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Abstract

Generalized and Simulated Method of Moments are often used to estimate
structural Economic models. Yet, it is commonly reported that optimization
is challenging because the corresponding objective function is non-convex. For
smooth problems, this paper shows that convexity is not required: under con-
ditions involving the Jacobian of the moments, certain algorithms are globally
convergent. These include a gradient-descent and a Gauss-Newton algorithm
with appropriate choice of tuning parameters. The results are robust to 1) non-
convexity, 2) one-to-one moderately non-linear reparameterizations, and 3) mod-
erate misspecification. The conditions preclude non-global optima. Numerical
and empirical examples illustrate the condition, non-convexity, and convergence
properties of different optimizers.
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1 Introduction

The Generalized and Simulated Method of Moments (GMM, SMM) are commonly used to
estimate structural Economic models. To find estimates, modern computer software provides
researchers with a large set of free and non-free numerical optimizers, which, after inputting
some tuning parameters, return a guess for the parameters of interest. While sampling
properties of estimators are often derived, their practical implementation often receives a
less detailed treatment. There is now a vast literature on statistical learning with a convex
loss function, using stochastic gradient-descent. However, these results need not directly
apply to GMM, as it often involves non-convex minimizations. A number of authors have
pointed out the lack of robustness of off-the-shelf methods, and Knittel and Metaxoglou
(2014) illustrate this in the context of demand estimation. This is perhaps not surprising
since non-convex optimization is subject to a curse of dimensionality (Andrews, 1997, Section
2) and becomes increasingly challenging when the number of parameters is moderate or large.

The main contribution of the paper is to show that convexity is not required for some
methods to perform well in GMM estimation specifically: some algorithms are globally
convergent under a global rank condition involving the Jacobian of the moments and the
weighting matrix. This defines a class of non-convex problems that is as hard as convex
problems for optimization. Since this is perhaps surprising, the following gives some intuition
behind the result. Given sample moments gn(θ) with Jacobian Gn(θ), one can minimize the
GMM objective function Qn(θ) = 1/2gn(θ)

′Wngn(θ) iteratively, by minimizing successive
quadratic approximations. To this end, convex optimizers rely on a quadratic expansion
of Qn(θ) using its gradient and Hessian. This quadratic approximation yields a proper
minimization problem only if the Hessian is strictly positive definite, i.e. Qn is convex.

Another approach, is to linearly expand the sample moments using the Jacobian and plug
the linearized moments into the GMM objective. Since the approximate moments are linear,
this yields a proper minimization problem as long as Gn has full rank. Gauss-Newton (gn)
relies on this approach. Gradient-descent can be motivated by either the quadratic of linear
approximation. In the just-identified case, it is well known that gn is locally convergent
when Gn has full rank around the solution. This paper goes further by showing that gn

and gradient-descent are globally convergent when the product of Gn, Wn, and an average of
Gn has full rank everywhere. Unlike existing results, this applies to just and over-identified
moments. The condition can be relaxed for the product to only be non-singular in a specific
direction, towards the global minimizer. Under this weaker condition, gn with a Levenberg-
Marquardt regularization and gradient descent are globally convergent. Importantly, for
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correctly specified models, the conditions imply that there are no local optima, besides the
global minimizer; a necessary condition for global convergence of gradient-based optimizers.
It is shown that these convergence results are robust to 1) moderate misspecification, and
2) moderately non-linear reparameterizations. However, the results may or may not hold
depending on the choice of weighting matrix. In particular, when Wn is ill-conditioned,
convergence can be significantly slower.

Several conditions found in the convex and non-convex optimization literatures imply
the weaker condition introduced of this paper. These include strong, star, and quasar con-
vexity of the objective function. It also relates to the Polyak-Łojasiewicz condition, an
important inequality which has gathered much interest in machine learning to prove con-
vergence of gradient-descent. Strong monotonicity of the moments, a condition for solving
just-determined system of non-linear equations, and strong injectivity, introduced here for
just and over-identified models, also imply the weaker condition. Hence, the condition in-
troduced in this paper is a common denominator of several existing conditions. In terms of
econometrics properties, the conditions are sufficient for the parameters to be both locally
and globally identified, when the model is correct or moderately misspecified.

A simple MA(1) estimation from Gourieroux and Monfort (1996) illustrates the results
analytically and numerically. The problem is non-convex: the scalar Hessian can be positive,
negative, or zero; yet the conditions hold. As predicted, the recommended gn algorithm
converges. Newton-Raphson provably diverges, and off-the-shelf optimizers can be unstable.
When the model is moderately misspecified, gn remains globally convergent. In line with
theory, significant misspecification can produce non-global optima which hinder the global
convergence of gradient-descent and Gauss-Newton.

Two empirical applications further illustrate the results. The first application revisits
the numerical results of Knittel and Metaxoglou (2014) for estimating random coefficient
demand models on Nevo’s generated cereal data. The same gn algorithm systematically
converges from a wide range of starting values. In contrast, R’s more sophisticated built-
in optimizers can be inaccurate and often crash without additional error-handling. The
second application estimates a small New Keynesian model with endogenous total factor
productivity by impulse response matching. Matlab’s built-in optimizers have better error-
handling so that crashes are less problematic. Nonetheless, these optimizers’ performance
can be mixed whereas gn performs well for nearly all starting values.

Numerically, in all three applications, the GMM objective is non-convex at most values.
The strong injectivity condition holds at most values, an indication that gn and gradient-
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descent are appropriate. The later converges very slowly, however. These findings explain
the good performance of gn relative to more commonly used methods. The main takeaway
is that non-convexity need not be a deterrent to structural estimation: simple algorithms
can converge quickly and globally under alternative conditions.

Structure of the paper. Section 2 contains the main assumptions and results. Section
3 reviews existing conditions found in the literature and relates the main assumptions with
these conditions. Section 4 suggests a numerical procedure to check whether the main as-
sumption holds or not and a way to set the tuning parameter. Section 5 illustrates the
results with one numerical and two empirical applications. Appendices A and B give the
proofs to the main results and additional results. The Supplemental Material consists of:
Appendices C-G. Appendix C provides additional local convergence results, which comple-
ment the main global convergence results in the paper. Appendix D provides of survey of
empirical practice in the American Economic Review between 2016 and 2018. Appendix E
gives R code to replicate the numerical MA(1) example. Appendix F provides additional
simulation and empirical results. Appendix G gives additional details about the methods
found in the survey of Appendix D.

Notation: In the following λmin, λmax return the smallest and largest eigenvalues of a
square positive semidefinite matrix. For an arbitrary rectangular matrix A of size dg × dθ

with dg ≥ dθ, σmin, σmax are the smallest and largest singular values of A defined as σmin(A) =√
λmin(A′A) and σmax(A) =

√
λmax(A′A); A has full rank if, and only if, σmin(A) > 0.

2 GMM Estimation without Convexity

Let gn(θ) = 1/n
∑n

i=1 g(θ;xi) be the sample moments and Gn(θ) = ∂θgn(θ) their Jacobian.
Their population counterparts are g(θ) = E[g(θ;xi)] and G(θ) = ∂θg(θ). Wn is a weighting
matrix which, for simplicity, does not depend on θ – this excludes continuously-updated
estimations. The sample GMM objective function is:

Qn(θ) =
1

2
gn(θ)

′Wngn(θ),

and the goal is to find the global minimizer θ̂n of Qn in Rdθ . The population objective
Q(θ) = 1

2
g(θ)′Wg(θ), defined similarly using the limit W of Wn, has a global minimizer

θ†. Throughout, it will be assumed that the sample Qn is continuously differentiable. More
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specifically, this paper considers derivative-based optimizers of the form:

θk+1 = θk − γPk,nGn(θk)
′Wngn(θk), (1)

for k = 0, 1, . . . , some staring value θ0 ∈ Rdθ and a matrix Pk,n, called conditioning matrix,
assumed to be symmetric. The tuning parameter γ ∈ (0, 1] is called the learning rate. There
are several ways to motivate (1) as a minimization algorithm in the context of GMM esti-
mation. They are conceptually similar but implicitly rely on a different set of assumptions.
The first is to consider a quadratic approximation of the GMM objective function Qn:

Qn(θ) ≃ Qn(θk) + ∂θQn(θk)(θ − θk) +
1

2γ
(θ − θk)

′∂2θ,θ′Qn(θk)(θ − θk),

here γ penalizes the quality of the quadratic approximation. For linear models, such as OLS
and IV regressions, Qn is quadratic so that γ = 1 is feasible. For non-linear models, the ap-
proximation is inexact, and γ < 1 is generally required. Minimizing the right-hand-side with
respect to θ yields a Newton-Raphson (nr) iteration: θk+1 = θk − γ[∂2θ,θ′Qn(θk)]

−1∂θQn(θk)

with ∂θQn(θk) = Gn(θk)
′Wngn(θk) and Pk,n = [∂2θ,θ′Qn(θk)]

−1. A quasi-Newton (qn) itera-
tions replaces the Hessian matrix ∂2θ,θ′Qn(θk) with an approximation computed sequentially
over k. The most popular qn software implementation is called bfgs. Importantly, the
quadratic approximation implicitly requires that is Hn(θ) = ∂2θ,θ′Qn(θk) strictly positive
definite around θk so that (1) yields a minimizer of the quadratic approximation.

Another way to motivate (1) is to consider a linear approximation of the moments and
plug it into the GMM objective function:

gn(θ) ≃ gn(θk) +
1

γ
Gn(θk)(θ − θk),

Qn(θ) ≃
1

2

[
gn(θk) +

1

γ
Gn(θk)(θ − θk)

]′
Wn

[
gn(θk) +

1

γ
Gn(θk)(θ − θk)

]
,

where now γ penalizes the quality of the linear approximation. Take the first order condition
in the last display to find (1) with Pk,n = (Gn(θk)

′WnGn(θk))
−1, a Gauss-Newton (gn)

iteration. The quadratic approximation requires the Hessian Hn of Qn to be strictly positive
definite at θk. A gn iteration minimizes the linear approximation as long as the Jacobian
Gn of gn has full rank at θk so that Gn(θk)

′WnGn(θk) is strictly positive definite. Standard
regularity condition imply local convexity around θ̂n. Still, convexity is more challenging
to satisfy away from the solution since ∥gn(θk)∥ ≫ 0 can result in a non-definite Hessian
Hn(θk) = Gn(θk)

′WnGn(θk) + (gn(θk)
′Wn ⊗ Id)∂θvec[Gn(θk)

′], depending on the last term.
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This suggests that quadratic-based methods (nr, bfgs) and linear-based methods (gn) can
behave differently when Qn is globally non-convex. Gradient-Descent (gd) can be motivated
by either a linear or a quadratic approximation. The following summarizes the choice of Pk,n

for each algorithm:

Table 1: Optimizers considered in (1)
1. Gradient-Descent (gd) Pk,n = Id,
2. Newton-Raphson (nr) Pk,n = [∂2θ,θ′Qn(θk)]

−1,
3. quasi-Newton (qn) Pk,n approximates [∂2θ,θ′Qn(θk)]

−1,
4. Gauss-Newton (gn) Pk,n = [Gn(θk)

′WnGn(θk)]
−1.

2.1 Main Assumptions

The following gives the main assumptions on the population moments used to describe the
large sample properties of the estimator θ̂n and optimization algorithms.

Assumption 1. The observations xi are iid and:
(i) Q(θ) = 1/2∥g(θ)∥2W has a unique minimizer θ† ∈ Rdθ ,
(ii) g(θ;xi) and g(θ) = E[g(θ;xi)] are continuously differentiable on Rdθ ,
(iii) for all θ ∈ Rdθ : E[∥G(θ;xi)∥2] <∞, E[∥g(θ;xi)∥2] <∞, σmax[G(θ)] < σ <∞;

there exists L̄(·) ≥ 0 such that E[L̄(xi)] < L <∞, E[|L̄(xi)|2] <∞, and
for all θ1, θ2 ∈ Rdθ : ∥G(θ1;xi)−G(θ2;xi)∥ ≤ L̄(xi)∥θ1 − θ2∥,

(iv) there exists RG > 0 such that σmin[G(θ)] > σ > 0 for all ∥θ − θ†∥ < RG,
(v) there exists M̄(·) such that E[|M̄(xi)|2] <∞, E[M̄(xi)] < M <∞, and for any R > 0,

∥G(θ;xi)−G(θR;xi)∥ ≤ M̄(xi)/(1+R), where θR = R
∥θ∥θ if ∥θ∥ > R, θR = θ otherwise,

(vi) Wn
p→ W , 0 < λW < λmin(W ) ≤ λmax(W ) < λW <∞.

Assumption 1 consists mainly of standard conditions to derive asymptotic properties for
θ̂n. The iid assumption can be relaxed to allow for time-series dependence. The parameter
space is unbounded to accommodate the unconstrained optimization. The technical condi-
tion (v) and the next Assumption imply that Qn has a strictly quadratic lower bound. This
ensures consistency without assuming compactness or uniform consistency of the sample
moments. The quantity σmin[G(θ)] in the local identification condition refers to the smallest
singular value of G(θ). The main Assumption 2 below will rely on the following quantities:

G(θ) =

∫ 1

0

G(ωθ + (1− ω)θ†)dω, G(θ1, θ2) =

∫ 1

0

G(ωθ1 + (1− ω)θ2)dω.

5



The matrix G(θ) is an average derivative over the path from θ to the solution θ†. The matrix
plays a role in the mean-value identity: g(θ1)− g(θ2) = G(θ1, θ2)(θ1 − θ2) (see Lemma A1).

Assumption 2. There exists 0 < ρ < σλW/2 such that, for all θ ∈ Rdθ , either:
(a) σmin[G(θ)

′WG(θ)] > ρσ, or
(b) ∥G(θ)′WG(θ)(θ − θ†)∥ > ρσ∥θ − θ†∥.

Assumption 2 gives the main conditions used in this paper for global GMM estimation
of just and over-identified models.1 Assumption 2 (a) replaces the convexity condition 0 <

λH ≤ λmin[Hn(θ)] ≤ λmax[Hn(θ)] < λH < ∞ used to derive convergence results for gd,
nr and qn.2, which may not hold for GMM. A sufficient, but restrictive, condition for
Assumption 2 (a) is that g is the derivative of a convex function, for instance a Probit
log-likelihood function. Further sufficient conditions are listed in Section 3. Assumption 2
(a) implies Assumption 2 (b); the latter is the weaker condition. Assumption 2 (a) implies
that G(θ) has full rank for all θ, Assumption 2 (b) only requires G(θ)′WG(θ) to be non-
singular in the relevant direction (θ − θ†). For over-identified models, both conditions (a)
and (b) depend on the choice of weighting matrix W . Indeed, unlike square matrices, the
product of full rank rectangular matrices does not automatically have full rank,3 and the
weighting matrix changes the way G and G are multiplied. It is possible for the product
to be singular even when G and G have full rank. Importantly, Assumption 2 may or may
not hold depending on the choice of weighting matrix W . If Assumption 2 is not satisfied
using the preferred weighting matrix, the algorithm remains locally convergent. A two-step
estimation, with a weighting matrix for which Assumption 2 holds in the first step, would
provide a valid estimation strategy in that case. Assumption 2 is invariant to some one-to-one
reparameterizations, this is shown in the next section.

Under Assumption 2, the parameters are both locally and globally identified (i.e. As-
sumption 1 (iv) and (i)). Conversely, Assumption 1 (iv) implies that Assumption 2 (a) holds
locally around θ†. The condition requires that it holds globally rather than locally.4 Under
Assumptions 1 and 2, a sample analog of Assumption 2 holds for the following quantities:

Gn(θ) =

∫ 1

0

Gn(ωθ + (1− ω)θ̂n)dω, Gn(θ1, θ2) =

∫ 1

0

Gn(ωθ1 + (1− ω)θ2)dω,

1The factor ρ is assumed to be set, without loss of generality, such that σmin[G(θ)] > σ under (a) and
∥G(θ)(θ − θ†)∥ > σ∥θ − θ†∥ under (b) for σ found in Assumption 1.

2See Nesterov (2018, pp33-35), especially equations (1.2.25), (1.2.27) and Theorem 1.2.4 for gd.
3Take G(θ1)

′ = (1, 0) and G(θ2)
′ = (0, 1), both have full rank and yet G(θ1)

′G(θ2) = 0 is singular.
4See Lemmas A4, A5 and Propositions 1, 5.
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with probability approaching 1, this is shown in Lemma A6. When Assumption 2 cannot be
verified analytically, a related condition which does not involve the minimizer can be checked
numerically on the sample moments and their Jacobian. This is considered in Section 4.1.

Lemma 1. Suppose Assumptions 1 and 2 hold, then θ̂n
p→ θ† and Qn(θ̂n)

p→ Q(θ†).

Lemma 1 shows that, although the parameter space is unbounded and Qn is non-convex,
θ̂n is a consistent estimator under Assumptions 1 and 2.

Assumption 3. With probability approaching 1: Pk,n is symmetric and such that:
0 < λP ≤ λmin(Pk,n) ≤ λmax(Pk,n) ≤ λP <∞.

Assumption 3 requires Pk,n to be finite and strictly positive definite. This is always the
case for gd since Pk,n = Id, and holds for gn under Assumption 2 (a). If the moments only
satisfy Assumption 2 (b), Assumption 3 does not necessarily hold for gn since the Jacobian
Gn(θk) can be singular, but it remains valid for gd. When Assumption 3 fails, one approach
is to regularize the inverse using the so-called Levenberg-Marquardt (LM) algorithm to gn

by setting Pk,n = (Gn(θk)
′WnGn(θk) + λId)

−1 so that λP < λ−1 <∞ and Pk,n is finite. Note
that Assumption 3 does hold for gn under strong injectivity conditions introduced in the
next Section. Nocedal and Wright (2006, Ch3.4) list several additional approaches to enforce
Assumption 3, mainly for convex optimizers.

2.2 Global Convergence Results

The following provides the main results: the global convergence properties of gradient-based
algorithms. In the following, the initial value θ0 is taken from Θ, a compact subset of Rdθ .
This is a technical assumption; although the optimization is unconstrained, the sample mo-
ments are not uniformly consistent on Rdθ which complicates the analysis. The following
shows global convergence, uniformly over θ0 ∈ Θ. The main idea is to show that, with proba-
bility approaching 1, the optimization path (θk)k≥0 is restricted to a compact set, determined
by θ0, where the sample moments are uniformly consistent. Without loss of generality, Θ
is assumed convex and large enough that θ† ∈ interior(Θ). In addition, local convergence
results can be found in Appendix C, those results are new in the case of overidentified and
misspecified models as they allow for ∥gn(θ̂n)∥Wn ̸= 0.
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Theorem 1 (Correctly Specified). Suppose Assumptions 1, 2, 3 hold and Q(θ†) = 0. Then,
for γ small enough, there exists γ ∈ (0, 1), 0 < λ ≤ λ < +∞, and C ≥ 0 such that:

∥θk+1 − θ̂n∥ ≤ (1− γ)k+1

√
λ+ C∥gn(θ̂n)∥Wn√
λ− C∥gn(θ̂n)∥Wn

∥θ0 − θ̂n∥,

for any starting value θ0 ∈ Θ, with probability approaching 1.

Theorem 1 provides global convergence results that are comparable to the convex case.
Because the factor (1− γ) is less than 1, the distance to the solution ∥θk+1 − θ̂n∥ decreases
exponentially fast with k, as in the convex case. Several factors affect convergence. The
constants λ, λ coincide with C2 = 1/2ρ2σ2/[σ2λW ], C3 = 1/2σ2λW in Proposition 1 below.
The convergence rate 1− γ depends on C1 = 1/2ρ2σ2/[σ2λW ], from the same Proposition.

