal manufacturing – Magnets”. We leave the

diagonal cells for the split REE compound sectors empty, e.g., “Other Basic Inorganic Chemical

Manufacturing – Nd” does not use inputs supplied by itself or from the other REE compounds.

As for the column and row totals, we split them using proportions from the values of each REE

oxides approximated from USGS.

Using the imputed supply-use table, we compute total requirement of the supplying REE sector,

carved out from ”Other Basic Inorganic Chemical Manufacturing”, by each using NAICS industry.

As a last step, we convert these numbers to the SIC-level by using concordance mapping from

Pierce and Schott (2012) as the outcomes we study vary at the SIC (and country) level.

A.2 Index of Complementarity

We use the substitute performance index developed by Graedel et al. (2015) to account for whether

REE inputs used by the sector are highly complementary in the production function. The concept

of complementarity here arises from exogenous physical and chemical properties of the elements.

The index is constructed by listing potential substitutes for each element’s primary uses and then

assessing their performance as informed by the assimilation of research and expert opinion.

For example, for Cerium (CE), the authors analyze different applications (e.g., ”Glass polish-

ing”), application details (e.g., ”Used to polish precision optics”), percentage of application (e.g.,

25% global use), primary substitute (e.g., iron oxide), and substitute performance (e.g., “ad-

equate”). For instance, in the application of glass polishing—which accounts for 25% of global

cerium use—the primary substitute is iron oxide, with an “adequate” performance rating. However,

in battery alloys (10%), cerium is replaced by lithium-ion batteries, rated as a “good” substitute,

reflecting greater ease of replacement. For “other” uses like arc welding and carbon arc lighting

(16%), no substitute is identified, and the performance is marked as “not applicable.” By assigning

numerical scores to performance ratings—such as “adequate” or “good”—and weighting them by

the percentage of cerium use in each application, the author quantifies overall substitutability.

This results in a composite index that reflects the difficulty of replacing cerium across its various

industrial roles.

There is considerable variation among REE elements, with Dysprosium being the least substi-

tutable and samarium being the most (Figure A.2).
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A.3 Patent Data

Our primary measure for shifts in the direction of technological change is based on patent data. We

obtain the universe of granted patents related to REE from the Google Patent Research database.

REE Patents: As a first step, we identify patents as broadly related to REE and link them

to individual elements when their title or abstract contains certain keywords that include either

the name of the elements themselves, their chemical compounds, or some key related technologies,

such as technologies related to permanent magnets.22 By the end of the sample period, there exist

around 30,000 granted unique REE patents, globally. We assign the country of the patent based

on the country of the patent assignee, considering the same set of top 50 countries as in the other

analyses that we pool to the regions Europe, U.S. and Canada, China, Russia, Korea, Japan,

Australia and the Rest of World.

Classifying Patents in a LLM: In the next step, we link each patent in our sample to an

industry. This is not a straightforward task, as patents are categorized in technology classes

instead of industries. To assign a patent to an industry, researchers have previously created and

used concordance tables linking technology classes to their sectors of use.23

While this method is in principle feasible for our classification, a concern is that REE-related

technologies are generally much younger than concordances between IPC technology classes and the

SIC industry classification. Furthermore, technologies usually map into large groups of industries,

and this mapping is not specific to REE. Alternatively, patents have been linked to industries via

the industry affiliation of the firm holding the patent.24 Linking patents via firms has two caveats.

First, a large fraction of REE patents is filed by non-corporate entities such as universities and

other research institutions or by non-public firms. Neglecting these patents could bias our results if

REE-related research were systematically more prevalent in the corporate or non-corporate sectors.

Second, while patent-firm matches exist for some countries (such as the NBER/Compustat patent

matches for the U.S.), a global matched patent-firm database is not readily available.

Instead of following these paths, we use an LLM to assign the patents in our sample to industries.

For that purpose, we parse the title and abstract text of each individual patent to the LLM and

let the LLM suggest the SIC industry that fits best to the patent.For this approach, we use the

model GPT4 from OpenAI. We refine the sample of REE patents by asking the LLM to classify

22See Table A.5 for the list of keywords.
23See, e.g., Silverman (2002).
24See e.g. Bloom et al. (2013).
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whether each patent describes a technology that improves the use of REEs or helps to substitute

away from the use of REE.

Other Patents: We draw a large random sample of patents and let the LLM allocate the SIC

manufacturing industry codes. We then scale these numbers for each year across regions by the

observable number of granted patents that each region has in the total sample of manufacturing

patents for that year.

