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Abstract. The literature on cluster-randomized trials typically allows for
interference within but not across clusters. This may be implausible when units
are irregularly distributed across space without well-separated communities,
as clusters in such cases may not align with significant geographic, social, or
economic divisions. This paper develops methods for reducing bias due to cross-
cluster interference. We first propose an estimation strategy that excludes units
not surrounded by clusters assigned to the same treatment arm. We show
that this substantially reduces bias relative to conventional difference-in-means
estimators without significant cost to variance. Second, we formally establish
a bias-variance trade-off in the choice of clusters: constructing fewer, larger
clusters reduces bias due to interference but increases variance. We provide a
rule for choosing the number of clusters to balance the asymptotic orders of the
bias and variance of our estimator. Finally, we consider unsupervised learning
for cluster construction and provide theoretical guarantees for k-medoids.
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1 Introduction

The literature on cluster-randomized trials (CRTs) predominantly assumes partial
interference, which allows for interference within but not across clusters. However,
researchers often conduct CRTs in what Hayes and Moulton (2017) refer to as “ar-
bitrary geographical zones,” where clusters are not given by nature since “the popu-
lation is widely scattered and not divided up into clearly defined and well separated
communities.” A well-known concern in these settings is cross-cluster interference,
where units within a cluster may respond to treatments assigned to units in adjacent
clusters. Some references refer to this phenomenon as contamination (Hudgens and
Halloran, 2008; Staples et al., 2015), while others define contamination to mean that
control units procure treatment from treated neighbors, which is suggestive of inter-
ference (Hayes and Moulton, 2017). In either case, a simple comparison of treatment
and control clusters may be biased.

Example 1 (Infectious disease trials). CRTs are widely used in the infection control
and hospital epidemiology literature (O’Hara et al., 2019). An example is the Solar-
Mal trial (Homan et al., 2016), designed to evaluate the impact of mosquito trapping
on malaria transmission. The CRT was conducted on an island of Kenya, partitioned
into contiguous clusters using an unsupervised learning algorithm. As noted by Jarvis
et al. (2017) in a review of infectious disease trials, partial interference “can be vio-
lated due to movement of people or diseases across borders, such as mosquitoes flying
between control and intervention households.”

Example 2 (Large-scale social experiments). CRTs conducted on large populations
have become increasingly common in academia (Muralidharan and Niehaus, 2017)
and industry (Karrer et al., 2021). For example, Egger et al. (2022) study the gen-
eral equilibrium effects of unconditional cash transfers using a CRT conducted in
rural Kenya. The trial clustered villages into administrative units called “subloca-
tions.” The authors observe that “villages are relatively close to each other [and]
sublocation boundaries are not ‘hard’ in any sense nor reflective of salient ethnic or
social divides. . . there is extensive economic interaction in nearby markets regardless
of sublocation.”

This paper proposes methods for reducing bias due to cross-cluster interference in
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the analysis and design of cluster-randomized trials. Instead of partial interference,
we consider a spatial interference model proposed by Leung (2022b) which posits
that interference decays with geographic distance. This captures the central concern
expressed in the previous examples, namely potential interference between geograph-
ically proximate units.

At the analysis stage, a common bias-reduction strategy is the “fried-egg design”
(Hayes and Moulton, 2017, Ch. 4.4.3). This is not an experimental design but rather
entails excluding from estimation units in the trial located near cluster boundaries,
the “whites” of the “fried eggs” that are the clusters. An open question is whether
excluding observations in such a fashion is worth the loss of efficiency. We show that
conventional difference-in-means estimators can have large biases due to interference
near cluster boundaries. We then propose to improve the efficiency of the fried-egg
design by excluding not all units near cluster boundaries but rather only the subset
not surrounded by clusters assigned to the same treatment arm. We prove that this
can substantially reduce the asymptotic order of the bias relative to difference in
means with no increase in the asymptotic order of the variance.

We then turn to optimal design of clusters. Partitioning the region into a small
number of large clusters reduces bias since fewer units are located near cluster bound-
aries where they are most prone to cross-cluster interference. However, this comes at
the cost of higher variance because the sample size in a CRT is the number of clus-
ters. Unlike the conventional partial interference framework, our spatial interference
model induces a bias-variance trade-off, which enables the study of cluster design for
optimizing the trade-off.

We prove that the number of clusters k that balances the asymptotic bias and
variance of our estimators depends on a parameter γ that measures the speed at which
interference decays with distance. This formally characterizes how domain knowledge
of interference informs optimal cluster construction. Such knowledge is implicitly used
in practice when researchers define fried-egg boundaries or construct clusters with
“buffer zones” to minimize interaction between units (Hayes and Moulton, 2017).

In practice, cluster construction is ad hoc. Homan et al. (2016) utilize a “traveling
salesman algorithm,” essentially an unsupervised learning method. More commonly,
researchers use administrative divisions (e.g. Egger et al., 2022) or manually partition
the study region (e.g. Moulton et al., 2001). Binka et al. (1998) study a malaria trial
conducted in Northern Ghana, noting that, “Where possible, small paths or road were
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used to delineate the clusters. However, in most cases, the cluster boundaries did not
correspond to natural barriers.” We contribute to the literature by providing formal
justification for constructing clusters using k-medoids, a well-known unsupervised
learning algorithm.

We study CRTs under a design-based framework, as in Hudgens and Halloran
(2008), Imai et al. (2009), and Schochet et al. (2022), among others. Unlike these
papers, we do not assume partial interference and therefore require a different formu-
lation of standard estimands.

Our work is most closely related to Leung (2022b). He studies designs targeting
the global average treatment effect (GATE) in which clusters are squares in R2 with
identical areas. We consider a more general set of estimands and richer designs that
may utilize unsupervised learning to construct clusters. Also, to accommodate denser
spatial settings, we consider “infill-increasing” asymptotics in which the number of
units is of larger asymptotic order than the volume of the study region. Finally, we
propose new standard errors that are asymptotically conservative without restrictions
on the superpopulation.

Our analysis of k-medoids builds on Cao et al. (2024). We extend a key result of
theirs to the case where k diverges and characterize other k-medoid properties in this
regime which may be of independent interest. We generalize their Ahlfours-regularity
condition on the metric space to allow for infill-increasing asymptotics, though unlike
them, we also require an additional boundary condition.

Faridani and Niehaus (2024) substantially generalize the theoretical results in
Leung (2022b) while retaining his focus on the GATE. Their results hold for general
spaces defined using topological conditions that differ from Ahlfours regularity. For
this reason, their proofs differ substantially from ours. They study designs that
essentially cover the study region with non-intersecting balls of approximate radius
gn, where the radius is chosen to grow at an optimal rate. Our design specifies an
optimal choice for the number of clusters and uses unsupervised learning to construct
clusters.

The paper is organized as follows. The next section defines the model and esti-
mands. In §3, we discuss the disadvantages of existing estimators and propose an
alternative. We study the theoretical properties of the estimators in §4 and propose
an optimal design in §5. We present simulation results in §6 and an empirical appli-
cation in §7 using data from the Egger et al. (2022) trial. Finally, §8 concludes and

4



Cross-Cluster Interference

summarizes the practical outputs of our analysis.
We will use the following asymptotic order notation. For two sequences of random

variables tXnunPN and tYnunPN, we write Xn À Yn if |Xn{Yn| “ Opp1q, Xn ă Yn if
|Xn{Yn| “ opp1q, Xn Á Yn if |Yn{Xn| “ Opp1q, Xn ą Yn if |Yn{Xn| “ opp1q, and
Xn „ Yn if both Xn À Yn and Xn Á Yn. For two sequences of constants, we use the
same notation for analogous notions of asymptotic boundedness and domination.

2 Setup

Let pX , ρq be a metric space where X is the set of spatial locations and ρ the metric.
We observe a set of n units Nn Ď X , so ρpi, jq is the spatial distance between units
i, j P Nn. Let Di denote unit i’s binary treatment assignment and D “ pDiqiPNn the
vector of observed assignments, which is the only random quantity in our analysis. Let
tYip¨quiPNn be a set of functions with domain t0, 1un and range R. For d “ pdiqiPNn P

t0, 1un, Yipdq denotes the potential outcome of unit i under the counterfactual that
all units are assigned treatments according to d. Unit i’s observed outcome is Yi “

YipDq. We maintain the following standard assumption, that potential outcomes are
uniformly asymptotically bounded. All asymptotic statements are with respect to a
sequence indexed by n P N unless otherwise indicated.

Assumption 1 (Bounded Outcomes). maxiPNn maxdPt0,1un|Yipdq| À 1.

2.1 Spatial Interference

The primary metric space of interest is R2, but our results apply to a more gen-
eral “Ahlfors-regular” space, augmented with a boundary condition. Define the r-
neighborhood of unit i

N pi, rq “ tj P Nn : ρpi, jq ď ru.

Assumption 2 (Metric Space). There exist constants C, d ą 0 and a positive se-
quence tξnunPN such that 1 À ξn ă n and the following hold. (a) For any n P N,
i P Nn, and r ą 0, mintC´1ξnr

d, nu ď |N pi, rq| ď maxtCξnr
d, 1u. (b) d ě 1, and

maxiPNn|N pi, r ` 1qzN pi, rq| ď Cmaxtξnr
d´1, 1u for any r ą 0.

The constant d represents the spatial dimension and ξn a measure of density (units
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per unit volume). The dependence on ξn is new to this paper relative to prior work on
spatial interference and accommodates applications with denser regions. To under-
stand the assumption, consider the standard increasing-domain case in which ξn “ 1

for all n. Part (a) says that the number of units in an r-neighborhood is the same
order rd as the neighborhood’s volume. This defines a pC, dq-finite Ahlfors-regular
space, the same metric space studied by Cao et al. (2024). The boundary condition
in part (b) is new relative to their setup, but both (b) and the upper bound in (a)
are satisfied if X “ Rd under the usual increasing-domain assumption that units are
minimally separated in space (Jenish and Prucha, 2009, Lemma A.1).

Assumption 2 also accommodates the infill-increasing case in which ξn diverges
with n. Here the number of units in any neighborhood is of larger order than the
neighborhood volume by a factor of ξn, corresponding to a denser region. Because
we require ξn ă n, this is a hybrid of infill and increasing-domain asymptotics in
which the volume of the study region Nn grows but at a slower rate n{ξn than the
population size n (as in Lahiri and Zhu, 2006, for example).

Under Assumption 2(a), the number of units in any r-ball is proportional to ξnr
d,

which allows for some variation in density across the study region. The assumption
is violated if two subregions of similar volume exist but the number of units in one
is a large multiple of the other. This could be the case in practice if the study
region encompasses urban and rural areas. In §SA.2.1, we discuss how our proposed
methodology can be modified to accommodate large variations in density.

Assumption 3 (Interference). There exist c ą 0 and γ ą d for d defined in Assump-
tion 2 such that for all r ě 0,

sup
nPN

max
iPNn

max
␣

|Yipdq ´ Yipd
1
q| : d,d1

P t0, 1u
n, dj “ d1

j @j P N pi, rq
(

ď c mintr´γ, 1u.

This corresponds to Assumption 3 of Leung (2022b). Unlike partial interference, it is
formulated independently of clusters, enabling us to develop a theory of optimal clus-
ter construction. To interpret the condition, consider a unit i centered at a “cluster”
N pi, rq of radius r. The quantity |Yipdq ´ Yipd

1q| measures interference induced by
manipulating the treatment assignments of units outside the cluster, and the assump-
tion requires this to decay like r´γ or faster. Hence, the larger the minimum distance
r between i and the units with manipulated treatments, the smaller the spillover ef-
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fect. We thus interpret 1{γ as (an upper bound on) the degree of interference. In §5,
we discuss the optimal design of clusters using knowledge of γ.

Assumption 3 further requires γ to decay fast enough relative to the spatial di-
mension d. This coincides with the requirement imposed by Leung (2022b) for d “ 2.
In the increasing-domain case, the intuition is that r-neighborhood sizes grow like rd

under Assumption 2, so weak dependence requires interference to decay faster than
the rate at which neighborhoods densify with r. Central limit theorems for spatial
processes impose analogous requirements on mixing coefficients which control the de-
gree of spatial dependence, as γ does in our framework (e.g. Jenish and Prucha, 2009,
Assumption 3(b)).

2.2 Design

We interchangeably use k or kn to denote the number of clusters in the design. For a
given population Nn, denote by Cn “ tCju

k
j“1 the set of clusters, which is a partition

of Nn. We study standard two-stage randomized-saturation designs.

Assumption 4 (Assignment Mechanism). For q P p0, 1q, p0, p1 P r0, 1s, and t P t0, 1u,
tDiuiPCj

iid
„ Bernoullipptq conditional on Wj “ t where tWju

k
j“1

iid
„ Bernoullipqq.

Under this design, k clusters are independently randomized into treatment with prob-
ability q with Wj denoting cluster j’s treatment assignment. If Wj “ t, all units in
cluster j are randomized into treatment with probability pt. The literature often
refers to p1, p0 as saturation levels.

Let ξn and d be given from Assumption 2. We consider (sequences of) clusters
satisfying the following properties.

Assumption 5 (Spatial Clusters). There exist positive sequences tLnunPN and tUnunPN

for which the following hold. (a) For any sequence of clusters tCnunPN with Cn P Cn
for all n, there exists a sequence of “centroid” units tinunPN with in P Cn for all n such
that N pin, Lnq Ď Cn Ď N pin, Unq. (b) Ln „ Un „ pn{pknξnqq1{d.

This requires clusters to be globular in that they contain and are contained by balls
with radii of the same order. Under Assumption 2(a), part (b) implies that the number
of units in any cluster is order n{kn, which implies that clusters are comparable in
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size. We show below that clusters generated by k-medoids satisfy these requirements.
Note that even under partial interference, restrictions on cluster size heterogeneity
are required for inference using conventional clustered standard errors (Hansen and
Lee, 2019, Assumption 2), although our requirements are stronger. These may be
possible to relax, but we leave this to future research.

Assumption 5 allows clusters to have quite heterogeneous shapes, as can be seen
in Figure 1. It depicts k-medoid clusters, which satisfy Assumption 5 by Theorem 1
below. However, the assumption is violated if clusters are highly size-imbalanced,
such as elongated clusters that narrowly encompass a geographical feature such as
a river or road. This may be addressed by subdividing large or abnormally shaped
clusters or grouping adjacent small clusters. The assumption can also be violated
if clusters are not constructed based on spatial proximity. For instance, if units are
connected through an online social network connecting units far apart in space, then
clusters based on network connectivity would likely violate the assumption.

Assumption 5 is satisfied if the researcher partitions the space into kn identically-
sized cubes, but such clusters do not adapt to the spatial distribution of units. We
therefore suggest using unsupervised learning algorithms. The next result provides
theoretical guarantees for the well-known k-medoids algorithm stated in §SA.1.

Theorem 1. Suppose clusters are the output of k-medoids, given in Algorithm SA.1.1.
Under Assumption 2(a), the clusters satisfy Assumption 5.

In practice, k-means can also be used since it typically delivers clusters similar to
those of k-medoids. The globular clusters produced by both algorithms are sometimes
viewed unfavorably relative to algorithms such as spectral clustering for certain un-
supervised learning tasks. However, for our purposes, globular clusters are preferable
because they minimize the number of units near cluster boundaries, which are the
primary source of bias due to cross-cluster interference. More broadly, Assumption 5
provides general design principles for constructing clusters, namely to aim for balance
and globularity, which may be achieved either using these algorithms or manually.

2.3 Causal Estimands

Because we allow for cross-cluster interference, we need to redefine conventional es-
timands in a manner free of this source of bias. To this end, define for t P t0, 1u the
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pt-counterfactual design, which sets k “ 1 and q “ t in Assumption 4. This design
groups the population into a single cluster and assigns treatment with probability
pt. Throughout the paper, let Er¨s denote the expectation taken with respect to the
observed design in Assumption 4 and E˚

ptr¨s the expectation taken with respect to the
pt-counterfactual design.