Through these constants, it appears that identification strength - here measured by ρσ

- and the choice of weighting matrix Wn affect the convergence properties. In particular,
a weighting matrix that is ill-conditioned can lead to slower convergence. This can make
optimization challenging. When the sample moments are highly correlated, the optimal
weighting matrix can be ill-conditioned. Using equal weighting, a diagonal weighting matrix,
or regularizing the optimal weighting matrix with Wn = (V̂n + λId)

−1, where V̂n estimates
the variance of

√
ngn(θ

†), could improve numerical stability.
The size of ∥gn(θ̂n)∥Wn further affects convergence. The constant C coincides with

C4 = λ
1/2

W L in Proposition 5 below. The constant L measures the non-linearity of the
sample moments, L = 0 corresponds to linear models. For linear models, C = 0 implies
that ∥gn(θ̂n)∥Wn does not affect convergence. Non-linear models have L > 0 which makes
optimization more sensitive to ∥gn(θ̂n)∥Wn for overidentified models.

In applications, ∥gn(θ̂n)∥Wn can be relatively large so that misspecification becomes a
concern. Understanding the robustness of Theorem 1 to non-negligible deviations from
Q(θ†) = 0 is then empirically relevant. The following considers models where the quantity:

Qn(θ̂n)
p→ Q(θ†) := φ/2 > 0

does not vanish asymptotically which implies that ∥gn(θ̂n)∥Wn matters for convergence, even
in large samples. Since Gn cannot be full rank at θ = θ̂n when the model is both just-
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identified and misspecified, the results presented here solely consider over-identified models.5

Theorem 2 (Misspecified). Suppose Assumptions 1, 2, 3 hold and Q(θ†) = φ/2 > 0, such
that:

√
φ < min

(
ρσ√
λWL

,
1

2

ρ2σ2

λ
3/2

W σ2L

)
, (2)

then, for γ small enough, there exists γ ∈ (0, 1), 0 < λ ≤ λ < +∞ and C > 0 such that
λ− C∥gn(θ̂n)∥Wn

p→ λ− C
√
φ > 0, and:

∥θk+1 − θ̂n∥ ≤ (1− γ)k+1

√
λ+ C∥gn(θ̂n)∥Wn√
λ− C∥gn(θ̂n)∥Wn

∥θ0 − θ̂n∥,

for any starting value θ0 ∈ Θ, with probability approaching 1.

Theorem 2 shows that convergence is robust to ‘moderate’ amounts of misspecification.
For linear models, L = 0 implies that (2) reads φ < +∞, which is not restrictive. In (2), the
choice of Wn, nonlinearity, and identification strength restrict the amount of misspecification
allowed in (2). The restrictions (2) are discussed further with Proposition 5 below. The
convergence rate 1−γ also depends on φ, which slows convergence. In the limit, its expression
is given by (1−γ)2 = 1−γλPC1/2, where C1 = (ρσ−λ1/2W L

√
φ)2/[C3+C4

√
φ]. The constants

C3, C4 appear in Proposition 5 below. The first of the two terms in the upper bound in (2)
ensures that γ > 0 is feasible. Having φ ̸= 0 makes convergence slower and estimation more
challenging. When φ is arbitrarily large, global convergence can fail. This is explained in the
next Section, and illustrated with an MA(1) example. Since the magnitude of φ depends on
the choice of moments gn and weighting matrix Wn, a careful selection of these two might
mitigate this issue.

3 Assumption 2 and its relation to the literature

Convexity, monotonicity and the Polyak-Łojasiewicz condition. The following
briefly reviews some convexity conditions found in the literature and an important relax-
ation called the Polyak-Łojasiewicz (PL) condition. The latter has gathered much attention

5The solution θ̂n is s.t. Gn(θ̂n)
′Wngn(θ̂n) = 0, misspecification implies gn(θ̂n) ̸= 0, and since Wn has full

rank, it must be that Gn(θ̂n) is singular for just-identified models. For over-identified models, gn(θ̂n) is in
the null space of Gn(θ̂n)

′Wn, which allows Gn(θ̂n) to be full rank.
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in the machine learning literature in recent years. Because Assumption 2 is stated on popu-
lation quantities, the following discussion will focus on Q.

For general minimization of an objective Q, gd, nr and qn are globally convergent for
θ† if Q is µ-strongly convex, i.e. if for some µ > 0:

Q(θ2) ≥ Q(θ1) + ∂θQ(θ1)(θ2 − θ1) +
µ

2
∥θ1 − θ2∥2,

for all θ1, θ2 ∈ Rdθ . When Q is twice continuously differentiable it is strongly convex if its
Hessian H(θ) = ∂2θ,θ′Q(θ) is strictly positive definite everywhere with 0 < λH < λmin[H(θ)] ≤
λmax[H(θ)] < λH <∞. Under strong convexity, for γ > 0 sufficiently small and any θ0:

Q(θk+1)−Q(θ†) ≤ (1− η)
(
Q(θk)−Q(θ†)

)
,

for some η ∈ (0, 1) which depends on γ, the choice of algorithm, i.e. Pk,n, and the eigenvalues
of H. Iterating on this inequality indicates that the fit improves rapidly from any starting
value θ0: Q(θk)−Q(θ†) ≤ (1− η)k

(
Q(θ0)−Q(θ†)

)
. Under strong convexity, Q has a unique

global minimizer and no local optima. The literature has considered a number of relaxations
of strong convexity under which gd is globally convergent. This includes the so-called star
convexity condition introduced by Nesterov and Polyak (2006):

Q(θ†) ≥ Q(θ) + λ∂θQ(θ)(θ
† − θ) +

µ

2
∥θ − θ†∥2

for some µ ≥ 0 and λ = 1. Fast convergence results for θ require µ > 0. This is similar-
looking to strong convexity but only involves the pairs (θ1, θ2) = (θ, θ†). For these functions,
the convexity property only holds on line segments toward θ†. Star convexity implies that
θ† is the unique global minimizer of Q. This condition can be further weakened to quasar
convexity, which allows for λ > 1 in the inequality above. Hinder et al. (2020), Figure 1,
plot several functions that satisfy these conditions.

Karimi et al. (2016), Guminov et al. (2017) showed that a number of relaxations of strong
convexity imply the so-called Polyak-Łojasiewicz (PL) inequality, named after Polyak (1963)
and Łojasiewicz (1963), which requires that:

∥∂θQ(θ)∥2 ≥ µ
(
Q(θ)−Q(θ†)

)
, (PL)

for all θ ∈ Rdθ and some µ > 0. When Q satisfies the PL inequality, ∂θQ(θ) = 0 implies
θ is globally optimal, i.e. Q(θ) = Q(θ†). The arg-minimizer may not be unique, however,

10



unlike strong convexity. If the PL inequality holds and ∂θQ is Lipschitz continuous, it can
be shown that for γ > 0 small enough: Q(θk+1) − Q(θ†) ≤ (1 − η)

(
Q(θk)−Q(θ†)

)
for gd

(Karimi et al., 2016, Th1). This does not imply that θk+1 converges to θ†, however, unless the
arg-minimizer is unique. Because strong convexity implies the PL inequality, Karimi et al.
(2016) argue that the latter holds locally over a larger area than strong convexity, predicting
better optimization performance. They also note that it is difficult to characterize which
functions satisfy the PL inequality. They show that Q(θ) = h(Aθ), with h strongly convex
and A a non-zero matrix, satisfies the PL inequality.

Closely related to the GMM setting, a smaller literature has considered conditions for
solving non-linear systems of equations of the form: g(θ) = 0, typically with g and θ of
the same dimension. An important reference is Dennis and Schnabel (1996), who cast the
problem as minimizing Q(θ) = ∥g(θ)∥2, similar to GMM, and derive global convergence
results to a local minimum under convexity conditions (Theorems 6.3.3-6.3.4). Deuflhard
(2005, Ch3) studies global convergence under alternative conditions. For just and under-
determined systems, several authors considered a strong monotonicity condition:

(g(θ1)− g(θ2))
′(θ1 − θ2) ≥ µ∥θ1 − θ2∥2,

with µ > 0, e.g. Solodov and Svaiter (2000), Polyak and Tremba (2020). Note that when
g = ∂θF , then g is strongly monotone if, and only if, F is strongly convex. Hence, global
convergence under strong monotonicity is related to global convergence under strong convex-
ity of F . In that case, g is said to be cyclically monotone (Rockafellar, 2015, p238). These
results do not consider g(θ†) ̸= 0 which is particularly relevant here.

A companion paper, Forneron (2023), considers correctly specified GMM estimation with
non-smooth sample moments that may not satisfy Assumption 2. There are two important
differences in that setting: 1) the Jacobian Gn is not defined, and 2) Qn can have local
optima. The methods considered here are not sufficient to find a global optimum, and there
is a curse of dimensionality for global convergence. The two papers are complementary.

Relation between the different conditions. Narrowing to the GMM setting specifi-
cally, the following shows that the PL inequality holds in the population for correctly specified
models under Assumption 2. A related result is derived under misspecification.

As discussed above, Assumption 2 (a) implies Assumption 2 (b). The latter confers most
of the properties required for minimizing Q. It can be useful to re-write the condition in
terms of g: Assumption 2 (b) ∥G(θ)′W [g(θ)− g(θ†)]∥ > ρσ∥θ − θ†∥. For correctly specified
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models, g(θ†) = 0 implies G(θ)′Wg(θ) = ∂θQ(θ). The only critical point is θ = θ†. Hence,
Assumption 2 excludes local optima and saddle points when the model is correctly specified.6

Proposition 1 (Correct Specification). Suppose Assumptions 1 (ii), (iii), (vi), 2 (b) hold
and Q(θ†) = 0, then there exists strictly positive constants C1, C2, C3 such that for all θ ∈ Rdθ :

(1) ∥∂θQ(θ)∥2 ≥ C1

(
Q(θ)−Q(θ†)

)
(2) C2∥θ − θ†∥2 ≤ Q(θ)−Q(θ†) ≤ C3∥θ − θ†∥2.

Proposition 1 shows that Assumption 2 (b), together with bounds on W and Lipschitz
continuity ofG imply the PL inequality (1) forQ. In addition, (2) implies global identification
and is needed to derive the convergence rate of θk. Strong convexity also implies (1) and (2).

Proposition 2. Suppose W is invertible, Q(θ†) = 0. 1) If Q satisfies the PL inequality with
µ > 0 and C2∥θ − θ†∥2 ≤ Q(θ) − Q(θ†) for C2 > 0 and all θ ∈ Rdθ , then Assumption 2 (b)
holds. 2) If Q is quasar-convex with µ > 0, then Assumption 2 (b) holds.

Proposition 2 gives a condition under which quasar-convexity and the PL inequality imply
Assumption 2 (b). On compact sets, Assumption 1 (i), (iii), (iv) together imply a C2 > 0

exists for correctly specified models. Assumption 2 (b) does not imply quasar-convexity.7

The following considers strong monotonicity and introduces a strong injectivity condition:

∥g(θ1)− g(θ2)∥ ≥ µ∥θ1 − θ2∥. (SI)

It can be shown that the strong injectivity property holds on compact convex sets under the
Gale-Nikaidô-Fisher-Rothenberg global identification conditions: det(G(θ)) > 0 and G(θ)

positive quasi-definite, for all θ ∈ Rdθ , where det is the determinant.8

Proposition 3 (Just-Identified). 1) If Ag is strongly monotone for some invertible matrix
A and µ > 0, then Assumption 2 (b) holds. 2) If g is strongly injective with µ > 0, then
Assumption 2 (b) holds.

6A critical point is a θ such that ∂θQ(θ) = 0. Assuming Q is twice differentiable, it is a local minimum
if ∂2

θ,θ′Q(θ) is positive semidefinite, maximum if ∂2
θ,θ′Q(θ) is negative semidefinite, and a saddle point if

∂2
θ,θ′Q(θ) is indefinite, i.e. has both positive and negative eigenvalues.

7Quasar-convexity implies (θ−θ†)′G(θ)′WG(θ)(θ−θ†) ≥ µ
2λ∥θ−θ†∥2 for correctly specified models. This

is more restrictive than Assumption 2 (b) when θ is not scalar.
8G is positive quasi-definite if, and only if, G + G′ is positive definite. See Fisher (1966), Rothenberg

(1971); and Komunjer (2012) for a discussion and alternative conditions.
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For over-identified models, (SI) is not sufficient. As discussed above, the weighting matrix
W plays a role in the convergence properties. The following extends (SI) appropriately:

∥G(θ1)′W [g(θ1)− g(θ2)]∥ ≥ µ∥θ1 − θ2∥. (SI’)

Relative to (SI), the additional term ensures that g(·) is one-to-one in the row space of
G(·)′W . Taking (θ1, θ2) = (θ, θ†) yields Assumption 2 (b). Note that (SI’) implies that
Assumption 3 holds for gn (Lemma B7). (SI’) is more challenging to verify than (SI) as
it involves the weighting matrix W and the Jacobian G. If (SI) holds for a just-identified
subset of moments, then it is possible to regularize W so that (SI’) holds (Lemma B8).

Figure 1: Relationship between conditions for correctly specified models

strong convexity ⇒ star convexity ⇒ quasar convexity

⇓

Assumption 2 (a) ⇒ Assumption 2 (b) ⇐ strong injectivity

⇕ ⇑

PL + QLB strong monotonicity

Legend: Relations hold when Q(θ†) = 0. QLB = Quadratic Lower Bound, i.e. C2∥θ−θ†∥2 ≤ Q(θ)−Q(θ†)
for some C2 > 0. Relation with strong monotonicity is for just-identified models.

Figure 1 summarizes the results of Propositions 1, 2, 3. Since Qn(θ̂n) = 0 for just-
identified models that are correctly specified, the relationship also applies in the finite samples
problems where these conditions are met. When g and θ are scalar, Assumption 2 implies
strict monotonicity, g is either increasing or decreasing, but does not imply convexity of Q,
however, as the MA example below will illustrate.

It remains to determine if Assumption 2 (b) is minimal for global convergence, or if can
be weakened further. The following condition is necessary for gd and other gradient-based
optimizers of the form (1) to be globally convergent:

∂θQ(θ) = 0 ⇔ θ = θ†. (N)

The following shows, under regularity conditions, that (N) implies Assumption 2 (b).

Proposition 4. Suppose condition (N) and Assumption 1 (ii)-(iv) and (vi) hold, then As-
sumption 2 (b) holds on any compact convex set containing θ†.

The case of misspecified models is more complicated, as the following shows that the
equivalence between the PL inequality and Assumption 2 (b) is not automatic.
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Proposition 5 (Misspecification). Suppose Assumptions 1 (ii), (iii), (vi), 2 (b) hold, then
there exists strictly positive constants C2, C3, C4 such that for all θ ∈ Rdθ :

(1) ∥∂θQ(θ)∥ ≥
(
ρσ −√

φλ
1/2

W L
)
∥θ − θ†∥

(2) (C2 − C4
√
φ)∥θ − θ†∥2 ≤ Q(θ)−Q(θ†) ≤ (C3 + C4

√
φ)∥θ − θ†∥2,

where Q(θ†) = φ > 0, C2, C3 are the same as in Proposition 1 and L is the Lipschitz constant
of G from in Assumption 1 (iii). If in addition ρσ −

√
φλWL > 0, then for all θ ∈ Rdθ :

(1′) ∥∂θQ(θ)∥2 ≥
(ρσ −

√
φλWL)

2

C3 + C4
√
φ

(
Q(θ)−Q(θ†)

)
.

Proposition 5 (1) is only informative when the amount of misspecification is moderate,
i.e. φ < ρ2σ2/[λWL

2]. When this holds, there are no local optima besides θ†. It also implies
the PL inequality (1’) holds. To recover convergence for θ, the lower bound in (2) should be
informative which further requires √φ < C2/C4.9 The degree of non-linearity - measured by
L - and the choice of weighting matrix - measured by λW , λW and φ - constrain the amount
of misspecification permitted to get informative bounds. For correctly specified models,
Qn(θ̂n) = op(1) implies that both (1’) and (2) hold asymptotically.

Further characterization of Assumption 2 (Just-Identified). Like star-convexity,
Assumption 2 is stated relative to the unknown θ†. The following Proposition gives several
conditions under which Assumption 2 (a) holds and properties implied by these conditions.

Proposition 6. (Sufficient Conditions) Consider the following conditions:
(a) σmin[G(θ1, θ2)] > σ > 0, for all θ1, θ2 ∈ Rdθ , (b) for all θ ∈ Rdθ , G(θ) = US(θ)V for
U, V invertible and S(θ) symmetric with 0 < λS < λmin[S(θ)] < λS < ∞, for all θ ∈ Rdθ ,
(c) g(θ) = ∂θF (θ), for all θ ∈ Rdθ , where F : Rdθ → R is twice continuously differentiable,
strongly convex.
The following holds: (1) (c) ⇒ (b) ⇒ (a) ⇒ Assumption 2 (a) holds; (2) (a) implies g(·)
is one-to-one; (3) if (a) holds, there exists a reparameterization h(·) = ψ ◦ g ◦ ϕ(·) with ϕ

one-to-one and ψ affine, such that 1/2h(θ)′Wh(θ) is strongly convex.

Condition (a) does not require knowledge of θ† and implies that g(·) is one-to-one. The

9The derivations give the following bounds C2 = 1/2 ρ2σ2

σ2λW
and C4 = λ

1/2

W L so that the condition reads
√
φ < 1/2ρ2σ2[σ2λ

3/2

W L]−1. It is possible to relax this condition at the cost of more complicated derivations
using a combination of global and local convergence arguments.
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latter is often assumed for indirect inference.10 Condition (a) also implies (SI) with µ = σ.
When the Jacobian can be linearly rearranged into a symmetric positive definite matrix
S(θ) = U−1G(θ)V −1, then condition (a) holds. These problems can be thought of as implic-
itly convex in the special case where where S is the second derivative of a convex function.
For a given θ ∈ Rdθ , the decomposition (b) always exists: the singular value decomposition
gives G(θ) = U(θ)S(θ)V (θ) where U(θ), V (θ) are unitary and S(θ) is diagonal with positive
entries. A lesser known result, due to Frobenius (1910) shows that any square matrix can be
written as the product of two real symmetric matrices; here G(θ) = S1(θ)S2(θ). The Jordan
normal form of G(θ) can be used to compute this factorization (Bosch, 1986). If G(θ) is
invertible, for all θ ∈ Rdθ , and U, V or one of S1, S2 do not vary with θ, in the singular value
or Frobenius decomposition, then (b) holds. Under condition (c), g is cyclically , and thus
strongly, monotone.

Proposition 7. (Reparameterization) Take h : U → Rdθ , one-to-one, continuously differ-
entiable on U , a convex set, with 0 < σh ≤ minu∈U σmin[∂uh(u)] ≤ maxu∈U σmax[∂uh(u)] ≤
σh <∞. Let u† = h−1(θ†), the minimizer of Q ◦ h.
1) Suppose Assumption 2 (a) holds for g, let:

L1,h = sup
u∈U

∥∂uh(u)− ∂uh(u
†)∥, L2,h = sup

u∈U ,ω∈[0,1]
∥h(ωu+ (1− ω)u†)− ωh(u)− (1− ω)h(u†)∥.