A.4 Constructing a Country-Industry Productivity Panel

The primary data sources to construct a comprehensive panel dataset for TFP and labor produc-

tivity across countries and industries are the United Nations Industrial Development Organization

(UNIDO) INDSTAT and OECD STAN databases. UNIDO INDSTAT provides detailed industry-

level data on economic indicators such as value added, employment, and capital formation, avail-

able at both the 3-digit and 4-digit ISIC levels for Revisions 3 and 4. ISIC Rev. 3 offers extensive

historical coverage up to 2008, while Rev. 4 provides improved coverage from 2008 onwards. All

monetary values are expressed in current US dollars. Due to the unbalanced nature of the 4-digit

INDSTAT data, substantial imputation is necessary to construct a balanced panel. The process

involves nearest-neighbor interpolation to fill missing observations within the 4-digit data wher-

ever possible. Annual growth rate series at the more consistently available 2-digit ISIC level are

computed and used to adjust the imputed data at the 4-digit level Remaining gaps are filled using

2-digit level data that are split into 4-digit industries based on time-invariant employment shares.

This imputation process is performed separately for both versions of INDSTAT (ISIC Rev. 3 and

Rev. 4) to maintain consistency with their respective coverage periods.

We derive initial capital stock estimates at the country-industry level from OECD STAN. When

initial capital stock data are missing, estimates are obtained through nearest-neighbor interpolation

or – if still missing – a regression approach using gross capital formation as a predictor. For the

following sample years, we use the perpetual inventory method and data on gross capital formation

to obtain a measure of the capital stock, assuming a depreciation rate of 8%. We deflate capital

stocks and other variables in nominal U.S. dollars using the price deflators for capital and consumer

prices from the Penn World Tables vers. 9.1.

TFP is calculated as the residual from an OLS regression estimated at the 2-digit ISIC level, where

the log of value added is regressed against the logs of capital stocks and the log of employment.

Labor productivity is derived as the log difference of value added and employment.

Finally, we map the ISIC productivity data to SIC manufacturing industries using 2 concordances
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mapping 4-digit ISIC Rev. 3 or ISIC Rev. 4 to SIC codes. The mapping from ISIC Rev. 4 is

done via ISIC Rev. 3.1 as an intermediate step. In cases where mappings are not unique, ISIC

industries are weighted based on time-invariant employment weights. Only productivity data at

the U.S. SIC level where less than one-third of the data is imputed is used to ensure data integrity

and reliability.

For U.S. and Japan, we use data from their respective manufacturing survey or census in place of

the UNIDO INDTSTAT database. For the former, we use the NBER CES manufacturing database,

which have shipment, inputs and productivity variables as well as price deflators readily available at

the 4-digit SIC level. We construct a similar dataset for Japan by assembling the country’s annual

Manufacturing Census data from the Ministry of Economy, Trade and Industry (METI) from

the years 2002 to 2018. METI’s data comprises of output (shipment and production) and input

(number of employees, salaries expense, raw materials usage, and tangible fixed assets) variables,

as in the NBER CES manufacturing database, at the 4-digit JSIC level for all establishments with

30 or more employees. This covers 521 manufacturing industries after combining the eleventh,

twelfth and thirteenth JSIC revisions.

To obtain real values for Japan’s productivity measures, we make use of price indices from the

Bank of Japan’s Input-Output Price Index (IOPI) dataset. For raw material prices, we use input

weights from Japan’s 2005 input-output table to calculate the weighted average of input price

indices for each input-output sector classification. Since some inputs from the input-output table

have no matching price indices from IOPI, we impute with Japan’s producer price index for total

intermediate goods. Meanwhile for service inputs, we use price indices from BoJ’s Japan Ser-

vices Producer Price Index dataset. We build a concordance between Japan’s input-output sector

classification with JSIC to merge the price indices into the manufacturing census data.

We then calculate TFP measures as residual of the factor inputs employees, capital, and raw

materials, imitating the approach employed by the NBER CES manufacturing database for com-

parability. Specifically, we subtract from output growth the growth in the number of employees,

raw materials excluding energy, energy, and fixed assets, each weighted by their share in output

in Yen value. Finally, we map the JSIC-level data to SIC manufacturing industries using our

manually-constructed concordance.

A.5 Trade and Other Data

We use data on exports of 4-digit SIC level manufacturing industries for the 50 largest economies

in the world from 2002 until 2018 from UN Comtrade.

We construct a country-industry proxy of how strongly an industry is targeted by industrial policy
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using the subsidy database from the Global Trade Alert (GTA). This proxy is the share of subsidies

(counted in the number of policy measures) going to a country-industry relative to the total number

of subsidy policies worldwide.

