
Auctions with Frictions: Recruitment, Entry, and

Limited Commitment∗

Stephan Lauermann† Asher Wolinsky‡

March 17, 2025

Abstract

Auction models are convenient abstractions of informal price-formation processes

that arise in markets for assets or services. These processes involve frictions like bid-

der recruitment costs for sellers, participation costs for bidders, and limitations on

sellers’ commitment abilities. This paper develops an auction model that captures

such frictions. We derive novel insights, notably that outcomes are often inefficient,

that markets sometimes unravel, and that the observability of competition may have

a large effect.

Recruiting and motivating bidders are crucial in auctions, possibly impacting revenue

more than the details of the bidding mechanism.1 Recruitment is often challenging due

to the substantial costs bidders incur to evaluate items, secure financing, and prepare

bids. Sellers’ recruitment costs and bidders’ participation costs are particularly likely to

be significant in the sale of idiosyncratic assets. Another salient feature of such auctions

is the seller’s limited ability to commit to the extent of participation, to its disclosure to

bidders, and sometimes even to the rules.

This paper investigates how sellers’ recruitment efforts and bidders’ entry decisions

jointly determine auction participation and outcomes when the seller’s commitment ability

is limited.
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The main novelty of the model lies in its integration of these elements: costly re-

cruitment, costly participation, and limited commitment. It captures the fundamental

conflict between the seller’s desire to recruit more bidders—to intensify competition and

draw high-value bidders—and the bidders’ apprehension about costly entry into an overly

competitive auction. Without the seller’s ability to commit to participation levels, this

tension can result in excessive recruitment efforts and, occasionally, a total cessation of

trade. These intrinsic inefficiencies are the subject of our first set of insights.

A related set of insights pertains to the impact of bidders’ ability to observe the level

of participation (or the seller’s ability to disclose it credibly). We identify conditions on

the combination of recruitment and entry costs under which observability can promote or

suppress trade. As we explain later, these insights can also be interpreted as a comparison

of the first-price auction (FPA) and the second-price auction (SPA) in the presence of

recruitment and entry costs.

The aforementioned tensions and insights have not been studied before, since the ex-

isting literature has studied entry and recruitment separately. They may help explain the

viability of costly intermediary services that recruit bidders, facilitate seller commitment,

and reduce bidders’ costs. Sellers’ willingness to pay 20 to 30 percent of their revenues

to auction houses like Christie’s and Sotheby’s may partially reflect the reduction of the

inefficiencies exposed here.2

The model features a seller who offers a single item for sale. In the recruitment

stage, the seller makes a costly effort to attract bidders. The random number of bidders

contacted follows a Poisson distribution whose mean γ is determined by the seller’s effort.

A contacted bidder decides whether to incur a cost to discover his own private value and

participate in the auction. The bidding stage is a first-price auction (FPA). The seller

cannot commit to the level of the recruitment effort (which is unobservable to the bidders)

or to a reserve price. We consider two variants of the auction stage: the PO scenario

(“participation-observable”) and the PU scenario (“participation-unobservable”).

In the PO scenario, bidders observe the number of auction participants before bidding

(e.g., when the bidding is in person at the auction site). This observability reinforces the

recruitment incentives, since greater participation induces more aggressive bidding. This

in turn contributes to the inefficiencies mentioned above, namely, excessive recruitment

and potential market shutdown. In the PU scenario, bidders do not observe the number

2Auction houses are also rewarded for other useful services, such as quality certification. Ashenfelter
and Graddy (2003) describe the fees and other institutional details for such auction houses.
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of participants (and the seller cannot credibly disclose it).3 This unobservability generates

an incentive for the seller to secretly reduce recruitment, since that does not depress the

bidding. This may give rise to multiple equilibria sustained by different levels of fulfilled

expectations. In particular, an equilibrium with no trade always exists.

The comparison of these two scenarios exposes the important role of (un)observability

when the seller cannot credibly commit to a target recruitment level. The profit and

trade volume when the competition is observable (in the unique PO equilibrium) may

be higher or lower than when it is unobservable (in the most profitable PU equilibrium).

Generally, when the marginal recruitment cost is relatively high and the bidders’ entry

cost relatively low, bidders are willing to enter, and the main challenge for the seller is to

induce aggressive bidding. The PO scenario is more effective in this regard, as increased

recruitment leads to greater observed competition, which in turn induces higher bids.

This is not the case, however, in the PU scenario, where competition is not observable.

When the marginal recruitment cost is even higher within this range, only the PO scenario

supports trade.

In contrast, when the bidders’ entry cost is relatively large and the marginal recruit-

ment cost is relatively small, the seller’s main challenge is to convince bidders to enter.

The weaker recruitment incentive in the PU scenario ensures that bidders are less con-

cerned about strong competition and more willing to enter than in the PO scenario.

Consequently, the PU scenario is more profitable, and when the bidders’ entry cost is

even higher within this range, only the PU scenario supports trade.

This comparison also indicates in which situations the seller would prefer to either

conceal or disclose participation information, if this could be done credibly, which is not

possible in our model.

The same results can be viewed from another angle: they apply directly to a com-

parison of the first-price auction (FPA) and second-price auction (SPA), both with un-

observable participation. The PU scenario is by definition an FPA with unobservable

participation. By standard revenue-equivalence arguments explained later in the paper,

the PO equilibrium outcome is equivalent in terms of payoffs and participation to the

outcome of the dominant-strategy equilibrium of the SPA in the same environment with

observable participation. But since the dominant strategy of the SPA is independent of

whether participation is observable, the same equilibrium outcome would prevail when

participation is unobservable. As is well known, in the absence of the frictions considered

here—costly recruitment, costly participation, and lack of commitment—the FPA and

3For example, even with in-person bidding, other bidders may be “shills” or may be bidding via agents.
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SPA formats yield equal profit and surplus. The interesting insight here is that with such

frictions, the two formats are not equivalent. Since they affect the seller’s recruitment

incentives differently, which in turn affect the bidders’s entry decisions, their ranking

depends on the recruitment and entry costs.

The core of our model is the interaction between costly recruitment and costly partic-

ipation when the seller cannot commit. Other features, like Poisson arrivals or whether

bidders learn their values before or after entry, are not essential for the main insights.

Several extensions illustrate the robustness of our qualitative findings. In particular, in

the online appendix we consider the case in which bidders know their values before entry,

as well as the cases in which the seller can set an entry fee/subsidy or a reserve price. In

an earlier version of the paper, we established the same main insights with deterministic

(rather than Poissonian) recruitment.

Anecdotal evidence. Ample anecdotal evidence demonstrates the relevance of the key

elements in our auction model: limited seller commitment, recruitment costs, and entry

costs.

Limited commitment. Boone and Mulherin (2009, 2007) and Subramanian (2011)

study merger and takeover proceedings, which often involve auctions of some form. De-

spite the high stakes involved, such auctions are often conducted in a way that suggests

limited seller commitment. First, many of these auctions (the majority, according to

Boone and Mulherin (2009).) are “informal,” in the sense that they are a mixture of

auctions and negotiations rather than “a structured process where the rules are laid out

in advance.” Second, sellers seem unable to credibly commit ex-ante to a level of par-

ticipation or its disclosure.4 Sellers’ commitment ability is sometimes further limited by

confidentiality agreements with certain bidders (see also Gentry and Stroup, 2019), or

other legal considerations, such as the reluctance of courts to enforce certain contract

clauses.

Recruitment costs. Subramanian (2011) describes the critical role of bidder recruit-

ment in merger and acquisition auctions. Milgrom (2004) states that, based on his con-

sulting experience, the marketing of an auction is often more critical for its success than

clever design. Fees paid by sellers to intermediaries go partly towards recruitment efforts.

Recruitment costs may also reflect implicit costs, such as the costly disclosure of sensitive

information to motivate potential buyers.5

4Subramanian (2011) provides examples of sellers trying to increase competitive pressure by using
fictitious bidders.

5Bulow and Klemperer (1996, p. 190) mention the implicit costs of revealing information as an addi-
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Entry costs. An extensive empirical literature documents the importance of bidders’

entry and participation costs; see, for example, Gentry and Stroup (2019) and the work

discussed there.

The process of obtaining bids for home repair provides an example of an informal

auction that will be familiar to many readers, in which both recruitment and entry costs

play a major role. A homeowner may wish to suggest to prospective contractors that they

have some competition, but not so much as to scare them away.

Related literature. Our model’s main novelty is the combination of costly recruitment

and costly entry with limited commitment. Although strands of the literature discuss

each of these frictions in isolation, we are not aware of any references that discuss all

three jointly or that derive insights similar to ours.

An extensive literature on auctions with costly entry has found that when bidders enter

before learning their values, their entry decisions are efficient, and the seller’s incentives

align with the social planner’s as she obtains the full surplus (McAfee and McMillan, 1987;

Levin and Smith, 1994; Crémer et al., 2007).6 These models correspond to versions of our

model with positive entry costs and an exogenously given expected number of potential

bidders.

Szech (2011) examines costly recruitment in an FPA where all contacted bidders en-

ter. Her model corresponds to our PO scenario with costless entry. She shows that the

seller’s profit-maximizing choice of recruitment effort generally exceeds the efficient one.

Lauermann and Wolinsky (2017, 2022) also feature costly recruitment and costless entry,

but in a common-value setting. They focus on different questions related to information

aggregation with a privately informed seller.

Milgrom (1987); McAfee and Vincent (1997) nd Liu et al. (2019) study limited com-

mitment to a reserve price in auctions with a fixed set of bidders.