If σ > [L1,hσ + L2,hLσh]/σh, where L is the Lipschitz constant of G, then Assumption 2 (a)
holds for g ◦ h. In particular, if h = Au + b is affine with A invertible then L1,h = L2,h = 0

and Assumption 2 (a) holds for g ◦ h.
2) Suppose Assumption 2 (b) holds for g. If ∥h(u) − h(u†)∥ ≥ µ∥u − u†∥, for some µ > 0

and all u ∈ U , then Assumption 2 (b) holds for g ◦ h.

Strong convexity is preserved by affine transformations and reparameterization that sat-
isfy particular component-wise monotonicity constraints on the reparameterization (e.g.
Boyd and Vandenberghe, 2004, Sec3.2). Proposition 7 shows that Assumption 2 (a) is
also preserved by affine transformations and moderately non-linear reparameterizations h.
Hence, under Assumption 2 (a), optimization should be locally robust to the choice of param-
eterization. Assumption 2 (b) is preserved if h is strongly injective, a mild requirement. In
particular, invertible affine transformations preserve Assumption 2 (b). Similar statements
for overidentified models can be found in Propositions B8, B9. Propositions 2 and 7 together

10See e.g. Gourieroux et al. (1993), Assumption (A4).
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imply that if Q is strongly convex for a particular parameterization, e.g. reduced-form coef-
ficients, then Assumption 2 (b) holds for Q ◦ h where h satisfies the conditions above, where
h is the mapping from reduced form to structural coefficients.

4 Recommendations for Practice

4.1 Checking whether Assumption 2 holds

The global convergence results hinge on Assumption 2 (b) as it confers the objective several
key properties for optimization. In some cases it may be feasible to verify analytically that
one of the conditions in Figure 1 or Proposition 6 hold. For some models, it is possible to
construct moments that identify the parameters, typically using injectivity arguments. In
that case, (SI) holds which implies Assumption 2 (b) holds, under regularity conditions.

For more complex models, it may only be possible to evaluate numerically over a rep-
resentative set of points, whether one of these conditions is likely to holds, or not. Since
Assumption 2, and its sample counterpart Assumption A2, depend on the unknown min-
imizer or Q, resp. Qn, it is not possible to check the conditions numerically before the
performing the estimation. It is possible to check a stronger condition which does not take
an estimate θ̂n as input, however.

In the main results, the constant ρσ can be arbitrarily small. In practice, however, when
ρσ → 0 the convergence rate (1 − γ) → 1 is arbitrarily slow. The following approximates
an upper bound for (1 − γ), assuming correct specification, and the corresponding number
of iterations k required to achieve Qn(θk) − Qn(θ̂n) ≤ ε[Qn(θ0) − Qn(θ̂n)] for a user-chosen
ε ∈ (0, 1). In practice, these bounds can be very conservative. The value k mainly indicates
whether global convergence is practically feasible (e.g. k ≤ 103) or not (e.g. k ≥ 1012).

When θ̂n is unknown, before the estimation is performed, it is only possible to verify a
stronger condition. The following considers a sample analog of (SI’), introduced above:

∥Gn(θ1)
′Wn[gn(θ1)− gn(θ2)]∥ ≥ µn∥θ1 − θ2∥, (SI’)

for some µn > 0. In the following, the finite grid of pairs ΘK = {(θ11, θ21), . . . , (θ1K , θ2K)} will
be used for that purpose. It construction is discussed in more detail below. Suppose θ1k ̸= θ2k
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for each k, compute:

µk =
∥Pk,nGn(θ

1
k)

′Wn[gn(θ
1
k)− gn(θ

2
k)]∥

∥θ1k − θ2k∥
, C3,k =

∥θ1k − θ2k∥
∥gn(θ1k)− gn(θ

2
k)∥Wn

,

LQ,P,k =
∥Pk,nHn(θ

1
k)(θ

1
k − θ2k)∥

∥θ1k − θ2k∥
,

where Pk,n is computed using θ1k and the algorithm of choice.11 Then compute:

(1− γ)2 = max
(
0, 1− [µ̂nĈ3,n]

2/[4L̂Q,P,n]
)
, k ≥ log(ε)

log(1− γ)
,

where µ̂n = mink µk, Ĉ3,n = mink C3,k, and L̂Q,P,n = maxk LQ,P,k. The normalization using
Pk,n ensures that these values are invariant to linear reparameterizations of the parameters
and/or moments for gn or nr. As a reference, with the normalization linear models have
µ̂n = 1 under the standard rank condition. To ensure the product Pk,nGn(θ

1
k) is well behaved,

it is recommended to compute a pseudo-inverse of Gn(θ
1
k)

′WnGn(θ
1
k) in the case of gn. This

yields µk = 0 and γ = 0 when Gn(θ
1
k) is numerically close to singular in the relevant direction.

If the conditions fail or the bounds indicate that convergence is not practically feasible,
typically when µ̂n < 10−2 for gn,12 gradient-based methods need to be modified to ensure
global convergence, using multiple starting values or a hybrid approach with theoretical
guarantees, see Forneron (2023) for an explicit algorithm in that setting.

Constructing ΘK. Take a set Θ large enough that θ̂n ∈ Θ is likely. The grid ΘK should
be dense in Θ so that, as the number of points K increases, any θ ∈ Θ is arbitrarily close to
some value in the grid. For Θ = [0, 1]dθ , the Sobol and Halton sequences have this property,
and are readily available in statistical software (R, Matlab, Python, Julia). In general,
when Θ = [θ1, θ1] × · · · × [θdθ , θdθ ], where θ1, θ1 denote lower (resp. upper) bounds on each
coefficient, a sequence can be constructed from the Sobol or Halton sequence, denoted (ϑi,k),
i = 1, . . . , dθ, k = 1, . . . , K, by setting θi,k = θi + (θi − θi)ϑi,k.

11Note that LQ,P,k involves a Hessian-vector product, which can be computed using only gradients:
Hn(θ

1
k)(θ

1
k − θ2k) ≃ [∂θQn(θ

1
k + ϵ[θ2k − θ1k])− ∂θQn(θ

1
k)]/ϵ, for ϵ small.

12Dividing µn by 10 approximately reduces γ by a factor of 100, by a local expansion argument. Conver-
gence becomes significantly slower when µ̂n approaches 0.
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4.2 Iteration dependent choice of learning rate γk

The results are stated for a fixed learning rate. In practice, adaptive choices of γk are
common, using a line search for instance. If the adaptive algorithm is tuned to satisfy
the requirements for global convergence, then it is also globally convergent. To preserve
convergence properties, additional tuning parameters are typically involved (Nocedal and
Wright, 2006, Ch3.1). A backtracking line search, a simple and popular way to set the
learning rate (Nocedal and Wright, 2006, Ch3.1), is used as a benchmark comparison for the
fixed learning rate used in the applications.

Algorithm 1: Backtracking Line Search for Gauss-Newton
Tuning Parameters: Initial γinit, ρ ∈ (0, 1), c ∈ (0, 1).
Inputs : Previous iterate θk, moments gn(θk), Jacobian Gn(θk)

Compute : Search direction: pk = (Gn(θk)
′WnGn(θk))

−1Gn(θk)
′Wngn(θk),

Jk = Gn(θk)
′Wngn(θk).

Set : γk = γinit and θk+1 = θk − γkpk
while Qn(θk+1) > Qn(θk)− cγkJ

′
kpk do

Set : γk = ργk and θk+1 = θk − γkpk
end
Output : New iterate θk+1, Learning Rate γk.

By construction, J ′
kpk ≥ 0 so that the final γk decreases the value of the objective

function. The while loop terminates once the so-called Armijo condition is met:13 Qn(θk+1) ≤
Qn(θk) − cγkJ

′
kpk. For just-identified models, the termination criterion is feasible if c is

sufficiently small.14 Having θk = θ̂n implies pk = 0; the condition holds for any γk ∈ (0, 1].
A common choice is c = 10−4, γinit = 1, ρ = 0.8. These were used in all examples.15

5 Numerical and Empirical Applications

5.1 A pen and pencil example: the MA(1) model

The first example illustrates the main results using a simple MA(1) process:

yt = et − θ†et−1, et
iid∼ N (0, 1), θ† ∈ (−1, 1),

13See Nocedal and Wright (2006, p33), Nesterov (2018, pp28-29) for discussions.
14A sample analog of Proposition 1 implies that Qn(θk+1) ≤ (1 − γ)2Qn(θk), for any θk ∈ Θ, when

γ ∈ (0, 1) small enough for some γ ∈ (0, γ). Proposition 1 (1)-(2) further imply for just-identified models
that Qn(θk)−Qn(θ̂n) ≤ cnJ

′
kpk for some cn > 0. The Armijo condition is feasible if c is small enough.

15When there are bounds for parameters values, one can set Qn(θk+1) = +∞ if θk+1 is outside the bounds.
Another approach is to project θk+1 inside the bounds when γk is too large.
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for t = 1, . . . , n. θ† is the parameter of interest. Set p ≥ 1, following Gourieroux and
Monfort (1996, Ch4.3), θ† is estimated by matching coefficients from an auxiliary AR(p)
model: yt = β1yt−1 + · · · + βpyt−p + ut. For p = 1, β̂1

p→ −θ†/(1 + θ
†2) defines the moment

condition:
gn(θ) = β̂1 +

θ

1 + θ2
,

with Jacobian Gn(θ) = (1 − θ2)/(1 + θ2)2 > 0 for any θ ∈ (−1, 1) and Gn(θ) = 0 for θ ∈
{−1, 1}. It has full rank on any interval of the form [−1+ε, 1−ε], ε ∈ (0, 1). However, Figure
2 shows that the Hessian ∂2θ,θQn(θ) can be positive, negative, or equal to zero depending
on the value of θ – Qn is non-convex, especially when gn(θ) is large. Now notice that:
gn(θ) = ∂θFn(θ) where Fn(θ) = β̂1θ + 1

2
log(1 + θ2), which not a GMM objective but is

nevertheless convex on [−1, 1], strongly convex on any [−1 + ε, 1− ε], ε ∈ (0, 1). Hence, gn
is cyclically monotone and statisfies Assumption 2 (a). Note that implicitly, gn minimizes
the convex Fn – whereas nr explicitly minimizes the non-convex Qn. This is specific to the
just-identified case (p = 1), since an Fn cannot be defined in the over-identified case (p > 1).

Figure 2: MA(1): illustration of non-convexity and the rank condition

Legend: simulated sample of size n = 200, θ† = −1/2, gn(θ) = β̂1 − θ/(1 + θ2), Wn = Id. The GMM
objective (panel a) is non-convex but the sample moments (panel b) satisfy the rank condition.

Table 2 shows the search paths for nr and gn with a fixed γ = 0.1 as well as R’s built-in
optim’s bfgs implementation and the bound-constrained l-bfgs-b. nr diverges, because
the objective is locally concave at θ0 = −0.6. This is surprising given how close θ0 is to
θ†. Although Qn is locally convex around θ̂n, which is useful for local optimization, the
corresponding neighborhood can be fairly small from a practical standpoint.

gn converges steadily from the same θ0. bfgs is more erratic, especially when θk ≃ −0.5,
i.e. k = 1, leading to a search outside the unit circle (k = 2), before reaching an area where
the iterations are better behaved (k = 3 onwards). While here this is not too problematic, the
objective function is well defined outside the bounds, this is more concerning in applications
where the model cannot be solved outside the bounds – this is illustrated in Section 5.2.
A natural solution is to introduce bounds using l-bfgs-b. The search, however, remains
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Table 2: MA(1): search paths for nr, gn, bfgs, and l-bfgs-b
k 0 1 2 3 4 5 6 7 . . . 99 Qn(θ99)

p = 1
nr -0.600 -0.689 -0.722 -0.749 -0.772 -0.793 -0.811 -0.828 . . . -0.993 0.038
gn -0.600 -0.560 -0.529 -0.504 -0.484 -0.466 -0.451 -0.438 . . . -0.338 7 · 10−8

gn-back -0.600 -0.202 -0.326 -0.338 -0.338 -0.338 -0.338 -0.338 . . . -0.338 7 · 10−8

bfgs -0.600 -0.505 4.425 -0.307 -0.359 -0.338 -0.337 -0.337 . . . -0.337 7 · 10−8

l-bfgs-b -0.600 -0.505 1.000 -0.455 -0.375 -0.318 -0.341 -0.339 . . . -0.338 7 · 10−8

bfgs⋆ -0.600 -0.462 -0.286 -0.345 -0.340 -0.338 -0.338 -0.338 . . . -0.338 7 · 10−8

l-bfgs-b⋆ -0.600 -0.462 -0.286 -0.345 -0.339 -0.338 -0.338 -0.338 . . . -0.338 7 · 10−8

p = 12
nr 0.950 0.956 0.961 0.965 0.969 0.972 0.975 0.978 . . . 1.000 4.786
gn 0.950 0.890 0.860 0.834 0.810 0.787 0.763 0.740 . . . -0.623 0.101

gn-back 0.950 0.350 -0.089 -0.478 -0.591 -0.616 -0.616 -0.623 . . . -0.626 0.101
bfgs 0.950 -8.290 -8.279 -8.267 -8.256 -8.244 -8.233 -8.221 . . . -6.979 0.397

l-bfgs-b 0.950 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 . . . -1.000 1.7

Legend: simulated data with sample size n = 200, θ† = −1/2. For p = 1, gn(θ) = β̂1 − θ/(1 + θ2). For
p = 12, gn(θ) = β̂n − β(θ) where β(θ) is the p-limit of the AR(p) coefficients, evaluated at θ. Wn = Id. The
solutions are θ̂n = −0.339 (p = 1) and θ̂n = −0.626 (p = 12). nr = Newton-Raphson, gn = Gauss-Newton,
gn-back = Gauss-Newton with backtracking line search (Algorithm 1). The learning rate is γ = 0.1 for nr
and gn. bfgs = R’s optim, l-bfgs-b = R’s optim with bound constraints θ ∈ [−1, 1]. bfgs⋆ and l-bfgs-b⋆

apply the same optimizers to Fn instead of Qn.

somewhat erratic as seen in the Table. Compare these to bfgs⋆ and l-bfgs-b⋆ which
minimize Fn, instead of Qn, using the same optim. Like gn, they steadily converge to θ̂n.

For p = 12, the model is over-identified and the conditions are more challenging to check
analytically. Figure 3 indicates that the strong injectivity condition (SI’) appear to hold, the
value is bounded away from zero, except at the boundary. The choice of weighing matrix
affects the constant µ in (SI’), as it appears to be smaller with optimal weighting.

Figure 3: MA(1): illustration of the strong injectivity condition

Legend: the color groups are given by quantiles on the positive and negative values, so that the colors
represent the same fraction of values on the left and right panels.

Table 2 shows that nr, bfgs and l-bfgs-b all fail to converge from θ0 = 0.95, a starting
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value with negative curvature, with identity weighting.16 Compare with gn, which steadily
converges to θ̂n. Starting closer to the solution, bfgs and l-bfgs-b also fail to converge
using θ0 = 0.6; gn remains accurate (not reported). R codes can be found in Appendix E.

The impact of misspecification on estimation. As discussed in Section 3, when the
degree of misspecification φ becomes large, local optima may appear and making gradient-
based optimizers non-globally convergent. To illustrate this issue, consider the true DGP:

yt = et − θ1et−1 − θ2et−2, et
iid∼ N (0, 1), θ† ∈ (−1, 1),

where θ2 ∈ {0, 0.4, 0.8} determines the degree of misspecification. The following sets θ1 =

−0.1 to ensure invertibility as θ2 varies. The moments are the same as above with p = 12.

Figure 4: MA(1): effect of misspecification on Qn

Legend: simulated sample of size n = 200, θ1 = −0.1, p = 12.

Figure 4 compares Qn and its gradient ∂θQn, with identity and optimal weighting, at
different degrees of misspecification. On intervals [−1+ ε, 1− ε], Qn has no local optima for
θ2 ∈ {0, 0.4}, in line with Proposition 5. For the larger θ2 = 0.8, there are local optima: equal
weighting has two (one maximum and minimum), optimal weighting has four (two maxima
and minima). Also, the objective becomes flatter as θ2 increases, making optimization more

16l-bfgs-b relies on projection descent which maps search directions outside the unit circle to −1 or 1
where ∂θQn(−1) = ∂θQn(1) = 0, a stationary point for (1).
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Table 3: MA(1): estimates under misspecification
Correctly Specified Moderately Misspecified Heavily Misspecified

Wn Identity Optimal Identity Optimal Identity Optimal
θ̂n Qn θ̂n Qn θ̂n Qn θ̂n Qn θ̂n Qn θ̂n Qn

true -0.070 0.084 -0.040 0.078 -0.590 0.447 -0.140 0.285 -0.82 1.10 -0.84 1.02
gn -0.070 0.084 -0.043 0.078 -0.588 0.447 -0.139 0.285 0.645 1.789 0.722 1.081

bfgs -14.4 0.084 -22.8 0.078 -6.95 0.52 -7.35 0.285 -1.21 1.10 -5.92 1.09
l-bfgs-b -1.00 3.03 -1.00 1.65 -1.00 1.97 -1.00 1.13 -1.00 1.47 -1.00 1.13

Legend: simulated sample of size n = 200, θ1 = −0.1, p = 12, Wn = Id. true is the actual sample
estimator. Starting value θ0 = 0.9. θ̂n: estimates returned by optimizer, Qn: minimized objective.

challenging. Table 3 shows how this translates into estimation properties. As predicted, gn

is robust to moderate misspecification but only converges to a local minimum under heavier
misspecification. Other methods (l-bfgs-b, bfgs) systematically fail to converge.

5.2 Estimation of a Random Coefficient Demand Model Revisited

The following revisits the results for random coefficient demand estimation in Knittel and
Metaxoglou (2014) with the ‘fake’ cereal data generated by Nevo (2001).17 This is a non-
linear instrumental variable regression with sample moment conditions: gn(θ, β) = 1

n

∑
j,t zjt[δjt(θ)−

x′tjβ], where zjt are the instruments, xjt the linear regressors in market j at time period t.
The 8 parameters of interest are the random coefficients θ,18 which enter δjt, recovered from
market shares sjt using the fixed point algorithm of Berry et al. (1995). The 25 linear co-
efficients β are nuisance parameters concentrated out by two-stage least squares for each θ.
The replication sets the maximum number of iterations for the contraction mapping to 20000

and the tolerance level for convergence to 10−12. This is important for the optimization to
be well-behaved; see e.g. Brunner et al. (2017), Conlon and Gortmaker (2020). The range of
starting values used here is much wider than in these papers,19 which explains why optimizers
are more prone to crashing here than in their replications. Initial values are constructed as
follows: the Sobol sequence generates values in [0, 1]8, the coefficients for standard deviations
are adjusted to lie in [0, 10], those for income in [−10, 10]. Values for which the contraction
mapping produces an error are discarded until 50 valid starting values are available.

17It available in the R package BLPestimatoR (Brunner et al., 2017). The data consists of 2,256 obser-
vations for 24 products (brands) in 47 cities over two quarters in 94 markets. The specification is identical
to Nevo’s, with cereal brand dummies, price, sugar content (sugar), a mushy dummy indicating whether the
cereal gets soggy in milk (mushy), and 20 IV variables.

188 parameters are the unobserved standard deviation and the income coefficient on the constant term,
price, sugar, and mushy.