A.6 Results with Alternative REE Sensitivity Measures

For our regressions of exports growth, we consider an alternative construction of REE sensitivity

where industry-level total requirements of REE, now aggregated across elements, are multiplied

with country-level initial share of REE imports from China instead of with element-level com-

plementarity index. We use UN Comtrade to construct alternative measures of exposure to the

Chinese REE supply shock that vary at the country-industry level–considering HS codes 284690,

284610, and 280530– and weighing them by initial import shares, using:

1. Country-level price spike in unit values of REE imports interacted with the total requirements

of REE of each industry (aggregated across elements):

REE Sensitivityis =

(∑
e

tres

)
×(ln(max REE import pricei)− ln(REE import price 2009i)) .

2. Pre-shock import shares of REEs in country c sourced from China relative to REEs sourced

from a larger set of countries (China, the U.S., Australia, Russia or India) interacted with

the total requirement of REEs in industry s:

REE Sensitivityis =

(∑
e

tres

)
× REE imports from CHNi

REE imports from CHN, USA, AUS, RUS, INDi).

.

Table A.8 shows that export growth of downstream industries increased relatively more in those

country-industries where the REE supply shock was relatively more important.

A.7 Results at HS Product Code Level

We also run our downstream export growth regressions at the HS product code level instead of

SIC as in the baseline. The purpose of this is to assess the robustness of our findings as well as to

decompose the effect on exports into its quantity and unit price components. The latter is possible

since the raw UN Comtrade data, before converting to SIC-level, also include the physical quantity

of exports. We calculate unit prices by simply dividing exports value with exports quantity. We
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exclude HS codes for which there was a change in the unit of physical quantity, but this applies to

less than 5% of observations for our sample period. For the REE sensitivity variable, we reconstruct

it at the HS-level by converting NAICS-level total requirements to HS using the Pierce-Schott

concordance instead of the SIC concordance. We make use of the same concordance to convert

our control variables.

For exports value, we find that the results are qualitatively similar to our baseline regressions at the

SIC level. Specifically, for all our sub-samples except for U.S. and China, exports of product codes

that are more sensitive to REE inputs exhibit significantly larger growth during the treatment

period compared to before than exports of less-sensitive products by the same country. The same

regressions for exports quantity and unit value confirm that the effects for non-China countries are

driven more by quantity of exports than just by passing through higher prices. This is demonstrated

by the coefficients for non-China and all countries in the exports unit value regressions being not

significant or less so than in the exports quantity regressions. For European countries and Japan,

where the positive exports effect is most pronounced, the coefficient magnitudes are similarly larger

for physical quantity.

A.8 Examples of Patents

This appendix presents selected REE-related patents from our dataset to exemplify the innovation

response to the REE supply-shock episode. These are patents filed after 2010 whose content

could have the effect of reducing or substituting the use of REEs as inputs. They have also been

handpicked to represent the variety of REE downstream uses.
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Table A.1: List of Sample Countries in Empirical Analysis

ISO Code Country Name ISO Code Country Name

ARE United Arab Emirates ISR Israel
ARG Argentina ITA Italy
AUS Australia JPN Japan
AUT Austria KOR South Korea
BEL Belgium MEX Mexico
BGD Bangladesh MYS Malaysia
BRA Brazil NGA Nigeria
CAN Canada NLD Netherlands
CHE Switzerland NOR Norway
CHL Chile NZL New Zealand
CHN China PAK Pakistan
COL Colombia PER Peru
CZE Czech Republic PHL Philippines
DEU Germany POL Poland
DNK Denmark PRT Portugal
EGY Egypt ROM Romania
ESP Spain RUS Russia
FIN Finland SAU Saudi Arabia
FRA France SGP Singapore
GBR United Kingdom SWE Sweden
HKG Hong Kong THA Thailand
IDN Indonesia TUR Turkey
IND India USA United States of America
IRL Ireland VNM Vietnam
IRN Iran ZAF South Africa

Notes: The table lists the sample countries in our empirical analysis, which are the 50 largest economies based on

their GDP.
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Table A.2: Categories of Rare-Earth Applications from the U.S. Geological Survey

General Category (USGS) NAICS Code NAICS Description

Alloys 331110 Iron and steel mills and ferroalloy manufacturing
Batteries 335911 Storage battery manufacturing
Automobile catalyst 336390 Other motor vehicle parts manufacturing
Fluid catalytic cracking 324110 Petroleum refineries
Magnets 332999 Other fabricated metal manufacturing

(split into magnet and non-magnet)

Figure A.1: Rare-Earth Mine Production Across Countries
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Notes: The figure plots production of REEs for major producing economics using data from the Mineral Yearbooks

of the U.S. Geological Survey.
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Table A.3: NAICS Codes Designated as Magnet-Using