Let D´i denote the assignment vector excluding the ith component and Yipd,D´iq

denote i’s potential outcome under the counterfactual that i’s observed assignment is
d P t0, 1u, holding fixed the realized assignments of other units. We study estimands
of the form

θ˚
” θ˚

pd1, d0; p1, p0q “
1

n

ÿ

iPNn

`

E˚
p1

rYipd1,D´iqs ´ E˚
p0

rYipd0,D´iqs
˘

for d1, d0 P t∅, 0, 1u, where we define Yip∅,D´iq ” YipDq. The following special cases
are analogous to estimands defined by Hudgens and Halloran (2008) and Hayes and
Moulton (2017). The direct effect compares treated and untreated units under the
p1-counterfactual design:

θ˚
D “ θ˚

p1, 0, p1, p1q “
1

n

ÿ

iPNn

E˚
p1

rYip1,D´iq ´ Yip0,D´iqs.

This is directly identified if the p1-counterfactual design were implemented in practice.
The estimands that follow, however, require multiple clusters assigned to different
arms because they compare different counterfactual designs. Under our framework,
this is the primary motivation for cluster randomization.

The indirect effect compares outcomes of untreated units under counterfactual
designs with different saturation levels:

θ˚
I “ θ˚

p0, 0; p1, p0q “
1

n

ÿ

iPNn

`

E˚
p1

rYip0,D´iqs ´ E˚
p0

rYip0,D´iqs
˘

.

Interest often centers on the “pure control” baseline of p0 “ 0, so that E˚
p0

rYip0,D´iqs “

Yip0q. The total effect is the sum of the direct and indirect effects, equal to θ˚
T “

θ˚p1, 0; p1, p0q. Finally, the overall effect compares outcomes under different satura-
tion levels: θ˚

O “ θ˚p∅,∅, p1, p0q. Leung (2024) provides conditions under which these
have causal interpretations.
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3 Estimators

3.1 Existing Approaches

Let cpiq P t1, . . . , ku denote the index of the cluster containing unit i. A common
strategy for estimating θ˚

I is to compute the difference in means between control units
in clusters assigned saturation level p1 and those in clusters assigned level p0:

ř

iPNn
p1 ´ DiqWcpiqYi

ř

iPNn
p1 ´ DiqWcpiq

´

ř

iPNn
p1 ´ WcpiqqYi

ř

iPNn
p1 ´ Wcpiqq

. (1)

This is the sample analog of

1

n

ÿ

iPNn

`

ErYi | p1 ´ DiqWcpiq “ 1s ´ ErYi | Wcpiq “ 0s
˘

,

which may be quite far from the target θ˚
I . Units in control clusters near cluster

boundaries may be spatially proximate to units in treated clusters and therefore at
greater risk of contamination. For such units i, ErYi | Wcpiq “ 0s may be substantially
different from E˚

p0
rYip0,D´iqs.

The fried-egg design attempts to reduce bias by restricting the comparison in (1)
to the subset of units deemed sufficiently far from cluster boundaries. Unfortunately,
this has two problems. First, the resulting estimator is in fact asymptotically biased
because boundary units are excluded with probability one, so it only estimates an av-
erage effect for the subpopulation of units in cluster interiors. As noted by McCann et
al. (2018), this differs from the target estimand since units in cluster interiors may be
systematically different from those near the boundaries due to spatial heterogeneity.
Second, it is inefficient. The purpose of only including units in the interiors of control
clusters is that such units are “well surrounded” by control clusters, or equivalently,
relatively far from treated clusters. However, boundary units may be well surrounded
in the same fashion if all neighboring clusters are assigned to control, so it would be
just as useful to include these units.
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Figure 1: k-medoid clusters. The left panel colors units by cluster membership and the
right panel by whether their respective clusters are assigned to treatment (black) or control
(white). Units marked by “X” are excluded from estimation. The circle depicts a unit’s
rn-neighborhood used to determine exclusion.

3.2 Our Approach

Fix a neighborhood radius rn to be defined in (2) below. Call a unit i well-surrounded
if

Si ” max
tPt0,1u

ź

jPN pi,rnq

W t
cpjqp1 ´ Wcpjqq

1´t
“ 1,

that is, if a unit i’s rn-neighborhood only intersects clusters assigned to the same
treatment arm. Figure 1 depicts k-medoid clusters, marking with an “X” units that
are not well surrounded. Our strategy is to only exclude from estimation units that
are not well surrounded. If rn “ 0, then all units are well surrounded, and our
estimators reduce to difference in means. Choosing a larger radius rn is analogous to
choosing a larger boundary region for exclusion in a fried-egg design.

Under our assumptions, the number of well-surrounded units is of asymptotic
order equal to the population size n because any unit has nontrivial probability of
being well-surrounded (Lemma SA.5.3). As a consequence, our strategy solves the
fried-egg design’s boundary bias problem and typically excludes strictly fewer units.

Let d1, d0 be given from the estimand θ˚. For any t P t0, 1u and i P Nn, define
Tti “ 1tDi “ dt,Wcpiq “ tuSi if dt P t0, 1u and Tti “ 1tWcpiq “ tuSi if dt “ ∅.
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Let pti “ ErTtis be the propensity score, which has a closed-form expression given in
Remark 1 below. We propose the following Hájek estimator for θ˚:

θ̂ “ µ̂1 ´ µ̂0 for µ̂t “

ř

iPNn
TtiYi{pti

ř

iPNn
Tti{pti

.

When rn “ 0, Si “ 1 for all i, so propensity scores are homogeneous across i, and
θ̂ reduces to difference in means. For rn ą 0, the scores are generally spatially
heterogeneous. For instance, boundary units are less likely to be well surrounded
than interior units because that would require more clusters to be assigned the same
saturation level.

For any cluster Cj, let mj be its centroid from Assumption 5 and Rj “ maxiPCj
ρpi,mjq,

the “radius” of the cluster. We propose setting

rn “ 0.5 ¨ MedianptRju
k
j“1q. (2)

In the case where clusters are equally sized squares, this coincides with the radius
suggested by Leung (2022b).

Remark 1 (Overlap). Let ϕi be the number of clusters intersecting N pi, rnq. The
propensity score can be written explicitly as

pti “ pdtt p1 ´ ptq
1´dtqϕitp1 ´ qq

ϕip1´tq

where p∅t ” 1. We show in Lemma SA.5.3 that ϕi is asymptotically bounded uniformly
in i under (2). Since q P p0, 1q by Assumption 4, pti is similarly bounded away
from zero when the saturation levels p1, p0 are nontrivial (see Assumption 6 below).
Hence, using a CRT paired with our estimation strategy inherently avoids positivity
violations or limited overlap.

Remark 2. The choice of 0.5 in (2) is immaterial for the asymptotic theory, but in
finite samples it controls a bias-variance trade-off. We choose 0.5 to informally balance
the two. Constants close to zero will yield high bias because rn “ 0 corresponds to
difference in means. Constants close to one result in high variance. To see this,
suppose each cluster is a ball with homogeneous radius R. Setting the constant
to 1 implies rn “ R, so the only unit in any cluster that is well surrounded with
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probability one is the centroid. A unit located slightly north of the centroid finds
its rn-neighborhood intersecting at least two clusters, so the chance that it is well
surrounded, and hence not excluded, is substantially lower. In contrast, suppose
rn “ 0.5R, and define a cluster Cj’s “interior” as the ball centered at mj with radius
R{2. Then all units in the interior are well surrounded with probability one because
their rn-neighborhoods are contained within Cj.

Lastly, we propose a variance estimator for θ̂. Let

Λi “
␣

ℓ P Nn : max
jPt1,...,knu

|Cj X N pi, rnq| |Cj X N pℓ, rnq| ą 0
(

, (3)

the set of units ℓ for which some cluster intersects the rn-neighborhood of ℓ and i.
These can be thought of as the units “most potentially correlated” with i. Define
Aijp1q “ 1tj P Λiu, Aijp2q “ 1tj P Ccpiqu, and Ẑi “ pT1ipYi ´ µ̂1qq{p1i ´ pT0ipYi ´

µ̂0qq{p0i. The variance estimator is

σ̂2
“ max

tPt1,2u
σ̂2

puq where σ̂2
puq “

kn
n2

ÿ

iPNn

ÿ

jPNn

ẐiẐjAijpuq. (4)

Notice that σ̂2p2q is the conventional cluster-robust variance estimator (e.g. Baird et
al., 2018), which only accounts for within-cluster dependence. The estimator σ̂2p1q

is analogous to that of Leung (2022b) and additionally accounts for cross-cluster
dependence since Ccpiq Ď Λi. In §4, we discuss the advantages of taking the larger of
the two.

4 Asymptotic Theory

We next derive bounds on the rates of convergence of our estimator and difference in
means. We then characterize the asymptotic distribution of our estimator and prove
that the variance estimator is asymptotically conservative.

Assumption 6 (Overlap). For all t P t0, 1u, if dt “ 1 (dt “ 0), then pt ą 0 (pt ă 1).

As discussed in Remark 1, this ensures overlap or positivity. For the next two the-
orems, abbreviate the estimand θ˚pd1, d0, p1, p0q as θ˚. Recall the asymptotic order
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notation from the end of §1.

Theorem 2 (Our Estimator). Suppose kn À n{ξn. Under Assumptions 1–6, |θ̂´θ˚| À

r´γ
n ` k

´1{2
n „ pknξn{nqγ{d ` k

´1{2
n .

The result establishes a bias-variance trade-off in kn. The k
´1{2
n term is the contribu-

tion of (the square root of) the variance since the effective sample size in a CRT is
the number of clusters kn. The asymptotic bias is order r´γ

n . Intuitively, if rn is large,
then the expected outcome of a unit i assigned treatment dt and well surrounded
by clusters assigned to saturation level pt should well approximate E˚

ptrYipdt,D´iqs,
corresponding to lower bias. The bias decreases at a faster rate for larger γ since this
corresponds to a lower degree of spatial interference.

The requirement kn À n{ξn is mild, and typically we would have kn ă n{ξn. In
the increasing-domain case where ξn “ 1, necessarily kn À n{ξn since kn ď n, and
usually the number of clusters is of smaller order than the population size. In the
infill-increasing case, if kn grows faster than n{ξn, which is the volume of the study
region under Assumption 2, then we would be increasingly subdividing the region into
smaller clusters of shrinking volume, analogous to having more clusters than units.

Denote the difference-in-means estimator of θ˚ by θ̂`, which corresponds to setting
rn “ 0 in the definition of θ̂. Let θ̂`

D, θ̂`
T , and θ̂`

O be the difference-in-means estimates
of θ˚

D, θ˚
T , and θ˚

O defined in §2.3.

Theorem 3 (Difference in Means). (a) Under Assumptions 1–6, |θ̂`´θ˚| À pknξn{nq1{d`

k
´1{2
n . (b) Suppose the design satisfies Assumption 4 for p1 P p0, 1q, p0 “ 0. There

exist a metric space and sequence of units, clusters, and potential outcomes satisfying
Assumptions 1–3 and 5 such that |θ̂`

Q´θ˚
Q| Á pknξn{nq1{d`k

´1{2
n for any Q P tD,T,Ou.

Part (a) provides an upper bound on the rate. Part (b) shows that the rate is tight for
several illustrative cases. Recall that setting p0 “ 0 corresponds to the “pure control”
baseline used in the estimands of Hayes and Moulton (2017).

The k
´1{2
n term in the bound is (the square root of) the variance contribution, as

in Theorem 2, while pknξn{nq1{d is the bias contribution. The latter is notably worse
than that of θ̂ because a reduction in the degree of interference 1{γ has no effect
on the rate. The reason is that units situated at cluster boundaries may be directly
proximate to clusters assigned to different treatment arms, and as shown in the proof,
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the share of such units can be of order pknξn{nq1{d.
These results demonstrate that excluding units in the manner of θ̂ can signifi-

cantly reduce the asymptotic order of the bias relative to difference in means. While
excluding units may come at the cost of efficiency, there is no increase to the asymp-
totic order of the variance because the variances of both estimators scale not with
the number of units but with the number of clusters. Hence, the efficiency loss is
second-order relative to the potential reduction in bias.

Define µt “ n´1
ř

iPNn
ErYi | Tti “ 1s, θ̄ “ µ1 ´ µ0, and

σ2
n “ Var

ˆ

a

kn
1

n

ÿ

iPNn

ˆ

T1ipYi ´ µ1q

p1i
´

T0ipYi ´ µ0q

p0i

˙˙

.

Note that σ2
n À 1 by the proof of Theorem 2.

Theorem 4 (CLT). Suppose 1 ă kn ă n{ξn and σ2
n Á 1. Under Assumptions 1–6,

σ´1
n

a

knpθ̂ ´ θ̄q
d

ÝÑ N p0, 1q. (5)

Furthermore, if kn ă pn{ξnq
2γ

2γ`d , then

σ´1
n

a

knpθ̂ ´ θ˚
q

d
ÝÑ N p0, 1q. (6)

The first result (5) centers the estimator at θ̄, the probability limit of θ̂. This is
not the estimand of interest since there is an asymptotic bias |θ̄ ´ θ˚| by Theorem
2. To use the normal limit to justify the validity of conventional CIs for θ˚, the
second result (6) requires “undersmoothed designs” in which the number of clusters
is of smaller order than the optimal rate discussed in the next section. This ensures
that the asymptotic bias is small. It is analogous to nonparametric regression where
rate-optimal tuning parameter choices result in asymptotic bias, so conventional CIs
require undersmoothing. We discuss practical choices of kn in §5. In §SA.2.3, we
discuss “bias-aware” inference, an alternative to undersmoothing.

Theorem 5 (Variance Estimator). Suppose 1 ă kn ă n{ξn and σ2
n Á 1. Under As-

sumptions 1–6, σ̂2ptq “ σ2
n`Bn`opp1q for t P t1, 2u and some sequence of non-negative

constants tBnunPN. Hence, both σ̂2p1q and σ̂2p2q are asymptotically conservative.
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The cluster-robust variance estimator σ̂2p2q has the advantage of being non-negative
in finite sample, unlike σ̂2p1q which is a truncation estimator (Andrews, 1991, p.
823). On the other hand, σ̂2p2q only accounts for within-cluster dependence, whereas
σ̂2p1q also accounts for cross-cluster dependence in the definition Aijp1q. As shown
in the proof, this dependence vanishes, so σ̂2p1q is a valid estimator. However, the
dependence vanishes at the slow rate pknξn{nq1{d, the same order as the bias of dif-
ference in means. Thus in smaller samples, ignoring second-order terms may result
in anti-conservativeness. By taking the larger of the two estimators, we obtain the
benefits of both. See §SA.3 for a comparison of σ̂2 with other variance estimators in
the literature.

5 Optimal Design

Recall that d is the dimension of the spatial region, ξn is the density of the region
(number of units per unit volume/area), and γ is a lower bound on the speed at which
interference decays with distance. By Theorem 2, choosing

k „ pn{ξnq
2γ

2γ`d (7)

optimizes the rate of convergence of θ̂. This formalizes how domain knowledge of
interference γ informs the design of clusters. The right-hand side is increasing in γ

since less interference means the same level of bias reduction can be achieved with
more clusters. It is decreasing in density ξn because having more units in a given area
effectively corresponds to greater interference (an infectious disease may spread more
easily).

Choosing the number of clusters according to (7) balances the asymptotic orders
of the bias and variance of θ̂. However, as discussed in §4, validity of the CI

θ̂ ˘ 1.96 ¨ σ̂k´1{2 (8)

requires the bias to be of smaller order than the variance. This requires an under-
smoothed design where k is of smaller order than (7).