19Conlon and Gortmaker (2020, p25) draw “starting values from a uniform distribution with support 50%
above and below the true parameter value.”
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Table 4: Demand for Cereal: performance comparison
stdev income objs timeconst. price sugar mushy const. price sugar mushy crash

true est 0.28 2.03 -0.01 -0.08 3.58 0.47 -0.17 0.69 33.84 -se 0.11 0.76 0.01 0.15 0.56 3.06 0.02 0.26 - -

avg 0.28 2.03 -0.01 -0.08 3.58 0.47 -0.17 0.69 33.84gn std 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 00:03:51

avg 0.28 2.03 -0.01 -0.08 3.58 0.47 -0.17 0.69 33.84gn-b std 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 00:00:20

avg 0.29 2.18 -0.01 -0.08 3.59 0.43 -0.17 0.71 35.17gd-b std 0.01 0.23 0.00 0.01 0.70 4.58 0.01 0.06 1.14 0 09:59:04

bfgs avg 0.53 1.90 -0.29 -1.72 5.03 0.97 -0.22 0.21 4555.97 23std 1.26 0.69 1.45 8.54 7.55 2.63 0.24 2.51 2.35 · 104 00:01:46

nm avg 1.10 5.28 -0.09 0.78 4.99 3.68 -0.28 3.29 543.20 3std 1.44 7.74 0.11 1.86 4.43 8.99 0.26 3.47 700.29 00:01:19

sa avg 7.66 9.52 -0.94 10.45 -0.27 2.01 3.73 3.07 8.27 · 104 2std 3.25 3.73 0.58 4.09 5.78 6.66 3.94 6.35 8.60 · 104 01:45:59

sa+nm avg 1.02 8.90 -0.13 1.00 4.75 7.64 -0.29 4.65 613.70 2std 1.26 8.95 0.15 1.63 4.19 11.08 0.26 5.68 558.19 01:47:33

Legend: Comparison for 50 starting values where [0, 10]×· · ·×[0, 10] for standard deviations and [−10, 10]×
· · ·× [−10, 10] for income coefficients. Avg, Std: sample average and standard deviation of optimizer outputs.
true: full sample estimate (est) and standard errors (se). Objs: avg and std of minimized objective value.
crash: optimization terminated by an error. time: average run time for optimizers in hours:minutes:seconds.
gn uses γ = 0.1, k = 150 iterations. gn-b and gd-b use a backtracking line search, terminates once
Qn(θk)−Qn(θk+1) ≤ 10−8. Additional results can be found in Appendix F.1.

Table 4 and Figure 5 compare the performance of quasi-Newton (bfgs), Nelder-Mead
(nm), Simulated-Annealing (sa), and Nelder-Mead after Simulated-Annealing (sa+nm),
using R’s default optimizer optim, with Gauss-Newton (gn) and Gradient-Descent (gd) for
50 different starting values.20 As reported in Knittel and Metaxoglou (2014), optimization
can crash often.21 Crashes could be avoided using error handling (try-catch statements).
However, this may not be enough to produce accurate estimates as the next application will
illustrate.22 Only gn systematically produces accurate estimates; bfgs crashes 46% of the
time and has one highly inaccurate estimate. Derivative-free optimizers (nm, sa, sa+nm)
can produce inaccurate estimates. gd can be very slow to converge. Using a backtracking
line search, gn converges in 11 iterations on average, compared to 8816 for gd – which has
a higher maximum number of iterations set at 10000, compared to 150 for gn. Increasing
the maximum number of iterations for gd would improve the estimates at the expense of

20The solution of the contraction mapping is not well defined for all values in Θ, so we use the first 50
values produced by the Sobol sequence such that δjt is finite for all j, t.

21The optimizers will crash when the fixed point algorithms fail to return finite values. This is typically
the case when the search direction was poorly chosen at the previous iteration.

22Conlon and Gortmaker (2020) illustrate that modifications to the fixed-point algorithm and specific
optimizer implementations to handle near-singularity of the Hessian can also improve performance for bfgs.
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further computation time.

Figure 5: Demand for Cereal: distribution of minimized objective values

Legend: Comparison for 50 starting values. Minimized objective values for non-crashed optimizations.
Objective values are truncated from above at Qn(θ) = 150.

Figure 6: Demand for Cereal: Gauss-Newton iterations for 5 starting values

Legend: 150 gn iterations for 5 starting values in [0, 10]×· · ·×[0, 10] for standard deviations and [−10, 10]×
· · · × [−10, 10] for income coefficients. Panel b) horizontal grey line = full sample estimate.

Figure 6, illustrates the convergence of gn for the first 5 starting values. In line with
the predictions of Theorem 1, though Qn is non-convex, gn iterations steadily converge to
the solution. This type of “Gauss-Newton regression” is related to Salanié and Wolak (2022)
who compute two-stage least-squares for linearized BLP.

5.3 Innovation, Productivity, and Monetary Policy

The second application revisits Moran and Queralto (2018)’s estimation of a model with
endogenous total factor productivity (TFP) growth (see Moran and Queralto, 2018, Sec2,
for details about the model). They estimate parameters related to Research and Development
(R&D) by matching the impulse response function (IRF) of an identified R&D shock to R&D
and TFP in a small-scale Vector Auto-Regression (VAR) estimated on U.S. data.

The parameters of interest are θ = (η, ν, ρs, σs) which measure, respectively, the elasticity
of technology creation to R&D, R&D spillover to adoption, the persistence coefficient and
size of impulse to the R&D wedge. The sample moments are gn(θ) = ψ̂n−ψ(θ), ψ̂n and ψ(θ)
are the sample and predicted IRFs, respectively. The latter is computed using Dynare in
Matlab. To minimize Qn, the authors use Sims’s csminwel (sims in the Table, Figures)23

23Details about csminwel and code can be found at: http://sims.princeton.edu/yftp/optimize/.
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algorithm with a reparameterization which bounds the coefficients.24 Although this type of
reparameterization is commonly used, the Jacobian is singular at the boundary; this matters
for both local and global convergence, according to the results. As in the demand estimation,
initial values are constructed using the Sobol sequence and adjusted to match the bounds
used in the original study, reported in the last two rows of Table 5.

Table 5: Impulse Response Matching: performance comparison
η ν ρs σs objs crash time η ν ρs σs objs crash time

true est 0.30 0.29 0.39 0.17 4.65 - - 0.30 0.29 0.39 0.17 4.65 - -
without reparameterization with reparameterization

avg 0.30 0.29 0.39 0.17 4.65 0.30 0.29 0.39 0.17 4.65gn std 0.00 0.00 0.00 0.00 0.00 1 00:00:56 0.00 0.00 0.00 0.00 0.00 9 00:00:55

avg 0.30 0.29 0.39 0.17 4.65 0.30 0.29 0.39 0.17 4.65gn-b std 0.00 0.00 0.00 0.00 0.00 0 00:00:04 0.00 0.00 0.00 0.00 0.00 1 00:00:06

gd-b avg 0.30 0.29 0.39 0.17 4.65 0 04:25:16 0.31 0.29 0.39 0.17 4.65 27 08:58:30std 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

bfgs avg -0.04 -0.11 -0.38 4.87 2 · 104 0 00:00:12 0.44 0.27 0.29 0.15 65.1 0 00:00:08std 0.25 0.93 0.45 3.79 2 · 104 0.32 0.16 0.50 0.07 101

sims avg 0.23 -0.23 0.31 0.18 42.2 0 00:00:40 0.61 0.25 0.09 0.14 118 0 00:00:38std 0.42 2.00 0.38 0.12 105 0.36 0.26 0.73 0.07 123

nm avg 0.43 -4.98 0.38 0.17 16.96 0 00:00:17 0.56 0.25 0.41 0.15 21.6 0 00:00:16std 0.44 37.3 0.22 0.05 39.9 0.34 0.16 0.29 0.05 31.5

sa avg 1.55 -1.45 0.50 0.09 74.8 0 00:04:45 0.66 0.19 0.63 0.05 194 0 00:02:32std 2.14 2.71 0.25 0.09 92.0 0.45 0.28 0.66 0.07 87.2
sa avg 0.96 -79.0 0.44 0.10 63.2 0 00:04:52 0.66 0.24 0.59 0.06 168 0 00:02:49+nm std 2.03 122 0.15 0.09 78.7 0.43 0.27 0.66 0.07 98.5

lower b. 0.05 0.01 -0.95 0.01 - - - 0.05 0.01 -0.95 0.01 - - -
upper b. 0.99 0.90 0.95 12 - - - 0.99 0.90 0.95 12 - - -

Legend: Comparison for 50 starting values. true: full sample estimate (est). Objs: avg and std of
minimized objective value. crash: optimization terminated because objective returned error. time: average
run time for optimizers in hours:minutes:seconds. Lower/upper bound used for the reparameterization. gn
run with γ = 0.1 for k = 150 iterations for all starting values. Standard errors were not computed in the
original study. gn-b and gd-b use a backtracking line search, terminates once Qn(θk) −Qn(θk+1) ≤ 10−8.
Additional results for gn, using a range of values γ ∈ (0, 1] can be found in Appendix F.2.

In the original paper, the authors initialize the estimation at θ0 = (η0, ν0, ρs0, σs0) =

(0.20, 0.20, 0.30, 0.10), very close to θ̂n. Here, 50 starting values are generated within the
bounds in Table 5. The model is estimated using csminwel and the same set of optimizers
used in the previous replication. Table 5 reports the results with and without the non-linear
reparameterization. Similar to the MA(1) model with p = 12, without the reparameteri-
zation, several optimizers return values outside the parameter bounds, which motivates the
constraints in these cases. gn correctly estimates the parameters for all starting values but

24The replication uses the mapping θj = θj +
θj−θj

1+exp(−ϑj)
, where each ϑj is unconstrained. The original

study relied on θj = 1/2(θj + θj) + 1/2(θj − θj)
ϑj√
1+ϑ2

j

, which we found to make optimizers very unstable.
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crashes twice for starting values for which both η and ν are close to their lower bounds
where the Jacobian is nearly singular. With the reparameterization, gn crashed more often,
nines times in total, but is otherwise accurate. With backtracking line search, crashes are
fewer for gn, and converges in 14 iterations, on average, with or without reparameterization,
compared to 832 for gd without reparameterization and 2912 with reparameterization (both
with cap of 10000). The crashes might also occur at values strictly within the parameter
bounds for which Dynare cannot solve the model and returns an error. There is no obvious
way to modify gn or gd to avoid this problem.

Figure 7: Impulse Response Matching: distribution of minimized objective values

Legend: Comparison for 50 starting values. Minimized objective values for non-crashed optimizations.
Objective values are truncated from above at Qn(θ) = 150.

Figure 8: Impulse Response Matching: Gauss-Newton iterations for 5 starting values

Legend: 150 gn iterations for 5 non-crashing starting values. Left: value of the objective function at each
iteration; Right: coefficient η at each iteration; horizontal light red line = full sample estimate.

The other two gradient-based optimizers, bfgs and sims(csminwel), never crash be-
cause of better error handling in Matlab. They produce valid estimates less often than gn.
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Figure 7 illustrates that csminwel is sensitive to reparameterization. Likewise, derivative-
free methods can be inaccurate, as illustrated in Table 5 and Figure 7; some crashes occur
despite Matlab’s error handling. Finally, Figure 8 shows 5 optimization paths for which
gn does not crash with and without the reparameterization. Appendix F.2 gives additional
results for larger values of γ ∈ (0, 1] and error handling.

5.4 Convexity, Strong Injectivity, and Assumption 2 (b)

Table 6 illustrates the strong injectivity conditions, Assumption 2 (b), and convexity for the
MA(1) model and the two empirical applications. A grid of 100 Sobol points was used to
construct values within parameter bounds, respectively sb and lb, as described in Section
4.1; the first grid value is enforced to take only values from the bounds. The objective Qn

is locally convex at θ if the Hessian is positive definite, i.e. Hn(θ) > 0. The Table reports
an estimate for µn, ρσ and the proportion of grid values where Qn is locally convex. To
evaluate ρσ, the same step from Section 4.1 were used setting θ2k = θ̂n for all k. The Pk,n for
gn was used so that the µn, ρσ reported here are invariant to linear reparameterizations of
both the parameters and the moments.

Table 6: Empirical and Illustrative Examples: Conditions, Convexity
Strong Injectivity (SI’) Assumption 2 (b) Convexity

µ̂n γ k ρ̂σn γ k Hn > 0 (%)
ma(1), p = 1 sb 0.5 3.1 · 10−3 2.2 · 103 0.9 3.1 · 10−3 2.1 · 103 46

lb 0.0 0.0 ∞ 0.0 0.0 ∞ 40
ma(1), p = 12 sb 0.15 4 · 10−3 1.6 · 103 0.17 6 · 10−3 1.2 · 103 98

Wn = Id lb 0.0 0.0 ∞ 0.0 0.0 ∞ 90
ma(1), p = 12 sb 0.12 3.5 · 10−3 1.9 · 103 0.13 3.4 · 10−3 2.0 · 103 98
Wn = V̂ −1

n lb 0.0 0.0 ∞ 0.0 0.0 ∞ 90
sb 0.38 1.0 1 0.75 1.0 1 95

blp lb 0.62 1.6 · 10−5 4.3 · 105 0.68 2.3 · 10−7 3.0 · 107 1

dsge sb 0.16 4.0 · 10−10 1.7 · 1010 0.37 1.3 · 10−9 5.2 · 109 3
lb 0.13 1.3 · 10−11 5.5 · 1011 0.33 2.7 · 10−10 2.5 · 1010 5

dsge sb 0.13 3.5 · 10−12 2.0 · 1012 0.23 3.5 · 10−13 1.98 · 1013 0
(re) lb 1.2 · 10−14 0 ∞ 0.24 5.0 · 10−13 1.4 · 1013 0

Legend: Results for 100 sobol grid points, adjusted to match the bounds (Smaller Bounds sb, or Larger
Bounds lb), for which the moments are well defined. dsge, dsge (re) with/without reparameterization.
Bounds: MA(1): sb Θ = [−0.9, 0.9] (rank conditions hold); lb Θ = [−1.0, 1.0] (rank conditions fail). blp:
sb Θ = values 50% above/below the true value (Conlon and Gortmaker, 2020, p25), lb Θ = [−10, 10] ×
· · ·× [−10, 10]. dsge: sb same as original paper plus/minus 0.1 for lower/upper bounds; lb same as original
paper Θ = [0.05, 0.99] × [0.01, 0.90] × [−0.95, 0.95] × [0.01, 12]. Convexity: percentage (%) of points for
which Hn is strictly positive definite. Sample sizes: MA(1) n = 200, blp n = 2256, dsge n = 63.

For the MA(1) model, strong injectivity and Assumption 2 (b) fail at the boundary where
θ = ±1. This is visible in the results for lb. For sb, both conditions hold as illustrated in the
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Table. Optimal weighting has some effect on the conditions and the predicted convergence
properties. Convexity fails more often with a single moment condition (p = 1).

For BLP, the conditions appear to hold and predict fast convergence for sb, used in
Conlon and Gortmaker (2020), where Qn is almost everywhere locally convex. With wider
bounds (lb), convexity almost always fails, but the estimates for µn, ρσ are very close to
sb. This confirm the good optimization properties for gn reported above.

For the DSGE model, µn, ρσ are of the same order of magnitude as the other applica-
tions without reparameterization. With reparameterization, the conditions can fail at the
boundary which is visible in the Table under lb. With and without reparameterization, Qn

is rarely locally convex, which confirms the challenges bfgs and csminwell can have.
In both empirical applications, the estimates for γ and k tend to be very small and large,

respectively, despite µn, ρσ being away from zero. This reflect the large amount of non-
linearity, measured by C3,K and LQ,P,K . As discussed in Section 4.1, these estimates can be
fairly conservative which is clearly the case here. Also, because the moments are evaluated
numerically, using a fixed-point algorithm for BLP, and the derivatives are computed by finite
differences, the second-order derivatives can be fairly inaccurate. This issue is explained
in Appendix F.3. Innacurate second-order derivatives can make optimizers like bfgs and
csminwell numerically unstable, but will also affect the value of LQ,P , which tend to be
very large in the empirical applications resulting in a very conservative bound for γ.25

6 Conclusion

Non-convexity of the GMM objective function is considered to be an important challenge
for structural estimation. This paper considers alternative conditions under which there
are globally convergent algorithms. The results are robust to non-convexity, moderately
non-linear one-to-one reparameterizations, and moderate misspecification. Though off-the-
shelf methods might fail to converge due to the non-convexity of the optimization problem,
the paper has shown that this does not necessarily imply that it will be difficult in prac-
tice. Econometric theory emphasizes the role of the weighting matrix Wn on the statistical
efficiency of the estimator θ̂n. Here, Assumption 2 may or may not hold, depending on
the choice of weighting matrix Wn. Its condition number κW also affects local convergence
which highlights an important role for the weighting matrix: it may facilitate or hinder the
estimation itself.

25The estimate is LQ,P,K = 2 · 104 for BLP with large bounds, and LQ,P,K = 9 with small bounds.
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Appendix A Proofs for the Main Results

The proofs will make repeated use of the following mean value identity.

Lemma A1 (Mean Value Identity). For any g(·) continuous differentiable on Rdθ with
Jacobian G(·), let G(θ1, θ2) =

∫ 1

0
G(ωθ1 + (1− ω)θ2)dω. For any θ1, θ2 ∈ Rdθ :

g(θ1)− g(θ2) = G(θ1, θ2)(θ1 − θ2).

Proof of Lemma A1: Let h : [0, 1] → Rdg be defined as h(ω) = g(ωθ1 + (1 − ω)θ2),
so that g(θ1) − g(θ2) = h(1) − h(0) =

∫ 1

0
∂ωh(ω)dω. By composition and the chain rule:

∂ωh(ω) = ∂θg(ωθ1 + (1 − ω)θ2)(θ1 − θ2) = G(ωθ1 + (1 − ω)θ2)(θ1 − θ2). Plug this into the
integral to find: g(θ1)− g(θ2) = G(θ1, θ2)(θ1 − θ2), as desired.

A.1 Implications of Assumptions 1, 2

In the following we will use the notation: gn(θ) = 1/n
∑n

i=1 g(θ;xi), g(θ) = E[gn(θ)],
G(θ;xi) = ∂θg(θ;xi), Gn(θ) = 1/n

∑n
i=1G(θ;xi), G(θ) = E[Gn(θ)], Qn(θ) = 1/2gn(θ)

′Wngn(θ),
and Q(θ) = 1/2g(θ)′Wg(θ). Wn and W are symmetric. With probability approaching 1 will
be abbreviated as wpa1. BR(θ

†) is a closed ball of radius R, centered around θ†. In the
following, Θ̃ generically denotes a compact convex subset of Rdθ such that θ† ∈ interior(Θ̃).

Assumption A1. With probability approaching 1: i. Qn has a global minimizer on Θ̃,
θ̂n ∈ interior(Θ̃), ii. gn is twice continuously differentiable on Θ̃, iii. Gn is Lipschitz
continuous with constant L ≥ 0 on Θ̃, and for some RG > 0 such that, σmin[Gn(θ)] ≥ σ > 0

for all ∥θ − θ̂n∥ ≤ RG, iv. Wn is such that 0 < λW ≤ λmin(Wn) ≤ λmax(Wn) ≤ λW <∞.

Remarks. The condition that xi are iid can also be weakened to allow for non-identically
distributed dependent observations by appropriately adjusting the moment conditions in 1i,
iii which are used to derive uniform laws of large numbers for gn and Gn.

Lemma A2. Assumption 1 implies Assumption A1.