NAICS Code NAICS Description Weight

333415 Air conditioning, refrigeration, and warm air heating equipment manufac-
turing

1.0000

333611 Turbine and turbine generator set units manufacturing 1.0000
333613 Mechanical power transmission equipment manufacturing 1.0000
334112 Computer storage device manufacturing 1.0000
334118 Computer terminals and other computer peripheral equipment manufac-

turing
1.0000

334510 Electromedical and electrotherapeutic apparatus manufacturing 1.0000
334610 Manufacturing and reproducing magnetic and optical media 1.0000
335222 Household refrigerator and home freezer manufacturing 1.0000
335312 Motor and generator manufacturing 1.0000
335314 Relay and industrial control manufacturing 1.0000
336111 Automobile manufacturing 1.0000
336310 Motor vehicle gasoline engine and engine parts manufacturing 1.0000
336320 Motor vehicle electrical and electronic equipment manufacturing 1.0000
336350 Motor vehicle transmission and power train parts manufacturing 1.0000
336390 Other Motor Vehicle Parts Manufacturing 1.0000
336411 Aircraft manufacturing 1.0000
336414 Guided missile and space vehicle manufacturing 1.0000
339112 Surgical and medical instrument manufacturing 1.0000
339114 Dental equipment and supplies manufacturing 1.0000
339910 Jewelry and silverware manufacturing 1.0000
33391A Pump and pumping equipment manufacturing 1.0000
33441A Other electronic component manufacturing 1.0000
3363A0 Motor vehicle steering, suspension component (except spring), and brake

systems manufacturing
1.0000

33641A Propulsion units and parts for space vehicles and guided missiles 1.0000
332913 Plumbing fixture fitting and trim manufacturing 0.2500
333111 Farm machinery and equipment manufacturing 0.2500
333120 Construction machinery manufacturing 0.2500
333517 Machine tool manufacturing 0.2500
333618 Other engine equipment manufacturing 0.2500
334513 Industrial process variable instruments manufacturing 0.2500
336413 Other aircraft parts and auxiliary equipment manufacturing 0.2500
33299A Ammunition, arms, ordnance, and accessories manufacturing 0.2500
33329A Other industrial machinery manufacturing 0.2500
33399A Other general purpose machinery manufacturing 0.2500
334111 Electronic computer manufacturing 0.0625
334300 Audio and video equipment manufacturing 0.0625
336412 Aircraft engine and engine parts manufacturing 0.0625

Notes: The table lists the weights we use for splitting the NAICS code for ”Other fabricated metal manufacturing”

into ”magnets” and ”non-magnets”. For each NAICS code that uses USD x million input from ”Other fabricated

metal manufacturing” and has weight w, in the imputed input-output table it would take USD xw million from

”magnets” and USD x(1− w) million from ”non-magnets”.
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Table A.4: Rare Earth Total Requirements (10−3 USD of REE per 1 USD of SIC Final Demand)

No SIC Description All Ce La Nd Pr Dy

1 3691 Storage Batteries 6.93 0.00 6.93 0.00 0.00 0.00
2 3499 Fabricated Metal Products, NEC 5.91 0.00 0.00 4.06 0.18 1.66
3 3625 Relays and Industrial Controls 0.58 0.00 0.00 0.40 0.02 0.16
4 3511 Turbines and Turbine Generator Sets 0.53 0.00 0.00 0.36 0.02 0.15
5 3292 Asbestos Products 0.47 0.01 0.00 0.32 0.01 0.13
6 3714 Motor Vehicle Parts and Accessories 0.41 0.09 0.00 0.22 0.01 0.09
7 3519 Internal Combustion Engines, NEC 0.39 0.19 0.00 0.14 0.01 0.06
8 3585 Refrigeration and Heating Equipment 0.37 0.18 0.00 0.13 0.01 0.05

Figure A.2: Index of Complementarity by Element
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Table A.5: Keywords for the Rare-Earth Patent Search

Element Keywords Element Keywords

Cerium cerium Praseodymium prnd
ceo2 ndfeb

Dysprosium dysprosium rare earth magnet
dy2o3 rare-earth magnet

Erbium erbium rare earth element magnet
er2o3 rare-earth element magnet

Gadolinium gadolinium nib magnet
gd2o3 neo magnet

Holmium holmium nd2fe14b

ho2o3 Scandium scandium

Lanthanum lanthanum sc2o3

la2o3 Samarium samarium

Lutetium lutetium sm2o3
lu2o3 smco

Neodymium neodymium rare earth magnet
nd2o3 rare-earth magnet
ndfeb rare earth element magnet
rare earth magnet rare-earth element magnet

rare-earth magnet Terbium terbium
rare earth element magnet tb4o7

rare-earth element magnet Yttrium yttrium
nib magnet y2o3

neo magnet Ytterbium ytterbium
nd2fe14b yb2o3

prnd Europium europium

Praseodymium praseodymium eu2o3

pr2o3

Notes: The table lists keywords used to search for REE patents from Google Patent Research database. Eu, Pm,

and Tm were excluded due to being too rare for most industrial applications.
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Table A.6: Patents in Rare-Earth Intense Manufacturing Industries, Robustness using Country-
Level Rare-Earth Import Intensity