We next recommend an undersmoothed choice of k given domain knowledge of
γ. Let V denote the area or volume of the study region containing Nn. As discussed
below, V is of order n{ξn, so the rate-optimal formula (7) can be rewritten as k „
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V
2γ

2γ`d . While one could choose k equal to the right-hand side, this choice would
be extremely sensitive to the unit of length used to measure geographic distance.
Switching from square kilometers to square millimeters would dramatically increase
V .

Our observation is that both the unit of length and γ determine the speed at
which interference decays with distance. For any given choice of γ, the rate of decay
is significantly faster if distance is measured in millimeters compared to kilometers,
for example. Therefore, domain knowledge of interference informs both γ and the
unit of length, and one can determine k from these ingredients as follows.

1. Based on domain knowledge, specify a unit of length and rate of decay γ under
which Assumption 3 is believed to hold. Choose a strict lower bound γ̃ ă γ.
For a given unit of length, the conservative choice allowed by Assumption 3 is
γ̃ “ d. We suggest this choice absent any prior information on γ.

2. Let V denote the volume of the study region containing Nn under the chosen
unit of length. Set the number of clusters to

k “
“

mintV , nu
2γ̃

2γ̃`d
‰

, (9)

where rcs means round c to the nearest integer.

The next subsection provides empirical examples of calibrating k under the con-
servative choice γ̃ “ d. The last subsection discusses how to determine γ to obtain
less conservative estimates.

Remark 3. The theoretical motivation for (9) is as follows. First, using γ̃ ă γ

corresponds to undersmoothing. Second, Assumption 2(a) says that the number of
units in an r-neighborhood is of asymptotic order equal to the density ξn times the
volume of the neighborhood rd. It follows that the number of units n is of asymptotic
order equal to ξn times the volume of the region: n „ ξnV . Hence, in the infill-
increasing case where ξn is diverging, we replace n{ξn in the rate-optimal formula (7)
with V , which can be directly computed from the data. In the increasing-domain
case where ξn „ 1, we can replace n{ξn with either n or V since they are of the same
order, so (9) conservatively chooses the smaller option.

17



Michael P. Leung

5.1 Empirical Examples

Sur et al. (2009) conduct a CRT in an urban slum in India spanning about 1.2 by
0.7 km with 38k participants. To compute our suggested number of clusters (9), we
need to select γ̃ and the unit of length. Suppose we choose the conservative bound
γ̃ “ d “ 2, so that interference is assumed to decay like r´2 or faster with each unit
of length r. If we take 35m to be the unit of length, then for units i, j, k such that
ρpi, jq “ 35m and ρpi, kq “ 70m, the extent to which k’s treatment affects i is less
than 1{4th (2´γ̃ “ 0.25) as small as the extent to which j’s affects i. This is with
only a 35m difference in distance. For this unit of length, (9) yields k “ 78. In other
words, these are the assumptions on interference that justify the authors’ choice of
k “ 80, originally determined by a conventional power analysis based on a partial
interference model.

The previous rate of decay may be over-optimistic, so suppose the relevant unit
of length is in 100m increments. If ρpi, jq “ 100m and ρpi, kq “ 200m, the extent to
which k’s treatment affects i is less than 1{4th as small as the extent to which j’s
affects i, now with a 100m difference in distance. With a slower rate of decay, bias is
higher, which requires constructing fewer, larger clusters. As a result, (9) yields only
k “ 19.

Next consider Homan et al. (2016) whose trial region is substantially larger at
roughly 12 by 4 km with nearly the same number of units (34k). Due to the lower
density, there is less bias from interference, so a choice of k “ 81 can be justified under
weaker assumptions on interference. Specifically, if γ̃ “ 2 but the unit of length is
now in 250m increments, then (9) results in k “ 84. For context, the Anopheles
mosquito that is the subject of their trial typically does not fly more than 2 km from
their breeding grounds (CDC, 2025).

These examples illustrate what domain knowledge of the degree of interference
entails. They also show how our proposed choice of k accounts for regional density,
unlike the standard power analysis (e.g. Hemming et al., 2011, eq. (9)). In both
examples, weaker assumptions on interference require choosing k smaller than the
standard analysis to better balance bias and variance. To justify choosing larger k,
the researcher must either collect data over a larger area or be willing to entertain
stronger assumptions on interference.
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5.2 Bounding Interference

Optimal design generally requires prior information on certain population parame-
ters. The standard power analysis for CRTs assumes partial interference and requires
knowledge of the intracluster correlation coefficient, a measure of within-cluster de-
pendence in potential outcomes (e.g. Baird et al., 2018; Hemming et al., 2017). Our
results suggest that, if cross-cluster interference is of first-order importance, the fo-
cus of attention should instead be γ. As illustrated in the previous subsection, the
conservative choice γ “ d can result in relatively small values of k because it allows
for a greater degree of interference, so to the extent that one can justify stronger
assumptions on interference, that is, values of γ that are larger than d for a given
unit of length, this would improve asymptotic power.

In the context of infectious disease trials, Halloran et al. (2017) argue that CRT
design should be informed by simulating models of disease transmission. Several
papers utilize parametric models and simulation methods to estimate or bound con-
tamination bias. Alexander et al. (2020) and Jarvis et al. (2019) use spatial models
to provide evidence of contamination in prior CRTs. Multerer et al. (2021) employ
models of disease transmission for a similar purpose. Our theory provides a precise
way in which modeling can inform design, namely by providing plausible values of
γ. This relates to Staples et al. (2015) who show how to estimate a different mea-
sure of cross-cluster interference to assess the degree to which the conventional power
analysis overstates trial power.

To estimate γ, models may be combined with external data sources such as data
from pilot studies. In the context of malaria vector control, mosquito mark-release-
recapture experiments (e.g. Guerra et al., 2014) provide data on geographic dispersion
of malaria carriers, which is informative of spatial interference. We provide additional
suggestions in §SA.2.2.

6 Simulation Study

We conduct a simulation study to illustrate the finite-sample properties of our esti-
mator and difference in means under our proposed design. We randomly draw unit
locations from the square r´pnαnq1{2, pnαnq1{2s2 with αn “ 0.8, 0.7, 0.6, respectively.
This corresponds to the infill-increasing case where the regional volume shrinks with
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the population size. We create clusters using k-medoids with k given by (9) using the
conservative choice γ̃ “ d “ 2 and set the assignment probabilities in Assumption 4
to pq, p1, p0q “ p0.7, 0.5, 0q.

Let tε̃iuiPNn

iid
„ N p´0.5, 1q, tβiuiPNn

iid
„ N p2, 1q, and tγiuiPNn

iid
„ N p1, 1q be in-

dependent and drawn independently of locations. We generate spatially autocor-
related errors εi “ ε̃i `

ř

jPNn
1tρpi, jq ď 1uε̃j{

ř

kPNn
1tρpi, kq ď 1u. For wij “

mintρpi, jq´5, 1u, we generate outcomes according to

Yi “
ÿ

jPNn

wijDjβj `
ÿ

jPNn

wijDiDjγj ` εi.

Under this model, the unit-level direct and indirect effects are respectively given by

Yip1,D´iq´Yip0,D´iq “ γi`βi`
ÿ

j‰i

wijDjγj and Yip0,D´iq´Yip0q “
ÿ

j‰i

wijDjβj.

Due to the choice of ´5 in the spatial weights wij, Assumption 3 holds for γ “ 3

(Leung, 2022b, eq. (3)), which is a fairly slow rate of decay given that Assumption 3
requires γ ą 2.

We present results for the indirect and total effects using 5000 simulation draws
where within each draw, we redraw potential outcomes and recompute the design-
based estimand. In Table 1, the “Spatial Interference” columns correspond to the
outcome model described above, whereas the “Partial Interference” columns redefine
wij “ 0 if i, j lie in different clusters to eliminate cross-cluster interference. The “CI”
rows report the coverage of 95-percent CIs using the indicated standard errors. For
our estimator, the “SE” row corresponds to standard errors obtained from our variance
estimator (4), while for difference in means, it corresponds to conventional cluster-
robust SEs. The “SE˚” rows are the true superpopulation standard errors obtained
by taking the standard deviation of the estimator across the simulation draws. As
such, SE should be consistent for SE˚ rather than conservative, while the CIs have
asymptotically conservative coverage for the design-based estimand. Finally, row “%
Excl” is the percentage of units that are not well surrounded.

The results are consistent with the theory. As n grows, the biases of our estimators
shrink, while coverage tends to or exceeds the nominal level. The bias of difference in
means is more than twice that of our estimators under spatial interference, resulting
in severe undercoverage even with the true superpopulation SEs. While the SEs are
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Table 1: Main results

Spatial Interference Partial Interference

Indirect Effect Overall Effect Indirect Effect Overall Effect

n 500 1000 2000 500 1000 2000 500 1000 2000 500 1000 2000

Our Estimator
Bias 0.064 0.055 0.051 0.072 0.059 0.057 0.000 0.003 0.005 0.003 0.004 0.004
CI SE 0.945 0.951 0.954 0.940 0.949 0.948 0.951 0.958 0.966 0.952 0.960 0.964
CI SE˚ 0.956 0.952 0.948 0.956 0.959 0.952 0.962 0.961 0.959 0.961 0.964 0.960
SE 0.258 0.202 0.160 0.336 0.263 0.208 0.254 0.197 0.156 0.329 0.256 0.201
SE˚ 0.261 0.200 0.153 0.342 0.262 0.206 0.257 0.196 0.150 0.333 0.253 0.198

Difference in Means
Bias 0.154 0.179 0.216 0.168 0.192 0.233 0.001 0.001 0.005 0.004 0.001 0.004
CI SE 0.906 0.852 0.689 0.904 0.872 0.770 0.953 0.961 0.970 0.951 0.960 0.962
CI SE˚ 0.920 0.853 0.654 0.935 0.894 0.784 0.960 0.963 0.963 0.963 0.963 0.960
SE 0.244 0.186 0.144 0.319 0.246 0.191 0.240 0.182 0.140 0.316 0.242 0.188
SE˚ 0.250 0.185 0.137 0.327 0.246 0.191 0.245 0.181 0.134 0.321 0.240 0.186

% Excl 5.035 7.816 11.25 5.035 7.816 11.25 5.035 7.816 11.25 5.035 7.816 11.25
rn 1.395 1.518 1.623 1.395 1.518 1.623 1.395 1.518 1.623 1.395 1.518 1.623
θ̂ 1.518 1.770 2.089 3.406 3.723 4.119 1.432 1.650 1.927 3.288 3.563 3.907
k 63 100 159 63 100 159 63 100 159 63 100 159

smaller than those of our estimators, this is not by a significant amount, and the
efficiency advantage comes at a large cost to bias under spatial interference.

Table 2 presents results for our estimator under spatial interference, but we mul-
tiply (2) by c P t0.8, 1.2u. This is to assess robustness and illustrate a bias-variance
trade-off in the choice of rn. The c “ 0.8 columns show that this results in about
half the proportion of excluded units relative to Table 1. As a result, the bias is
higher, resulting in undercoverage. The c “ 1.2 columns show that the proportion
of excluded units a little less than doubles. The bias is lower, and as a result, the
probability of coverage is higher. On the other hand, the variance increases, as can
be seen in the standard error columns.
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Table 2: Robustness results

c “ 0.8 c “ 1.2

Indirect Effect Overall Effect Indirect Effect Overall Effect

n 500 1000 2000 500 1000 2000 500 1000 2000 500 1000 2000

Bias 0.092 0.085 0.083 0.102 0.092 0.090 0.044 0.035 0.033 0.050 0.038 0.036
CI 0.932 0.935 0.936 0.933 0.940 0.932 0.946 0.951 0.957 0.940 0.952 0.953
CI SE˚ 0.944 0.935 0.929 0.952 0.950 0.943 0.960 0.960 0.954 0.959 0.961 0.957
SE 0.252 0.195 0.152 0.330 0.256 0.201 0.267 0.213 0.171 0.346 0.274 0.219
SE˚ 0.256 0.194 0.146 0.335 0.255 0.200 0.272 0.212 0.164 0.353 0.274 0.218
% Excl 2.300 3.800 5.700 2.300 3.800 5.700 9.300 13.600 18.500 9.300 13.600 18.500
rn 1.116 1.215 1.299 1.116 1.215 1.299 1.674 1.822 1.948 1.674 1.822 1.948
θ̂Q 1.490 1.740 2.057 3.376 3.690 4.085 1.538 1.790 2.108 3.427 3.744 4.139
k 63 100 159 63 100 159 63 100 159 63 100 159

7 Empirical Application

We apply our estimator to data from the unconditional cash transfer experiment
mentioned in Example 2. In the experiment, households eligible for the transfer (the
treatment) live in homes with thatched roofs, which is a proxy for poverty. Houses are
grouped in villages, which are grouped in “sublocations.” See Figure A.2 of Egger et al.
(2022) for a map of the study area. The CRT randomizes sublocations (the clusters)
into treatment with probability q “ 0.5. Within treatment (control) sublocations,
villages are randomized into treatment with probability p1 “ 2{3 (p0 “ 1{3). Within
treated villages, all eligible households receive cash transfers totaling 1000 USD, which
is about 75 percent of average annual household spending. Sublocations contain 7.8
villages on average (SD 3.9).

Egger et al. (2022) study the effect of the cash transfers on the following household-
level outcomes, which can be grouped into three categories: (1) annualized expendi-
tures on consumption (of food and other purchases described in their footnote 31),
non-durables, food alone, temptation goods, and durables; (2) asset stocks, housing
value, and land value; and (3) annualized household income, transfers, taxes paid,
profits, and wage earnings. The authors report model-assisted estimates of causal
effects at the household level. Our analysis will be entirely design-based but at the
village level. We aggregate household outcomes to the village level by averaging.

Egger et al. (2022) estimate the effects of the transfers on the population of el-
igible households using two main specifications described in their §3.2. Their “RF”
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(reduced form) specification is an OLS regression of an outcome on household-level
and sublocation-level treatment indicators and covariates. They report the coefficient
on the household-level indicator, which corresponds to a model-assisted estimate of
the direct effect θ˚p1, 0, 2{3, 2{3q for eligible households.

However, the authors note the potential for interference across sublocations (their
quote in Example 2). For this reason, their preferred specification is the following
“IV” (instrumental variables) regression. The main regressors are the amount of
cash transferred per capita to the household’s village and the amount transferred to
neighboring villages within a band of r ´ 2 to r km from the ego’s village for a range
of r values. The corresponding instruments are respectively an indicator for the ego’s
village being treated and the share of eligible households in the band assigned to
treatment. They use a BIC criterion to select the maximum range of r, which is 2
km. Using these estimates, the authors compute a model-assisted estimate of the
total effect θ˚p1, 0, 2{3, 0q. This compares saturation levels of two-thirds and zero,
which is nonparametrically unidentified since control villages have a saturation level
of one-third. We instead report our estimates of the total effect θ˚p1, 0, 2{3, 1{3q.

Table 3 reports the results for a subset of the outcomes, and Table SA.4.1 in the
supplementary appendix reports the remainder. Both tables choose rn in θ̂ according
to (2), which results in rn “ 1.6 and 39.66 percent of units not well surrounded. In
§SA.4 we describe how we construct cluster radii Rj used in this formula. The θ̂`

columns correspond to difference-in-means estimates with clustered standard errors.
We find that the difference-in-means estimates of the direct and total effects are

comparable to the RF and IV estimates, respectively, despite the distinctions outlined
above. Our estimators find larger direct and total effects. Decomposing the total
effect into direct and indirect effects, we find that the latter are substantially smaller
in magnitude with large standard errors. Compared to difference in means, our
estimates tend to be larger in magnitude but with larger standard errors due to the
restriction to well-surrounded units.

Table SA.4.2 in the supplementary appendix reports results for rn “ 2, resulting
57.89 percent of units not being well surrounded. This choice of rn coincides with the
largest range of r selected by the BIC procedure of Egger et al. (2022). Our estimates
and standard errors become larger still in magnitude relative to difference in means,
but the results are qualitatively similar.