Our model can be viewed as a simultaneous search model in which the seller is the

searcher. Renaming the actors turns our model into a stochastic version of the simultane-

ous search model of Burdett and Judd (1983), with the added features of heterogeneous

production costs and price-quoting costs.

tional (unmodeled) reason for restricting bidder numbers. To give an idea of recruitment in practice, the
first case discussed in Boone and Mulherin (2009) is the sale of a firm, Blount Inc., where 65 potential
buyers were contacted, of which 28 signed confidentiality agreements, and 2 submitted a bid (Lehman
Brothers won).

6However, this is not the case when bidders have private information at entry (Samuelson, 1985; Ye,
2007). Moreover, with affiliated types, revenue equivalence fails, and so the auction format and the
disclosure of the number of participants affect the bidders’ entry (Murto and Välimäki, 2025).
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1 The PO auction: Observable participation

1.1 The model

A seller organizes an auction to sell an indivisible item that has value 0 to her. She makes

recruitment effort γ ≥ 0, resulting in a Poisson-distributed number of prospective bidders

with mean γ; that is, the probability of t bidders being contacted is γt

t!
e−γ. The cost of

effort γ is γs, for some s > 0.7

A prospective bidder i who decides to participate incurs a cost c > 0. He then

observes his own value vi for the item and the total number n of bidders who chose to

enter the auction (including i himself). The vi are private values, independently and

identically distributed with a cumulative distribution function (CDF) G, with support

[0, 1], a continuous density g, and increasing virtual values, v − 1−G(v)
g(v)

. The bidders do

not observe γ. Finally, the participating bidders submit bids. The highest bidder wins

and pays his bid.

When an auction ends with winning bid p, the payoff is p−γs for the seller, vi−p−c for

the winning bidder i, −c for each participating bidder who lost, and 0 for each contacted

bidder who declined entry.

1.2 Interaction: Strategies and equilibrium

The seller’s strategy is the recruitment effort γ ≥ 0. Bidder i’s strategy is (qi, βi), where

qi ∈ [0, 1] is the entry probability and βi : [0, 1] × {1, 2, ...} → [0, 1] describes i’s bid

as a function of his information (vi, n)—that is, his private value and the number of

participating bidders. Bidder i’s belief concerning the seller’s effort, conditional on being

contacted—but before observing (vi, n)—is a probability measure µi on [0,∞).

We study symmetric behavior in which all bidders employ the same strategy (q, β)

and hold the same belief µ. An equilibrium consists of γ∗, q∗, and β∗ such that:

(E1) The effort γ∗ maximizes the seller’s expected payoff given q∗ and β∗.

(E2) There exists a belief µ such that

(i) q∗ and β∗ maximize each bidder’s payoff, given µ and the other bidders’ strategy

(q∗, β∗);

(ii) if γ∗ > 0, then µ(γ∗) = 1, i.e., the belief is confirmed on the path;

(iii) if γ∗ = 0, then the seller’s payoff is nonnegative for any γ̂ in the support of µ,

given (q∗, β∗).

7The assumption of constant marginal cost of effort is made for simplicity and is not essential, as
explained in Section A.2 of the online appendix.
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Thus, the equilibrium allows only pure recruitment and bidding strategies; mixing is

allowed only in the bidders’ entry decisions, q ∈ [0, 1].8

Off-path beliefs arise only when γ∗ = 0, but their role is not negligible since this is

an important case of extreme market failure. Equilibrium condition E2(iii) imposes a

refinement on the off-path beliefs, which allows us to rule out no-trade equilibria that rely

on unfounded beliefs. This will be discussed in Section 5.2, where we present alternative

ways to obtain the needed refinement.

The random number of actual participants in the auction is Poisson distributed with

mean
λ := qγ.

As pointed out by Myerson (1998), λ is both the expected number of participants from an

outsider’s perspective, and the expected number of competitors of a participating bidder

from his own perspective (that accounts for having been sampled).

For convenience, we will mostly use λ (instead of γ). Thus, the bidders’ belief µ will

be over λ, and the equilibrium will be expressed in terms of λ∗ := q∗γ∗.

2 Equilibrium analysis for the PO scenario

2.1 Solving backward

The interaction in the PO scenario unfolds in three stages: recruitment, entry, and bid-

ding. We can solve for the equilibrium backward.

Stage 3: Bidding. Once the number of participants n is realized, the ensuing auction

is a standard symmetric FPA with independent private values drawn from the CDF G.

Such an auction has a unique symmetric equilibrium (see, e.g., Krishna, 2009),

βFPA (v, n) = v −
∫ v

0

[
G (y)

G (v)

]n−1

dy, (1)

and so β∗ = βFPA is the bidding strategy in every equilibrium. The main properties used

below are that βFPA (v, n) is increasing in v and n, with βFPA (v, n) = 0 if n = 1; and

βFPA (v, n) → v as n becomes large.

Stage 2: Entry. Let U(λ) be the bidders’ ex-ante expected payoff (gross of the cost of

entry), given a Poisson-distributed number of participating bidders with mean λ who use

8The online appendix shows that for generic s, there is no equilibrium with a mixed recruitment
strategy.
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c

E[v]

U(λ)

λ
c λ

(a) Bidders’ payoff U(λ).

λs

q

Ro(λ)

Πo(λ, q)

λ

(b) Revenue, cost, and profit.

Figure 1: Illustration of payoffs and profits.

βFPA. The essential features of U are shown by Figure 1a: it is continuous and decreasing

in λ, with U (0) = E [v] and limλ→∞ U (λ) = 0. Intuitively, the properties of βFPA imply

that, for any v, both the probability of winning and the payoff conditional on winning are

decreasing in n and a larger λ means, on average, higher n. The explicit functional form

of U is presented by Claim 2 in the appendix.

Given the bidders’ belief µ concerning λ, their optimal entry decision q satisfies:

Eµ[U(λ)] > c ⇒ q = 1;

Eµ[U(λ)] < c ⇒ q = 0.
(2)

Since c ≥ U (0) means that no bidder enters, we consider only c < U (0). Since U is

continuous and strictly decreasing to 0, then for every c ∈ (0, U (0)), there is a unique

λ̄c > 0 such that

U(λ
c
) = c. (3)

This is the bidders’ break-even participation level: given λ, a bidder’s expected payoff

from entering is nonnegative if and only if λ ≤ λ
c
. The upper bar in λ

c
will serve as a

reminder that this is the maximal scale acceptable to bidders.

Thus, in any equilibrium,

λ∗ ≤ λ
c
, (4)

and if λ∗ ∈ (0, λ
c
), then q∗ must be 1.

Stage 1: Recruitment. Given q∗ and β∗, the seller’s problem is to choose recruitment

effort γ to maximize profit. The choice of effort γ at cost s is equivalent to the choice of

λ = qγ at cost s/q. Let Ro (λ) be the seller’s expected revenue given the participation
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level λ and β∗. (The subscript o here and later indicates that participation is observable.)

The profit as a function of λ and q > 0 is

Πo(λ, q) = Ro(λ)− λ
s

q
,

with Πo(0, 0) = 0, and Πo(λ, 0) = −∞ for λ > 0.

In any equilibrium, λ∗ ∈ argmaxΠo(λ, q
∗). We now turn to the solution to this

maximization problem. Figure 1b shows the essential properties of Ro: it is increasing,

twice continuously differentiable, Ro (0) = 0, and limλ→∞Ro (λ) = 1. Figure 2 depicts

the marginal revenue R′
o and the average revenue Ro

λ
: both curves are single-peaked, are

0 at λ = 0, asymptote to 0 as λ → ∞, and intersect once at the maximum point of Ro(λ)
λ

.

(All the observations concerning R′
o and Ro

λ
are verified by Claim 3 in the appendix.)

R′
o(λ)

Ro(λ)
λ

so

λo

s
q

λo

(
s
q

)
λ

Figure 2: Marginal revenue, average revenue, and marginal recruitment cost.

Let

s̄o := max
λ

Ro (λ)

λ
,

and, for s ≤ maxλ R
′
o(λ), let λo(

s
q
) denote the larger of the two solutions of R′

o(λ) =
s
q
.

That is, λo(
s
q
) is the unique solution for the following necessary conditions9 for λ > 0 to

maximize Πo(λ, q):

R′
o (λ) =

s

q
and R′′

o (λ) ≤ 0. (5)

Thus, Πo(λ, q) is maximized either at 0 or at λo(
s
q
), depending on whether Πo(λo(

s
q
), q)

9These conditions are not sufficient since R0 and hence Πo are not concave in λ.
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is smaller or greater than 0; specifically,

argmaxΠo(λ, q) =





λo(
s
q
) if s

q
< s̄o

{0, λo(
s
q
)} if s

q
= s̄o

0 if s
q
> s̄o.

(6)

Letting λo := λo(s̄o), it follows that in any equilibrium,

λ∗ =





λo(
s
q∗
) if s

q
< s̄o

0 or λo if s
q
= s̄o

0 if s
q
> s̄o.

(7)

The conclusion from solving backwards through the three stages above is that equi-

librium is characterized by a pair (λ∗, q∗) such that λ∗ satisfies (7) and there exists belief

µ such that q∗ satisfies (2) and either λ∗ > 0 and µ (λ∗) = 1, or λ∗ = 0 and Πo(λ̂, q
∗) = 0

for all λ̂ in the support of µ.