REE-Enhancing Patents

NONCHN ALL USA EUR JPN
(1) (2) (3) (4) (5)

REE Sens.is based on REE import price surge

REE Sens. × Post 426.1*** 425.4*** 363.9*** 624.8*** 921.5**
(100.6) (102.4) (124.0) (185.2) (373.8)

Observations 5,561 7,606 1,200 1,140 972
Clusters 387 531 81 74 66

REE-Enhancing Patents

NONCHN ALL USA EUR JPN
(6) (7) (8) (9) (10)

REE Sens.is based on the REE import share from CHN

REE Sens. × Post 1143.0*** 1075.3*** 1201.6** 1222.8*** 1849.2***
(320.8) (318.4) (471.8) (409.7) (691.5)

Observations 5,561 7,606 1,200 1,140 972
Clusters 387 531 81 74 66

Controls Yes Yes Yes Yes Yes
Country × Ind F.E. Yes Yes Yes Yes Yes
Country × Year F.E. Yes Yes Yes Yes Yes

Notes: The table presents coefficient estimates of β from the regression: yrst = βREE Sens.s × postt + γ∆rst + ηrs + ηrt + ϵrst

with Poisson pseudo-maximum likelihood estimation. The outcome yrst represents granted REE-related patents that improve the

efficiency of REE or help find ways to substitute REE usage. The sample includes 4-digit SIC manufacturing industries (with at

least one REE-related patent) from 2002-2018 across 8 regions. Regions capture the location of the patent assignee and include

Australia, China, European Union, Korea, Russia, Japan, U.S. and the Rest of the World. In the upper panel, REE Sens.is measures

the impact of the REE import price surge in country i and is calculated as the product of the total REE requirement share in

industry s and the REE import price spike in country i. The price spike is defined as the logarithmic difference between the peak

weighted REE import price (across REE-related HS codes 280530, 284690 and 284610, typically occurring between 2011 and 2013)

and the average REE import price in 2016. REE Sens.is = (
∑

e tres) × (ln(max REE import pricei) − ln(REE import price 2009i)).

In the bottom panel, REE Sens.is is based on the average share of REE imports from China before the Chinese export restrictions

and is calculated as the product of the total REE requirement share in industry s and the proportion of REE imports from China

relative to total REE imports from China, the USA, Australia, Russia, and India in i between 1995 and 2009. REE Sens.is =

(
∑

e tres)× (REE imports from CHNi/REE imports from CHN, USA, AUS, RUS, INDi). postt is a dummy variable set to 1 for 2010

and later years (post-China’s REE export restrictions). Country subsamples include non-China, all countries, the U.S., European

economies, and Japan. All regressions include country-industry and country-year fixed effects. The control vector ∆ist includes time-

invariant measures of industry s’s capital and labor intensity from the NBER CES manufacturing database, and country-industry-specific

industrial subsidy fractions from the Global Trade Alert database, all interacted with postt and the lagged weighted average growth rate

of GDP of the ten largest importers from is. Standard errors (in parentheses) are clustered at the country-industry level. * p < 0.10,

** p < 0.05, *** p < 0.01.
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Table A.7: Productivity Growth of Rare-Earth Intense Manufacturing Industries, Robustness
using Country-Level Rare-Earth Import Intensity

Annualized Growth: Total Factor Productivity

NONCHN ALL USA EUR JPN
(1) (2) (3) (4) (5)

REE Sens.is based on REE import price surge

REE Sens. × Post 16.17* 15.07* 12.92* 18.48** 37.76***
(8.672) (9.030) (7.127) (8.230) (12.63)

Observations 177,577 182,791 5,320 88,055 4,978
Clusters 14,272 14,646 380 6,306 363

Annualized Growth: Total Factor Productivity

NONCHN ALL USA EUR JPN
(6) (7) (8) (9) (10)

REE Sens.is based on the REE import share from CHN

REE Sens. × Post 40.05* 41.46* 38.25* 46.36** 80.53***
(22.02) (22.49) (20.52) (19.60) (27.85)

Observations 183,818 189,032 5,320 88,055 4,978
Clusters 14,981 15,355 380 6,306 363