To estimate spillover effects, Egger et al. (2022) rerun their IV specification using
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Table 3: Effects on eligibles

Direct Effect Indirect Effect Total Effect Egger et al.
θ̂ θ̂` θ̂ θ̂` θ̂ θ̂` RF IV

consumption 390.70 253.93 9.51 64.43 400.21 318.37 293.59 338.57
(109.19) (76.32) (155.56) (103.07) (158.01) (102.18) (60.11) (109.38)

non-durable 248.71 151.99 43.18 61.08 291.90 213.07 187.65 227.2
(104.20) (66.39) (139.26) (96.22) (140.41) (94.55) (58.59) (99.63)

assets 249.58 180.43 -35.18 -11.43 214.40 168.99 178.78 183.38
(59.26) (39.32) (104.75) (66.00) (98.33) (59.98) (24.66) (44.26)

housing 422.82 376.36 18.77 31.02 441.60 407.38 376.92 477.29
(49.74) (31.12) (93.55) (51.73) (86.81) (48.74) (26.37) (38.8)

income 132.89 95.02 64.90 21.01 197.80 116.03 79.43 135.7
(120.95) (58.97) (159.60) (91.71) (154.70) (87.36) (43.8) (92.1)

earnings 59.35 45.70 22.31 6.46 81.67 52.16 42.43 73.66
(78.90) (37.67) (123.04) (66.82) (119.93) (60.62) (32.23) (60.82)

653 villages (units), 84 sublocations (clusters). Standard errors are in parentheses. Column RF (IV) is
the reduced form (IV) estimate of the overall effect from Table I, column 1 (2) of Egger et al. (2022), θ̂ is
our estimate, and θ̂` is difference in means. Our estimates use rn “ 1.6, which results in 39.66 percent
of units not being well surrounded.

only non-eligible households, which did not receive any transfers (their §3.3). In Ta-
ble SA.4.3 of the supplementary appendix, we compare their results with design-based
estimates of the overall effect θ˚p∅,∅, 2{3, 1{3q on the population of non-eligibles.
The effect sizes of our estimators and those of difference in means are fairly similar
in magnitude to their IV results, but the standard errors are large. Combined with
the results in Table 3, we ultimately find strong direct effects of the cash transfers
but weaker evidence for spillover effects compared to Egger et al. (2022).

8 Conclusion

When interference occurs across clusters, conventional analyses of CRTs suffer from
bias induced by units near cluster boundaries. To reduce bias at the analysis stage,
we provide in §3.2 an estimator θ̂ that improves upon the fried-egg design by ex-
cluding from estimation units that are not surrounded by clusters assigned to the
same treatment arm. This may be employed as a robustness check for difference in
means. To reduce bias at the design stage, we propose a rate-optimal formula for the
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number of clusters k in (9). Unlike the standard power analysis that assumes partial
interference, our choice balances power against the need to reduce bias and accounts
for the density of units in the spatial region. Given k, we suggest automating cluster
construction using k-medoids and prove that the resulting clusters are balanced and
globular, thereby approximately minimizing the number of units near boundaries. We
also provide valid design-based standard errors.

Under the conventional superpopulation, partial interference framework, power
calculations for choosing k require prior knowledge of the intracluster correlation
coefficient (ICC). Under our design-based framework, the optimal choice of k requires
knowledge of γ, the speed at which interference decays with distance, rather than the
ICC. Absent domain knowledge, one can conservatively set γ to the dimension of
the spatial region. We discuss in §5.2 how to obtain less conservative estimates via
modeling or prior data.

25



Michael P. Leung

Supplementary Appendix

SA.1 k-Medoids

The k-medoids algorithm selects a set of k units in Nn – the medoids or cluster
centroids – to minimize the total distance between all units and their nearest medoids.
This creates medoids that are spatially well separated, as shown in Lemma SA.5.1.
Units are then grouped into clusters based on their closest medoids.

Whereas k-means allows centroids to be any element of X , k-medoids constrains
the centroids to the data Nn Ď X , but in practice the algorithms tend to produce simi-
lar output. Our theoretical results pertain to the implementation in Algorithm SA.1.1,
the “partitioning around medoids” algorithm. This is simple to understand, though it
has complexity Opkpn´ kq2q compared to an Opn2q runtime under the fastest known
implementation (Schubert and Rousseeuw, 2021).

For any set of candidate medoids M Ď Nn, let costpMq “
ř

iPNn
minmPM ρpi,mq,

the total distance between units and their nearest medoids.

Algorithm SA.1.1 (k-Medoids).

1. Initialize an arbitrary set of k medoids M “ tmju
k
j“1 Ď Nn. Given any M,

the associated set of clusters is Cn “ tCju
k
j“1, where Cj “ ti P Nn : mj “

argminmPM ρpi,mqu.

2. While there exist m P M and o P NnzM such that costpMztmu Y touq ă

costpMq, replace m with the o that minimizes costpMztmu Y touq.

3. Output Cn.

In other words, this chooses the set of medoids M that minimizes cost by iteratively
swapping out a candidate medoid with a better unit that reduces cost.
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SA.2 Extensions

SA.2.1 Heterogeneous Density

As discussed in §2.1, Assumption 2(a) restricts the extent to which density can vary
across the study region. To accommodate larger variation in density, such as when the
study region encompasses both urban and rural areas, we suggest first partitioning
the region Nn into subregions that are relatively homogeneous in density. This may
be done manually, for instance using cartographic and demographic information. It
can also be done using a density-based clustering algorithm; see Bhattacharjee and
Mitra (2021) and especially Kriegel et al. (2011) for surveys of this literature.

Call the density-homogeneous subregions S1, . . . ,Sm. For each Sj the researcher
can compute the optimal number of clusters kj given in (9), subdivide Sj into kj

clusters Cj1, . . . , Cjkj , say using k-medoids, and cluster-randomize across the collec-
tion of all clusters tCjℓ : ℓ “ 1, . . . kj, j “ 1, . . . ,mu. Lastly, we recommend modifying
the formula for rn since cluster radii may vary substantially across subregions with
differing densities. In the definition of Tti, replace rn with half the median cluster
radius among clusters in the subregion containing i.

SA.2.2 Determining γ

Estimating the following spatial moving average model with prior data can be a
starting point for determining γ:

Yi “
ÿ

jPNn

ρpi, jq
´η

pα ` Djβj ` εjq.

This satisfies Assumption 3 with γ “ η ´ 2 (Leung, 2022b, Proposition 1), so γ can
be backed out from an estimate of η.

It would also be useful to develop designs for nonparametrically estimating γ.
A preliminary proposal is the following. Given k clusters, say constructed using
k-medoids, denote by mj the centroid of a cluster Cj. Randomize clusters to the
following T treatment arms. In the 0th arm, we assign all units to control. In the
tth treatment arm for t ě 1, we only assign units i for which ρpi,mq P pt, t ` 1s to
treatment, where m is the centroid of the cluster in question. That is, we treat only
units in a ring at a certain distance from the centroid. Let θ̂t denote the difference-
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in-means estimate comparing average outcomes of units near centroids of clusters
assigned to arm t ě 1 with those assigned to arm 0. Then under Assumption 3, θ̂t
should decay like t´γ, producing a sort of “causal covariogram.” We may then regress
log θ̂t on log t to estimate ´γ.

SA.2.3 Bias-Aware CIs

Recall from §4 that the “undersmoothed” design chooses kn smaller than the optimal
rate, which is why (9) uses a strict lower bound γ̃ in place of γ. By analogy to
nonparametric regression, an alternative is to choose k rate-optimally using (9) with
γ in place of γ̃ and use the following “bias-aware” confidence interval (CI) in place of
(8):

θ̂ ˘
`

4c
?
kr´γ

n ` 1.96 ¨ σ̂k´1{2
˘

, (SA.2.1)

where c is given in Assumption 3. Faridani and Niehaus (2024) propose a similar
bias-aware CI for the GATE. Compared to (8), (SA.2.1) should have better finite-
sample coverage, although its implementation requires prior knowledge of both γ and
c.

In addition to knowledge of these parameters, suppose the researcher has prelimi-
nary consistent estimates of θ̂ and σ̂2, say from a pilot study (which is more plausible
in a superpopulation setup). Then following Armstrong and Kolesár (2018), they
can pick k to minimize the length of the bias-aware CI (SA.2.1). Note that rn is an
implicit function of k, which can be traced out using grid search.

The idea behind (SA.2.1) is that, by Theorem 4,

σ´1
n

a

kn
`

θ̂ ´ θ˚
˘

“ σ´1
n

a

kn
`

θ̂ ´ θ̄
˘

loooooooomoooooooon

d
ÝÑN p0,1q

`σ´1
n

a

knpθ̄ ´ θ˚
q

loooooomoooooon

B˚
n

.

As shown in the proof of Theorem 2, specifically the argument preceding (SA.6.3),

|B˚
n| ď 4c

a

knr
´γ
n .

This provides a worst-case bound on the bias that (SA.2.1) incorporates.
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SA.3 Variance Estimators

We next discuss how σ̂2 relates to variance estimators in the literature. Define Ap1q

(Ap2q) as the symmetric, nˆn matrix with ijth entry Aijp1q (Aijp2q), and recall that
σ̂2p2q is the cluster-robust variance estimator, while σ̂2p1q is analogous to the Leung
(2022b) variance estimator. The proof of Theorem 5 shows that the cluster-robust
variance estimator can be asymptotically decomposed as σ̂2p2q “ σ2

n ` Bn ` opp1q

where
Bn “

kn
n2

µ1Ap2qµ (SA.3.1)

and µ is the n-dimensional vector with ith component pµ1i ´ µ0iq ´ pµ1 ´ µ0q for
µti “ ErYi | Tti “ 1s. Because Ap2q is block-diagonal, it is positive semidefinite, so
Bn ě 0 for any n. Hence, σ̂2p2q is asymptotically conservative.

The proof further shows that σ̂2p1q “ σ2
n ` Bnp1q ` opp1q where Bnp1q is obtained

by replacing Ap2q with Ap1q in (SA.3.1). This replacement adds nonzero off-diagonal
elements to Ap2q, so Ap1q is not block-diagonal and hence not guaranteed to be
positive semidefinite. Accordingly, Leung imposes additional conditions to show that
Bnp1q

p
ÝÑ c ě 0 in the superpopulation. We find, however, that Bnp1q “ Bn ` opp1q

without any conditions on the superpopulation, so in fact σ̂2p1q is asymptotically
conservative in a purely design-based setup. Faridani and Niehaus (2024) provide a
different approach to conservative inference for the GATE based on bounding Bn.

The positive-semidefiniteness of the “kernel” Ap2q results in both a non-negative
variance estimator for any n and asymptotic conservativeness. This mirrors the cor-
responding insight for HAC variance estimators, that positive semidefinite kernels
ensure conservativeness in finite-population models. This fact was first pointed out
by Leung (2019) and has since been exploited by other papers. (In his case of network-
dependent data, the difficulty with using positive-semidefinite HAC kernels is that
they are sloped and tend to severely over-reject in finite samples, which is why Leung
(2022a) recommends use of the uniform kernel even though it is not positive semidef-
inite. For spatial data, a variety of positive semidefinite HAC kernels exist, and these
tend to have less severe issues with over-rejection relative to the network case.)

Hudgens and Halloran (2008) propose variance estimators for difference-in-means
type estimators under partial interference. Their theory relies on an additional strat-
ified interference assumption, which says that potential outcomes only depend on the
ego’s treatment assignment and the proportion of treated units in the ego’s cluster, in
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which case Yi “ YipDi, pq (since they assume complete randomization). Because p is
a constant, the dependence structure is the same as under no interference since out-
comes within a cluster are only correlated if treatment assignments are. The variance
estimators proposed by Hudgens and Halloran (2008) heavily rely on this structure.
In contrast, we do not impose partial, let alone stratified, interference, so our setting
features both within- and cross-cluster dependence in outcomes. It is therefore crit-
ical to account for additional covariance terms that are absent in the Hudgens and
Halloran (2008) variance formula to avoid anti-conservativeness. Our estimator does
so through the terms involving Aijpuq for i ‰ j.

In the econometric literature, the standard approach under partial interference
is clustering standard errors (Baird et al., 2018). These allow for arbitrary within-
cluster dependence and are valid even in the absence of stratified interference. A new
finding of our paper is that clustered standard errors are also valid in a design-based
setting with cross-cluster interference. However, we suggest combining them with
σ̂2p1q to better capture second-order covariance terms, as discussed in §4.

SA.4 Empirical Application

We define Rj from (2) as half the largest distance between households in any pair of
villages within cluster j. To compute this, we utilize supplemental data provided by
Dennis Egger on distances between village centroids and publicly available data from
Egger et al. (2022) to estimate village radii. We first compute the largest distance
between the centroids of any pair of villages a, b within a given cluster, which we
denote by ∆a,b. Since this does not account for village size, we estimate for each
village a its radius δa, which is the furthest distance between a household in the
village and its centroid. This data is publicly available in 1 km increments. For each
cluster Cj, we define Rj “ maxa,bPCj

p∆a,b ` δa ` δbq{2. The average radius across
clusters is 3.12 with a standard deviation of 0.81.
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Table SA.4.1: Effects on eligibles, rn “ 1.6

Direct Effect Indirect Effect Total Effect Egger et al.
θ̂ θ̂` θ̂ θ̂` θ̂ θ̂` RF IV

food 110.02 67.33 34.11 60.08 144.14 127.42 72.04 133.84
(63.00) (47.31) (81.92) (62.21) (84.04) (58.73) (36.96) (63.99)

temptation -5.27 -0.21 12.17 5.07 6.90 4.85 6.55 5.91
(16.32) (9.39) (19.07) (10.79) (14.79) (9.95) (5.79) (8.82)

durable 123.08 87.82 -23.94 9.53 99.14 97.35 95.09 109.01
(27.92) (23.78) (42.61) (17.99) (46.97) (20.43) (12.64) (20.24)

land -47.09 -32.65 307.03 199.58 259.93 166.93 51.28 158.47
(422.26) (271.27) (608.38) (376.02) (538.61) (300.98) (186.22) (260.91)

transfers 11.68 0.06 -11.56 -1.54 0.11 -1.47 -1.68 -7.43
(11.86) (7.20) (22.84) (11.76) (21.94) (10.85) (6.81) (13.06)

tax -1.52 0.97 1.27 2.02 -0.25 3.00 1.94 -0.09
(1.91) (1.36) (3.92) (2.32) (3.71) (2.22) (1.28) (2.02)

profits 48.70 41.40 31.90 19.85 80.60 61.25 26.24 35.85
(50.16) (34.97) (73.30) (45.79) (68.68) (44.39) (23.67) (47.66)

653 villages (units), 84 sublocations (clusters). Standard errors are in parentheses. Column RF (IV) is
the reduced form (IV) estimate of the overall effect from Table I, column 1 (2) of Egger et al. (2022),
θ̂ is our estimate, and θ̂` is difference in means. Our estimates use rn “ 1.6, which results in 39.66
percent of units not being well surrounded.
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Table SA.4.2: Effects on eligibles, rn “ 2