Observe that λo, which also satisfies

λo = argmax
λ

Ro (λ)

λ
,

is the minimal scale for equilibrium—λ∗ is either 0 or at least λo (the lower bar in λo

serves as a reminder of that). The positive minimal scale is a consequence of the initial λ

range of increasing average revenue, which is due to the sharp reduction over that initial

range in the probability of there being fewer than two participants and the associated

zero revenue.

2.2 The equilibrium outcome

Figure 3 describes all three types of equilibria that may arise for different (c, s) combina-

tions. The magnitude of c is reflected in the figure by the position of λ
c
—the maximal

participation acceptable for bidders— which is decreasing in c. The unique equilibrium

for each of the depicted configurations is marked by a large dot.

No-trade equilibrium. Equilibria with no trade (λ∗ = 0) arise in two cases. First,

when s > s̄o (like sH in Figure 3), there are no gains from trade—recruitment is simply

too costly to be profitable. Recall that, by definition, s̄o = maxλ
Ro(λ)

λ
. Therefore, s > s̄o

implies that sλ > Ro (λ), for any λ > 0, which means that profit is nonnegative only at

λ = 0.
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R′
o(λ )

Ro(λ )
λ

so

sH

sM

λ ∗
M

sL/q∗L

λ
c
= λ ∗

L

sL

0 λ

(a) λ
c
> λo

R′
o(λ )

Ro(λ )
λ

so

λ o

sH

sM

sL

λ
c0 λ

(b) λ
c
< λo

Figure 3: PO equilibria.

Second, when λ
c
< λo (Figure 3-B), the problem is not the absence of gains from

trade but rather the seller’s inability to commit to a participation level that is acceptable

to bidders. Bidder optimality (4) implies that any equilibrium λ∗ must not exceed λ
c
.

At the same time, the seller cannot credibly offer a positive λ ≤ λo since if such a λ is

profitable for some s and q, then by (6) profit would be larger at some λ ≥ λo. Therefore,

no λ∗ > 0 is compatible with equilibrium—it cannot be both profit-maximizing, which

requires λ∗ ≥ λo, and acceptable to bidders, which requires λ∗ ≤ λ
c
< λo. This is so even

if a small s implies substantial potential gains from trade.

Equilibria with trade (λ∗ > 0) arise when λ
c ≥ λo and s ≤ s̄o. In all such equilibria

λ∗ is the interior profit maximizer λo(
s
q∗
), given the marginal recruitment cost s

q∗
(recall

that λo(
s
q
) is the larger solution to R′

o(λ) =
s
q
). Figure 3a depicts the two types of such

equilibria for sM and sL, respectively. The equilibrium configurations are denoted in the

figure by (λ∗
k, q

∗
k), k = L,M , and the corresponding (λ∗

k,
s
q∗k
) are marked in the figure by

large dots.

Since sM > R′
o(λ

c
), the unconstrained profit maximizer λo (sM) is below λ

c
and hence

does not deter bidder entry. Therefore, λ∗
M = λo (sM) < λ

c
and q∗M = 1.

Since sL < R′
o(λ

c
), the unconstrained profit maximizer λo (sL) exceeds λ

c
and hence

cannot be sustained by equilibrium since bidders would not enter. Therefore, λ∗
L = λ

c

and q∗L adjusts to satisfy λo(
sL
q∗L
) = λ

c
.

The upshot is that to be willing to bear the cost of entry, bidders must believe that λ∗

is not too large. In equilibria like (λ∗
M , q∗M) above, this is achieved via a sufficiently large

s, like sM , assuring bidders that the expected participation at the unconstrained profit

maximum, λo (s), will be small enough. In equilibria like (λ∗
L, q

∗
L) above, where s is small,

like sL, this is achieved through bidders’ reluctance to enter (i.e., q∗ is sufficiently small),

11



which raises the effective marginal recruitment cost s/q∗ to a level that stops the seller

from recruiting beyond λ
c
.

Figure 4 and Proposition 1 provide the complete characterization of the equilibria for

all (c, s) configurations. In particular, only the (c, s) configurations in the shaded Regions

I and II give rise to equilibria with trade.

Notice that Figure 4 depicts the (c, s) space rather than the (λ, s) space depicted in

Figures 2 and 3. As c increases along the c-axis of Figure 4, λ
c
is decreasing. So the

R′
o(λ

c
) and

Ro(λc)
λ
c curves are sort of mirror images of the curves R′

o(λ) and
Ro(λ)

λ
in the

previous figures. In particular, since by definition c ≡ U(λ̄c), the conditions λ
c
≷ λo

considered above are equivalent to c ≶ U(λo) in the (c, s) space of Figure 4.

R′
o(λ

c
)

R0(λ
c
)

λ
c

I

II

U(0)

so

U(λo)
c

s

Figure 4: Unique PO equilibrium with trade iff (c, s) in shaded Regions I&II.

Recall that λo (s) is the larger solution to R′
o(λ) = s (alternatively, the solution to the

necessary condition for an interior maximum) .

Proposition 1. There exists a unique equilibrium for all (c, s) for which c ̸= U(λo) and

s ̸= s̄o. The form of the equilibrium varies across the regions of Figure 4 as follows:

1. If (c, s) is in the unshaded region, then λ∗ = 0 (no trade).

2. If (c, s) is in shaded Region I, then λ∗ = λo (s) and q∗ = 1.

3. If (c, s) is in shaded Region II, then λ∗ = λ
c
and q∗ = s/R′

o(λ
c
).

If either s = s̄o or c = U(λo), then λ∗ = 0 and λ∗ = λo are both equilibrium outcomes

(yielding zero profit). The seller’s profit maximization condition(7) and the conclusion

that follows it imply immediately that the configurations presented by Parts 2 and 3 of

Proposition 1 are equilibria (with the belief µ(λ∗) = 1). This can also be directly inferred
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from inspecting Figure 3a. Part 2 is illustrated by the case of s = sM , and Part 3 is

illustrated by the case of s = sL. (Both cases were considered above in the discussion of

equilibria with trade.)

The two less immediate steps (presented by the proof in the appendix) are, first, the

construction of the no-trade equilibrium of Part 1 and, second, the argument ruling out

no-trade equilibria when s < s̄o. Both of these steps deal with bidders’ off-path beliefs

about the expected competition upon being contacted when they expect λ = 0, by using

the equilibrium refinement in condition E2(iii).

Comparative statics. Equilibria with higher λ∗ are always more profitable and both

λ∗ and Πo(λ
∗, q∗) are non-increasing in c and s. This is because, when λ∗ > 0, we have

R′
o(λ

∗) = s/q∗. Therefore, the profit is

Ro(λ
∗)− λ∗R′

o(λ
∗). (8)

Since R′′
o(λ

∗) < 0, the profit (8) is strictly increasing in λ∗. Thus, equilibria with higher

participation are necessarily associated with a higher profit, independently of what the

underlying recruitment and entry costs are.

Equilibrium inefficiencies. Subsection 5.1 discusses equilibrium welfare in some de-

tail. Here we point out two types of inefficiency that are immediately obvious from the

equilibrium characterization. First, the no-trade equilibrium outcome with c > U(λo)

is inefficient when s is sufficiently small. A λ just below λ
c
would be beneficial for the

bidders (i.e., U(λ) > c) and profitable for the seller (because the revenue of nearly Ro

(
λ̄c
)

would exceed the cost with a small s).

Second, a small s necessarily implies an inefficient, wasteful recruitment effort in equi-

libria with trade. At such equilibria with s < R′
o(λ

c
), participation is fixed at λ

c
and the

total recruitment cost is independent of s:

λ
c s

q∗
= λ

c
R′

o(λ
c
) = const > 0 (9)

The difference between the actual equilibrium cost and the minimal cost sλ
c
required for

recruiting λ
c
is a deadweight loss of the magnitude

DWL = λ
c s

q∗
− sλ

c
= λ

c
(R′

o(λ
c
)− s), (10)

where the second equality follows from (9). Thus, for small s near 0, almost all of the
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recruitment effort is wasteful.

Both of these inefficiencies—no trade and wasteful recruitment efforts—result from

the combination of the bidders’ cost of entry and the seller’s inability to commit (to

γ = λ
c
or just below it). Indeed, when either one of these conditions is eliminated, these

inefficiencies go away. First, the no-trade equilibrium disappears for small c such that

c < U(λo), and the deadweight loss in (10) decreases in c and disappears when R′
o(λ

c
),

which is decreasing in c, falls below s. Second, as explained in more detail in Subsection

2.3 below, if the seller could commit to γ just below λ
c
(or, equivalently, if the seller’s

choice of γ were observable to bidders prior to entry), then in both of these situations,

bidders will have strict incentives to participate, yielding revenue close to Ro(λ
c
).

2.3 Commitment to recruitment effort

In an alternative scenario in which the seller could commit to the recruitment effort, she

first selects γ. Then bidders observe γ and decide whether to enter. Finally, the bidding

takes place as before. Recall that γ is just the mean of the Poisson distribution—the

actual number of contacted bidders remains uncertain.

The commitment equilibrium must have γ∗ ≤ λ̄c and q∗ = 1, since any γ > λ̄c would

trigger a probability of bidders’ entry q = γ/λ̄c < 1, resulting in λ = λ̄c, and a wasted

recruitment cost of (γ − λ̄c)s. Thus, the seller’s problem is

max
λ

Πo(λ, 1) s.t. λ ≤ λ
c
.

III

R′
o(λ

c
)

R0(λ
c
)

λ
c

so

U(λo)

I

II

U(0) c

s

Figure 5: Commitment is strictly profitable only in Regions II and III.