Lemma A3. Suppose Assumption 1 holds, then supθ∈Rdθ ∥Gn(θ) − G(θ)∥ = op(1). This
implies that supθ1,θ2∈Rdθ ∥Gn(θ1, θ2) − G(θ1, θ2)∥ = op(1) and σmax[Gn(θ1, θ2)] ≤ σ, wpa1,
uniformly in θ1, θ2 ∈ Rdθ .

Lemma A4. Suppose Assumption 1 holds. Then, for some r > 0, Assumption 2 (a) holds
for all θ ∈ Br(θ

†) with the same choice of ρ, σ.
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Lemma A5. Suppose Assumption 1 (iii), (v), (vi) and 2 (b) hold. Then, Assumption 1 (iv)
holds for some strictly positive σ̃, R̃.

The following results are stated in terms of Gn(θ) =
∫ 1

0
{Gn(ωθ + (1− ω)θ̂n)}dω.

Assumption A2. With probability approaching 1, for all θ ∈ Rdθ : (a) σmin[Gn(θ)
′WnGn(θ)] ≥

ρσ, (b) ∥Gn(θ)
′WnGn(θ)(θ − θ†)∥ ≥ ρσ∥θ − θ†∥.

Lemma A6. Suppose Assumptions 1 holds. 1) If Assumption 2 (a) holds, Assumption A2
(a) holds. 2) If Assumption 2 (b), Assumption A2 (b) holds.

Proof of Lemma 1. Lemma A3 implies that Gn(θ1, θ2) is uniformly consistent in θ1, θ2 ∈
Rdθ . With this in mind, Lemma A1 implies:

gn(θ)− gn(θ
†) = Gn(θ, θ

†)(θ − θ†) = [G(θ) + op(1)](θ − θ†),

uniformly in θ ∈ Rdθ . Now Assumption 2 (b) implies:

∥gn(θ)− gn(θ
†)∥ ≥ (ρσ/[λWσ]− op(1))∥θ − θ†∥.

Using the triangular inequality: ∥gn(θ)∥Wn ≥ λ
1/2
W (ρσ/[λWσ]− op(1))∥θ − θ†∥ − ∥gn(θ†)∥Wn ,

uniformly in θ ∈ Rdθ . For any ∥θ − θ†∥ ≥ [2∥g(θ†)∥W + 1]λWσ/[λ
1/2
W ρσ], this implies:

∥gn(θ)∥Wn ≥ ∥g(θ†)∥W + 1− op(1).

Now, given that ∥gn(θ†)∥Wn ≤ ∥g(θ†)∥W +1 wpa1, this implies that ∥θ̂n−θ†∥ ≤ [2∥g(θ†)∥W +

1]λWσ/[λ
1/2
W ρσ], wpa1. Then, uniform convergence on compact sets (Lemma A2), and the

identification conditions imply that θ̂n
p→ θ†, using standard arguments (e.g. Newey and

McFadden, 1994, Th2.1). Again, Qn is uniformly consistent on compact sets, so Qn(θ̂n)
p→

Q(θ†). This concludes the proof.

Proof of Lemma A2. In the following, all the strict inequalities are replaced by weak
inequalities with some slackness δ > 0, e.g. σmin(G(θ)) ≥ (1+δ)σ > 0 instead of σmin(G(θ)) >

σ > 0, and λmax(W ) ≤ (1 − δ)λW < ∞ instead of λmax(W ) < λW < ∞. Assumption A1ii,
iv follow from 1ii, iv. Use Weyl’s perturbation inequality for singular values (Bhatia, 2013,
Problem III.6.5) to find λmin(Wn) ≥ λmin(W )− σmax(Wn −W ) ≥ (1 + δ)λW − op(1) ≥ λW ,
wpa 1. Likewise, λmax(Wn) ≤ λW , wpa1. This yields Assumption A1v.
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Assumption 1iii and compactness imply uniform convergence of the sample Jacobian
supθ∈Θ̃ ∥Gn(θ)−G(θ)∥ = op(1), see Jennrich (1969). We also have uniform convergence for
the same moments. Condition ii implies gn(θ) − g(θ) = op(1), for all θ ∈ Θ̃. Notice that
∥[gn(θ1)− g(θ1)]− [gn(θ2)− g(θ2)]∥ = ∥[Gn(θ1, θ2)−G(θ1, θ2)](θ1 − θ2)∥ ≤ [supθ∈Θ̃ ∥Gn(θ)−
G(θ)∥]∥θ1 − θ2∥, where the sup is a op(1) by uniform convergence of Gn, and G(θ1, θ2) =∫ 1

0
G(ωθ1+(1−ω)θ2)dω. Using a finite cover and arguments similar to Jennrich (1969), this

implies uniform convergence: supθ∈Θ̃ ∥gn(θ)− g(θ)∥ = op(1).
Then, uniform convergence of gn and Wn

p→ W imply uniform converge of Qn to Q.
Continuity and the global identification condition 1i. imply θ̂n

p→ θ† (Newey and McFadden,
1994, Th2.1). This implies that ∥θ− θ̂n∥ ≤ RG ⇒ ∥θ−θ†∥ ≤ RG+op(1) ≤ (1+δ)RG, wpa 1,
i.e. BRG

(θ̂n) ⊆ B(1+δ)RG
(θ†) ⊆ Θ̃. This implies θ̂n ∈ interior(Θ̃), wpa1. Then, for the same

θ, σmin[G(θ)] ≥ (1 + δ)σ, wpa1. Apply Weyl’s inequality for singular values to find that,
uniformly in θ: σmin[Gn(θ)] ≥ σmin[Gn(θ)]− σmax[G(θ)−Gn(θ)] ≥ (1 + δ)σ − op(1) ≥ σ > 0,
wpa 1. Take any two θ1, θ2 in Θ̃, ∥Gn(θ1)−Gn(θ2)∥ ≤ 1/n

∑n
i=1 L̄(xi)∥θ1−θ2∥ ≤ [(1− δ)L+

op(1)]∥θ1 − θ2∥ ≤ L∥θ1 − θ2∥, wpa1, using a law of large numbers for L̄(xi). This yields all
the conditions in Assumption A1iii.

Proof of Lemma A3. Pick δ > 0, set (1 + R) ≥ 3M
δ

so that ∥G(θ) − G(θR)∥ ≤ δ/3 for
any θ ∈ Rdθ . Since ΘR = {θ ∈ Rdθ , ∥θ∥ ≤ R} is compact, supθ∈ΘR

∥Gn(θ) − G(θ)∥ = op(1),
using Lemma A2. Likewise,

∥Gn(θ)−Gn(θR)∥ ≤

[
1

n

n∑
i=1

M̄(xi)

]
/(1 +R) ≤ [M + op(1)]/(1 +R) ≤ δ/3 + op(1).

Then, combine these results to find:

∥Gn(θ)−G(θ)∥ ≤ ∥Gn(θ)−Gn(θR)∥+ ∥Gn(θR)−G(θR)∥+ ∥G(θ)−G(θR)∥

≤ 2/3δ + op(1),

uniformly in θ ∈ Rdθ . This implies uniform consistency: limn→∞ P(supθ∈Rdθ ∥Gn(θ) −
G(θ)∥ > δ) = 0. Also,∥Gn(θ1, θ2) − G(θ1, θ2)∥ ≤ supθ∈Rdθ ∥Gn(θ) − G(θ)∥ = op(1) and
σmax[Gn(θ1, θ2)] ≤ supθ∈Rdθ σmax[Gn(θ)] ≤ σ, wpa1, which is the desired result.

Proof of Lemma A4: Under Assumption 1, σmin[G(θ)] ≥ (1 + δ)σ for all θ ∈ BRG
(θ†)

and some δ > 0. Also, G is Lipschitz continuous with constant L since ∥G(θ1) − G(θ2)∥ ≤
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E[∥G(θ1;xi)−G(θ2;xi)∥] ≤ L∥θ1 − θ2∥. As a result, ∥G(θ)−G(θ†)∥ ≤ L∥θ − θ†∥. Then,

∥G(θ)′WG(θ)−G(θ†)′WG(θ†)∥ ≤ 2σλWL∥θ − θ†∥.

Apply Weyl’s inequality to find:

σmin[G(θ)
′WG(θ)] ≥

{
(1 + δ)[λWσ]− 2

σλWL

σ
∥θ − θ†∥

}
σ.

Pick ∥θ−θ†∥ ≤ r with r such that δ > 2σLλW/[λWσ
2]r to find: σmin[G(θ)

′WG(θ)] > [λWσ]σ,
given that 0 < ρ ≤ λWσ in Assumption 2 (a), this yields the result.

Proof of Lemma A5: Take θ = θ† + εv, with v unitary. Assumption 2 (b) and the
regularity conditions (Assumption 1 (iii), (v), (vi)) imply: ∥G(θ†)′WG(θ†)v∥ > ρσ−2σλWLε,
take ε → 0, to find λmin[G(θ

†)′WG(θ†)] > ρσ so that σmin[G(θ
†)] > ρσ/[σλW ]. Pick σ̃ =

1/2ρσ/[σλW ]. The Lipschitz continuity of G implies σmin[G(θ)] ≥ σmin[G(θ
†)]−L∥θ− θ†∥ >

1/2ρσ/[σλW ] for ∥θ − θ†∥ ≤ R̃ < 1/2ρσ/[LσλW ].

Proof of Lemma A6. Lemmas 1 and A3 apply so that Gn is uniformly convergent and
Lipschitz continuous, θ̂n is consistent. 1) This implies that:

∥Gn(θ)−G(θ)∥ = ∥
∫ 1

0

{Gn(ωθ + (1− ω)θ̂n)−G(ωθ + (1− ω)θ†)}dω∥

≤ L∥θ̂n − θ†∥+ sup
θ∈Θ

∥Gn(θ)−G(θ)∥ = op(1).

Then apply Weyl’s inequality to find that, uniformly in θ and wpa1: σmin[Gn(θ)] ≥ σmin[G(θ)]−
op(1), σmin[Gn(θ)] ≥ σmin[G(θ)] − op(1), and σmin[Gn(θ)

′WnGn(θ)] ≥ σmin[G(θ)
′WG(θ)] −

op(1), which yields the result.
2) Lemma A4 implies Assumption 2 (a) holds locally, i.e. for ∥θ − θ†∥ ≤ r, with r > 0.

With the derivations above, this implies that Assumption A2 (a) holds locally as well, i.e.
for ∥θ − θ̂n∥ ≤ r/2, wpa1. Recall that Assumption A2 (a) implies Assumption A2 (b).

Take ∥θ − θ̂n∥ ≥ r/2. By uniform consistency and boundedness of Gn and Gn, we have:
Gn(θ)

′WnGn(θ) = G(θ)′WG(θ) + op(1), uniformly in θ using σmax[Gn(θ)] ≤ σ wpa1. Since
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θ̂n is consistent, we have uniformly in ∥θ − θ̂n∥ ≥ r/2:

∥Gn(θ)
′WnGn(θ)(θ − θ̂n)∥ ≥ ∥G(θ)′WG(θ)(θ − θ̂n)∥ − op(1)∥θ − θ̂n∥

≥ ∥G(θ)′WG(θ)(θ − θ†)∥ − op(1)∥θ − θ̂n∥ − σ2λWop(1)

≥ (1 + δ)ρσ∥θ − θ†∥ − op(1)∥θ − θ̂n∥ − σ2λWop(1)

≥ [(1 + δ)ρσ − op(1)]∥θ − θ̂n∥ − [σ2λW + (1 + δ)ρσ]op(1)

≥
[
(1 + δ)ρσ − op(1)− op(1)2

σ2λW + (1 + δ)ρσ

r

]
∥θ − θ̂n∥,

using ∥θ − θ̂n∥/(r/2) ≥ 1 for the last inequality. The leading term is greater or equal than
ρσ wpa1 which yields the result.

A.2 Proofs for Section 2.2

Proof of Theorem 1: Take θ0 ∈ Θ, let Θn =
{
θ̃ ∈ Rdθ , Qn(θ̃) ≤ Qn(θ0)

}
. From the proof

of Lemma 1, we have:√
2Qn(θ̃) ≥ (ρσ/[λWσ]− op(1))∥θ̃ − θ†∥ − ∥g(θ†)∥W − op(1),

uniformly in θ̃ ∈ Rdθ . Now take Q0 = supθ∈ΘQ(θ) and let:

Θ0 =
{
θ̃ ∈ Rdθ , ∥θ̃ − θ†∥ ≤ 2

√
2Q0 +

√
2Q(θ†) + 1

ρσ/[λW ]σ

}
,

a compact subset of Rdθ . We have Θ ⊆ Θ0 and Θn ⊆ Θ0, wpa1. Now, let: RΘ =

4λPσ
2λWdiam(Θ0), which bounds ∥θk+1 − θk∥ wpa1, uniformly in θk ∈ Θ0, for any choice of

γ ∈ [0, 1]. Uniformly in θk ∈ Θ0, θk+1 computed in (1) satisfies θk+1 ∈ ΘR = ∪θ∈Θ0BRΘ
(θ)

wpa1. The sample moments and Jacobian are uniformly consistent on ΘR ⊇ Θ0. Then, by
recursion over k ≥ 0, the following establishes that uniformly in θk ∈ Θ0, Qn(θk+1) ≤ Qn(θk).
Hence, θk ∈ Θ0 for all k ≥ 0 wpa1, uniformly in θ0 ∈ Θ. So the derivations below can proceed
under Assumption A1, with Θ̃ = ΘR, since the path is compact-valued wpa1.

Case 1) Just-identifed: Since Assumptions A1 and A2 hold (using Lemmas A2, A6),
Proposition 1 (1)-(2) holds, with probability approaching 1, for the sample moments with the
same choice of strictly positive constants C1, C2, C3. Denote by LQ the Lipschitz constant of
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∂θQn. The mean value value theorem implies that for some θ̃k between θk and θk+1:

Qn(θk+1) = Qn(θk)− γ∂θQn(θk)Pk,n∂θQn(θk)− γ{∂θQn(θ̃k)− ∂θQn(θk)}Pk,n∂θQn(θk)

≤ Qn(θk)− γλP∥∂θQn(θk)∥2 + γ2LQλ
2

P∥∂θQn(θk)∥2

≤ Qn(θk) + γ{−λP + γLQλ
2

P}∥∂θQn(θk)∥2

≤ Qn(θk)− γλP/2∥∂θQn(θk)∥2

≤ Qn(θk)− γλPC1/2(Qn(θk)−Qn(θ̂n)),

if 0 < γ ≤ λP/[2LQλ
2

P ]. Substract Qn(θ̂n) on both sides to find:

Qn(θk+1)−Qn(θ̂n) = {1− γC1λP/2}(Qn(θk)−Qn(θ̂n)).

Set (1− γ)2 = 1− γλPC1/2 and iterate over k = 0, . . . to find:

∥θk+1 − θ̂n∥ ≤ (1− γ)k+1
√
C3/C2∥θ0 − θ̂n∥,

which is the desired result.
Case 2) Over-identifed: Since Assumptions A1 and A2 hold (using Lemmas A2, A6),

and Qn(θ̂n) = op(1), Proposition 5 (1’)-(2) holds, with probability approaching 1, for the
sample moments with the same choice of strictly positive constants C2, C3, C4. Let

C1n =
(ρσ − λ

1/2

W L∥gn(θ̂n)∥Wn)
2

C3 + C4∥gn(θ̂n)∥Wn

= C1 + op(1),

for the same C1 found in Proposition 1 (1). Denote by LQ the Lipschitz constant of ∂θQn.
The mean value theorem implies that for some θ̃k between θk and θk+1:

Qn(θk+1) = Qn(θk)− γ∂θQn(θk)Pk,n∂θQn(θk)− γ{∂θQn(θ̃k)− ∂θQn(θk)}Pk,n∂θQn(θk)

≤ Qn(θk) + γ{−λP + γLQλ
2

P}∥∂θQn(θk)∥2

≤ Qn(θk)− γλPC1n/2(Qn(θk)−Qn(θ̂n)),

if 0 < γ ≤ λP/[2LQλ
2

P ]. Substract Qn(θ̂n) on both sides to find:

Qn(θk+1)−Qn(θ̂n) = {1− λPγC1n/2}(Qn(θk)−Qn(θ̂n)).
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Set (1− γ)2 = 1− γλPC1n/2 and iterate over k = 0, . . . to find:

∥θk+1 − θ̂n∥ ≤ (1− γ)k+1

√
C3 + C4∥gn(θ̂n)∥Wn√
C2 − C4∥gn(θ̂n)∥Wn

∥θ0 − θ̂n∥,

which is the desired result.

Proof of Theorem 2: The proof is similar to Theorem 1, the condition on φ ensures that
inequalities (1’)-(2) in Proposition 5 hold with strictly positive constants, with probability
approaching 1, for the sample moments.

Appendix B Proofs and additional results for Section 3

B.1 Properties related to Strong Injectivity

Lemma B7 (From (SI’) to (SI), Assumption 3). Suppose Assumption 1 (iii), (vi) hold, then:
1) (SI’) implies (SI), and 2) (SI’) implies Assumption 3 holds for gn.

Lemma B8 (From (SI) to (SI’)). Suppose Assumption 1 (iii), (vi) hold and g = (g′1, g
′
2)

′

where g1 is just-identified and satisfies (SI) for some µ1 > 0. Let W̃ (λ) = λW + (1 −
λ)blockdiag(W1, 0), where W1 is the upper block of W corresponding to g1. If W1 is invertible,
then there exists λ⋆ ∈ (0, 1] such that (SI’) holds using W̃ (λ) for any 0 ≤ λ ≤ λ⋆.

B.2 Additional Results for Over-Identified Models

Proposition B8. (Sufficient Conditions: Over-Identified) Consider the following three con-
ditions: (a) σmin[G(θ)

′WG(θ1, θ2)] > σ > 0, for all θ, θ1, θ2 ∈ Rdθ , (b) for all θ ∈ Rdθ ,
G(θ) = US(θ)V for U, V full rank, S(θ) symmetric with 0 < λS < λmin[S(θ)] < λmax[S(θ)] <

λS <∞, and U ′WU invertible.
The following holds: (1) (b) ⇒ (a) ⇒ Assumption 2 (a), (2) (a) implies G(θ1)′Wg(·) is
one-to-one, for any θ1 ∈ Rdθ .

Proposition B9. (Reparameterization: Over-Identified) Take h as in Proposition 7. 1)
If Assumption 2 (a) holds for g and σ > λW [C1σhσ

2 + C2Lσ
2
hσ]/σ

2
h, then Assumption 2

(a) holds for g ◦ h. In particular, if h = Au + b is affine with A invertible then C1 =

C2 = 0 and Assumption 2 (a) holds for g ◦ h. 2) Suppose Assumption 2 (b) holds for g. If
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∥h(u)− h(u†)∥ ≥ µ∥u− u†∥, for some µ > 0 and all u ∈ U , then Assumption 2 (b) holds for
g ◦ h.

B.3 Proofs for Section 3 and the additional results

Proof of Proposition 1: We first prove (2). For any θ ∈ Rdθ , g(θ) = g(θ) − g(θ†) =

G(θ)(θ−θ†), for correctly specified models. This implies thatQ(θ) = 1/2(θ−θ†)′G(θ)′WG(θ)(θ−
θ†). Assumption 1 (iii) implies σmax[G(θ)] ≤ maxθ∈Rdθ σmax[G(θ)] ≤ σ < +∞. Assump-
tion 2 (b) implies σλ

1/2

W ∥W 1/2G(θ)(θ − θ†)∥ ≥ ρσ∥θ − θ†∥ and ∥W 1/2G(θ)(θ − θ†)∥ =√
2[Q(θ)−Q(θ†)]. Putting these together yields:

1/2
ρ2σ2

σ2λW
∥θ − θ†∥2 ≤ Q(θ)−Q(θ†) ≤ 1/2σ2λW∥θ − θ†∥2.