Direct Effect Indirect Effect Total Effect Egger et al.
θ̂ θ̂` θ̂ θ̂` θ̂ θ̂` RF IV

consumption 458.57 253.93 63.41 64.43 521.99 318.37 293.59 338.57
(112.05) (76.32) (185.15) (103.07) (185.76) (102.18) (60.11) (109.38)

non-durable 302.79 151.99 92.02 61.08 394.81 213.07 187.65 227.2
(110.70) (66.39) (171.83) (96.22) (167.98) (94.55) (58.59) (99.63)

food 141.56 67.33 69.97 60.08 211.54 127.42 72.04 133.84
(70.48) (47.31) (107.03) (62.21) (103.43) (58.73) (36.96) (63.99)

temptation -1.27 -0.21 7.51 5.07 6.23 4.85 6.55 5.91
(21.22) (9.39) (20.02) (10.79) (16.87) (9.95) (5.79) (8.82)

durable 135.67 87.82 -21.12 9.53 114.55 97.35 95.09 109.01
(28.50) (23.78) (45.92) (17.99) (50.43) (20.43) (12.64) (20.24)

assets 251.57 180.43 -1.78 -11.43 249.79 168.99 178.78 183.38
(62.15) (39.32) (121.35) (66.00) (112.25) (59.98) (24.66) (44.26)

housing 425.28 376.36 -19.37 31.02 405.90 407.38 376.92 477.29
(48.04) (31.12) (101.37) (51.73) (98.87) (48.74) (26.37) (38.8)

land -381.97 -32.65 667.52 199.58 285.54 166.93 51.28 158.47
(533.21) (271.27) (682.49) (376.02) (594.10) (300.98) (186.22) (260.91)

income 195.64 95.02 142.34 21.01 337.98 116.03 79.43 135.7
(133.25) (58.97) (170.94) (91.71) (171.01) (87.36) (43.8) (92.1)

transfers 3.87 0.06 -12.72 -1.54 -8.85 -1.47 -1.68 -7.43
(14.56) (7.20) (24.96) (11.76) (23.93) (10.85) (6.81) (13.06)

tax 0.11 0.97 0.09 2.02 0.20 3.00 1.94 -0.09
(1.95) (1.36) (4.30) (2.32) (4.63) (2.22) (1.28) (2.02)

profits 32.37 41.40 32.10 19.85 64.48 61.25 26.24 35.85
(60.65) (34.97) (73.81) (45.79) (76.64) (44.39) (23.67) (47.66)

earnings 134.09 45.70 98.88 6.46 232.97 52.16 42.43 73.66
(99.94) (37.67) (122.24) (66.82) (123.66) (60.62) (32.23) (60.82)

653 villages (units), 84 sublocations (clusters). Standard errors are in parentheses. Column RF (IV) is
the reduced form (IV) estimate of the overall effect from Table I, column 1 (2) of Egger et al. (2022), θ̂ is
our estimate, and θ̂` is difference in means. Our estimates use rn “ 2, which results in 57.89 percent of
units not being well surrounded.
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Table SA.4.3: Overall effect on noneligibles

θ̂, rn“2 θ̂, rn“1.6 θ̂` IV

consumption 247.68 228.51 211.08 334.77
(145.79) (139.91) (92.16) (123.2)

non-durable 209.57 195.41 195.38 317.62
(140.05) (135.67) (87.14) (119.76)

food 78.62 94.80 94.25 133.3
(81.01) (76.56) (48.29) (58.56)

temptation 6.75 2.30 6.57 -0.68
(7.35) (7.03) (5.24) (6.5)

durable 30.56 22.79 8.51 8.44
(16.01) (10.56) (6.76) (12.5)

assets 159.35 80.62 41.85 133.06
(127.86) (123.09) (68.68) (78.33)

housing 111.72 198.86 340.65 80.65
(510.87) (338.18) (208.72) (215.81)

land 1132.78 353.26 133.88 544.85
(1013.78) (779.26) (407.10) (459.57)

income 250.09 167.14 143.48 224.96
(142.24) (140.37) (78.78) (85.98)

transfers 12.45 9.48 13.73 8.85
(19.43) (17.13) (9.58) (19.11)

tax -0.65 3.11 2.60 1.68
(3.92) (2.72) (1.63) (2.02)

profits 80.27 92.67 88.17 36.37
(67.82) (64.10) (34.44) (44.88)

earnings 145.84 43.22 33.88 182.63
(101.11) (99.00) (60.40) (65.53)

653 villages (units), 84 sublocations (clusters). Standard errors
are in parentheses. Column IV is the IV estimate of the overall
effect from Table I, column 3 of Egger et al. (2022).
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SA.5 Auxiliary Lemmas

The first two lemmas establish properties of k-medoids clusters for k “ kn possibly
diverging.

Lemma SA.5.1 (Separation). Suppose clusters are generated by Algorithm SA.1.1.
Under Assumption 2(a), there exists a positive sequence tℓnunPN bounded away from
zero such that for all n sufficiently large and medoids in, jn generated by kn-medoids,
ρpin, jnq ě ℓnpn{pknξnqq1{d.

Lemma SA.5.2 (Radius). Suppose clusters are generated by Algorithm SA.1.1. Con-
sider any sequence tCnunPN with Cn P Cn for each n. Let in be the medoid of Cn

and R˚
n “ maxtρpin, jq : j P Cnu. Under Assumption 2(a), R˚

n „ pn{pknξnqq1{d, so
|N pin, R

˚
nq| À n{kn.

Lemma SA.5.3. Under Assumptions 2(a) and 5, maxiPNn ϕi À 1 for ϕi defined in
Remark 1. Consequently, under Assumptions 4 and 6, mini pti Á 1 for any t P t0, 1u.

Lemma SA.5.4. Under Assumptions 2(a) and 5, maxiPNn|Λi| À n{kn for Λi defined
in (3).

Lemma SA.5.5. Let κ̂t “ n´1
ř

iPNn
Tti{pti. Under Assumptions 2(a) and 4–6,

κ̂t ´ 1 À k
´1{2
n for any t P t0, 1u.

Let T`
ti equal Tti with rn set to zero, p̂`

t “ n´1
ř

iPNn
T`
ti , and p`

t “ ErT`
ti s, which

does not depend on i under Assumption 4.

Lemma SA.5.6. Under Assumptions 2(a) and 4–6, p̂`
t ´p`

t “ Oppk
´1{2
n q and p`

t {p̂`
t

p
ÝÑ

1 for any t P t0, 1u.

SA.6 Proofs

SA.6.1 Theorem 1

Let each cluster Cn’s “centroid” in be its medoid and Un ” maxj Rj for Rj defined prior
to (2), so Cn Ď N pin, Unq. By Lemma SA.5.2, Un À pn{pknξnqq1{d. By Lemma SA.5.1,
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there exists ∆n Á pn{pknξnqq1{d such that any pair of medoids is physically separated
by at least ∆n. Then by definition of k-medoid clusters, for Ln “ ∆n{2, N pin, Lnq Ď

Cn.

SA.6.2 Theorem 2

SA.6.2.1 Reduction to HT

Define the following Horvitz-Thompson analog of θ̂:

θ̃ “
1

n

ÿ

iPNn

Z̃i for Z̃i “

ˆ

T1i

p1i
´

T0i

p0i

˙

Yi. (SA.6.1)

This is unbiased for θ̄ defined prior to Theorem 4. Let κ̂t “ n´1
ř

iPNn
Tti{pti. By

Assumption 1 and Lemma SA.5.3, Z̃i is uniformly asymptotically bounded, so

|θ̂ ´ θ̃| À |κ̂´1
1 ´ 1| ` |κ̂´1

0 ´ 1| À k´1{2
n

by Lemma SA.5.5. It remains to bound the bias and variance of θ̃.

SA.6.2.2 Bias

For any i P Nn, dt P t0, 1u, d P t0, 1un, and S Ď Nn containing i, we use the
notation pdt,DSztiu,d´Sq to mean that we take the observed treatment vector D,
replace entry Di with dt, and replace the subvector DNnzS “ pDj : j P NnzSq with
the corresponding entries of dNnzS.

The basic idea is that if Tti “ 1, then Di “ dt and i is well surrounded by
units belonging to clusters with saturation level pt, so ErYi | Tti “ 1s is a good
approximation of E˚

ptrYipdt,D´iqs. Formally,

|ErYi | Tti “ 1s ´ E˚
ptrYipdt,D´iqs|

“ |ErYipdt,D´iq ˘ Yipdt,DN pi,rnqztiu,0´N pi,rnqq | Tti “ 1s

´ E˚
ptrYipdt,D´iq ˘ Yipdt,DN pi,rnqztiu,0´N pi,rnqqs| ď 2c r´γ

n , (SA.6.2)

because

ErYipdt,DN pi,rnqztiu,0´N pi,rnqq | Tti “ 1s “ E˚
ptrYipdt,DN pi,rnqztiu,0´N pi,rnqqs
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by Assumption 4 and

|Yipdt,D´iq ´ Yipdt,DN pi,rnqztiu,0´N pi,rnqq| ď c r´γ
n

by Assumption 3. Therefore,

|Erθ̃s ´ θ˚| “ |θ̄ ´ θ˚| ď 4c r´γ
n „ pknξn{nq

γ{d. (SA.6.3)

The last part of (SA.6.3) holds because rn is the median cluster radius by (2), and
cluster radii are uniformly of order pn{pknξnqq1{d by Assumption 5.

SA.6.2.3 Variance

Recalling the definition of Λi from (3),

Var
ˆ

1

n

ÿ

iPNn

Z̃i

˙

“
1

n2

ÿ

iPNn

ÿ

jPΛi

CovpZ̃i, Z̃jq

looooooooooooomooooooooooooon

rP1s

`
1

n2

ÿ

iPNn

ÿ

jRΛi

CovpZ̃i, Z̃jq

looooooooooooomooooooooooooon

rP2s

. (SA.6.4)

By Lemma SA.5.4, maxi|Λi| À n{kn, so rP1s À k´1
n . It remains to show that rP2s À

k´1
n . Intuitively, rP2s should be well controlled since units not in Λi are “far” from

and therefore less correlated with i.

Step 1. Recall that cpiq is the index of the cluster containing unit i. Define Xr
i “

ErZ̃i | Fiprqs for
Fiprq “

␣

pDj,Wcpjqq : ρpi, jq ď r
(

. (SA.6.5)

We bound the discrepancy between Z̃i and Xr
i . For any r ě rn and t P t0, 1u, Tti is

measurable with respect to the σ-algebra generated by Fiprq. Then by Assumption 3,
for any q ą 0, r ě rn, n sufficiently large, and t P t0, 1u,

Er|Z̃i ´ Xr
i |q | Tti “ 1s

“ p´q
ti Er|YipDq ´ ErYipDq | Fiprqs|q | Tti “ 1s ď pp´1

ti 2c r
´γ

q
q

using an argument similar to (SA.6.2). By Lemma SA.5.3, maxi p
´1
ti À 1, so by the
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law of total probability, there exists cn À 1 such that

max
iPNn

Er|Z̃i ´ Xr
i |qs1{q

ď cnr
´γ for all r ě rn. (SA.6.6)

Step 2. Fix i, j P Nn such that j R Λi. We use (SA.6.6) to bound CovpZ̃i, Z̃jq.
Since the rn-neighborhoods of i and j do not intersect a common cluster, Xrn

i KK Xrn
j

by Assumption 4. Applying the Cauchy-Schwarz inequality, (SA.6.6) for q “ 2, and
Assumption 1 and Lemma SA.5.3, there exists c1

n À 1 such that for n sufficiently large
and all i, j such that j R Λi,

|CovpZ̃i, Z̃jq| ď |CovpXrn
i , Xrn

j q| ` |CovpXi, Z̃j ´ Xrn
j q|

` |CovpZ̃i ´ Xrn
i , Xjq| ` |CovpZ̃i ´ Xrn

i , Z̃j ´ Xrn
j q| ď c1

nr
´γ
n . (SA.6.7)

Now suppose additionally that ρpi, jq ą 4R̄ for

R̄ “ max
j

Rj,

where Rj is defined prior to (2). In this case, we derive a different covariance bound.
Since N pi, ρpi, jq{2 ´ R̄q and N pj, ρpi, jq{2 ´ R̄qq are separated by a distance of at
least 2R̄, which upper bounds the “diameter” of any cluster, we have X

ρpi,jq{2´R̄
i KK

X
ρpi,jq{2´R̄
j . By a derivation similar to (SA.6.7) using ρpi, jq{2 ´ R̄ in place of rn,

|CovpZ̃i, Z̃jq|1tρpi, jq ą 4R̄u ď c1
npρpi, jq{2 ´ R̄q

´γ1tρpi, jq ą 4R̄u. (SA.6.8)

Step 3. Let rcs (tcu) denote c rounded up (down) to the nearest integer. Using the
covariance bounds derived in step 2,

1

n2

ÿ

iPNn

ÿ

jRΛi

|CovpZ̃i, Z̃jq| ď
c1
n

n2

kn
ÿ

ℓ“1

ÿ

iPCℓ

8
ÿ

s“t2rnu

ÿ

jRΛi

1tρpi, jq P rs, s ` 1qu

ˆ
`

r´γ
n 1ts ď 4R̄u ` ps{2 ´ R̄q

´γ1ts ą 4R̄u
˘

” rP2.1s ` rP2.2s, (SA.6.9)

where rP2.1s takes the part involving s ď 4R̄ and rP2.2s the part involving s ą 4R̄.
The sum over s starts at t2rnu because j R Λi implies that the rn neighborhoods of
i, j do not intersect.

We next show that (SA.6.9) À ξn{n. By Assumptions 2(a) and 5, maxℓ|Cℓ| À
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n{kn. By Assumption 2(b),
ř

jRΛi
1tρpi, jq P rs, s ` 1qu ď |N pi, s ` 1qzN pi, sq| ď

Cξn maxtsd´1, 1u. Then

rP2.1s “ c1
n

kn
n2

n

kn

r4R̄s
ÿ

s“t2rnu

Cξns
d´1r´γ

n À
ξn
n
R̄dr´γ

n (SA.6.10)

because

r4R̄s
ÿ

s“t2rnu

sd´1
ď

ż r4R̄s`1

t2rnu

sd´1 ds “ d´1
`

r4R̄ ` 1sd ´ t2rnud
˘

À R̄d

given R̄ ě rn by definition. By Assumption 5,

rn ě Ln „ pn{pknξnqq
1{d, (SA.6.11)

and R̄d À n{pknξnq, so

(SA.6.10) À
ξn
n

ˆ

n

knξn

˙1´γ{d

“
1

kn

ˆ

knξn
n

˙γ{d

À
ξn
n

(SA.6.12)

since γ ą d by Assumption 3. Similarly, using the fact that d ě 1 from Assump-
tion 2(b),

rP2.2s “ c1
n

kn
n2

n

kn

8
ÿ

s“t4R̄u

Cξns
d´1

ps{2 ´ R̄q
´γ

ď Cc1
n

ξn
n

8
ÿ

s“t4R̄u

sd´1
ps{4q

´γ À
ξn
n

8
ÿ

s“1

sd´1´γ. (SA.6.13)

Combining (SA.6.9), (SA.6.10), (SA.6.12), and (SA.6.13) yields rP2s À ξn{n À k´1
n

since knξn{n À 1 by assumption.
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SA.6.3 Theorem 3

SA.6.3.1 Part (a)

Let T`
ti “ 1tDi “ dt,Wcpiq “ tu for dt P t0, 1u and T`

ti “ 1tWcpiq “ tu for dt “ ∅.
Define p`

t “ ErT`
ti s, p̂`

t “ n´1
ř

iPNn
T`
ti , and

θ̃`
“

1

n

ÿ

iPNn

ˆ

T`
1i

p`
1

´
T`
0i

p`
0

˙

Yi,

the Horvitz-Thompson analog of the difference in means θ̂`. We have

θ̂`
´ θ̃`

“
p`
1 ´ p̂`

1

p̂`
1

1

n

ÿ

iPNn

T`
1iYi

p`
1

´
p`
0 ´ p̂`

0

p̂`
0

1

n

ÿ

iPNn

T`
0iYi

p`
0

À k´1{2
n

because T`
ti Yi{p

`
t is uniformly asymptotically bounded by Assumption 1 and Lemma SA.5.3,

and p`
t ´ p̂`

t À k
´1{2
n by Lemma SA.5.6. It suffices to derive the rate of convergence

of θ̃`.
By the argument used to bound (SA.6.4) in the proof of Theorem 2, Varpθ̃`q À

k´1
n . It remains to bound the bias, that is, to show that

|Erθ̃`
s ´ θ˚| À pknξn{nq

1{d. (SA.6.14)

Recall the definitions in Assumption 5, letting mj denote the “centroid” of cluster Cj.
Define j’s “boundary” as

BpCjq “ N pmj, UnqzN pmj, Lnq.