The seller’s profit is, of course, weakly higher with commitment. The shaded regions
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in Figure 5 identify the (c, s) combinations for which the commitment profit is strictly

higher.10

In Region II, the no-commitment equilibrium has λ∗ = λ
c
and q∗ < 1 (see Part 3 of

Proposition 1). Therefore, the participation is λ
c
in both regimes, but in the commitment

case q = 1, which implies that total recruitment cost is lower and hence profit is higher

by ( s
q∗

− s)λ
c
> 0 than in the no-commitment case.

In Region III, the no-commitment equilibrium has λ∗ = 0 (see Part 1 of Proposition

1). However, s < Ro(λ̄
c)/λ̄c makes commitment to γ = λ̄c both profitable for the seller

and beneficial for the bidders.

In the unshaded regions of Figure 5, the committment does not increase the profit. In

Region I, the no-commitment equilibrium has positive λ∗ < λ
c
(Part 2 of Proposition 1).

Commitment does not help since all contacted bidders enter and the seller does not want

to recruit more. In the other unshaded regions, s > Ro(λ)/λ, for all λ ≤ λ
c
. This means

that committing to any γ acceptable to bidders will be unprofitable for the seller.

3 The PU auction: Unobservable participation

The PU scenario captures the effects of the bidders’ inability to observe the participation

and the seller’s inability to credibly disclose it. After bidders have sunk their entry costs,

it is in the seller’s interest to convince them that they have many competitors.11 This in-

centive, in conjunction with the seller’s inability to credibly disclose participation, implies

that the seller cannot convince bidders that the participation exceeds their expectations

even when this is indeed the case.

The model is the same as in the PO scenario, except that the bidders cannot observe

the number of other participants at any stage—neither before nor after entry. The equi-

librium definition from Section 1.2 remains the same, except that the bidding strategy

β no longer conditions on n. To simplify the exposition, we further restrict attention to

equilibria in which the bidders’ beliefs have point support, that is, µ∗(λ̂) = 1 for some

λ̂.12 We index the magnitudes for this scenario with the subscript u (for “unobservable”).

10Figure 5 (like Figure 4 above) depicts the (c, s) space rather than the (λ, s) space depicted in Figures
2 and 3; see the explanation of Figure 4.

11Subramanian (2011) gives numerous examples of sellers attempts to inflate the perceived compe-
tition: realtors pretend to get calls from other interested parties; companies suggest the existence of
additional bidders during takeover negotiations; at Sotheby’s and other auction houses, auctioneers make
up “chandelier bids” to stimulate bidding.

12Since we assume a pure recruitment strategy on the part of the seller, this is a restriction only in the
case of λ∗ = 0 (no trade). However, it will become clear that this assumption does not restrict the set of
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3.1 Solving backward

As before, the interaction unfolds in three stages—recruitment, entry, and bidding—and

the equilibrium can be solved by proceeding backwards from the last stage.

Stage 3: Bidding. Since bidders do not observe the actual participation, this stage is

an FPA with an uncertain, Poisson-distributed number of bidders with mean λ. A result

in Krishna (2009) implies that the unique symmetric equilibrium of this auction is

βλ (v) =
∞∑

n=0

Pλ (n)G (v)n∑∞
n=0 Pλ (n)G (v)n

βFPA(v, n+ 1), (11)

where Pλ (n) =
λn

n!
e−λ is the probability that the bidder has n competitors in the auction,

G (v)n is the probability that the n others have lower values, and βFPA is the equilib-

rium bidding strategy given by (1) for the PO scenario13. As expected, βλ (v) is strictly

increasing in v and λ, and βλ (v) ≡ 0 when λ = 0.

In equilibrium, β∗ = βλ̂, where λ̂ is the bidders’ point belief.

Stage 2: Entry and payoff equivalence. Let u(v, λ) denote the expected equilibrium

payoff of a bidder with value v who bids βλ (v),

u(v, λ) =
∞∑

n=0

Pλ (n)G (v)n (v − βλ (v)) =
∞∑

n=0

Pλ (n)G (v)n (v − βFPA(v, n+ 1)) , (12)

where the last expression is obtained by substituting the explicit forms of βλ (v) from (11)

into the previous term.

The expected ex-ante utility of a prospective bidder (gross of the entry cost) is

U(λ) = Ev [u(v, λ)] . (13)

Payoff equivalence between PO and PU scenarios. The last expression on the right

side of (12) is also the expected payoff of a bidder with value v in the PO scenario, when

evaluated before the bidder has learned the realized number of participants. Consequently,

the bidders’ ex-ante expected payoff U(λ) is the same for the PU and the PO scenarios.

(This is why we use the same notation U (λ).)

conditions under which the no-trade equilibria exist; see also the online appendix.
13Krishna (2009), Section 3.2.2 presents such a result for a general probability distribution over n with

finite support. Here, we have a Poisson distribution and hence infinite support. However, this does not
affect the argument.
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This payoff-equivalence result is not surprising. In both scenarios, a bidder with value

v = 0 gets payoff 0. So, the standard envelope formula implies that, in each scenario,

the expected equilibrium payoff of a bidder with value v must be
∫ v

0
Pr(win with value

x)dx. By the monotonicity of the bidding strategies, Pr(win with value x), and thus, the

expected equilibrium payoffs coincide in the two scenarios.14

Since the bidders’ expected payoffs are the same, the bidders’ optimality condition (2)

for the entry probability q∗ remains unchanged and so does λ
c
(the maximal participation

level at which bidders are willing to enter). Hence, λ∗ ≤ λ
c
also holds in every equilibrium

of the PU scenario, and, for all λ∗ ∈ (0, λ
c
), we have q∗ = 1.

Stage 1: Recruitment. Let Ru (λ, βλ̂) be the expected revenue given λ and βλ̂. Thus,

Ru depends directly on the actual participation λ and, through βλ̂, also on bidders’

expectation λ̂. Since the PU and PO scenarios share the same gross total surplus (the

expectation of the first-order statistic of v given λ) and, by the payoff equivalence just

noted above, also the same total expected bidders’ ex-ante expected payoff λU(λ), it

follows that

Ru (λ, βλ) = Total Surplus(λ) − λU(λ) = Ro(λ). (14)

That is, there is revenue equivalence between Ru and the PO revenue Ro when λ̂ = λ (the

expected participation coincides with the actual one).

When q > 0, the expected profit is

Πu(λ, β, q) = Ru(λ, β)− λ
s

q
;

it is 0 when λ = 0 and q = 0, and it is −∞ for q = 0 and λ > 0.

The functions Ru and hence Πu are concave in λ and strictly so for any β that is not

constant at 0 (see Claim 4 in Appendix 7.2). Therefore, for any λ̂ and q, Πu has a unique

maximum over λ. The maximizing λ satisfies

∂

∂λ
Ru(λ, βλ̂) ≤

s

q
, (15)

with equality holding for λ > 0.

14Conversely, note that the formula for u(v, λ) in (12) could also be derived directly from the envelope
formula. Indeed, Krishna (2009) uses the envelope theorem to derive the bidding strategy βFPA, and βλ

is then derived from payoff equivalence. Here, we reversed the order to simplify the presentation.
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In sum, (λ∗, q∗) is an equilibrium if and only if

∂

∂λ
Ru(λ, βλ̂)λ̂=λ=λ∗ ≤

s

q∗
, (16)

with equality holding for λ∗ > 0 and where q∗ = 1 if λ∗ < λ
c
and q∗ ∈ (0, 1] if λ∗ = λ

c
.

For expositional purposes, let

ξ (λ) :=
∂

∂λ
Ru(λ, βλ̂)|λ̂=λ. (17)

This is the marginal revenue with respect to λ for a fixed bidders’ expectation λ̂ that

happens to coincide with the actual λ. Figure 6 depicts the function ξ and its relationship

to the marginal revenue curves ∂
∂λ
Ru(λ, βλ̂) for two levels of expectations, λ̂ = λ∗

1 and

λ̂ = λ∗
2, respectively. In other words, ξ is the locus of such points, picking up the values

of the marginal revenue where the bidders’ expectation is correct.

ξ (λ ) = ∂
∂λ Ru(λ ,βλ̂ )|λ̂=λ

s

λ ∗
1 λ ∗

2 λ
c

∂
∂λ Ru(λ ,βλ ∗

1
)

∂
∂λ Ru(λ ,βλ ∗

2
)

ξ (λ peak)

λ peak λ

Figure 6: The function ξ(λ) and the marginal revenue ∂
∂λ
Ru(λ, βλ̂).

The main properties of ξ shown in the diagram—single-peakedness, continuity, ξ(0) =

0, ξ(λ) > 0 elsewhere, and ξ(λ) → 0 as λ → ∞—are established by Claim 4 in Appendix

7.2. Of course, λpeak marks the argument of the single peak.

Restating the necessary and sufficient condition (16) in terms of ξ, the pair (λ∗, q∗) is

an equilibrium if and only if

ξ (λ∗) ≤ s

q∗
(18)

with equality holding for λ∗ > 0 and where q∗ = 1 if λ∗ < λ
c
and q∗ ∈ (0, 1] if λ∗ = λ

c
.

Figure 6 shows three points—(0, s), (λ∗
1, s) and (λ∗

2, s) (marked by heavy dots)—

satisfying condition (18) for q∗ = 1, which are therefore equilibria for the particular

values of s and c shown in the figure (with the value of c reflected by the size of λ
c
).
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3.2 The equilibrium outcomes

Figure 7 depicts the different types of possible equilibria. The magnitude of c is reflected in

the position of λ̄c—the maximal participation acceptable to bidders—which is decreasing

in c. Panels 7a and 7b depict the cases of λ̄c > λpeak and λ̄c < λpeak, respectively. Large

dots mark the equilibria for each level of s. For each of the displayed (c, s) configurations,

there are either three equilibria (as is the case for sM in Panel 7a and for sL in both

panels) or one equilibrium (as is the case for sM in Panel 7b and for sH in both panels).