Now, we prove (1). We have ∂θQ(θ) = G(θ)′Wg(θ) = G(θ)′WG(θ)(θ − θ†). Assumption 2
(b) implies:

∥∂θQ(θ)∥2 ≥ ρ2σ2∥θ − θ†∥2 ≥ ρ2σ2

1/2σ2λW
[Q(θ)−Q(θ†)],

using (2). This is the desired result.

Proof of Proposition 2: For correctly specified models, ∂θQ(θ) = G(θ)′WG(θ)(θ − θ†).
1) If the PL inequality holds, the quadratic lower bound implies ∥G(θ)′WG(θ)(θ − θ†)∥2 ≥
µC2∥θ − θ†∥2, i.e. Assumption 2 (b) holds.
2) By definition, Q is quasar-convex if, and only if, there are λ ≥ 1 and µ ≥ 0 such that:

∂θQ(θ)(θ − θ†) ≥ 1

λ
{Q(θ)−Q(θ†)}+ µ

2λ
∥θ − θ†∥2,

where ∂θQ(θ)(θ − θ†) = (θ − θ†)′G(θ)′WG(θ)(θ − θ†). Since Q(θ)−Q(θ†) ≥ 0 we have:

(θ − θ†)′G(θ)′WG(θ)(θ − θ†) ≥ µ

2λ
∥θ − θ†∥2.

Now apply the Cauchy-Schwarz inequality to find:

∥θ − θ†∥∥G(θ)′WG(θ)(θ − θ†)∥ ≥ (θ − θ†)′G(θ)′WG(θ)(θ − θ†) ≥ µ

2λ
∥θ − θ†∥2,

which implies Assumption 2 (b).
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Proof of Proposition 3: 1) Strong monotonicity of Ag implies (θ1 − θ2)
′AG(θ1, θ2)(θ1 −

θ2) ≥ µ∥θ1 − θ2∥2 since g(θ1) − g(θ2) = G(θ1, θ2)(θ1 − θ2). For any unit vector v, take
θ2 = θ1 + εv and let ε → 0 to find v′AG(θ1)v = 1

2
v′[AG(θ1) + G(θ1)

′A′]v ≥ µ so that G(θ1)
has full rank and AG(θ1)+G(θ1)′A′ is positive definite. We have σmin[G(θ)] ≥ µσmin(A)

−1 :=

σ > 0, as a normalization. Pick θ2 = θ†, use the Cauchy-Schwarz inequality to find ∥A′(θ −
θ†)∥∥G(θ, θ†)(θ − θ†)∥ ≥ (θ − θ†)′AG(θ, θ†)(θ − θ†) ≥ µ∥θ − θ†∥2.

Because G(θ)′W is invertible, we can write ∥G(θ)′WG(θ, θ†)(θ−θ†)∥ ≥ σλW∥G(θ, θ†)(θ−
θ†)∥ ≥ σµλWσmax(A)

−1∥θ − θ†∥; Assumption 2 (b) holds for any appropriate choice of
0 < ρ ≤ µλWσmax(A)

−1.
2) Strong injectivity of g implies ∥G(θ1, θ2)(θ1− θ2)∥ ≥ µ∥θ1− θ2∥, for any pair θ1, θ2. Using
the same arguments as above: G(θ) has full rank for all θ and ∥G(θ)′WG(θ, θ†)(θ − θ†)∥ ≥
σλWµ∥θ − θ†∥; Assumption 2 (b) holds for any appropriate choice of 0 < ρ ≤ µλW .

Proof of Proposition 4. Assumption 1 (ii)-(vi) implies Assumption 2 (a) holds locally
(Lemma A4). Hence, for ∥θ− θ†∥ ≤ r, we have ∥G(θ)′WG(θ− θ†)∥ ≥ ρσ∥θ− θ†∥. Condition
(N) implies that for R ≥ ∥θ − θ†∥ ≥ r we have:

inf
θ,R≥∥θ−θ†∥≥r

∥∂θQ(θ)∥ ≥ δ(r, R) ≥ δ(r, R)

R
∥θ − θ†∥,

by continuity, compactness and the Weierstrass Theorem. We can pick ρ < δ(r,R)
Rσ

.

Proof of Proposition 5: For any θ ∈ Rdθ , we have:

Q(θ)−Q(θ†) =
1

2

(
g(θ)′Wg(θ)− g(θ†)′Wg(θ†)

)
=

1

2

(
g(θ) + g(θ†)

)′
W
(
g(θ)− g(θ†)

)
=

1

2

(
g(θ) + g(θ†)

)′
WG(θ)(θ − θ†)

=
1

2
(θ − θ†)′G(θ)′WG(θ)(θ − θ†)− g(θ†)′WG(θ)(θ − θ†),

the first term in the last display matches the one in the proof of Proposition 1. Note that
g(θ†)′WG(θ†) = 0 and ∥G(θ†)−G(θ)∥ ≤ L∥θ−θ†∥, together these allow to bound the second
term:

∥g(θ†)′WG(θ)(θ − θ†)∥ = ∥g(θ†)′W [G(θ)−G(θ†)](θ − θ†)∥ ≤ λ
1/2

W L
√
φ∥θ − θ†∥2.
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Let C2 = 1/2 ρ2σ2

σ2λW
and C3 = 1/2σ2λW , as in the proof of Proposition 1. Take C4 = λ

1/2

W L,
this yields (2):

(C2 − C4
√
φ)∥θ − θ†∥2 ≤ Q(θ)−Q(θ†) ≤ (C3 + C4

√
φ)∥θ − θ†∥2.

For (1), we have ∂θQ(θ) = G(θ)′Wg(θ) and G(θ†)′Wg(θ†) = 0, so that:

∂θQ(θ) = G(θ)′WG(θ)(θ − θ†) + {G(θ)−G(θ†)}′Wg(θ†).

Apply the reverse triangular inequality to find:

∥∂θQ(θ)∥ ≥ ρσ∥θ − θ†∥ −
√
φλWL∥θ − θ†∥

=

(
ρσ −

√
φλWL

)
∥θ − θ†∥,

where L is the Lipschitz constant of G. Finally, (1’) can be derived from (1) and (2) assuming
(ρσ −

√
φλWL) > 0.

Proof of Proposition 6: We first prove (1). (a) ⇒ Assumption 2 (a) is immediate.
Under (c), G(θ) = ∂2θ,θ′F (θ) is symmetric and strictly positive definite so (b) holds. Suppose
(b) holds, then G(θ1, θ2) = U{

∫ 1

0
S(ωθ1 + (1 − ω)θ2)dω}V where

∫ 1

0
S(ωθ1 + (1 − ω)θ2)dω

is symmetric. Concavity of the smallest positive eigenvalue on the set of positive definite
matrices, and Jensen’s inequality imply: λmin[

∫ 1

0
S(ωθ1+(1−ω)θ2)dω] ≥

∫ 1

0
λmin[S(ωθ1+(1−

ω)θ2)]dω ≥ minθ∈Θ λmin[S(θ)] > 0, by positive definiteness and continuity of S(·). Finally,

σmin[G(θ1, θ2)] ≥ σmin(U)σmin(V )min
θ∈Θ

λmin[S(θ)] > λSσUσV > 0,

taking σUσV to be smallest singular values of U, V . Hence (a) holds.
For (2), note that g(θ1) − g(θ2) = G(θ1, θ2)(θ1 − θ2), using Lemma A1. With condition

(a), we have g(θ1)− g(θ2) = 0 ⇔ θ1 = θ2, i.e. g(·) is one-to-one.
For (3), g(·) is one-to-one, take ϕ(·) = g−1(·), one-to-one, and ψ = Id − θ†, we get that

h(θ) = θ−θ† is linear, the associated GMM loss is strictly quadratic; i.e. strongly convex.

Proof of Proposition 7: 1) Under Assumption 2 (a), G has full rank for all θ ∈ Rdθ .
Take u ∈ U , let θ = h(u), the chain rule implies that ∂ug ◦ h(u) = ∂θg ◦ h(u)∂uh(u) has full
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rank for all u ∈ U . Then, we have:∫ 1

0

G ◦ h(ωu+ (1− ω)u)∂uh(ωu+ (1− ω)u†)dω

=

∫ 1

0

G(ωθ + (1− ω)θ†)dω∂uh(u
†)

+

∫ 1

0

G(ωθ + (1− ω)θ†)[∂uh(ωu+ (1− ω)u†)− ∂uh(u
†)]dω

+

∫ 1

0

[G ◦ h(ωu+ (1− ω)u)−G(ωθ + (1− ω)θ†)]∂uh(ωu+ (1− ω)u†)dω,

using Weyl’s inequality and a minoration of the singular value for a matrix product, we get:

σmin[

∫ 1

0

∂uh(ωu+ (1− ω)u†)G ◦ h(ωu+ (1− ω)u)dω] ≥ σhσ − C1σ − C2Lσh,

which is strictly positive under the stated condition. After the change of variable, the
Assumption 2 (a) holds if:

∂uh(u)
′G(g(u))′W

{∫ 1

0

∂uh(ωu+ (1− ω)u†)G ◦ h(ωu+ (1− ω)u)dω
}
,

has singular values bounded below by a strictly positive term, which is the case for C1, C2

bounded as in the Proposition statement. In particular, when h is affine, C1 = C2 = 0 and
0 < σh = σmin[A] ≤ σmax[A] ≤ σh <∞, so that the condition is automatically satisfied.
2) Take u, let θ = h(u), since Assumption 2 (b) holds, we have:

∥G ◦ h(u)′W [g ◦ h(u)− g ◦ h(u†)]∥ ≥ ρσ∥h(u)− h(u†)∥ ≥ ρσµ∥u− u†∥.

Using the bounds on the Jacobian of ∂uh, we get the desired result:

∥∂uh(u)′G ◦ h(u)′W [g ◦ h(u)− g ◦ h(u†)]∥ ≥ σhρσµ∥u− u†∥.

Proof of Lemma B7 1) (SI’) implies ∥g(θ1)−g(θ2))∥ ≥ µ/[σλW ]∥θ1−θ2∥, where µ/[σλW ] >

0. 2) Take ∥v∥ = 1, θ2 = θ1 + εv and let ε → 0 in (SI’) to find: ∥G(θ1)′WG(θ1)v∥ ≥
µ∥v∥. Apply the min-max theorem for singular values (Bhatia, 2013, p75) to find that
σmin[G(θ)

′WG(θ)] ≥ µ for all θ ∈ Rdθ . Since G(θ)′WG(θ) is positive semidefinite, singular
and eigenvalues coincide, which implies that λP = µ > 0. Then Assumption 1 (iii), (vi)
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implies λP ≤ σ2λW . Uniform consistency then yield the desired result (Lemma A3).

Proof of Lemma B8: For just-identified models, (SI) implies (SI’) as long as the weight-
ing matrix is finite and invertible. Indeed, (SI) implies σmin[G1(θ)] ≥ µ1 > 0 so that
∥G1(θ1)

′W [g1(θ1)−g1(θ2)]∥ ≥ µ2
1λmin(W1)∥θ1−θ2∥ so that (SI’) holds using W1 as weighting

matrix. Some calculations imply that, by construction of W̃ :

∥G(θ1)′W̃ (λ)[g(θ1)− g(θ2)]∥ ≥ µ2
1λmin(W1)∥θ1 − θ2∥ − λ

[
∥G2(θ1)

′W21[g1(θ1)− g1(θ2)]∥

+ ∥G1(θ1)
′W12[g2(θ1)− g2(θ2)]∥+ ∥G2(θ1)

′W22[g2(θ1)− g2(θ2)]∥
]
,

where W2 is the lower block of W corresponding to g2, W12 and W21 are the top right
and bottom left corners of W , respectively. Let L1, L2 be the Lipschitz constants of g1, g2
respectively we can conservatively bound the last terms with:

λ∥G∥∞∥W∥∞[L1 + 2L2]∥θ1 − θ2∥ < µ2
1λmin(W1)∥θ1 − θ2∥,

for any 0 ≤ λ ≤ λ⋆ < µ2
1λmin(W1)/(∥G∥∞∥W∥∞[L1 + 2L2]), where ∥ · ∥∞ denotes the ℓ∞

norm.

Proof of Proposition B8: First, we prove (1). (a) ⇒ Assumption 2 (a) is immediate.
Suppose (b) holds, take any θ, θ1, θ2 ∈ Rdθ , thenG(θ)′WG(θ1, θ2) = V ′S(θ)U ′WU

∫ 1

0
{S(ωθ1+

(1−ω)θ2)}dωV . By assumption, V ′S(θ) and U ′WU have full rank. As in the proof of Propo-
sition 6,

∫ 1

0
{S(ωθ1 + (1 − ω)θ2)}dω has full rank for any θ1, θ2, and V is invertible. Hence,

S(θ)U ′WU
∫ 1

0
{S(ωθ1+(1−ω)θ2)}dωV is invertible, U has full rank so that G(θ)′WG(θ1, θ2)

has full rank for all θ, θ1, θ2.
For part (2), take any θ1, θ2, θ3. Suppose G(θ1)′Wg(θ2) = G(θ1)

′Wg(θ3), apply Lemma
A1 to find G(θ1)′WG(θ2, θ3)(θ2 − θ3) = 0 ⇒ θ2 = θ3 under condition (a).
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Proof of Proposition B9: 1) We’ll proceed similarly to the proof of Proposition 7:∫ 1

0

∂′uh(ωu+ (1− ω)u†)G ◦ h(ωu+ (1− ω)u†)′dωWG ◦ h(u)∂uh(u)

= ∂′uh(u
†)

∫ 1

0

G(ωθ + (1− ω)θ†)′dωWG(θ)∂uh(u)

+

∫ 1

0

[∂uh(ωu+ (1− ω)u†)− ∂uh(u
†)]′G(ωθ + (1− ω)θ†)′dωWG(θ)∂uh(u)

+

∫ 1

0

∂′uh(ωu+ (1− ω)u†)[G ◦ h(ωu+ (1− ω)u†)−G(ωθ + (1− ω)θ†)]′dωWG(θ)∂uh(u).

As before, we get: σmin[
∫ 1

0
∂′uh(ωu+ (1−ω)u†)G ◦ h(ωu+ (1−ω)u†)′dωWG ◦ h(u)∂uh(u)] ≥

σσ2
h − C1σhσ

2λW − C2Lσ
2
hσλW which is positive under the stated condition. As before, for

h affine we have C1 = C2 = 0 so that the condition holds for A finite and invertible. 2) The
proof is the same as in the just-identified case.
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Appendix C Local Convergence Results

The following considers local convergence under correct specification, where g(θ†) = 0, and
misspecification, where g(θ†) ̸= 0. These results highlight how several quantities affect the
estimation. Here, Assumptions 1, 3 are sufficient to study local convergence. Throughout it
is assumed that θ̂n and Qn(θ̂n) are consistent for θ† and Q(θ†).

Proposition C10 (Correctly Specified). If Assumptions 1, 3 hold, then for γ ∈ (0, 1) small
enough, with probability approaching 1, there exist 0 < Rn ≤ RG and γ̃ ∈ (0, 1) such that :

∥θk+1 − θ̂n∥ ≤ (1− γ̃)∥θk − θ̂n∥ ≤ · · · ≤ (1− γ̃)k+1∥θ0 − θ̂n∥ (C.1)

for any ∥θ0−θ̂n∥ ≤ Rn. For just-identified models, gn(θ̂n) = 0 implies Rn > 0 with probability
1. For over-identified models, gn(θ̂n) = op(1) implies Rn > 0 with probability approaching 1.

This result is comparable to those found for non-linear systems of equations (e.g. Dennis
and Schnabel, 1996; Nocedal and Wright, 2006, Ch11), with some notable differences. First,
if the model is over-identified, gn(θ) = 0 does not have a solution, and standard results
do not apply. Second, the area of local convergence Rn is tied to a) the choice of tuning
parameter γ, b) the size of the moments at the solution gn(θ̂n), c) the choice of weighting
matrix. For gn, the area of local convergence Rn = min(RG, R̃n) is the smallest of RG and:

R̃n = (1− γ̃/γ)
σ

L
√
κW

− 1

σ
√
λW

∥gn(θ̂n)∥Wn ,

where κW = λW/λW bounds the condition number of the weighting matrix Wn. Having
∥gn(θ̂n)∥Wn ̸= 0 reduces the area of local convergence in finite samples. For correctly specified
models gn(θ̂n) = op(1) implies R̃n

p→ R̃ = (1 − γ̃/γ)σ/(
√
κWL) > 0. Note that for gn,

Proposition C10 holds for any choice of γ ∈ (0, 1). This is typically not the case for other
choices of Pk,n: gd requires 0 < γ < [λWσ

2]−1 to be sufficiently small. gd and gn iterations
use the same inputs Gn and gn, but the latter converges more quickly.

The expression for R̃n illustrates that the choice of weighting matrix Wn matters. Equal
weighting, W = Id, has κW = 1 whereas an ill-conditioned matrix has κW ≫ 1.

In applications, ∥gn(θ̂n)∥Wn can be relatively large so that misspecification becomes a
concern. Understanding the robustness of Proposition C10 to non-negligible deviations from
Q(θ†) = 0 is then empirically relevant. The following considers models where the quantity:

Qn(θ̂n)
p→ Q(θ†) := φ/2 > 0
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does not vanish asymptotically which implies that ∥gn(θ̂n)∥Wn matters for local convergence,
even in large samples. Since Gn cannot be full rank at θ = θ̂n when the model is both just-
identified and misspecified, the results presented here solely consider over-identified models.1

Proposition C11 (Misspecified). Suppose Assumptions 1, 3 hold, and φ is such that:

√
φ <

σ2
√
λW

LκWκP
, (C.2)

where κP = λP/λP . For γ ∈ (0, 1) small enough, there exists γ̃ ∈ (0, γ), such that, with
probability approaching 1, for any ∥θ0 − θ̂n∥ ≤ Rn, and all k ≥ 0:

∥θk+1 − θ̂n∥ ≤ (1− γ̃)∥θk − θ̂n∥ ≤ · · · ≤ (1− γ̃)k+1∥θ0 − θ̂n∥, (C.1)

with the same Rn found in Proposition C10; such that plimn→∞Rn = R > 0 when (C.2)
holds.

The result shows that under ‘moderate’ amounts of misspecification, the area of local

convergence is asymptotically non-empty. For gn, the condition simplifies to: √φ < σ2
√

λW

L
√
κW

.
Several terms restrict the amount of misspecification in (C.2): σ, L, and the pair λW , κW .
The first measures local identification strength, the second non-linearity, and the latter
comes from the weighting matrix. For linear models, L = 0, the conditions reads √φ < +∞;
misspecification only matters in nonlinear problems with L > 0. Note that the area of local
convergence is asymptotically smaller than in Proposition C10.

Proof of Proposition C10 (Gauss-Newton). Take θk ∈ Rdθ , the update (1) can be
re-written as:

θk+1 − θ̂n =
(
Id − γPk,nGn(θk)

′WnGn(θk)
)
(θk − θ̂n)

− γPk,nGn(θk)
′Wn[gn(θk)−Gn(θk)(θk − θ̂n)].