By Assumption 5, there exists αn À 1 such that Un ´ Ln “ αnpn{pknξnqq1{d, so by
Assumption 2(b),

max
j

|BpCjq| ď

rαns
ÿ

ℓ“0

|N pmj, Ln`ℓ`1qzN pmj, Ln`ℓq| À ξnpn{pknξnqq
pd´1q{d. (SA.6.15)

For r “ 0, . . . , Ln, define the “contour sets”

Jpr, Cjq “ N pmj, Ln ´ rqzN pmj, Ln ´ r ´ 1q,
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where N pi,´1q ” ∅. As r increases, Jpr, Cjq moves away from the boundary and
towards the interior. If i P Jpr, Cjq, then N pi, rq Ď Cj, so for such i, by Assumptions
3 and 4,

ˇ

ˇpp`
t q

´1ErYiT
`
ti s ´ E˚

ptrYipdt,D´iqs
ˇ

ˇ

“
ˇ

ˇErYipdt,D´iq ˘ Yipdt,DN pi,rqztiu,0´N pi,rqq | T`
ti “ 1s

´ E˚
ptrYipdt,D´iq ˘ Yipdt,DN pi,rqztiu,0´N pi,rqqs

ˇ

ˇ

ď 2c mintr´γ, 1u

for any t P t0, 1u. Then

1

n

ÿ

iPNn

ˇ

ˇpp`
t q

´1ErYiT
`
ti s ´ E˚

ptrYipdt,D´iqs
ˇ

ˇ

À
1

n

kn
ÿ

j“1

¨

˝|BpCjq| `

Ln
ÿ

r“0

ÿ

iPJpr,Cjq

mintr´γ, 1u

˛

‚

À
kn
n
ξn

ˆ

n

knξn

˙
d´1
d

looooooooomooooooooon

boundary bias

`
kn
n

Ln
ÿ

r“0

ξnmaxtpLn ´ r ´ 1q
d´1, 1umintr´γ, 1u

À pknξn{nq
1{d

`
knξn
n

Ld´1
n

8
ÿ

r“0

mintr´γ, 1u À pknξn{nq
1{d.

The second line uses Assumption 1 and Lemma SA.5.3. It converts the sum over
all units to a sum over all clusters followed by sums over units in each contour set
through the boundary. The third line bound on |BpCjq| follows from (SA.6.15), while
the bound on |Jpr, Cjq| uses Assumption 2(b). This establishes (SA.6.14).

SA.6.3.2 Part (b)

Let d ě 1, and fix any sequence tξnunPN such that 1 À ξn ă n. Let ρ be the sup norm
and Nn “ tξ

´1{d
n x : x P Zdu X Bp0,Rnq where Bp0,Rnq is a (hyper)cube with radius

Rn P Z and Rn „ pn{ξnq1{d. When ξn „ 1, the observed units are positioned within
a cube of radius „ n1{d containing „ n units positioned on the integer lattice. When
ξn ą 1, we shrink this region towards the origin by a factor ξ´1{d

n . This results in the
same asymptotic order of number of units |Nn| „ n, but the volume of the cube is
reduced to „ Rd

n „ n{ξn, resulting in a density of ξn.
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Verifying Assumption 2. By construction of Nn, there exist C0, C1 ą 0 such that
for r ě 0 and i P Nn,

|N pi, ξ´1{d
n rq| P rmintC´1

0 rd, nu,maxtC0r
d, 1us and

|N pi, ξ´1{d
n pr ` 1qqzN pi, ξ´1{d

n rq| P rmintC´1
1 rd´1, nu,maxtC1r

d´1, 1us.

Substituting ξ
1{d
n r for r in these expressions,

|N pi, rq| P rmintC´1
0 ξnr

d, nu,maxtC0ξnr
d, 1us and (SA.6.16)

|N pi, r ` ξ´1{d
n qzN pi, rq| P rmintC´1

1 ξpd´1q{d
n rd´1, nu,maxtC1ξ

pd´1q{d
n rd´1, 1us.

Letting rcs denote rounding c to the nearest integer, this implies

|N pi, r ` 1qzN pi, rq| ď 1 `

rξ
1{d
n s
ÿ

k“1

|N pi, r ` ξ´1{d
n kqzN pi, r ` pξ´1{d

n pk ´ 1qq|

ď 1 `

rξ
1{d
n s
ÿ

k“1

C1ξ
pd´1q{d
n pr ` ξ´1{d

n pk ´ 1qq
d´1

ď 1 ` C1ξ
pd´1q{d
n

ż rξ
1{d
n s`1

1

pr ` ξ´1{d
n pk ´ 1qq

d´1 dk

“ 1 ` C1ξ
pd´1q{d
n

`

d´1ξ1{d
n pr ` ξ´1{d

n pk ´ 1qq
d
˘

ˇ

ˇ

ˇ

ˇ

rξ
1{d
n s`1

1

ď 1 ` C1d
´1ξnppr ` ξ´1{d

n rξ1{d
n sq

d
´ rdq, (SA.6.17)

which is bounded by a constant times ξnr
d´1. This verifies Assumption 2.

Verifying Assumption 5. Let 1 ă kn ă n{ξn. For the remainder of the proof,
suppose the clusters are generated by kn-medoids which by Theorem 1 satisfy As-
sumption 5. Also let n be sufficiently large that Ln in the assumption exceeds two.

Verifying Assumptions 1 and 3. Set

Yipdq “ di

ř

jPNn
dj1tρpi, jq ď 2u

ř

jPNn
1tρpi, jq ď 2u

,

which is unit i’s treatment times the fraction of treated units in i’s 2-neighborhood.
The sum in the denominator is always at least one since it includes i itself, so As-
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sumption 1 holds. Assumption 3 holds because potential outcomes only depend on
2-neighborhood treatments.

Reduction to HT. Notice Yip0q “ 0. Since Q P tD,T,Ou and p0 “ 0, T`
0iYi “ 0.

Then
θ̂`

“
1

n

ÿ

iPNn

T`
1i

p`
1

Yi

loooooomoooooon

θ̃`

p`
1

p̂`
1

.

By Lemma SA.5.6, p`
1 {p̂`

1
p

ÝÑ 1, so it remains to lower bound the bias and variance
of θ̃`.

Bias. Let β “ pp1 ´ p1qq1td1 “ 1u ` p1pp1 ´ p1qq1td1 “ ∅u, which is strictly positive
by assumption. We have

|Erθ̃`
s ´ θ˚| “

ˇ

ˇ

ˇ

ˇ

1

n

ÿ

iPNn

`

ErYi | T`
1i “ 1s ´ E˚

p1
rYipd1,D´iqs

˘

ˇ

ˇ

ˇ

ˇ

“ β
1

n

ÿ

iPNn

ř

jPNnzCcpiq
1tρpi, jq ď 2u

ř

jPNn
1tρpi, jq ď 2u

. (SA.6.18)

Define the boundary of a set C Ď Nn as

B̃pCq “
␣

i P C : |N pi, 1q X ptξ´1{d
n x : x P Zd

uzCq| ě 1
(

,

the set of units whose 1-neighborhoods intersect a point outside the set. Then

(SA.6.18) ě β
1

n

kn
ÿ

j“1

ÿ

iPB̃pCjqzB̃pNnq

ř

ℓPNnzCj
1tρpi, ℓq ď 2u

ř

ℓPNn
1tρpi, ℓq ď 2u

. (SA.6.19)

By construction of Nn,

min
j“1,...,kn

min
iPB̃pCjqzB̃pNnq

ř

ℓPNnzCj
1tρpi, ℓq ď 2u

ř

ℓPNn
1tρpi, ℓq ď 2u

Á 1.

Therefore,

(SA.6.19) Á
1

n

ˆ kn
ÿ

j“1

|B̃pCjq| ´ |B̃pNnq|
˙

. (SA.6.20)
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By (SA.6.17),
|B̃pNnq| „ ξnRd´1

n „ npξn{nq
1{d (SA.6.21)

Let mj denote the medoid of a cluster Cj. By Assumption 5(a), units in B̃pCjq

are at least distance tLnu from mj. Define the “contour set”

J̃pr, Cjq “ N pmj, rqzN pmj, r ´ 1q.

By construction of Nn, |J̃pr, Cjq| is increasing in r, so

|B̃pCjq| ě |J̃ptLnu, Cjq| „ ξnpn{pknξnqq
pd´1q{d

uniformly in j by (SA.6.17) and Assumption 5(b). Hence

1

n

kn
ÿ

j“1

|B̃pCjq| Á
knξn
n

ˆ

n

knξn

˙pd´1q{d

“ pknξn{nq
1{d.

Combined with (SA.6.21), (SA.6.20) Á pknξn{nq1{d.

Variance. For Z`
i “ T`

1iYi{p
`
1 , CovpZ`

i , Z
`
j q equals

ÿ

ℓPNn

ÿ

mPNn

1tρpi, ℓq ď 2u
ř

ℓ1PNn
1tρpi, ℓ1q ď 2u

1tρpj,mq ď 2u
ř

m1PNn
1tρpj,m1q ď 2u

ˆ pp`
1 q

´2Cov
`

T`
1iDiDℓ, T

`
1jDjDm

˘

.

Since Q P tD,T,Ou, either T`
1i “ DiWcpiq in the case of Q P tD,T u or T`

1i “ Wcpiq in
the case of Q “ O, so the covariance term equals CovpWcpiqDiDℓ,WcpjqDjDmq ě 0.
Furthermore, for j P Ccpiq, Wcpiq “ Wcpjq, so

CovpWcpiqDiDℓ,WcpjqDjDmq

“ ErWcpiqCovpDiDℓ, DjDm | Wcpiqqs
looooooooooooooooooooomooooooooooooooooooooon

ě0

`CovpErDiDℓ | Wcpiqs,ErDjDm | Wcpiqsq.

If additionally ℓ P Ccpiqztiu and m P Ccpiqztju, the covariance term on the right-hand
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side equals α ” qp41 ´ pqp21q
2 ą 0. Then by construction of Nn,

Var

˜

1

n

ÿ

iPNn

Z`
i

¸

ě α
1

n2

ÿ

iPNn

ÿ

jPCcpiq

ÿ

ℓPCcpiqztiu

1tρpi, ℓq ď 2u
ř

ℓ1PNn
1tρpi, ℓ1q ď 2u

ˆ
ÿ

mPCcpiqztju

1tρpj,mq ď 2u
ř

m1PNn
1tρpj,m1q ď 2u

Á
1

n2

ÿ

iPNn

|Ccpiq|.

By (SA.6.16) and Assumption 5(a), minj|Cj| ě |N pmj, Lnq| Á n{kn. Hence, the
right-hand side of the above display is at least order k´1

n .

SA.6.4 Theorem 4

The first three steps establish (5), and step four proves (6).

Step 1. We first derive an asymptotically linear representation. For κ̂t “ n´1
ř

iPNn
Tti{pti

and µt “ n´1
ř

iPNn
ErYi | Tti “ 1s,

ř

iPNn
YiTti{pti

ř

iPNn
Tti{pti

´ µt “ κ̂´1
t

1

n

ÿ

iPNn

TtipYi ´ µtq

pti
.

By Lemma SA.5.5, κ̂t ´ 1 À k
´1{2
n , so

θ̂ ´ θ̄ “
1

n

ÿ

iPNn

ˆ

T1ipYi ´ µ1q

p1i
´

T0ipYi ´ µ0q

p0i

˙

looooooooooooooooooomooooooooooooooooooon

Zi

`oppk´1{2
n q (SA.6.22)

since n´1
ř

iPNn
p´1
ti TtipYi ´ µtq ă 1 by the variance calculation in the proof of Theo-

rem 2.

Step 2. Recall the definition of Fiprq from (SA.6.5) and Λi from (3). Define Bi “

Zi ´ ErZi | Fiprnqs. We next establish that

E

»

–

˜

a

kn
1

n

ÿ

iPNn

Bi

¸2
fi

fl À
knξn
n

ă 1,

where the last asymptotic inequality follows from the assumption kn ă n{ξn. Ex-
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panding the square yields

kn
n2

ÿ

iPNn

ÿ

jPΛi

ErBiBjs `
kn
n2

ÿ

iPNn

ÿ

jRΛi

ErBiBjs ” rP1s ` rP2s.

For all r ě rn and t P t0, 1u, Tti is measurable with respect to Fiprq, so

Zi ´ ErZi | Fiprqs

“
T1i

p1i
pYipDq ´ ErYipDq | Fiprqsq ´

T0i

p0i
pYipDq ´ ErYipDq | Fiprqsq.

By Assumption 3,

|YipDq ´ ErYipDq | Fiprqs| “ |YipDq ˘ YipDN pi,rq,0´N pi,rqq

´ ErYipDq ˘ YipDN pi,rq,0´N pi,rqq | Fiprqs| ď 2cmintr´γ, 1u

since ErYipDN pi,rq,0´N pi,rqq | Fiprqs “ YipDN pi,rq,0´N pi,rqq. Then by Lemma SA.5.3,
there exists cn À 1 such that for all i,

|Zi ´ ErZi | Fiprqs| ď cnmintr´γ, 1u for all r ě rn. (SA.6.23)

By Lemma SA.5.4, maxi|Λi| À n{kn, so (SA.6.11) and (SA.6.23) imply

|rP1s| À pcnr
´γ
n q

2 À pknξn{nq
2γ{d,

which is À knξn{n since γ ą d by Assumption 3.
Turning to |rP2s|, fix i, j such that j R Λi. By (SA.6.23), there exists cn À 1 such

that for all such i, j,
|ErBiBjs| ď cnr

´γ
n .

We will use a different bound when additionally ρpi, jq ą 4R̄ for R̄ “ maxj Rj. In
this case we have

Bi ´ ErBi | Fipρpi, jq{2 ´ R̄qs
loooooooooooooomoooooooooooooon

Xi

“ Zi ´ ErZi | Fipρpi, jq{2 ´ R̄qs

since N pi, ρpi, jq{2´R̄q Ě N pi, rnq. Notice ErXis “ 0; maxi|Xi| À 1 by Assumption 1
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and Lemma SA.5.3; and Xi KK Xj by Assumption 4 since N pi, ρpi, jq{2 ´ R̄q and
N pj, ρpi, jq{2 ´ R̄qq ą 2R̄ are separated by a distance of at least 2R̄, which is an
upper bound on the “diameter” of any cluster. Applying (SA.6.23) with ρpi, jq{2´ R̄

in place of rn, there exists c1
n À 1 such that for any i, j,

|ErBiBjs| ď |ErXiXjs| ` |ErXipBj ´ Xjqs|

` |ErpBi ´ XiqXjs| ` |ErpBi ´ XiqpBj ´ Xjqs| ď c1
npρpi, jq{2 ´ R̄q

´γ.

These bounds yield

|rP2s| ď
kn
n2

ÿ

iPNn

ÿ

jRΛi

|ErBiBjs|

ď kn
c1
n

n2

kn
ÿ

ℓ“1

ÿ

iPCℓ

8
ÿ

s“t2rnu

ÿ

jRΛi

1tρpi, jq P rs, s ` 1qu

ˆ
`

r´γ
n 1ts ď 4R̄u ` ps{2 ´ R̄q

´γ1ts ą 4R̄u
˘

.

The right-hand side equals (SA.6.9) multiplied by kn. Since (SA.6.9) À ξn{n as shown
in the proof of Theorem 4, this is À knξn{n, as desired.