ξ (λ )

λ peak

sH

sM

λ ∗
M λ

∗
M

sL

sL/q∗L

λ
c
= λ

∗
L

sL

λ ∗
L

λ

(a) λ
c
> λpeak

ξ (λ )

sH

sM

sL

λ ∗
L

sL/q∗L

λ
c
=λ

∗
L

sL

λ

(b) λ
c
< λpeak

Figure 7: PU equilibria.

For s < ξ(λpeak), let

λu(s) ≜ min{λ|ξ(λ) = s} and λu(s) ≜ max{λ|ξ(λ) = s}.

There exists a no-trade (λ∗= 0) equilibrium for all (c, s) (as seen for all the (c, s)

combinations in Figure 7). In any such equilibrium, q∗ = 1, β∗ (v) ≡ 0, and µ (0) = 1. If

a bidder is contacted off-path, he still believes that λ = 0 and bids 0 so that recruitment

is indeed unprofitable.

The no-trade equilibrium is the unique equilibrium if s > ξ(λpeak) (as is the case for

sH in Figure 7a) or when λ̄c < λu(s) (as is the case for sM in Figure 7b).

Being unable to commit to the recruitment effort or disclose the level of participation,

the seller cannot break out of the no-trade equilibrium (even if s and c are small).

Equilibria with trade (λ∗> 0) exist when s < ξ(λpeak) and λ̄c > λu(s) (as is the case

for sM and sL in Figure 7a and for sL in Figure 7b). For almost all (c, s) combinations

that support an equilibrium with trade, there are two such equilibria.

In Figure 7 the equilibrium magnitudes corresponding to sM and sL are marked with

subscripts M and L, respectively. In particular, the small and large equilibrium λ’s

associated with sk are denoted respectively by λ∗
k and λ

∗
k, where k = L,M .
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The smaller of the two equilibria with trade that correspond to some s is never con-

strained by λ̄c; it always obtains at the smaller intersection of s with ξ, which means that

λ∗ = λu(s) and q∗ = 1. (Indeed, in both panels of Figure 7, λ∗
L = λu(sL), and in Panel 7a

it is also the case that λ∗
M = λu(sM).)

The larger of the two equilibria with trade may be constrained or unconstrained by

λ̄c, depending on the relative magnitudes of c and s. If λ̄c > λu(s), then the larger

equilibrium too is unconstrained by λ̄c; it obtains at the larger intersection of s with ξ,

which means that λ∗ = λu(s) and q∗ = 1 (which is the case of λ
∗
M = λu(sM) < λ̄c in

Figure 7a). If λ̄c < λu(s), then the larger equilibrium is constrained by λ̄c, which means

that λ∗ = λ̄c and q∗ adjusts to satisfy ξ(λ̄c) = s
q∗

(which is the case of λ
∗
L = λ̄c in both

panels of Figure 7). In short, in the larger equilibrium with trade, λ∗ = min[λu(s), λ̄
c]

and q∗ adjusts accordingly.

The multiplicity of equilibria is a consequence of the bidders’ inability to observe

the participation (or, equivalently, the seller’s inability to credibly disclose it). When

the bidders expect either the no-trade or the low-trade equilibrium, they bid low. This

in turn depresses the seller’s incentive to recruit and the bidders’ low expectations are

indeed fulfilled. If the actual participation could be credibly disclosed to the bidders,

these equilibria would be broken by more aggressive recruiting that would be rewarded

by more aggressive bidding and higher profit.

Proposition 2 provides the complete characterization of the equilibria for all (c, s)

configurations, which is also summarized by Figure 8 further below. Recall that λu(s)

and λu(s) are the smaller and larger solutions to ξ(λ) = s.

Proposition 2.

1. For every (c, s) there exists an equilibrium with λ∗ = 0.

2. The λ∗ = 0 equilibrium is unique if s > ξ(λpeak) or λ̄c < λu(s).

3. If s < ξ(λpeak) and λ̄c > λu(s), there are also two equilibria with λ∗ > 0:

λ∗
1 = λu(s); q∗1 = 1;

λ∗
2 = min[λu(s), λ̄

c]; q∗2 = 1 if λu(s) ≤ λ̄c and q∗2 < 1 o/w.

4. The equilibrium with the larger λ∗ is strictly more profitable.

On the boundary between the conditions of Parts 2 and 3, when s = ξ(λpeak) or

λc = λu(s), there is only one equilibrium with λ∗ > 0. Parts 1-3 follow immediately
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from the necessary and sufficient condition (18) and the shape of the function ξ (namely,

continuity, single peakedness, ξ(0) = 0, and ξ → 0 as λ → ∞). Part 4 is a special case of

the discussion below.

For the case of λu(s) ≤ λ̄c, the result of Part 4 follows fairly immediately from the

following revealed preference argument. The profit Πu(λu(s), βλ∗
2
, 1) of deviating to λ =

λu(s) from the equilibrium with λ∗
2 = λu(s) is larger than the profit Πu(λu(s), βλ∗

1
, 1) of

the equilibrium with λ∗
1 = λu(s), since these two situations differ from each other only in

the bidding strategy, and βλ∗
1
is pointwise lower than βλ∗

2
.

Comparative statics. As in the PO scenario, the equilibrium profit can be expressed

in terms of λ∗ alone since ξ(λ∗) = s/q∗ in any equilibrium with trade:

Πu(λ
∗, βλ∗ , q∗) = Ru(λ

∗, βλ∗)− λ∗ξ(λ∗). (19)

Claim 1. (i) If (λ∗, q∗) and (λ∗∗, q∗∗) are equilibria (for possibly different (c, s) configu-

rations), then

λ∗∗ > λ∗ =⇒ Πu(λ
∗∗, βλ∗∗ , q∗∗) > Πu(λ

∗, βλ∗ , q∗).

(ii) The maximal PU equilibrium profit is weakly decreasing in c and s.

The proof in the appendix shows that (19) happens to equal the expectation of the

third-order statistic of v, which is strictly increasing in λ∗ > 0. Therefore, equilibria with

higher λ∗ are always more profitable. The claim follows because λ∗ is weakly decreasing

in c and s in the maximal profit PU equilibrium.

Inefficiencies. As in the PO case, when the equilibrium is constrained by λ
c
, it involves

a deadweight loss in the form of excessive recruitment effort that is negated by q∗ < 1.

Here, the magnitude of the deadweight loss is (ξ(λ
c
)− s)λ

c
.

Figure 8 complements Proposition 2 by showing all the (c, s) combinations that sustain

an equilibrium with trade. Notice that this figure (like Figure 4 above) depicts the (c, s)

space rather than the (λ, s) space of Figure 7.15 Only the (c, s) configurations in the

shaded area under the curve sustain an equilibrium with trade. In Region I, the equilibria

are unconstrained by λ̄c; in Region II the largest equilibrium is constrained by λ̄c.

15Since a smaller c is associated with a larger λ̄c, the curve ξ
(
λ̄c
)
is a sort of mirror image of the curve

ξ(λ) in Figure 7. Since by definition c = U(λ̄c), the cost c for which λ̄c = λpeak (where ξ peaks) is equal
to U(λpeak).
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Figure 8: Equilibria with trade only in the shaded regions.

4 Comparison of the PO and PU scenarios

The key difference between the PO and PU scenarios is in the seller’s recruitment in-

centives. In the PO scenario, the seller has two incentives to recruit: (i) to increase the

likelihood of high-value bidders and (ii) to encourage more aggressive bidding. In the PU

scenario, only the first incentive is present. Therefore, at any λ the marginal incentive to

recruit is stronger in the PO scenario.

The differential strength of the recruitment incentives explains why the PU auction

can be trapped in a robust no-trade equilibrium even when c and s are small, but this is

not so in the PO scenario. If prospective bidders in the PU scenario expect λ = 0, they

will bid 0 if recruited, so the seller has no incentive to recruit. In contrast, since bidders in

the PO scenario observe the competition and bid accordingly, regardless of their pre-entry

expectation, the marginal incentive to recruit is positive even when bidders expect λ = 0.

As shown below, the same difference in incentives also explains the difference in trade

volumes and profits across these scenarios.

4.1 The effect of entry and recruitment costs

Whether the seller’s profit is higher in the PO or the PU scenario depends on how the

recruitment incentives interact with the costs s and c. Given s, for sufficiently small c,

bidders strictly prefer to enter when they expect the unconstrained profit-maximizing λ.

Hence, the seller’s main concern is not getting bidders to enter but rather getting them to

bid aggressively. In this case, the stronger recruitment incentives of the PO scenario result

in greater competition, more aggressive bidding, and higher profit than in the equilibria of

the PU scenario. In contrast, given c, for sufficiently small s, bidders are wary of excessive
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competition and the seller’s main concern is bidders’ reluctance to enter. In this case, the

weaker recruitment incentives in the PU scenario serve as a partial commitment device,

making its equilibrium with maximal profit more effective in inducing bidders to enter

and thus more profitable than the PO scenario. The upshot is:

• For any s < s̄o, there is a threshold level for c below which the PO equilibrium

profit strictly exceeds the maximal PU equilibrium profit.

• For any c < U(0), there is a threshold level for s below which the maximal PU

equilibrium profit strictly exceeds the PO equilibrium profit.