Annualized Growth: Labor Productivity

NONCHN ALL USA EUR JPN
(11) (12) (13) (14) (15)

REE Sens.is based on REE import price surge

REE Sens. × Post 9.945 9.372 3.391 2.489 38.67***
(6.161) (6.344) (13.94) (5.113) (14.90)

Observations 177,577 182,791 5,320 88,055 5,685
Clusters 14,272 14,646 380 6,306 383

Annualized Growth: Labor Productivity

NONCHN ALL USA EUR JPN
(16) (17) (18) (19) (20)

REE Sens.is based on the REE import share from CHN

REE Sens. × Post 31.12** 32.23** 10.40 17.11 86.25***
(13.96) (14.16) (39.64) (12.74) (32.32)

Observations 183,818 189,032 5,320 88,055 5,685
Clusters 14,981 15,355 380 6,306 383

Controls Yes Yes Yes Yes Yes
Country × Ind F.E. Yes Yes Yes Yes Yes
Country × Year F.E. Yes Yes Yes Yes Yes

Notes: The table presents coefficient estimates of β from the regression: yist = βREE Sens.s×postt+γ∆ist+ηis+ηit+ϵist, where yist
represents the annualized growth rate of productivity for country-industry is in year t, TFP (upper two panels) or labor productivity
measured as value added per worker (lower two panels). The annualized growth is calculated using the midpoint between t and t − 1
as the denominator. The sample includes 4-digit SIC manufacturing industries from 2002-2018 across the 50 largest economies. In the
first and third panels, REE Sens.is measures the impact of the REE import price surge in country i and is calculated as the product
of the total REE requirement share in industry s and the REE import price spike in country i. The price spike is defined as the
logarithmic difference between the peak weighted REE import price (across REE-related HS codes 280530, 284690 and 284610, typically
occurring between 2011 and 2013) and the average REE import price in 2016. REE Sens.is = (

∑
e tres)×(ln(max REE import pricei)−

ln(REE import price 2009i)). In the second and fourth panels, REE Sens.is is based on the average share of REE imports from China
before the Chinese export restrictions and is calculated as the product of the total REE requirement share in industry s and the
proportion of REE imports from China relative to total REE imports from China, the USA, Australia, Russia, and India in i between
1995 and 2009. REE Sens.is = (

∑
e tres) × (REE imports from CHNi/REE imports from CHN, USA, AUS, RUS, INDi). postt is a

dummy variable set to 1 for 2010 and later years (post-China’s REE export restrictions). Country subsamples include non-China, all
countries, the U.S., European economies, and Japan. For the country subsamples of the U.S. and Japan, we use the data from NBER-
CES Manufacturing Database and Japan’s Annual Manufacturing Census, respectively (see Appendix A.4 for notes). All regressions
include country-industry and country-year fixed effects. The control vector ∆ist includes time-invariant measures of industry s’s capital
and labor intensity from the NBER CES manufacturing database, and country-industry-specific industrial subsidy fractions from the
Global Trade Alert database, all interacted with postt and the lagged weighted average growth rate of GDP of the ten largest importers
from is. Standard errors (in parentheses) are clustered at the country-industry level. * p < 0.10, ** p < 0.05, *** p < 0.01.
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Table A.8: Downstream Export Growth of Rare-Earth Intense Manufacturing Industries, Ro-
bustness using Country-Level Rare-Earth Import Intensity

Annualized Growth: Exports Value

NONCHN ALL USA EUR JPN
(1) (2) (3) (4) (5)

REE Sens.is based on REE import price surge

REE Sens. × Post 25.92*** 26.38*** 7.516 29.88*** 52.50*
(8.088) (8.020) (18.64) (11.18) (26.74)

Observations 166,701 172,684 6,048 78,044 5,979
Clusters 10,500 10,874 378 4,884 375

Annualized Growth: Exports Value

NONCHN ALL USA EUR JPN
(6) (7) (8) (9) (10)

REE Sens.is based on the REE import share from CHN

REE Sens. × Post 75.99*** 77.50*** 20.35 78.18*** 119.1**
(20.59) (20.59) (53.98) (26.79) (53.74)

Observations 178,330 184,313 6,048 78,044 5,979
Clusters 11,236 11,610 378 4,884 375

Controls Yes Yes Yes Yes Yes
Country × Ind F.E. Yes Yes Yes Yes Yes
Country × Year F.E. Yes Yes Yes Yes Yes

Notes: The table presents coefficient estimates of β from the regression: yist = βREE Sens.is×postt+γ∆ist+ηis+ηit+ϵist, where yist

represents the annualized growth rate of export values for country-industry is in year t. The annualized growth is calculated using the

midpoint between t and t− 1 as the denominator. The sample includes 4-digit SIC manufacturing industries from 2002-2018 across the