(C.3)

1The solution θ̂n is s.t. Gn(θ̂n)
′Wngn(θ̂n) = 0, misspecification implies gn(θ̂n) ̸= 0, and since Wn has full

rank, it must be that Gn(θ̂n) is singular for just-identified models. For over-identified models, gn(θ̂n) is in
the null space of Gn(θ̂n)

′Wn, which allows Gn(θ̂n) to be full rank.
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For gn, Pk,nGn(θk)
′WnGn(θk) = Id so that we have:

θk+1 − θ̂n =(1− γ)(θk − θ̂n)

− γPk,nGn(θk)
′Wn[gn(θk)− gn(θ̂n)−Gn(θk)(θk − θ̂n)]

− γPk,n[Gn(θk)−Gn(θ̂n)]
′Wngn(θ̂n),

(C.3’)

using the first-order condition Gn(θ̂n)
′Wngn(θ̂n) = 0. From Assumption A1, there exists

RG > 0 such that: σ ≤ σmin[Gn(θk)] for any ∥θk − θ̂n∥ ≤ RG, which implies that Pk,n is well
defined and bounded. Since Gn is Lipschitz continuous with constant L ≥ 0:

∥Pk,nGn(θk)
′Wn[gn(θk)− gn(θ̂n)−Gn(θk)(θk − θ̂n)]∥ ≤ σ−1

√
λW/λWL∥θk − θ̂n∥2,

We also have:

∥Pk,n[Gn(θk)−Gn(θ̂n)]
′Wngn(θ̂n)∥ ≤ σ−2(

√
λW/λW )L∥gn(θ̂n)∥Wn∥θk − θ̂n∥.

Combine these two inequalities into (C.3’) to find:

∥θk+1 − θ̂n∥

≤
(
1− γ + γ

[
σ−1

√
λW/λWL∥θk − θ̂n∥+ σ−2(

√
λW/λW )L∥gn(θ̂n)∥Wn

])
∥θk − θ̂n∥.

(C.3”)
Now take any γ̃ ∈ (0, γ), let:

R̃n =
γ − γ̃

γ

[
L−1σ

√
λW/λW

]
− (σ−1/

√
λW )∥gn(θ̂n)∥Wn .

Let Rn = min(R̃n, RG), for any ∥θk− θ̂n∥ ≤ Rn, we have ∥θk+1− θ̂n∥ ≤ (1− γ̃)∥θk− θ̂n∥ ≤ Rn.
By recursion, we then have for any ∥θ0 − θ̂n∥ ≤ Rn:

∥θk+1 − θ̂n∥ ≤ (1− γ̃)∥θk − θ̂n∥ ≤ · · · ≤ (1− γ̃)k+1∥θ0 − θ̂n∥,

as stated in (C.1).
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Proof of Proposition C10 (General Case). Take θk ∈ Rdθ , the update (1) can be
re-written as:

θk+1 − θ̂n =
(
Id − γPk,nGn(θk)

′WnGn(θk)
)
(θk − θ̂n)

− γPk,nGn(θk)
′Wn[gn(θk)−Gn(θk)(θk − θ̂n)].

(C.3)

Taking norms on both sides this identity yields:

∥θb+1 − θ̂n∥ ≤σmax

[
Id − γPk,nGn(θk)

′WnGn(θk)
]
∥θb − θ̂n∥

+ γ∥Pk,nGn(θk)
′Wn[gn(θk)−Gn(θk)(θk − θ̂n)]∥,

(C.3’)

where σmax returns the largest singular value. We will now bound each of these two terms.
First, note that σmax[Id−γPk,nGn(θk)

′WnGn(θk)] = σmax[Id−γP 1/2
k,nGn(θk)

′WnGn(θk)P
1/2
k,n ] =

maxj=1,...,d |λj[Id − γP
1/2
k,nGn(θk)

′WnGn(θk)P
1/2
k,n ]|, where λj are the eigenvalues. Because this

is a difference of Hermitian matrices, Weyl’s perturbation inequality (Bhatia, 2013, Corollary
III.2.2) implies the following bounds:

1− γλmax[P
1/2
k,nGn(θk)

′WnGn(θk)P
1/2
k,n ] ≤ λmin[Id − γP

1/2
k,nGn(θk)

′WnGn(θk)P
1/2
k,n ]

≤ λmax[Id − γP
1/2
k,nGn(θk)

′WnGn(θk)P
1/2
k,n ]

≤ 1− γλmin[P
1/2
k,nGn(θk)

′WnGn(θk)P
1/2
k,n ].

Let σ = maxθ∈Θ σmax[Gn(θ)], suppose 0 < γ < [λPλWσ
2]−1, we then have:

0 ≤ 1− γλmax[P
1/2
k,nGn(θk)

′WnGn(θk)P
1/2
k,n ] ≤ 1− γλmin[P

1/2
k,nGn(θk)

′WnGn(θk)P
1/2
k,n ],

so that we are only concerned with the upper bound. From Assumption A1, ∥θ − θ̂n∥ ≤
RG ⇒ σmin[Gn(θ)] ≥ σ. Combine with the bound for γ to find:

0 ≤ σmax[Id − γPk,nGn(θk)
′WnGn(θk)] ≤ 1− γλPλWσ

2 < 1,

for any choice of γ ∈ (0, [λPλWσ
2]−1). For the second term in (C.3), using the identity

Gn(θ̂n)
′Wngn(θ̂n) = 0 and Lemma A1:

Pk,nGn(θk)
′Wn[gn(θk)−Gn(θk)(θk − θ̂n)] =Pk,nGn(θk)

′Wn[Gn(θk)−Gn(θk)](θk − θ̂n)

+ Pk,n[Gn(θk)−Gn(θ̂n)]
′Wngn(θ̂n),
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where Gn(θk) =
∫ 1

0
{Gn(ωθk+(1−ω)θ̂n)}dω. Since Gn is Lipschitz continuous with constant

L ≥ 0:

∥(C.3′)∥ ≤ (1− γλPλWσ
2)∥θb − θ̂n∥+ γλPλWσL∥θb − θ̂n∥2 + γλPλ

1/2

W L∥gn(θ̂n)∥Wn∥θb − θ̂n∥

=
(
1− γλPλWσ

2 + γ
[
λPλWσL∥θb − θ̂n∥+ λPλ

1/2

W L∥gn(θ̂n)∥Wn

])
∥θb − θ̂n∥.

Let c1 = λPλWσL, c2 = λPλ
1/2

W L, pick γ̃ ∈ (0, γλPλWσ
2), and assume:

∥θk − θ̂n∥ ≤ γλPλWσ
2 − γ̃

γc1
− c2
c1
∥gn(θ̂n)∥Wn := R̃n. (C.4)

Take Rn = min(RG, R̃n), ∥θk − θ̂n∥ ≤ Rn implies that, by construction:

∥θk+1 − θ̂n∥ ≤ (1− γ̃)∥θk − θ̂n∥ ≤ · · · ≤ (1− γ)k+1∥θ0 − θ̂n∥,

by recursion, if ∥θ0 − θ̂n∥ ≤ Rn.

Proof of Proposition C11 (Gauss-Newton): The proof is similar to the proof of Propo-
sition C10 with the difference that ∥gn(θ̂n)∥Wn

p→
√
φ/2 > 0. The radius is convergence is

asymptotically non-zero for 0 < γ̃ < γ < 1 small enough if: √
φ <

σ2
√

λW

L
√
κW

.

Proof of Proposition C11 (General Case): The proof is similar to the proof of Propo-
sition C10 with the difference that ∥gn(θ̂n)∥Wn

p→
√
φ/2 > 0. The radius is convergence

is asymptotically non-zero for 0 < γ̃ < γ < 1 small enough if: √
φ <

σ2
√

λW

LκW κP
, where

κP = λP/λP .

Appendix D Commonly used methods and their proper-
ties

D.1 A survey of empirical practice

Survey methodology: The survey covers empirical papers published in the American
Economic Review (AER) between 2016 and 2018. The focus on this specific outlet is driven
by the mandatory data and code policy enacted in 2005. Indeed, since a number of papers
provide little or no detail in the paper on the methodology used to compute estimates
numerically, it is important to read the replication codes to determine what was implemented.
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The search function in JSTOR was used to find the papers matching the survey criteria.
The database did not include more recent publications at the time of the survey.2 Table D7
was constructed by reading through the main text, supplemental material, and all available
replication codes of the selected papers.

Table D7: American Economic Review 2016-2018: GMM and related empirical estimations
Method # Papers # Parameters (p) Data available
Nelder-Mead - one starting value 7 2,6 (×2),11,13 (×2),147 3
Simulated Annealing + Nelder-Mead 2 4,13 1
Nelder-Mead - multiple starting values 2 ?,6 1‡
Pattern Search 2 6,147 1†
Genetic Algorithm 2 9,14 1
Simulated Annealing 2 4,13 2†
MCMC 1 15 1
Grid Search 1 5 1
No description 3 - -
Stata/Mata default 4 3,6 (×2),38 3⋆

Legend: # Parameters correspond to the size of the largest specification. Data avail. reports if the dataset
is included with the replication files. Estimations surveyed include: Generalized Method of Moments (GMM),
Minimum Distance (MD), Simulated Method of Moments (SMM), and Indirect Inference. ?: information
not available due to the lack of replication codes. ⋆: one of the 3 papers reported to include data requires to
download the PSID dataset separately. †: two papers in total also rely separately on Nelder-Mead, so they
are also reported under Nelder-Mead. ‡: one paper provides data without codes.

Survey results: Table D7 provides an overview of the quantitative results of the survey.
Additional details on the algorithms in the table are given below. There are 23 papers in
total, a little over 7 papers per year. Excluding the estimation with 147 parameters, the
average estimation has around 10 coefficients, and the median is 6. 3 papers used more than
one starting value, and the remaining 20 papers either used the solver default or typed in
a specific value in the replication code. There is generally no information provided on the
origin of these specific starting values. Of the papers using multiple starting values, one did
not provide replication codes, and the other two used 12 and 50 starting points. Some of the
estimations are very time-consuming. For instance, Lise and Robin (2017) use MCMC for
estimation (but not inference) and report that each evaluation of the moments takes 45s. In
total, their estimation takes more than a week to run in a 96-core cluster environment.

2The search function in JSTOR allows to search for keywords within the title, abstract, main text, and
supplemental material of a paper. Further screening ensures that each paper in the search results actually
implements at least one of the estimations considered. The search criteria include keywords: “Method of
Moments," “Indirect Inference," “Method of Simulated Moments," “Minimum Distance," and “MM."
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As mentioned in the introduction, although convex optimizers such as (stochastic) gradient-
descent and quasi-Newton methods are commonly used to solve large scale convex minimiza-
tion problems, they are virtually absent from the survey. Overall, 11 papers rely on the
Nelder-Mead algorithm, alone or in combination with another method, making it the most
popular optimizer in this survey. Pattern search, used in 2 papers, belongs to the same fam-
ily of algorithms as Nelder-Mead. The following provides a brief overview of the properties
of the main Algorithms found used in Table D7.

D.2 A brief summary of the Algorithms’ properties

The following briefly discussed the properties of four algorithms from Table D7: Nelder-
Mead, Grid Search, Multi-Start, and Simulated Annealing. Further discussion, descriptions,
and references can be found in Appendix G.

Nelder-Mead (nm) is the most popular method in the survey, it can be used even if
Qn is discontinuous. Its convergence properties, which measure its ability to find valid
estimates, are somewhat limited however. For some smooth convex problems, it can be
shown to converge to values that are neither locally nor globally optimal. The grid-search
converges to the solution under weak conditions, unlike nm. It is very slow, however, and
often not practical when estimating three or more coefficients. Simulated annealing (sa) is
not deterministic. Still it converges, in probability, under weak conditions to the solution.
Albeit, the convergence is predicted to be slower than grid search. A common approach to
improve the convergence of a given algorithm is to combine it with multiple starting values.
The required number of starting values depends on Qn and the choice of algorithm. Andrews
(1997) provides an asymptotically valid stopping rule for correctly specified GMM models.

When Qn is strongly convex, several gradient-based methods discussed below are rapidly,
globally convergent and do not suffer from a curse of dimensionality. This implies that it is
possible to estimate a large number of parameters in a reasonable amount of time. Similar
convergence properties are derived in this paper, under rank conditions instead of convexity.

Appendix E R Code for the MA(1) Example

library(stats) # fit an AR(p) model
library(pracma) # compute jacobian

n = 200 # sample size n
theta = -1/2 # MA(1) coefficient
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set.seed(123) # set the seed for random numbers
e = rnorm(n+1) # draw innovations
y = e[2:(n+1)] - theta*e[1:n] # generate MA(1) data
p = 12 # number of lags for the AR(p) models

beta ←function(theta) {
# computes the p-limit of the OLS estimates
# V = covariance matrix of (y_{t-1},...,y_{t-p})
V = diag(p+1)*(1+theta∧2) # variances on the diagonal
diag(V[,-1]) = -theta # autocovariance
V = t(V) # transpose
diag(V[,-1]) = -theta # autocovariance
return(

solve( V[2:(p+1),2:(p+1)], V[1,2:(p+1)] )
# p-limit = inv(V)*( vector of autocovariances )

)
}

# Fit the AR(p) auxiliary model:
ols_p = c(ar.ols( y, aic = FALSE, order.max = p, demean = FALSE, intercept = FALSE

)$ar)

moments ←function(theta) {
# computes the sample moments gn
return( ols_p - beta(theta) ) # gn = psi_n - psi(theta)

}

objective ←function(theta,disp = FALSE) {
# compute the sample objective Qn
if (disp == TRUE) {

print(round(theta,3)) # print to tack R’s optimization paths
}
mm = moments(theta) # compute sample moments gn
return( t(mm)%*%mm ) # compute Qn = gn’*gn (W = Id)

}

dQ ←function(theta,disp=FALSE) {
# compute the derivative of Qn
# gradient of Qn = -2*d psi(theta)/ d theta’ * gn(theta)
return(-2*t(jacobian(beta,theta))%*%moments(theta))

}

# L-BFGS-B: with bound constraints
o1 = optim(0.95,objective,gr=dQ,method="L-BFGS-B",lower=c(-1),upper=c(1),disp=TRUE)
# BFGS: without bound constraints
o2 = optim(0.95,objective,gr=dQ,method="BFGS",disp=TRUE)

# *********************************
# Gauss-Newton
# *********************************
gamma = 0.1 # learning rate
coefsGN = rep(0,150) # 150 iterations in total
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coefsGN[1] = 0.95 # starting value: theta = 0.95

for (b in 2:150) { # main loop for Gauss-Newton
Gn = -jacobian(beta,coefsGN[b-1]) # 1. compute Jacobian
mom = moments(coefsGN[b-1]) # 2. compute moments
coefsGN[b] = coefsGN[b-1] - gamma*solve(t(Gn)%*%Gn,t(Gn)%*%mom) # 3. update

} # repeat for each b

# Put the results into a table:
results = matrix(NA,2,3)
colnames(results) = c(’L-BFGS-B’,’BFGS’,’GN’)
results[1,] = c(o1$par,o2$par,coefsGN[150])
results[2,] = sapply(results[1,],objective)
rownames(results) = c(’theta’,’Qn(theta)’)

print(results,digits=3)
# Output should look like this:
# L-BFGS-B BFGS GN
# theta -1.0 -6.979 -0.626
# Qn(theta) 1.7 0.397 0.101

Appendix F Additional Empirical Results

F.1 Demand for Cereal

Table F8: Demand for Cereal: gn with different learning rates
stdev income crash objsconst. price sugar mushy const. price sugar mushy

true est 0.28 2.03 -0.01 -0.08 3.58 0.47 -0.17 0.69 33.84 -se 0.11 0.76 0.01 0.15 0.56 3.06 0.02 0.26 -
avg 0.28 2.03 -0.01 -0.08 3.58 0.47 -0.17 0.69 33.84

γ = 0.1 std 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0

avg 0.28 2.03 -0.01 -0.08 3.58 0.47 -0.17 0.69 33.84
γ = 0.2 std 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0

avg 0.28 2.03 -0.01 -0.08 3.58 0.47 -0.17 0.69 33.84
γ = 0.4 std 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0

avg 0.28 2.03 -0.01 -0.08 3.58 0.47 -0.17 0.69 33.84
γ = 0.6 std 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0

avg 0.28 2.03 -0.01 -0.08 3.58 0.47 -0.17 0.69 33.84
γ = 0.8 std 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0

avg 0.28 2.03 -0.01 -0.08 3.58 0.47 -0.17 0.69 33.84
γ = 1 std 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0

Legend: Comparison for 50 starting values where [0, 10]×· · ·×[0, 10] for standard deviations and [−10, 10]×
· · ·× [−10, 10] for income coefficients. Avg, Std: sample average and standard deviation of optimizer outputs.
true: full sample estimate (est) and standard errors (se). Objs: avg and std of minimized objective
value. crash: optimization terminated because the objective function returned an error. gn run with
γ ∈ {0.1, 0.2, 0.4, 0.6, 0.8, 1} for k = 150 iterations for all starting values.
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F.2 Impulse Response Matching

The following tables report results for gn using a range of tuning parameters γ. Since
Assumption 2 does not hold towards the lower bound for η, ν, gn alone can crash and/or
fail to converge. Following Forneron (2023), we can introduce a global step:

θk+1 = θk − γPk,nGn(θk)
′Wngn(θk) (1)

if ∥gn(θk+1)∥Wn < ∥gn(θk+1)∥Wn , set θk+1 = θk+1

where the sequence (θk)k≥0 is predetermined and dense in Θ. The results rely on the Sobol
sequence, independently randomized for each of the 50 starting values.3 Results are reported
with and without the global step. Also, the former implements error-handling (try-catch).

3We take (sk)k≥0 in [0, 1]p, p ≥ 1 is the number of parameters, draw one vector (u1, . . . , up) ∼ U[0,1]p , for
each starting value, and compute s̃k = (sk + u) modulo 1, then map s̃k to the bounds for θ = (θ1, . . . , θp).
The randomization is used to create independent variation in the global step between starting values to
emphasize that convergence does not rely on a specific value in the sequence (θk)k≥0; this is called a random
shift (see Lemieux, 2009, Ch6.2.1).
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Table F9: gn with different learning rates
without reparameterization with reparameterization
η ν ρs σs objs crash η ν ρs σs objs crash

true est 0.30 0.29 0.39 0.17 4.65 - 0.30 0.29 0.39 0.17 4.65 -
γ = gn without global step

avg 0.30 0.29 0.39 0.17 4.65 0.30 0.29 0.39 0.17 4.65
0.1 std 0.00 0.00 0.00 0.00 0.00 1 0.00 0.00 0.00 0.00 0.00 9

avg 0.30 0.29 0.39 0.17 4.65 0.30 0.29 0.39 0.17 4.65
0.2 std 0.00 0.00 0.00 0.00 0.00 1 0.00 0.00 0.00 0.00 0.00 16

avg 0.30 0.29 0.39 0.17 4.65 0.30 0.29 0.39 0.17 4.65
0.4 std 0.00 0.00 0.00 0.00 0.00 1 0.00 0.00 0.00 0.00 0.00 20

avg 0.30 0.29 0.39 0.17 4.65 0.30 0.29 0.39 0.17 4.65
0.6 std 0.00 0.00 0.00 0.00 0.00 1 0.00 0.00 0.00 0.00 0.00 21

avg 0.30 0.29 0.39 0.17 4.65 0.30 0.29 0.39 0.17 4.65
0.8 std 0.00 0.00 0.00 0.00 0.00 1 0.00 0.00 0.00 0.00 0.00 27

avg 0.30 0.29 0.39 0.17 4.65 0.30 0.29 0.39 0.17 4.65
1.0 std 0.00 0.00 0.00 0.00 0.00 10 0.00 0.00 0.00 0.00 0.00 29

gn with global step
avg 0.30 0.29 0.39 0.17 4.65 0.30 0.29 0.39 0.17 4.65

0.1 std 0.00 0.00 0.00 0.00 0.00 0 0.00 0.00 0.00 0.00 0.00 0

avg 0.30 0.29 0.39 0.17 4.65 0.30 0.29 0.39 0.17 4.65
0.2 std 0.00 0.00 0.00 0.00 0.00 0 0.00 0.00 0.00 0.00 0.00 0

avg 0.30 0.29 0.39 0.17 4.65 0.30 0.29 0.39 0.17 4.65
0.4 std 0.00 0.00 0.00 0.00 0.00 0 0.00 0.00 0.00 0.00 0.00 0

avg 0.30 0.29 0.39 0.17 4.65 0.30 0.29 0.39 0.17 4.65
0.6 std 0.00 0.00 0.00 0.00 0.00 0 0.00 0.00 0.00 0.00 0.00 0

avg 0.30 0.29 0.39 0.17 4.65 0.30 0.29 0.39 0.17 4.65
0.8 std 0.00 0.00 0.00 0.00 0.00 0 0.00 0.00 0.00 0.00 0.00 0

avg 0.30 0.29 0.39 0.17 4.65 0.30 0.29 0.39 0.17 4.65
1.0 std 0.00 0.00 0.00 0.00 0.00 0 0.00 0.00 0.00 0.00 0.00 0

lower bound 0.05 0.01 -0.95 0.01 - - 0.05 0.01 -0.95 0.01 - -
upper bound 0.99 0.90 0.95 12 - - 0.99 0.90 0.95 12 - -

Legend: Comparison for 50 starting values. true: full sample estimate (est). gn with global step:
Gauss-Netwon augmented with a global sequence. Both are run for k = 150 iterations in total, for all
starting values. Objs: avg and std of minimized objective value. # of crashes: optimization terminated
because objective returned error. Lower/upper bound used for the estimation and reparameterization.