We first explain these points intuitively by looking at the respective equilibria for a

few representative (c, s) combinations; we then present Proposition 3 and Figure 11 that

describe the profit ranking of the two scenarios for all (c, s).

R′
o(λ)

ξ(λ)

ξ(λpeak)

λpeak

s

0=λ∗
u λ∗

o

so

λo λ
c λ

(a) ξ(λpeak) < s < so

R′
o(λ)

ξ(λ)

ξ(λpeak)

λpeak

s

λ∗
u0 λ∗

o

so

λo λ
c λ

(b) R′(λ
c
) < s < ξ(λpeak)

Figure 9: Comparison of the PO and PU scenarios when c is relatively small.

Figures 9 and 10 combine the marginal-revenue curves of the PO scenario, R′
o and

the PU scenario, ξ.16 The new information delivered by the figures is the relationship

displayed between the curves R′
o and ξ. First, Part (ii) in Claim 4 shows that the curves

are proportional to each other,17

R′
0(λ) = 2 ξ (λ) .

16Recall that (i) s̄o is the maximal value of the marginal recruitment cost s for which profitable trade
in the PO scenario is possible; (ii) λo is the minimal scale of any PO equilibrium with trade; and (iii) λ̄c

is the maximal participation acceptable to bidders.
17The ordering R′

o(λ) > ξ(λ) for all λ > 0 can be derived directly by taking the total derivative on both
sides of the revenue equivalence statement Ro(λ) = Ru(λ, βλ̂). This gives R′

o (λ) =
∂
∂λ Ru(λ, βλ̂)

∣∣
λ̂=λ

+
d
dλ̂

Ru(λ, βλ̂)
∣∣
λ̂=λ

. The first term equals ξ (λ) and the second term satisfies d
dλ̂

Ru(λ, βλ̂) > 0, which holds

because βλ̂ is strictly increasing in λ̂. Thus, as claimed, there is a stronger recruitment incentive in the
PO scenario because greater participation makes bidders behave more aggressively.
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Second, it follows from (19) and the subsequent discussion that Ru(λ, βλ)−λξ(λ) > 0 for

all λ > 0. Hence, given revenue equivalence Ru(λ, βλ) = Ro (λ),

s̄o ≡ max
λ

Ro (λ)

λ
> ξ(λpeak).

We now present the two main qualitative findings:

PO profits are higher when c is small enough. The two panels of Figure 9 depict

the PO and PU equilibria (marked by heavy dots) for (c, s) combinations in which c is

small enough to satisfy R′
o

(
λ̄c
)
≤ s, which means that λ̄c does not constrain the PO profit

maximization (it is sufficiently far to the right on both panels). The equilibrium λ’s are

denoted by λ∗
o (for the unique PO equilibrium) and λ∗

u (for the maximal PU equilibrium).

In Panel 9a, where ξ(λpeak) < s < s̄o, the unique PU equilibrium has λ∗
u = 0 and

profit 0, while at the PO equilibrium λ∗
o > 0 and profit is positive. In Panel 9b, where

s ≤ ξ(λpeak), the PU equilibrium has λ∗
u = λu(s) > 0, but the PO equilibrium features

even higher participation λ∗
o = λo(s) and higher profit.

To verify that the PO profit is higher in the case of Panel 9b, recall that by the revenue

equivalence (14), for any λ, Ru(λ, βλ) = Ro (λ) ≡
∫ λ

0
R′

o(x)dx. Therefore, the incremental

revenue in the PO scenario,
∫ λ

λ∗
u
R′

o(x)dx (i.e., the area under R′
o between λ∗

u and λ∗
o in

Panel 9b), clearly exceeds the incremental cost, which is given by the rectangular area

(λ∗
o − λ∗

u)s.
18

Thus, in the cases described in Figure 9, the stronger recruitment incentives of the PO

scenario result in larger participation and larger profit, while the smallness of c ensures

that the bidders’ entry decisions do not counteract these incentives.

In both cases, if committing to λ∗
o were possible, the PU seller would attain the PO

equilibrium profit due to the revenue equivalence (14). However, this would not be a PU

equilibrium, since the seller would have an incentive to take advantage of the unobserv-

ability of the participation and secretly choose λ < λ∗
o. The bidders, anticipating this,

would plan to bid less aggressively than if they had expected λ∗
o, which would incentivize

the seller to reduce λ further. With s > ξ(λpeak) this “unraveling” does not stop at any

positive λ, whereas with s ≤ ξ(λpeak) it settles at λ∗
u > 0.

PU profits are higher when s is small enough. The two panels of Figure 10 present

two types of circumstances under which the maximal PU profit is higher than the PO

profit. In both of them s < ξ
(
λ̄c
)
but they differ in the level of c as reflected in the

18Alternatively, the seller’s revealed preference in the PO scenario for λ∗
o over λ̄∗

u also implies the profit
ranking.
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Figure 10: Comparison of the PO and PU scenarios when c is relatively large.

positions of λ̄c.

Panel 10a shows the case in which λ̄c > λo (i.e., the bound imposed by the bidders’

entry decisions is above the minimum scale of any PO equilibrium with trade). Since

s < ξ
(
λ̄c
)
< R′

o

(
λ̄c
)
, the unconstrained profit maximizers in the two scenarios, λu(s) and

λo(s), exceed λ̄c. Therefore, λ̄c constrains the equilibrium participation in both scenarios,

λ∗
o = λ∗

u = λ̄c, which implies that the revenues are also the same. However, the cost of

inducing expected participation λ̄c in the PO scenario, λ̄cR′
o

(
λ̄c
)
, is larger than that cost

in the PU scenario, λ̄cξ
(
λ̄c
)
. Therefore, the maximal PU profit exceeds the PO profit.

The stronger marginal recruitment incentive at λ̄c in the PO scenario, as captured by

R′
o

(
λ̄c
)
> ξ

(
λ̄c
)
, implies that to prevent the seller from over-recruiting, bidders must be

more reluctant to enter in the PO scenario, q∗o < q∗u. Therefore, the seller must make a

greater recruitment effort to achieve the same λ̄c.

Panel 10b shows the case of λ̄c < λo. This precludes trade in the PO scenario, since

a positive λ∗
o must be both above λo (for seller optimality) and below λ̄c (for bidder op-

timality), which is impossible. In contrast, since s < ξ
(
λ̄c
)
, the maximal PU equilibrium

has λ∗
u > 0 and positive profit. This is because the weaker recruitment incentives in the

PU scenario make it possible to sustain expected participation levels below λ̄c < λo and

thus not shut off bidders’ entry.

Thus, in the case of small s, the profit ranking of the PO and PU scenarios is again

explained by the difference in recruitment incentives. But here these incentives have the

opposite effect, since what limits the profit is the bidders’ entry cost, and the seller’s

main challenge is to overcome the bidders’ reluctance to enter. Naturally, the weaker

recruitment incentives in the PU scenario make it easier to attract reluctant bidders.

In both cases depicted in Figure 10, if the PO seller could commit to the recruitment
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effort of the PU equilibrium, then her profit would be the same as the PU equilibrium

profit (by revenue equivalence). But this would not be an equilibrium in the PO scenario,

since the stronger recruitment incentives there would induce the PO seller to recruit more

aggressively. The bidders, anticipating this, would be more reluctant to enter in the

case of Panel 10a (thus increasing the marginal recruitment cost) and would choose not

to enter at all in the case of Panel 10b. By contrast, in the PU scenario, the weaker

recruitment incentives create an effective commitment to less aggressive recruiting and

hence low participation.

ŝ(c)

so

U(λo) U(0)

I

II

III
IV

ξ(λ
c
)

R′
o(λ

c
)

c

s

Figure 11: Profit ranking of the PO and PU scenarios.

General Comparison. Figure 11 shows the profit rankings of the PO and PU scenarios

for all (c, s) combinations. It compares the profits in the unique PO equilibrium to the

maximum profit achievable in a PU equilibrium.19

• Region I: Only PO has trade (and is strictly more profitable).

• Region II: Both scenarios have trade; PO is strictly more profitable.

• Region III: Both scenarios have trade; PU is strictly more profitable.

• Region IV: Only PU has trade (and is strictly more profitable).

• Remaining (unshaded) space: No trade in either scenario.

The boundary curve ŝ (c) summarizes the profit rankings: under the curve, PU is

strictly more profitable; above the curve, PO is strictly more profitable in the shaded

region (and elsewhere, profit is 0 in both scenarios). Proposition 3 confirms the shape

and location of ŝ (c).

19To read the figure, recall that higher values of c are associated with lower values of λ̄c.
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Proposition 3. The boundary ŝ (c) has the following characteristics:

1. ξ
(
λ̄c
)
≤ ŝ (c) ≤ R′

o

(
λ̄c
)
;

2. ŝ (c) is continuous and strictly increasing on [0, c#], for some c# ∈ (0, U (λo)), with

ŝ (0) = 0; ŝ
(
c#
)
= ξ(λpeak);

3. ŝ (c) = ξ(λpeak) for c ∈ [c#, U
(
λpeak

)
];

4. ŝ (c) = ξ (λc) for c ∈ (U
(
λpeak

)
, U (0)).

Disclosure. The comparison of the PO and PU scenarios is also relevant for under-

standing the seller’s disclosure preferences (when disclosure is possible). Suppose that the

seller could credibly commit in advance either to always disclose the number of partici-

pants prior to the bidding or to never disclose it. This is equivalent to the seller choosing

between the PO and PU scenarios. Therefore, the analysis of this section also character-

izes the optimal disclosure decision. For example, it implies that the seller may be more

likely to prefer to commit to nondisclosure when c is large or s is small.