50 largest economies, excluding China. In the upper panel, REE Sens.is measures the impact of the REE import price surge in country

i and is calculated as the product of the total REE requirement share in industry s and the REE import price spike in country i. The

price spike is defined as the logarithmic difference between the peak weighted REE import price (across REE-related HS codes 280530,

284690 and 284610, typically occurring between 2011 and 2013) and the average REE import price in 2016. REE Sens.is = (
∑

e tres)×
(ln(max REE import pricei)− ln(REE import price 2009i)). In the bottom panel, REE Sens.is is based on the average share of REE

imports from China before the Chinese export restrictions and is calculated as the product of the total REE requirement share in industry

s and the proportion of REE imports from China relative to total REE imports from China, the USA, Australia, Russia, and India in

i between 1995 and 2009. REE Sens.is = (
∑

e tres) × (REE imports from CHNi/REE imports from CHN, USA, AUS, RUS, INDi).

postt is a dummy variable set to 1 for 2010 and later years (post-China’s REE export restrictions). Country subsamples include non-

China, all countries, the U.S., European economies, and Japan. All regressions include country-industry and country-year fixed effects.

The control vector ∆ist includes time-invariant measures of industry s’s capital and labor intensity from the NBER CES manufacturing

database, and country-industry-specific industrial subsidy fractions from the Global Trade Alert database, all interacted with postt and

the lagged weighted average growth rate of GDP of the ten largest importers from is. Regressions are weighted by the share of export

values wis = exportsis/
∑

i,s exportsis from 2002-2004. Standard errors (in parentheses) are clustered at the country-industry level. *

p < 0.10, ** p < 0.05, *** p < 0.01.
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Table A.9: Downstream Export Growth of Rare-Earth Intense Manufacturing Industries, HS-
Level Data

Annualized Growth: Exports Value

NONCHN ALL USA EUR JPN CHN

(1) (2) (3) (4) (5) (6)

REE Sens. × Post 1.532*** 1.533*** 0.543 1.682*** 1.617* 1.434
(0.312) (0.303) (1.040) (0.412) (0.938) (1.397)

Annualized Growth: Exports Quantity

NONCHN ALL USA EUR JPN CHN

(7) (8) (9) (10) (11) (12)

REE Sens. × Post 1.164*** 1.083*** -0.753 1.129*** 1.536 -0.103
(0.347) (0.335) (0.984) (0.403) (1.330) (1.123)

Annualized Growth: Exports Unit Value

NONCHN ALL USA EUR JPN CHN

(13) (14) (15) (16) (17) (18)

REE Sens. × Post 0.390 0.473* 1.918*** 0.481 0.0987 1.584
(0.246) (0.242) (0.520) (0.302) (0.770) (1.194)

Observations 2,016,181 2,075,321 53,871 865,220 53,423 59,140
Clusters 157,752 161,850 4,003 64,376 4,028 4,098

Controls Yes Yes Yes Yes Yes Yes
Country × Ind F.E. Yes Yes Yes Yes Yes Yes
Country × Year F.E. Yes Yes Yes Yes Yes Yes

Notes: The table presents coefficient estimates of β from the regression: yist = βREE Sens.s×postt+γ∆st+ηis+ηit+ϵist, where yist

represents the annualized growth rate of export values, quantity and unit price for country-industry is in year t. The annualized growth

is calculated using the midpoint between t and t− 1 as the denominator. The sample includes 6-digit HS product codes from 2002-2018

across the 50 largest economies. The treatment intensity REE Sens.s is a weighted sum of an REE element-specific complementarity

index (ranging from 0 to 100), with weights based on total requirement shares for industry s: REE Sens.s =
∑

e tres × comple. postt

is a dummy variable set to 1 for 2010 and later years (post-China’s REE export restrictions). Country subsamples include non-China,

all countries, the U.S., European economies, Japan, and China. All regressions include country-industry and country-year fixed effects.

The control vector ∆ist includes time-invariant measures of industry s’s capital and labor intensity from the NBER CES manufacturing

database, all interacted with postt. Standard errors (in parentheses) are clustered at the country-industry level. * p < 0.10, ** p < 0.05,

*** p < 0.01.
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Figure A.3: Annual REE Imports From China
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Notes: The figure presents import values of REEs from China by Japan and all countries, broken down by sub-

categories of REE commodities for the former. Data is sourced from UN Comtrade.
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Figure A.4: US8480815B2: Magnet Powder Coating Process

Notes: The figure shows excerpts of patent US8480815B2. In January 2011, the US firm GM Global Technology

Operations filed a patent for a powder coating process that uses much less Dy and Tb as coating for REE magnets.