F.3 Sensitivity of Numerical Derivatives

In some of the applications, the moments are computed using numerical routines, using e.g.
fixed point iterations, which evaluate the moments up to some tolerance level η. This can
affect the optimization as the precision of first and second order numerical derivatives can be
sensitive to this approximation. The following gives an brief overview for a scalar moment
and parameter. Suppose we can only compute gη(θ) such that |gη(θ) − g(θ)| ≤ η, for all θ.
In order to implement a derivative-based optimizer, the derivative ∂θg(θ) is approximated
by finite differences: Gϵ(θ) =

1
ϵ
(g(θ+ ϵ)− g(θ)) with some tuning parameter ϵ, the default in
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R is ϵ = 6 ·10−6. The approximation error for this derivative is at most: |G(θ)−Gϵ(θ)| ≤ ϵL

where L is the Lipschitz constant of G. Since g itself is not available, a further approximation
is needed: Gη,ϵ(θ) = 1

2ϵ
(gη(θ + ϵ) − gη(θ − ϵ)). This has a larger approximation error:

|Gη,ϵ(θ)−G(θ)| ≤ ϵL+ η
ϵ
.

In the BLP application, the fixed-point tolerance level is set to η = 10−12, this yields
an approximation error of order 10−6 for the Jacobian Gn, when the inner loop did not
terminate because of the limit on the number of iterations (set at 2000). bfgs further
approximates second derivatives using finite differences. The second-order derivative can be
computed as: ∂θGϵ(θ) = 1

ϵ2
[g(θ + ϵ) + g(θ − ϵ) − 2g(θ)] = 1

ϵ
[Gϵ(θ + ϵ) − Gϵ(θ − ϵ)] which

has an approximation error: |∂θGϵ(θ) − ∂θG(θ)| ≤ L2ϵ, where L2 is the Lipschitz constant
of ∂θG. Again, since g is not available we need a further approximation error: ∂θGη,ϵ(θ) =
1
ϵ2
[gη(θ + ϵ) + gη(θ − ϵ)− 2gη(θ)] which has an error of size |∂θGη,ϵ(θ)− ∂θG(θ)| ≤ ϵL2 +

η
ϵ2

.
In the BLP application, η = 10−12 and ϵ−2 = 1/36 · 1012 are of the same order of magnitude
so that the approximation error, for second-order derivatives is likely to be large.

Appendix G Additional Material for Section D.2

G.1 General overview of Algorithms properties

The following describes three of the algorithms in Table D7: Nelder-Mead, Grid Search,
Multi-Start, and Simulated Annealing. The goal is to give a brief overview of their known
convergence properties; further description for each method is given in Appendix G.

Notation: Qn is a continuous objective function to be minimized over Θ, a convex and
compact subset of Rp, p ≥ 1, θ̂n denotes the solution to this minimization problem.

Nelder-Mead. Also called the simplex algorithm, the Nelder and Mead (1965, nm) algo-
rithm comes out as a standard choice for empirical work in our survey. Notably, it was used
in Berry et al. (1995, Sec6.5) to estimate the BLP model for the automobile industry. Its
main feature is that it can be used even if Qn is not continuous. It is often referred to as a
local derivative-free optimizer. It belongs to the direct search family, which includes pattern
search seen in Table D7 above.

Despite being widely used, formal convergence results for the simplex algorithm are few.
Notably, Lagarias et al. (1998) proved convergence for strictly convex continuous functions
for p = 1, and a smaller class of functions for p = 2 parameters. McKinnon (1998) gave
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counter-examples for p = 2 of smooth, strictly convex functions for which the algorithm
converges to a point that is neither a local nor a global optimum, i.e. does not satisfy a
first-order condition.4 Using the algorithm once may not produce consistent estimates in
well-behaved problems so it is sometimes combined with a multiple starting value strategy,
described below. The tiktak Algorithm of Arnoud et al. (2019) builds on nm with multiple
starting values. Despite these potential limitations, nm remains popular in empirical work.

Grid-Search. As the name suggests, a grid-search returns the minimizer of Qn over a finite
grid of points. In Economics, it is sometimes used to estimate models where the number
of parameters p is not too large. One notable example is Donaldson (2018), who estimates
p = 3 non-linear coefficients in a gravity model.

Contrary to nm above, grid-search has global convergence guarantees. However, conver-
gence is very slow. Suppose we want the minimizer θ̃k over a grid of k points to satisfy:
Qn(θ̃k) − Qn(θ̂n) ≤ ε. Then the search requires at least k ≥ Cε−p grid points where C
depends on Qn and the bounds used for the grid. Suppose C = 1, p = 3, ε = 10−2, at least
k ≥ 106 grid points are needed, which is quite large. If each moment evaluation requires 45s,
as in Lise and Robin (2017), this translates into 1.5 years of computation time.

Simulated Annealing. Unlike the methods above, Simulated Annealing (sa) is not a
deterministic but a Monte Carlo based optimization method. Along with nm, sa stands out
as the standard choice in empirical work. Like the grid-search, sa is guaranteed to converge,
with high probability, as the number of iterations increases for an appropriate choice of
tuning parameters. The main issue is that tuning parameters for which convergence results
have been established result in very slow convergence: ∥θk − θ̂n∥ ≤ Op(1/

√
log[k]), after

k iterations. As a result, sa could - in theory - converge more slowly than a grid-search.
Chernozhukov and Hong (2003) consider the frequentist properties of a GMM-based quasi-
Bayesian posterior distribution. Draws can be sampled using the random-walk Metropolis-
Hastings algorithm, which is closely related to sa.

Multiple Starting Values. To accommodate some of the limitations of optimizers, es-
pecially the lack of global convergence guarantees, it is common to run a given algorithm
with multiple starting values. Setting the starting values is similar to choosing a grid for
a grid-search. Andrews (1997) provides a stopping rule which can be used to determine if

4Powell (1973) gives additional counter-examples for the class of direct search algorithms which includes
nm and Pattern Search.
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sufficiently many starting values were used or not. The required number of starting values
depends on the objective function Qn, the choice of the optimizer, and the properties of the
sequence used to generate starting values.

G.2 Implementation of the algorithms

The Nelder-Mead algorithm. The following description of the algorithm is based on
Nash (1990, Ch14) which R implements in the optimizer optim. The first step is to build
a simplex for the p-dimensional parameters, i.e. p + 1 distinct points θ1, . . . , θp+1 ordered
s.t. Qn(θ1) ≤ · · · ≤ Qn(θp+1). The simplex is then transformed at each iteration using
four operations called reflection, expansion, reduction, and contraction. The algorithm also
repeatedly computes the centroid θc of the best p points, to do so: take the best p guesses
θ1, . . . , θp and compute their average: θc = 1/p

∑p
ℓ=1 θℓ. Once this is done, go to step R

below.
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Nelder-Mead Algorithm:

Inputs: Initial simplex θ1, . . . , θp+1, parameters α, γ, β, β′. NM suggest to use α =

1, γ = 2, β = β′ = 1/2.

Re-order the points so that Qn(θ1) ≤ · · · ≤ Qn(θp+1), compute the centroid θc =

1/p
∑p

ℓ=1 θℓ (average of the best p points)

Start at R and run until convergence:

R: The reflection step computes θr = θc+α(θc−θp+1) = 2θc−θp+1 for α = 1. There
are now several possibilities:

• If Qn(θr) < Qn(θ1) got to step E.

• If Qn(θ1) ≤ Qn(θr) ≤ Qn(θp), replace θp+1 with θr, re-order the points,
compute the new θc, and do R again.

• By elimination: Qn(θr) > Qn(θp). If Qn(θr) < Qn(θp+1), replace θp+1 with
θr. Either way, go to step R’.

E: The expansion step computes θe = θr + (γ − 1)(θr − θc) = 2θr − θc for γ = 2. If
Qn(θe) < Qn(θr), then θe replaces θp+1. Otherwise, θr replaces θp+1. Once θp+1

is replaced, re-order the points, compute the new θc, and go to R.

R’: The reduction step computes θs = θc + β(θp+1 − θc) = (θc + θp+1)/2 for β = 1/2.
If Qn(θs) < Qn(θp+1), θs replaces θp+1, then re-order the points, compute the
new θc, and go to R. Otherwise, go to C.

C: The contraction step updates θ2, . . . , θp+1 using θℓ = θ1+β′(θℓ−θ1) = (θℓ+θ1)/2

for β′ = 1/2. Re-order the points, compute the new θc, and go to R.

Clearly, the choice of initial simplex can affect the convergence of the algorithm. Typi-
cally, one provides a starting value θ1 and then the software picks the remaining p points of
the simplex without user input. NM proposed their algorithm with statistical estimation in
mind, so they considered using the standard deviation

√∑n+1
ℓ=1 (Qn(θℓ)− Q̄n)2/n < tol as a

convergence criterion, setting tol = 10−8 and Q̄n the average of Qn(θℓ) in their application.
Here convergence occurs when the simplex collapses around a single point.

The Grid-Search algorithm. The procedure is very simple, pick a grid of k points
θ1, . . . , θk, and compute:

θ̃k = argminℓ=1,...,kQn(θℓ).

The optimization error ∥θ̃k − θ̂n∥ depends on both k and the choice of grid. The following
gives an overview of the approximation error and feasible error rates.
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For simplicity, suppose that the parameter space is the unit ball in Rp: Θ = Bp
2, and Qn is

continuous. Under these assumptions, there is an L ≥ 0 such that |Qn(θ1)−Qn(θ2)| ≤ L∥θ1−
θ2∥. L > 0, unless Qn is constant. This implies: |Qn(θ̃k)−Qn(θ̂n)| ≤ L(inf1≤ℓ≤k ∥θℓ − θ̂n∥).
Suppose we want to ensure |Qn(θ̃k) − Qn(θ̂n)| ≤ ε, then we need inf1≤ℓ≤k ∥θℓ − θ̂n∥ ≤
ε/L. Packing arguments give a lower bound for k over all grids, and all possible θ̂n: k ≥
vol(Bp

2)/vol([ε/L]Bp
2) = [ε/L]−p, where vol is the volume.

For the choice of grid, Niederreiter (1983, Theorem 3) shows that low-discrepancy se-
quences, e.g. the Sobol or Halton points sets, can achieve this rate, up to a logarithmic
term.5 This is indeed a common choice for multi-start and grid search optimization.

In practice, Qn(θ̃k)−Qn(θ̂n) is typically not the quantity of interest for empirical estima-
tions, rather we are interested in ∥θ̃k− θ̂n∥. Suppose, in addition, that θ̂n ∈ int(Θ), and Qn is
twice continuously differentiable with positive definite Hessian Hn(θ̂n), a local identification
condition. Then there exists 0 < λ ≤ λ <∞ and ε1 > 0 s.t. ∥θ − θ̂n∥ ≤ ε1 implies:

λ∥θ − θ̂n∥2 ≤ Qn(θ)−Qn(θ̂n) ≤ λ∥θ − θ̂n∥2, (G.5)

i.e. Qn is locally strictly convex.6 If θ̂n is the unique minimizer of Qn, there is a 0 < ε2 ≤ ε1

such that inf∥θ−θ̂n∥≥ε1
Qn(θ) > Qn(θ̂n)+λε

2
2, using a global identification condition. Now, by

local identification: ∥θ− θ̂n∥ ≤ ε2 ⇒ Qn(θ) ≤ Qn(θ̂n)+λε22 < inf∥θ−θ̂n∥≥ε1
Qn(θ). As soon as

k ≥ k0 where inf1≤ℓ≤k0 ∥θℓ− θ̂n∥ ≤ ε2, we have ∥θ̃k − θ̂n∥ ≤ ε1. Then, for any k ≥ k0: λ∥θ̃k −
θ̂n∥2 ≤ Qn(θ̃k)−Qn(θ̂n) ≤ λ(inf1≤ℓ≤k ∥θℓ− θ̂n∥2) and ∥θ̃k− θ̂n∥ ≤ [λ/λ]1/2(inf1≤ℓ≤k ∥θℓ− θ̂n∥).

This reveals the interplay between the identification conditions and the optimization
error. The best value θ̃k is only guaranteed to be near θ̂n when k ≥ ε−p

2 iterations (using
packing arguments for the unit ball), where ε2 depends on the global identification condition.
Local convergence depends on the ratio λ/λ ≥ 1 which is infinite when Hn(θ̂n) is singular.
The main drawback of a grid search is its slow convergence. To illustrate, Colacito et al.
(2018, pp3443-3445) estimate p = 5 parameters using a grid search with k = 1551 points.
For simplicity, suppose λ/λ = 1, k0 < k, and Θ = Bp

2, the unit ball, then the worst-case
optimization error is supθ̂n∈Θ(inf1≤ℓ≤k ∥θℓ − θ̂n∥) ≥ k−1/p ≃ 0.23. This is ten times larger
than all but one of the standard errors reported in the paper.

5In comparison, using uniform random draws in a grid search would require O([ε/L]−2p) iterations to
achieve the same level of accuracy with high-probability. Fang and Wang (1993, Ch3.1) give a review of
these results.

6The three ε1, λ, λ only depend on Hn(·).
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Simulated Annealing. Implementations can vary across software, the following will focus
on the implementation used in R’s optim function.

Simulated Annealing Algorithm:

Inputs: Starting value θ1 ∈ Θ, temperature schedule ∞ > T2 ≥ T3 ≥ · · · > 0, a
sequence ∞ > η2 ≥ η3 ≥ · · · > 0, and maximum number of iterations k. Common
choice: Tℓ = T1/ log(ℓ) for ℓ ≥ 2 and ηℓ proportional to Tℓ.

For ℓ ∈ {2, . . . , k}, repeat:

1. Draw θ⋆ ∼ N (θℓ−1, ηℓId), and uℓ ∼ U[0,1]

2. Set θℓ = θ⋆ if uℓ ≤ exp(−[Qn(θ
⋆)−Qn(θℓ−1)]/Tℓ), otherwise set θℓ = θℓ−1

Output: Return θ̃k = argmin1≤ℓ≤kQn(θℓ)

The implementation described above relies on the random-walk Metropolis update. No-
tice that if Qn(θ

⋆) ≤ Qn(θℓ−1), the exponential term in step 2 is greater than 1 and θ⋆ is
always accepted as the next θℓ, regardless of uℓ. Bélisle (1992) gave sufficient condition for
θ̃k

a.s.→ θ̂n when k → ∞ and Qn is continuous. In practice, the performance of the Algorithm
can be measured by its convergence rate. To get some intuition, we give some simplified
derivations below which highlight the role of Tk and several quantities which appeared in
our discussion of the grid search.

First, notice that for each k, steps 1-2 implement the Metropolis algorithm also used for
Bayesian inference using random-walk Metropolis-Hastings. The invariant distribution of
these two steps is:

fk(θ) =
exp(−[Qn(θ)−Qn(θ̂n)]/Tk)∫

Θ
exp(−[Qn(θ)−Qn(θ̂n)]/Tk)dθ

,

this is called the Gibbs-Boltzmann distribution. When T∞ = +∞, f∞ puts all the probability
mass on the unique minimum θ̂n. To build intuition, suppose that k ≥ 1: θk ∼ fk. Because
SA is a stochastic algorithm, the approximation error ∥θk − θ̂n∥ is random, but can be
quantified using P(∥θk − θ̂n∥ ≥ ε). In the following we will assume the temperature schedule
to be Tk = T1/ log(k), as implemented in R.

The following relies on the same setting, notation and assumptions as the grid search
above. First, we can bound the probability that θk is outside the ε1-local neighborhood of
θ̂n where Qn is approximately quadratic: P(∥θk − θ̂n∥ ≥ ε1). Using the global identification
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condition:

exp(−[Qn(θ)−Qn(θ̂n)]/Tk) ≤ exp(−λε22/Tk) = k−λε22/T1 , if ∥θ − θ̂n∥ ≥ ε1,

where ε1, ε2 were defined in the grid search section above. This gives an upper bound for
the numerator in fk(θk). A lower bound is also required for the denominator. Using (G.5)
and the change of variable θ = θ̂n +

√
Tkh, we have:

exp(−λ∥h∥2) ≤ exp(−[Qn(θ̂n +
√
Tkh)−Qn(θ̂n)]/Tk) ≤ exp(−λ∥h∥2), if ∥

√
Tkh∥ ≤ ε1.

Suppose Tk ≤ ε21, the two inequalities give us the bound:

P(∥θk − θ̂n∥ ≥ ε1) ≤
k−λε22/T1vol(Θ)

|Tk|p/2
∫
∥h∥≤1

exp(−λ∥h∥2)dh
= C[log(k)]d/2k−λε22/T1 .

This upper bound declines more slowly than for the grid search when λε22/T1 < 1/p, which
can be the case if T1 large and/or ε2 is small. For the lower bound, pick any ε ∈ (0, ε1/

√
Tk):

P(∥θk − θ̂n∥ ≤
√
Tkε) ≥

∫
∥h∥≤ε

exp(−λ∥h∥2)dh∫
∥h∥∈R exp(−λ∥h∥2)dh+ |Tk|−p/2vol(Θ)k−λε22/T1

,

which has a strictly positive limit. This implies that
√

log(k)∥θk − θ̂n∥ ≥ Op(1), since
Tk = T1/ log(k). This

√
log(k) rate is slower than the grid search. To get faster convergence,

some authors have suggested using Tk = T1/k and, by default, Matlab sets Tk = T1 · 0.95k.
However, theoretical guarantees to have θk

p→ θ̂n, as k → ∞ are only available when Tk =

T1/ log(k).7

7See Spall (2005, Ch8.4-8.6) for additional details and references.
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