4.2 A broader perspective on (un)observability

Given the revenue equivalence Ru(λ, βλ̂)|λ̂=λ
= Ro (λ) established by (14) above, the

significant difference between the PO and PU equilibrium outcomes may seem some-

what surprising. Subsection 4.1 explained this difference directly by showing how the

(un)observability of the actual participation level affects recruitment incentives. We now

provide a broader perspective by looking at the effect of observability beyond the FPA

format.

When participation is observable,20 after the number of participants n is realized, the

auction is an ordinary one with n bidders and the bidding is unaffected by the bidders’

beliefs λ̂. As is well known from basic auction theory, all standard auction formats (i.e.,

those in which the highest-value bidder wins and a bidder with value 0 gets payoff 0)

generate the same equilibrium payoffs given n. Therefore, the ex-ante expected payoffs

and revenues given λ = E [n] are the same across these formats, which implies identical

participation and recruitment incentives and hence identical equilibrium outcomes. In

20Since this subsection discusses other auction formats, we spell out “observable participation” and
“unobservable participation” rather than use the abbreviations PU and PO, which are reserved for the
(un)observability with the FPA format assumed in the main model this paper.
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other words, the equilibrium participation and payoffs also do not depend on the details

of the auction format (as long as it is standard).

In contrast, when participation is unobservable, the bidding depends on the bidders’

belief λ̂, not the actual λ. This means that the marginal revenue of recruitment is dif-

ferent from its counterpart in the observable participation scenario, and consequently the

equilibrium outcome also differs. The effect of λ̂ on the bidding and hence on recruit-

ment incentives varies across auction formats. In the FPA, where bids are increasing in

λ̂, a low λ̂ implies low bids and hence weak marginal recruitment incentives. In con-

trast, the dominant-strategy bids in the second-price auction (SPA) are independent of

λ̂. Therefore, a low λ̂ need not depress the marginal recruitment incentive. In fact, since

the dominant bidding strategies and resulting equilibrium of the SPA are unaffected by

observability, the SPA revenue is the same whether participation is observable or not; in

both cases, by the argument of the previous paragraph, it is Ro(λ).

The SPA format is an extreme case: the bidding is completely belief-independent

and so observability is completely irrelevant. In other standard auction formats, such as

the all-pay auction or a mechanism that mixes between the FPA and SPA with some

predetermined probabilities, the dependence of the bidding on λ̂ would differ from the

dependence in the FPA or SPA format and hence would lead to different equilibrium

outcomes (in the unobservable-participation scenario).

This variation of equilibrium outcomes across auction formats (with unobservable

participation) should not obscure the fact that when the bidders’ beliefs are correct (λ̂ =

λ), all of these formats yield the same revenue at any given λ (i.e., revenue equivalence

holds). The point is that these different formats cannot have the same equilibrium λ,

since, as explained above, the marginal revenues and hence the recruitment incentives

differ across them.

4.3 Comparison of first- and second-price auctions

The outcome equivalence that we have just pointed out, between the SPA with unob-

servable participation and the FPA with observable participation, suggests an alternative

interpretation of the results of Subsection 4.1 above. All the insights obtained in the

comparison of the equilibrium outcomes of the PO and PU scenarios apply verbatim to

the comparison of the SPA and FPA formats when participation is unobservable in both.

As noted above, the dominant-strategy equilibrium outcome of the SPA with unob-

servable participation is also the equilibrium of the SPA with observable participation, and
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is therefore equivalent (by the revenue equivalence established by (14)) to the equilibrium

of the FPA with observable participation.

Thus, the comparison of the PO and PU equilibria in Section 4.1 can be viewed as

a comparison between the equilibria of the SPA and FPA formats when participation

is unobservable in both. This means that when there are recruitment and participation

costs and participation is unobservable, the FPA and SPA are not equivalent in terms of

payoffs and participation, because they generate different recruitment incentives.21

This latter observation provides an immediate answer to the question of which of

these two formats is more profitable for the seller. When participation is observable, the

two formats yield the same profit, of course. When participation is unobservable, the

answer depends on c and s. The SPA format is more profitable than the (most profitable

equilibrium of the) FPA format if and only if the PO profit is higher than the maximal

PU profit given (c, s).22

However, such “design” questions are outside the scope of this paper. This is be-

cause our main interest is in informal auction situations in which the seller has limited

power to design the interaction. The FPA without a reserve price seems a more natural

model of such a situation. A reserve price and the use of the SPA format require greater

commitment power than we would like to assume.

5 Discussion and extensions

5.1 Welfare

Welfare W (λ, q) is identified with the total surplus,

W (λ, q) := T (λ)− λ
s

q
− λc,

where T (λ) =
∫ 1

0
vλe−λ(1−G(v))g(v)dv =

∫ 1

0
[1− e−λ(1−G(v))]dv is the expected value of the

first-order statistic given Poisson(λ)-distributed participation. Let λw and qw denote the

21The stronger incentive to recruit in the PO scenario was explained earlier by the more aggressive
bidding. Now we note that the PO equilibrium is equivalent (in terms of profit) to the dominant-strategy
equilibrium of the SPA, where greater participation does not induce more aggressive bidding (since bidders
bid their own values independently of the participation). These observations are not inconsistent: what
affects the incentive to recruit is not the aggressive bidding in itself, but rather the higher expected price
that it implies. In the SPA, greater participation does not induce more aggressive bidding, but it does
translate into a higher expected price.

22Even when the most profitable equilibrium of the FPA is more profitable, a seller may still prefer the
SPA if she is concerned about being trapped in the less profitable equilibria of the FPA.
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welfare-maximizing magnitudes.

Proposition 4. (i) qw = 1. (ii) If U(0) > s + c, then λw is the unique value of λ

satisfying

U(λ) = c+ s. (20)

If U(0) < s+ c, then λw = 0.

Proof. Part (i) is obvious. For Part (ii), note that

T ′(λ) =

∫ 1

0

(1−G(v)) e−λ(1−G(v))dv = U (λ) ,

where the second equality uses the explicit form of U from (22) in the appendix. Since U

is strictly decreasing, T is strictly concave. It follows that (20) is the first-order condition

for welfare maximization, and the condition is sufficient, thus proving the claim. ■

The critical equality is

T ′(λ) = U(λ). (21)

This equality is not surprising, given the familiar result that in an equilibrium of a stan-

dard auction,23 each bidder’s payoff equals his marginal contribution to the total surplus.

There are two types of inefficiency in equilibrium in the PO scenario. First, as we

already know, we can have q∗ < 1 in equilibrium, which immediately means wasted

recruitment effort. Second, as we show below, for almost all pairs (s, c) in the PO scenario,

λ∗ ̸= λw, and both excessive participation, λ∗ > λw, and deficient participation, λ∗ < λw,

may arise in equilibrium.

For the equilibrium of the PO scenario to coincide with the welfare maximum, we

must have R′
o(λ

∗) = s and U(λ∗) = s+ c. Since both U and R′
o are independent of s and

c, these equalities cannot be expected to hold simultaneously; indeed, they fail for almost

all c and s. Thus, in general, the equilibrium does not maximize welfare.

Figure 12 depicts a possible relationship between U(λ) and R′
o(λ). Its relevant features

are consistent with a uniform value distribution, that is, G (v) = v.

In this case, since U(λ) < R′
o(λ) for any λ ≥ λo, it follows that λ∗ > λw in any

equilibrium with trade. If λ∗ < λ
c
, then s + c > s = R′

o(λ
∗) > U(λ∗); if λ∗ = λ

c
, then

s + c > c = U(λ∗). In the case of λ∗ = λ
c
, there is also the inefficiency of q∗ < 1, except

when s = R′
o(λ

c
). On the other hand, there is a range of (s, c) combinations such that

23An auction in which the highest value bidder wins and the lowest value bidder gets payoff 0.
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Figure 12: Welfare.

s + c < U(0) requires trade, λw > 0, but either s > so or λ
c
< λo precludes trade in

equilibrium, meaning λw > λ∗ = 0.

Although this paper does not examine in detail the relationship between equilibrium

and welfare in the PU scenario, one can reasonably expect the equilibria to be generally

inefficient in that scenario as well. Since the maximal equilibrium in the PU scenario

involves lower participation than that of the PO scenario, there will be less inefficiency

due to excessive recruiting.24

For a general CDFG satisfying our regularity assumptions, we have already established

that U is decreasing and R′
o is single-peaked, as shown in Figure 12. The fact that U

intersects R′
o for the first time at some point λ̃ > λpeak (the maximizer of R′

o(λ)) also holds

for general CDF G (see Claim 5 in the appendix). We have not established analytically

all of the details in the figure for general CDF G,25 but these details will not affect the

overall conclusion that the equilibria are suboptimal.

The excessive recruitment noted above for the uniform distribution recalls the result in

Szech (2011) that when G exhibits an increasing hazard rate, the equilibrium participation

in an FPA with linear recruitment cost will exceed the welfare-maximizing level. Our

model is somewhat different because of the stochastic arrival and entry costs, but the

insight is similar.

Condition (21) implies that, for a given λ, the individual bidders’ entry decisions are

efficient. This is the counterpart in our model of a central finding in the literature on

24When the value distribution G is uniform, then numerically ξ < U , meaning that the seller may often
recruit too few bidders.