The patent claims to reduce the amount of Dy and Tb used by at least 20% while maintaining similar magnetic

properties. The patent cites supply constraints as motivation as ”the only RE mine in the United States does not

have any significant amounts of Dy”, which could be an implicit reference to the difficulties of importing these

elements from China.
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Figure A.5: KR101281549B1: Position Sensors Without REE

Notes: The figure shows excerpts of patent KR101281549B1. Around one year after REE prices peaked, the Korean

firm Daesung Electric Co filed a patent in South Korea for position sensors with a modified structure that removes

the need for permanent REE magnets. The patent cites the positive price shock as its motivation, stating that

”there is a cost problem due to the recent increase of the rare earth price”. Position sensors have many downstream

applications, from manufacturing processes to transport equipments including automobiles.
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Figure A.6: US9387464B2: Catalyst for Exhaust Gas Purification

Notes: The figure shows excerpts of patent US9387464B2. In April 2016, Toyota Motor from Japan filed a patent

for a composite oxide used in catalysts for exhaust gas purification. This type of catalysts uses mainly Cerium, the

REE with the greatest price jump in 2010-2011. The patented composite oxide still needs to use REEs but it does

not have to be Cerium. In the example, it preferably uses Lanthanum and Yttrium. Similar to the other patent

examples, the patent mentions recent supply issues in its background: ”Cerium contained in such composite oxides

is expensive, and a problem has emerged that Cerium is now difficult to obtain stably due to the deterioration of

the procurement environment in recent years.” This patent comes only a few years after the REE supply shock

but builds on recent patents from before the supply shock: “Meanwhile, JP 2008-93496 A (Patent Literature 5)

discloses a promoter clathrate containing an iron oxide, which is a promoter of an exhaust gas purification catalyst,

and a zirconia solid solution (e.g., Example 2). In such a promoter clathrate, the iron oxide is covered with the

zirconia solid solution. Thus, sintering of the iron oxide is suppressed, and consequently, an exhaust gas purification

catalyst containing such a promoter clathrate exhibits excellent catalyst activity.”
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B Model Appendix

B.1 Derivation of an Estimation Equation for εs

Combining (15) and relative demand (41) yields

ARis

ALis

=

(
γs

1− γs

)εs (PRis

PLis

)1−εs fLi
fRi

=

(
γs

1− γs

)εs (ARis

ALis

)(1−εs)(
1

1−µs
−δ)(

wRi

wLi

)1−εs fLi
fRi

, (A.1)

where the last equality uses PRis = A
1

1−µs
−δ

Ris
µs

1−µs
wRi and the corresponding expression for PLis.

Solving for ARis/ALis, we obtain an expression of relative patents as a function of relative factor

prices wRi/wLi:

ARis

ALis

=

(
γs

1− γs

) εs(µ−1)
κs

(
wRi

wLi

) (1−εs)(µs−1)
κs

(
fLi
fRi

)µs−1
κs

. (A.2)

Taking logs, we obtain our regression specification:

log

(
ARis

ALis

)
= βs log

(
wRi

wLi

)
+ δs + uis. (A.3)

B.2 Algorithm to Calibrate the Model to a Baseline Economy

We calibrate the model to an initial baseline economy, using the following fixed-point iteration

routine. An outer loop iterates over fixed costs fRis for given fLis until the model matches ARis

ALis

to relative patents in the data for 2009, according to equation (15). Within that outer loop, the

algorithm iterates over an inner loop that adjusts Revis to be consistent with clearing product

markets according to equation (25), iterates over trade imbalances to match country-level GDP

for the given Revis and calculates the according factor expenditures. Once relative patents and

GDP are matched, the algorithm moves on to prices and trade costs. First, it solves for the set of

bilateral prices Pijs between each exporters and importers in each sector that exactly reproduces

the observed trade shares λijs and calculates the according price indices Pis and Pi. With these

prices and the model-implied unit costs of production, it then infers iceberg trade costs dijs.

Lastly, it calibrates the demand weights αis so that, when combined with the sectoral prices, they

replicate the observed spending patterns and the overall price level in each country. At this point,

the baseline economy is fully specified.
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B.3 Algorithm to Solve the Model

For given parameter values, the model can be solved by the following fixed-point iteration routine.

An outer loop iterates over Revis to clear product markets, according to equation (25). Within

that loop, first innovation responses and factor shares are calculated, for given levels of Revis.

Second, we can directly solve for factor prices to clear factor markets as described in equations

(35) and (36). Third, we iterate over the system of bilateral prices Pijs to be consistent with (29),

(30) and (31). Fourth, we calculate transfers Ti according to (27).
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