Step 3. Letting σ̃2
n “ Varp

?
knn

´1
ř

iPNn
ErZi | Fiprnqsq,

|σn ´ σ̃n| ď Var

˜

a

kn
1

n

ÿ

iPNn

pZi ´ ErZi | Fiprnqsq

¸1{2

ă 1 (SA.6.24)

by Minkowski’s inequality and step 2. Since σ2
n Á 1 by assumption, it suffices to show

σ̃´1
n

a

kn
1

n

ÿ

iPNn

`

ErZi | Fiprnqs ´ ErZis
˘ d

ÝÑ N p0, 1q (SA.6.25)

to establish (5). We apply Theorem 3.6 of Ross (2011), defining his Xi as n´1k
1{2
n pErZi |

Fiprnqs ´ ErZisq and his dependency graph A by connecting units i, j in A if and
only if j P Λi. This is a dependency graph because j R Λi implies that the treat-
ment assignments determining Fiprnq are independent of those determining Fjprnq

under Assumption 4. The maximum degree of A is at most maxi|Λi| À n{kn by
Lemma SA.5.4. Therefore, by Assumption 1, the right-hand side of (3.8) in Ross
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(2011) is asymptotically bounded above by

ˆ

n

kn

˙2

n

ˆ
?
kn
n

˙3

`

ˆ

n

kn

˙3{2
d

n

ˆ
?
kn
n

˙4

ă 1,

so (SA.6.25) follows from his (3.8). This completes the proof of (5)

Step 4. Note that θ̄ “ Erθ̃s, where θ̃ is the Horvitz-Thompson analog of θ̂ defined
in (SA.6.1). The bias of θ̃ is |θ̄ ´ θ˚| À pknξn{nqγ{d by (SA.6.3). Given that kn ă

pn{ξnq
2γ

2γ`d ,

a

knpθ̄ ´ θ˚
q À

a

knpknξn{nq
γ{d ă

a

knpn{ξnq
´

γ
2γ`d ă 1, (SA.6.26)

in which case
σ´1
n

a

knpθ̂ ´ θ̄q “ σ´1
n

a

knpθ̂ ´ θ˚
q ` op1q,

so (6) follows from (5).

SA.6.5 Theorem 5

In what follows, steps 1–4 concern case σ̂2p1q, and step 5 concerns σ̂2p2q. Define Zi

as in (SA.6.22) and Ẑi as in (4). Let

Bn “
kn
n2

ÿ

iPNn

ÿ

jPNn

ErZisErZjsAijp2q.

This equals (SA.3.1), which is non-negative for any n.
By (SA.6.24), |σn ´ σ̃n| ă 1, where

σ̃2
n “

kn
n2

ÿ

iPNn

ÿ

jPNn

CovpErZi | Fiprnqs,ErZj | FjprnqsqAijp1q (SA.6.27)

by Assumption 4. Thus, to show that σ̂2p1q “ σ2
n ` Bn ` opp1q, it suffices to prove

σ̂2
p1q “ σ̃2

n ` Bn ` opp1q. (SA.6.28)
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Step 1. By definition, σ̂2p1q “ n´2kn
ř

iPNn

ř

jPNn
ẐiẐjAijp1q. We prove that

σ̂2
p1q “

kn
n2

ÿ

iPNn

ÿ

jPNn

ZiZjAijp1q

looooooooooooomooooooooooooon

σ̌2p1q

`opp1q.

In the formula for σ̂2p1q, replace Ẑi with Ẑi ˘ Zi to obtain

|σ̂2
p1q ´ σ̌2

p1q| ď
2kn
n2

ÿ

iPNn

|Zi|
ÿ

jPNn

Aijp1qmax
k

|Ẑk ´ Zk|

`
kn
n2

ÿ

iPNn

ÿ

jPNn

Aijp1qmax
k

pẐk ´ Zkq
2. (SA.6.29)

By Lemma SA.5.4, maxi
ř

j Aijp1q À n{kn. By Assumption 1 and Lemma SA.5.3,
maxi|Zi| À 1, and

max
i

pẐi ´ Ziq
2

“ max
i

ˆ

T1ipµ1 ´ µ̂1q

p1i
´

T0ipµ0 ´ µ̂0q

p1i

˙2

À max
t

pµt ´ µ̂tq
2,

which is ă 1 by the proof of Theorem 2. Hence, (SA.6.29) ă 1.

Step 2. We prove that

σ̌2
p1q “

kn
n2

ÿ

iPNn

ÿ

jPNn

pZi ´ ErZisqpZj ´ ErZjsqAijp1q ` Bnp1q ` opp1q,

where
Bnp1q “

kn
n2

ÿ

iPNn

ÿ

jPNn

ErZisErZjsAijp1q.

In the formula of σ̌2p1q, replace Zi with Zi ˘ ErZis to obtain

σ̌2
p1q “

kn
n2

ÿ

iPNn

ÿ

jPNn

pZi ´ ErZisqpZj ´ ErZjsqAijp1q

`
2kn
n2

ÿ

iPNn

ÿ

jPNn

pZi ´ ErZisqErZjsAijp1q `
kn
n2

ÿ

iPNn

ÿ

jPNn

ErZisErZjsAijp1q.
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We need to show that the second term on the right is ă 1. For Vi “
ř

jPNn
ErZjsAijp1q,

E

„
ˇ

ˇ

ˇ

ˇ

kn
n2

ÿ

iPNn

ÿ

jPNn

pZi ´ ErZisqErZjsAijp1q

ˇ

ˇ

ˇ

ˇ

ȷ

ď E

„ˆ

kn
n2

ÿ

iPNn

pZi ´ ErZisqVi

˙2ȷ1{2

“

ˆ

k2
n

n4

ÿ

iPNn

ÿ

jPΛi

CovpZi, ZjqViVj `
k2
n

n4

ÿ

iPNn

ÿ

jRΛi

CovpZi, ZjqViVj

˙1{2

. (SA.6.30)

By Assumption 1 and Lemma SA.5.3, maxi|ErZis| À 1. Since maxi
ř

jPNn
Aijp1q À

n{kn by Lemma SA.5.4, maxi|Vi| À n{kn. Therefore,

(SA.6.30) À

ˆ

1

n2

ÿ

iPNn

ÿ

jPΛi

|CovpZi, Zjq| `
1

n2

ÿ

iPNn

ÿ

jRΛi

|CovpZi, Zjq|
˙1{2

.

The argument in (SA.6.9)–(SA.6.13) can be applied to show that this is ă 1. The
one distinction is that the above expression has Zi in place of Z̃i. These only differ
because Yi in the expression of Zi is centered by µt, unlike the expression of Z̃i,
but the centering is immaterial since it cancels out when deriving the analogs of the
covariance bounds (SA.6.7) and (SA.6.8) using (SA.6.6).

Step 3. We prove that Bnp1q “ Bn ` opp1q. Noting that Ccpiq Ď Λi, decompose

Bnp1q “
kn
n2

ÿ

iPNn

ÿ

jPCcpiq

ErZisErZjs `
kn
n2

ÿ

iPNn

ÿ

jPΛizCcpiq

ErZisErZjs.

By Assumption 5(a), Λi Ď N pi, 2prn`Unqq Ď N pi, 3Unq, and ΛizCcpiq Ď N pi, 3UnqzN pi, Lnq.
By Assumption 5(b), there exists a non-negative sequence αn À 1 such that 3Un ´

Ln “ αnpn{pknξnqq1{d. Then by Assumption 2(b), following (SA.6.15),

max
i

|N pi, 3UnqzN pi, Lnq| À ξnpn{pknξnqq
pd´1q{d.

By Assumption 1 and Lemma SA.5.3, maxi|ErZis| À 1, so

kn
n2

ÿ

iPNn

ÿ

jPΛizCcpiq

ErZisErZjs À
kn
n

max
i

|N pi, 3UnqzN pi, Lnq| À
knξn
n

ˆ

n

knξn

˙pd´1q{d

,

which is ă 1 since kn ă n{ξn by assumption.
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Step 4. Abbreviate Fi ” Fiprnq. At the top of the proof, we noted that

σ2
n “

kn
n2

ÿ

iPNn

ÿ

jPNn

CovpErZi | Fis,ErZj | FjsqAijp1q ` opp1q.

By steps 1–3,

σ̂2
p1q “

kn
n2

ÿ

iPNn

ÿ

jPNn

pZi ´ ErZisqpZj ´ ErZjsqAijp1q ` Bn ` opp1q

It therefore remains to show that the following is ă 1:

kn
n2

ÿ

iPNn

ÿ

jPNn

pZi ´ ErZisqpZj ´ ErZjsqAijp1q

´
kn
n2

ÿ

iPNn

ÿ

jPNn

CovpErZi | Fis,ErZj | FjsqAijp1q

“
kn
n2

ÿ

iPNn

ÿ

jPNn

pZiZj ´ ErErZi | FisErZj | FjssqAijp1q

´ 2
kn
n2

ÿ

iPNn

pZi ´ ErZisq
ÿ

jPNn

ErZjsAijp1q.

” rP1s ` rP2s.

As previously argued, maxi
ř

jPNn
ErZjsAijp1q À n{kn, and |n´1

ř

iPNn
pZi´ErZisq| ă

1 by the proof of Theorem 2, so rP2s ă 1, while

rP1s “
kn
n2

ÿ

iPNn

ÿ

jPNn

pZi ´ ErZi | FisqpZj ´ ErZj | FjsqAijp1q

` 2
kn
n2

ÿ

iPNn

ÿ

jPNn

ErZi | FispZj ´ ErZj | FjsqAijp1q

`
kn
n2

ÿ

iPNn

ÿ

jPNn

pErZi | FisErZj | Fjs ´ ErErZi | FisErZj | FjssqAijp1q

” rP1.1s ` rP1.2s ` rP1.3s.

Using (SA.6.11), (SA.6.23), Lemma SA.5.4, and the assumption that kn ă n{ξn,

rP1.1s À
kn
n2

¨ n ¨
n

kn
¨ r´γ

n ă 1 and rP1.2s À
kn
n2

¨ n ¨
n

kn
¨ r´γ

n ă 1.
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Observe that rP1.3s has expectation zero and variance equal to

k2
n

n4

ÿ

iPNn

ÿ

jPNn

ÿ

kPNn

ÿ

ℓPNn

CovpErZi | FisErZj | Fjs,ErZk | FksErZℓ | FℓsqAijp1qAkℓp1q.

(SA.6.31)
The covariance term is zero if k, ℓ R Λi YΛj, so by Assumption 1 and Lemma SA.5.3,

(SA.6.31) À
k2
n

n4

ÿ

iPNn

ÿ

jPΛi

|Ξij| (SA.6.32)

for Ξij “ tpk, ℓq : ℓ P Λk and tk, ℓu X pΛi Y Λjq ‰ ∅u. Since maxi|Λi| À n{kn and
ℓ P Λk implies k P Λℓ, we have maxi,jPNn|Ξij| À pn{knq2. Therefore,

(SA.6.32) À
k2
n

n4
¨ n ¨

n

kn
¨
n2

k2
n

À k´1
n ă 1.

Step 5. Recall the definition of σ̃2
n from (SA.6.27). We next prove that

σ̃2
n “

kn
n2

ÿ

iPNn

ÿ

jPNn

CovpErZi | Fis,ErZj | FjsqAijp2q ` opp1q.

Then the claimed result for σ̂2p2q follows from steps 1, 2, and 4 by replacing, for
all i, j, every occurrence of “Aijp1q” and “Λi” with “Aijp2q” and “Ccpiq”, respectively.
Write

σ̃2
n “

kn
n2

ÿ

iPNn

ÿ

jPCcpiq

CovpErZi | Fis,ErZj | Fjsq

`
kn
n2

ÿ

iPNn

ÿ

jPΛizCcpiq

CovpErZi | Fis,ErZj | Fjsq.

By Assumption 1 and Lemma SA.5.3, maxi,j|CovpErZi | Fis,ErZj | Fjsq| À 1, so
using the argument in step 3,

ˇ

ˇ

ˇ

ˇ

kn
n2

ÿ

iPNn

ÿ

jPΛizCcpiq

CovpErZi | Fis,ErZj | Fjsq

ˇ

ˇ

ˇ

ˇ

ď
kn
n

max
i

|N pi, 3UnqzN pi, Lnq| À
knξn
n

ˆ

n

knξn

˙pd´1q{d

ă 1.
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SA.6.6 Lemma SA.5.1

We draw on the clever argument used in the proof of Theorem 3 of Cao et al. (2024).
To obtain a contradiction, suppose there is a positive sequence ℓn ă 1 such that,
for infinitely many n, there are two clusters C1 and C2 with medoids i1, i2 such
that ρpi1, i2q ă ℓnpn{pknξnqq1{d, and no other pair of medoids is closer in distance.
There are two cases to consider along the subsequence of such n’s, and all asymptotic
statements that follow are with respect to this subsequence.

Case 1. mint|C1|, |C2|u À n{kn. Then the argument largely proceeds as in the
proof of Theorem 3 of Cao et al. (2024) but with additional adjustments to account
for the divergence of kn, ξn. Since clusters partition Nn, for every n there must exist
some cluster C3 of size at least n{kn. Let i3 denote its medoid and R3 be the largest
distance between i3 and an element in C3. By Assumption 2(a),

n

kn
ď |C3| ď |N pi3, R3q| ď CξnR

d
3 ùñ R3 Á pn{pknξnqq

1{d. (SA.6.33)

Let i1
3 P C3 be such that ρpi1

3, jq ě 0.5R3 for any medoid j. For instance, the unit
i˚
3 P C3 for which ρpi˚

3 , i3q “ R3 is one such candidate. For any other medoid j ‰ i3,
ρpi1

3, jq ě 0.5R3 because otherwise step 1 of Algorithm SA.1.1 would have assigned i1
3

to a closer medoid.
Consider a hypothetical update in step 2 of Algorithm SA.1.1 that replaces i2 with

i1
3. Then all units in N pi1

3, R3{8q are optimally reassigned to the cluster with medoid
i1
3 because they are all by construction at least distance 3{8 ¨R3 away from any other

medoid. This reassignment reduces the total cost by at least |N pi1
3, R3{8q|R3{4 Á

n{kn ¨ pn{pknξnqq1{d by Assumption 2(a) and (SA.6.33). On the other hand, in the
worst case, all other units in C2 are reassigned to medoid i1, which increases the total
cost by at most |C2|ℓnpn{pknξnqq1{d ă n{kn ¨pn{pknξnqq1{d. Hence, the update is overall
cost-reducing for n sufficiently large, which contradicts for such n the supposition that
the clusters are the output of Algorithm SA.1.1, in particular violating step 2.

Case 2. mint|C1|, |C2|u ą n{kn. Without loss of generality, suppose |C2| ą n{kn.
Then the argument proceeds similarly to case 1 but using C2 in place of C3. In
particular, let R2 be the largest distance between i2 and an element of C2. By an
argument similar to (SA.6.33), R2 ą pn{pknξnqq1{d.
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Let i1
2 P C2 be such that ρpi1

2, jq ě 0.5R2 for any medoid j. Consider a hypothet-
ical update in step 2 of Algorithm SA.1.1 that replaces i2 with i1

2. Then all units in
N pi1

2, R2{8q are optimally reassigned to the cluster with medoid i1
2. This reassignment

reduces the total cost by at least |N pi1
2, R2{8q|R2{4 ą |N pi1

2, R2{8q|pn{pknξnqq1{d. On
the other hand, in the worst case, all other units in C2 are reassigned to medoid
i1, which increases the total cost by at most |C2|ℓnpn{pknξnqq1{d. Since |C2| ď

|N pi2, R2q| „ |N pi1
2, R2{8q| by Assumption 2(a), the update is overall cost-reducing

for n sufficiently large, which contradicts the supposition that the clusters are the
output of Algorithm SA.1.1.

SA.6.7 Lemma SA.5.2

Step 1. We first prove that, for any sequence tCnunPN with Cn P Cn for each n, we have
|Cn| „ n{kn. Let ℓn be given as in Lemma SA.5.1 and in the medoid of cluster Cn. By
Assumption 2(a), |N pin, 0.5ℓnpn{pknξnqq1{dq| Á n{kn. All units in this neighborhood
must be elements of Cn by Lemma SA.5.1 and step 1 of Algorithm SA.1.1, so |Cn| Á

n{kn. Since this must be true for all sequences of clusters, it cannot be the case that
|Cn| ą n{kn, given that the total number of units is n. Hence |Cn| „ n{kn.

Step 2. We prove the direction R˚
n À pn{pknξnqq1{d. Suppose to the contrary that

R˚
n ą pn{pknξnqq1{d. Let i1

n P Cn be such that ρpi1
n, jnq ě 0.5R˚

n for any medoid jn.
For instance, the unit i˚

n P Cn for which ρpi˚
n, inq “ R˚

n is one such candidate. For any
other medoid jn ‰ in, ρpi1

n, jnq ě 0.5R˚
n because otherwise it would be cost-reducing

for Algorithm SA.1.1 to assign i1
n to a closer medoid.

Consider a hypothetical update in step 2 Algorithm SA.1.1 that replaces in with i1
n.

Then all units in N pi1
n, R

˚
n{8q are optimally reassigned to the cluster with medoid i1

n.
This reassignment reduces the total cost by at least |N pi1

n, R
˚
n{8q|R˚

n{4 ą n{knpn{pknξnqq1{d

by Assumption 2(a). On the other hand, in the worst case, all other units in Cn are
reassigned to the nearest existing medoid.

Observe that the distance between in and the nearest other medoid must be À

pn{pknξnqq1{d. If instead that distance were δn ą pn{pknξnqq1{d, then Cn would contain
N pin, 0.5δnq by step 1 of Algorithm SA.1.1, in which case it would have size ą n{kn

by Assumption 2(a), which contradicts step 1.
Therefore, the worst-case increase in total cost from the medoid replacement is

À |Cn|pn{pknξnqq1{d À n{kn ¨ pn{pknξnqq1{d by step 1. The update is overall cost-
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reducing for n sufficiently large, which contradicts the supposition that the clusters
are the output of Algorithm SA.1.1.

Step 3. We prove the other direction. By Lemma SA.5.1 and step 1 of Algo-
rithm SA.1.1, N pin, ℓnpn{pknξnqq1{d{2q Ď Cn. Hence, R˚

n ě ℓnpn{pknξnqq1{d{2, so
R˚

n Á pn{pknξnqq1{d.

SA.6.8 Lemma SA.5.3

Recall from Assumption 5 the definition of cluster centroids, Un, and Ln. For any
i P Nn, all clusters intersecting N pi, rnq must be subsets of N pi, rn ` 2Unq by the
assumption. Together with (2), we have that there exists αn „ 1 such that N pi, rn `

2Unq Ď N pi, αnLnq for any n and i P Nn. Invoking Assumption 5 once more, it follows
that ϕi is at most the number of Ln-balls that fill N pi, αnLnq without intersecting.

We seek to bound the 2Ln-packing number (Wainwright, 2019, Definition 5.4) of
N pi, αnLnq. By Lemma 5.5 of Wainwright (2019), this is at most the Ln-covering
number of the ball (Wainwright, 2019, Definition 5.1), and we denote this number by
Nnpiq. We bound this following the proof of Lemma 5.7(b) in Wainwright (2019).

Construct a maximal Ln{2-packing of N pi, αnLnq with cardinality Mi and cen-
troids tθmu

Mi
m“1. This is also an Ln-covering of N pi, αnLnq, so Nnpiq ď Mi. The balls

of the packing tN pθm, Ln{2qu
Mi
m“1 are disjoint and contained in N pi, αnLn `Ln{2q, so

Mi
ÿ

m“1

|N pθm, Ln{2q| ď |N pi, Lnpαn ` 0.5qq|.

By Assumption 2(a), there exists C ą 0 independent of i and n such that

Mi
ÿ

m“1

|N pθm, Ln{2q| ě
Mi

C
ξn

ˆ

Ln

2

˙d

and

|N pi, Lnpαn ` 0.5qq| ď Cξn pLnpαn ` 0.5qq
d .

Hence, Mi ď C2p1` 2αnqd À 1, so maxi Nnpiq À 1, which proves the first claim of the
lemma.

The second claim follows from the expression in Remark 1, the first claim, and
Assumption 6.
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SA.6.9 Lemma SA.5.4

Let R̄ “ maxj Rj, the latter defined prior to (2). Observe that Λi Ď N pi, rn`2R̄`rnq.
By Assumption 5 and (2), rn À R̄ À pn{pknξnqq1{d, so by Assumption 2(a), maxi|Λi| À

n{kn.

SA.6.10 Lemma SA.5.5

Since κ̂t has mean one, it remains to compute the variance. By Assumption 4,

Varpκ̂tq “
1

n2

kn
ÿ

j“1

Var

¨

˝

ÿ

iPCj

Tti

pti

˛

‚

By Lemma SA.5.3, mini pti Á 1, and by Assumptions 2(a) and 5, maxj|Cj| À n{kn,
so the right-hand side is at most of order

1

n2
knmax

j
|Cj|2 À

1

kn
.

SA.6.11 Lemma SA.5.6

By Assumption 6, p`
t P p0, 1q. Since

p`
t

p̂`
t

´ 1 “
p`
t ´ p̂`

t

p`
t ` p̂`

t ´ p`
t

,

it is enough to show that p̂`
t ´ p`

t À k
´1{2
n . Clearly Erp̂`

t s “ p`
t . By Assumption 4,

Var
`

p̂`
t

˘

“
1

n2

kn
ÿ

j“1

Var
ˆ

ÿ

iPCj

T`
ti

˙

ď
1

n2

kn
ÿ

j“1

2|Cj|2.

By Assumptions 2(a) and 5, maxj|Cj| À n{kn, so the right-hand side of the above
display is À n´2knpn{knq2 “ k´1

n .

55



Michael P. Leung

References

Alexander, N., A. Lenhart, and K. Anaya-Izquierdo, “Spatial Spillover Anal-
ysis of a Cluster-Randomized Trial Against Dengue Vectors in Trujillo, Venezuela,”
PLoS Neglected Tropical Diseases, 2020, 14 (9), e0008576.

Andrews, D., “Heteroskedasticity and Autocorrelation Consistent Covariance Ma-
trix Estimation,” Econometrica, 1991, 59 (3), 817–858.

Armstrong, T. and M. Kolesár, “Optimal Inference in a Class of Regression
Models,” Econometrica, 2018, 86 (2), 655–683.

Baird, S., J A. Bohren, C. McIntosh, and B. Özler, “Optimal Design of Exper-
iments in the Presence of Interference,” Review of Economics and Statistics, 2018,
100 (5), 844–860.

Bhattacharjee, P. and P. Mitra, “A Survey of Density Based Clustering Algo-
rithms,” Frontiers of Computer Science, 2021, 15, 1–27.

Binka, F., F. Indome, and T. Smith, “Impact of Spatial Distribution of
Permethrin-Impregnated Bed Nets on Child Mortality in Rural Northern Ghana,”
The American Journal of Tropical Medicine and Hygiene, 1998, 59 (1), 80–85.

Cao, J., C. Hansen, D. Kozbur, and L. Villacorta, “Inference for Dependent
Data with Learned Clusters,” Review of Economics and Statistics (forthcoming),
2024.

CDC, “Life Cycle of Anopheles Species Mosquitoes,” 2025. https://www.cdc.

gov/mosquitoes/about/life-cycle-of-anopheles-mosquitoes.html, accessed
6/7/2025.

Egger, D., J. Haushofer, E. Miguel, P. Niehaus, and M. Walker, “Gen-
eral Equilibrium Effects of Cash Transfers: Experimental Evidence from Kenya,”
Econometrica, 2022, 90 (6), 2603–2643.

Faridani, S. and P. Niehaus, “Rate-Optimal Linear Estimation of Average Global
Effects,” arXiv preprint arXiv:2209.14181, 2024.

56

https://www.cdc.gov/mosquitoes/about/life-cycle-of-anopheles-mosquitoes.html
https://www.cdc.gov/mosquitoes/about/life-cycle-of-anopheles-mosquitoes.html


Cross-Cluster Interference

Guerra, C., R. Reiner, T. Perkins, S. Lindsay, J. Midega et al., “A Global
Assembly of Adult Female Mosquito Mark-Release-Recapture Data to Inform the
Control of Mosquito-Borne Pathogens,” Parasites & Vectors, 2014, 7, 1–15.

Halloran, M., K. Auranen, S. Baird, N. Basta, S. Bellan et al., “Simulations
for Designing and Interpreting Intervention Trials in Infectious Diseases,” BMC
Medicine, 2017, 15 (1), 1–8.

Hansen, B. and S. Lee, “Asymptotic Theory for Clustered Samples,” Journal of
Econometrics, 2019, 210 (2), 268–290.

Hayes, R. and L. Moulton, Cluster Randomised Trials, CRC press, 2017.

Hemming, K., A. Girling, A. Sitch, J. Marsh, and R. Lilford, “Sample Size
Calculations for Cluster Randomised Controlled Trials with a Fixed Number of
Clusters,” BMC Medical Research Methodology, 2011, 11 (1), 1–11.

, S. Eldridge, G. Forbes, C. Weijer, and M. Taljaard, “How to Design
Efficient Cluster Randomised Trials,” BMJ, 2017, 358.

Homan, T., A. Hiscox, C. Mweresa, D. Masiga, W. Mukabana et al., “The
Effect of Mass Mosquito Trapping on Malaria Transmission and Disease Burden
(SolarMal): A Stepped-Wedge Cluster-Randomised Trial,” The Lancet, 2016, 388
(10050), 1193–1201.

Hudgens, M. and M. Halloran, “Toward Causal Inference with Interference,”
Journal of the American Statistical Association, 2008, 103 (482), 832–842.

Imai, K., G. King, and C. Nall, “The Essential Role of Pair Matching in Cluster-
Randomized Experiments, with Application to the Mexican Universal Health In-
surance Evaluation,” Statistical Science, 2009, 24 (1), 29–53.

Jarvis, C., G. Di Tanna, D. Lewis, N. Alexander, and J. Edmunds, “Spatial
Analysis of Cluster Randomised Trials: A Systematic Review of Analysis Methods,”
Emerging Themes in Epidemiology, 2017, 14, 1–9.

, L. Multerer, D. Lewis, F. Binka, W. Edmunds, N. Alexander, and
T. Smith, “Spatial Effects of Permethrin-Impregnated Bed Nets on Child Mor-
tality: 26 Years on, a Spatial Reanalysis of a Cluster Randomized Trial,” The
American Journal of Tropical Medicine and Hygiene, 2019, 101 (6), 1434.

57



Michael P. Leung

Jenish, N. and I. Prucha, “Central Limit Theorems and Uniform Laws of Large
Numbers for Arrays of Random Fields,” Journal of Econometrics, 2009, 150 (1),
86–98.

Karrer, B., L. Shi, M. Bhole, M. Goldman, T. Palmer, C. Gelman,
M. Konutgan, and F. Sun, “Network Experimentation at Scale,” in “Proceed-
ings of the 27th ACM Sigkdd Conference on Knowledge Discovery & Data Mining”
2021, pp. 3106–3116.

Kriegel, H., P. Kröger, J. Sander, and A. Zimek, “Density-Based Clustering,”
Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2011, 1
(3), 231–240.

Lahiri, S. and J. Zhu, “Resampling Methods for Spatial Regression Models Under
a Class of Stochastic Designs,” Annals of Statistics, 2006, 34 (4), 1774–1813.

Leung, M., “Causal Inference Under Approximate Neighborhood Interference,”
arXiv preprint arXiv:1911.07085v1, 2019.

, “Causal Inference Under Approximate Neighborhood Interference,” Econometrica,
2022, 90 (1), 267–293.

, “Rate-Optimal Cluster-Randomized Designs for Spatial Interference,” The Annals
of Statistics, 2022, 50 (5), 3064–3087.

, “Identifying Treatment and Spillovers Effects Using Exposure Contrasts,” arXiv
preprint arXiv:2403.08183, 2024.

McCann, R., H. van den Berg, W. Takken, A. Chetwynd, E. Giorgi
et al., “Reducing Contamination Risk in Cluster-Randomized Infectious Disease-
Intervention Trials,” International Journal of Epidemiology, 2018, 47 (6), 2015–
2024.

Moulton, L., K. O’Brien, R. Kohberger, I. Chang, R. Reid, R. Weath-
erholtz, J. Hackell, G. Siber, and M. Santosham, “Design of a Group-
Randomized Streptococcus Pneumoniae Vaccine Trial,” Controlled Clinical Trials,
2001, 22 (4), 438–452.

58



Cross-Cluster Interference

Multerer, L., T. Glass, F. Vanobberghen, and T. Smith, “Analysis of Con-
tamination in Cluster Randomized Trials of Malaria Interventions,” Trials, 2021,
22 (1), 1–17.

Muralidharan, K. and P. Niehaus, “Experimentation at Scale,” Journal of Eco-
nomic Perspectives, 2017, 31 (4), 103–124.

O’Hara, L., N. Blanco, S. Leekha, K. Stafford, G. Slobogean, E. Ludeman,
and A. Harris, “Design, Implementation, and Analysis Considerations for Cluster-
Randomized Trials in Infection Control and Hospital Epidemiology: A Systematic
Review,” Infection Control and Hospital Epidemiology, 2019, 40 (6), 686–692.

Ross, N., “Fundamentals of Stein’s Method,” Probability Surveys, 2011, 8, 210–293.

Schochet, P., N. Pashley, L. Miratrix, and T. Kautz, “Design-Based Ratio
Estimators and Central Limit Theorems for Clustered, Blocked RCTs,” Journal of
the American Statistical Association, 2022, 117 (540), 2135–2146.

Schubert, E. and P. Rousseeuw, “Fast and Eager k-Medoids Clustering: Opkq

Runtime Improvement of the PAM, CLARA, and CLARANS Algorithms,” Infor-
mation Systems, 2021, 101, 101804.

Staples, P., E. Ogburn, and J. Onnela, “Incorporating Contact Network Struc-
ture in Cluster Randomized Trials,” Scientific Reports, 2015, 5 (1), 17581.

Sur, D., R. Ochiai, S. Bhattacharya, N. K Ganguly, M. Ali, B. Manna,
S. Dutta, A. Donner, S. Kanungo, J. Park et al., “A Cluster-Randomized Ef-
fectiveness Trial of Vi Typhoid Vaccine in India,” New England Journal of Medicine,
2009, 361 (4), 335–344.

Wainwright, M., High-Dimensional Statistics: A Non-Asymptotic Viewpoint,
Vol. 48, Cambridge University Press, 2019.

59


	Main Paper
	Introduction
	Setup
	Spatial Interference
	Design
	Causal Estimands

	Estimators
	Existing Approaches
	Our Approach

	Asymptotic Theory
	Optimal Design
	Empirical Examples
	Bounding Interference

	Simulation Study
	Empirical Application
	Conclusion

	 Supplementary Appendix
	k-Medoids
	Extensions
	Heterogeneous Density
	Determining gamma
	Bias-Aware CIs

	Variance Estimators
	Empirical Application
	Auxiliary Lemmas
	Proofs
	Theorem 1
	Theorem 2
	Reduction to HT
	Bias
	Variance

	Theorem 3
	Part (a)
	Part (b)

	Theorem 4
	Theorem 5
	Lemma SA.5.1
	Lemma SA.5.2
	Lemma SA.5.3
	Lemma SA.5.4
	Lemma SA.5.5
	Lemma SA.5.6

	References