25We have shown that, if G is uniform, Uo(λ) and R′
o(λ) intersect only once and that λ̃ < λo. We have

not established these properties for general CDF G. However, loosely speaking, we expect Uo(λ) to be
mostly below R′

o(λ) since Ro(λ) is below T (λ) and converging to it.
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costly entry (see Levin and Smith, 1994).

Note that λw maximizes welfare only within the constraints of the original Poisson

contacting process. For example, welfare would be higher if the planner could coordinate

entry among the contacted bidders so as to avoid excessive participation when the number

of contacted bidders realized is too high.26

5.2 Uniqueness of equilibrium in the PO scenario

The equilibrium outcome of the PO scenario is unique for almost all values of s and c

(except when s = s̄o or λ
c
= λo), given the refinement imposed by the last condition of

the equilibrium definition in Section 1.2.27 Without the refinement, the no-trade outcome

is always an equilibrium; more precisely,

• if s > s̄o or λ
c
< λo, then no-trade is still the unique equilibrium outcome;

• if s < s̄o and λ
c
> λo, there are now two equilibrium outcomes: one with λ∗ > 0

and one with λ∗ = 0.

In the case of the second bullet point, the additional no-trade equilibrium λ∗ = 0 is

supported by the off-path belief µ(λ
c
) = 1 and q∗ ∈ (0, s

s̄o
). That is, bidders contacted

off-path conjecture that λ = λ
c
, which makes them indifferent among all choices of q,

including q∗. Such an equilibrium violates the refinement, since s
q∗

> s̄o implies strictly

negative profits at any λ > 0 including λ
c
.

Observe that this no-trade equilibrium is unconvincing on other grounds as well. First,

when s < s̄o and λ
c
> λo, it is Pareto-dominated by the equilibrium with trade. Second,

it is not robust to perturbations. Consider a perturbation in which the seller is required

to choose at least an effort γ ≥ ε > 0, for some small ε > 0. As ε → 0, this perturbed

game has a unique limit outcome that corresponds to the equilibrium with trade. This is

because for any q ∈ (0, 1) such that s
q
≥ s̄o, the seller’s best response is either λ = ε or λo

(or mixing between them). However, in all these cases, λ
c
> λo implies that the bidders

have a strict incentive to enter, so that q = 1.

Formally, since this game is not finite (because it has a continuum of actions and an

unbounded number of players), we cannot directly apply the concept of stability in the

26This is similar to the observation of Levin and Smith (1994) that the randomness over participation
numbers in symmetric mixed equilibria reduces welfare relative to the deterministic participation numbers
in asymmetric pure equilibria.

27If γ∗ = 0, then no γ̂ in the support of µ yields negative profits. A slightly more general formulation
would require every γ̂ in the support of µ to be a best response by the seller to q∗ and β∗.
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sense of Kohlberg and Mertens (1986). However, for a discretized version in which the

seller chooses γ from a finite grid (that contains 0, λ
c
, and λo), we can define a refinement

in the spirit of stability, requiring that the equilibrium be immune to all vanishing fully

mixed perturbations. It is fairly immediate that the no-trade equilibrium will fail such

refinement, while the unique equilibrium with trade will survive it.28

We can also indirectly confirm the instability of the no-trade equilibrium by observing

that it fails the invariance property of stable equilibrium. To see this, consider the equiv-

alent extensive form in which the seller first chooses between γ = 0, which terminates

the game, and another action, “γ > 0”, which stands for all positive recruitment efforts.

After taking the action “γ > 0”, the seller chooses the specific γ and the bidders make

their entry decisions. The unique subgame-perfect equilibrium here is the equilibrium

with trade, by the same argument as used above for the variation with γ ≥ ε.

5.3 Pseudo-stability considerations in the PU scenario

The smaller of the two equilibria with trade in the PU scenario is pseudo-unstable in

the sense that, following a small displacement of the equilibrium recruitment effort and

the corresponding adjustment of bidders’ expectations, there is no corrective force that

returns the recruitment effort to its equilibrium level. Recall from Section 3.2 (and Figure

7) that in those equilibria it must be that the ξ curve crosses the horizontal s line from

below and that λ∗ = λu(s) < λ
c
. Hence, q∗ = 1 and λ∗ = γ∗. Suppose that γ∗ is displaced

by ∆ > 0 such that γ∗ + ∆ < λ
c
. After bidders adjust their expectations and entry

decisions, λ = γ∗ +∆ and q = 1. Since ξ(λ) > s, the seller’s profit at λ is higher than in

the equilibrium at λ∗. Therefore, the seller has no incentive to cut back the recruitment

effort to γ∗.

In contrast, the larger equilibrium with trade is pseudo-stable: the above argument

would fail since ξ crosses the horizontal s
q∗

from above at the equilibrium at λ∗.

6 Concluding remarks

This paper contributes to the market approach in auction theory, treating auctions as

abstractions of less formal price formation.29 It examines the roles and interactions of

28Note, however, that the no-trade equilibrium will survive an analogously defined refinement in the
spirit of perfect equilibrium, since we can focus on a sequence of perturbations for which the expectation
conditional on λ > 0 is λ

c
.

29This perspective was adopted by, for example, Wilson (1977) and Milgrom (1979)
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three ubiquitous frictions in such scenarios: costly recruitment, costly bidder entry, and

the seller’s inability to commit.

A number of natural extensions suggest themselves. Some of them we discuss in the

online appendix: nonlinear recruitment cost, entry fees (subsidies), reserve prices, bidder

heterogeneity (known values at the time of entry), some further results on welfare, and a

numerical analysis for a uniform value distribution.

Many open questions remain. For instance, it might be interesting to study the com-

parative statics of the outcome with respect to the value distribution: how does the latter

affect the seller’s recruitment effort and the inefficiency? Relatedly, one could explicitly

model a setting in which the bidders acquire information at some cost or in which the

seller provides information to bidders at some cost, implicitly subsidizing entry. As we

highlighted in the introduction, the fundamental inefficiencies of informal auctions may

induce demand for intermediaries; it may therefore be worthwhile to study the role of

such intermediaries in our framework.

7 Appendix

7.1 Proofs for the PO scenario

7.1.1 Bidders’ ex-ante expected payoff

Claim 2.

U(λ) =

∫ 1

0

e−(1−G(v))λ[1−G (v)]dv. (22)

Proof of Claim 2. By (1), βFPA is strictly increasing. Therefore, in an auction with

a total of n bidders, a bidder with value v wins with probability G (v)n−1. Let U (n, v)

denote the equilibrium payoff to a bidder with value v in an auction with a total of n

bidders, and note that U (n, 0) = 0. The usual envelope argument implies that U (n, v) =∫ v

0
G (x)n−1 dx; see Krishna (2009).

Hence, when n is drawn from a Poisson distribution with mean λ, the expected payoff

of type v is

∞∑

n=1

e−λ λn−1

(n− 1)!
U (n, v) =

∫ v

0

∞∑

n=0

e−λλ
nG (x)n

n!
dx =

∫ v

0

e−λ(1−G(x))dx.
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We used that
∑∞

n=0 e
−λG(x) λ

nG(x)n

n!
= 1. Therefore, the ex-ante expected payoff is

U(λ) =

∫ 1

0

(∫ v

0

e−λ(1−G(x))dx

)
g (v) dv.

Changing the order of integration yields (22). ■

7.1.2 The seller’s revenue

Claim 3. (i) Ro (λ) is strictly increasing, Ro (0) = 0, and limλ→∞Ro (λ) = 1.

(ii) Ro (λ) is continuously differentiable, R′
o (0) = 0, R′

o(λ) → 0 as λ → ∞, and R′
o is

single-peaked.

(iii) Ro(λ)
λ

is single-peaked; at its peak, Ro(λ)
λ

= R′
o (λ).

Proof of Claim 3. The total surplus (gross of the recruitment costs) is the expectation

of the first-order statistic of v given Poisson(λ) distributed participation:

Total Surplus(λ) =

∫ 1

0

[
1− e−(1−G(v))λ

]
dv.

The total surplus is equal to the sum of the revenue, Ro(λ), and the bidders’ total expected

payoff, λU(λ). Revenue is the difference of Total Surplus(λ) and λU (λ), that is,30

Ro(λ) =

∫ 1

0

[
1− e−(1−G(v))λ − e−(1−G(v))λ (1−G (v))λ

]
dv. (23)

Differentiating and rearranging yields

d

dλ
Ro(λ) =

∫ 1

0

λ (1−G (v))2 e−(1−G(v))λdv. (24)

Parts (i) and (ii). Positivity, continuity, and values at λ = 0 and λ → ∞ are obvious

from (23) and (24). To establish that R′
o is single-peaked, consider the second derivative:

d2

dλ2
Ro(λ) =

∫ 1

0

(1−G (v))2 e−(1−G(v))λdv −
∫ 1

0

λ (1−G (v))3 e−(1−G(v))λdv (25)

= e−λ

(
1

g(0)
−
∫ 1

0

(1−G(v))2 eG(v)λ

[
v − 1−G(v)

g(v)

]′

v

dv

)
,

30Note that the integrand on the right side is 1 minus the CDF of the second-order statistic of v, as
expected given the revenue equivalence in the text.
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using integration by parts.

Recall that, by assumption,
[
v − 1−G(v)

g(v)

]′
v
> 0. Thus, the integral on the last line

of (25) is positive and increasing in λ, while the first term is positive and independent

of λ. Therefore, d2

dλ2Ro(λ) < 0 for large λ, and once it turns negative, it stays negative.

Inspection of the first line of (25) reveals that d2

dλ2Ro(λ) > 0 for λ ∈ [0, ε] for some ε > 0.

The two observations imply that d
dλ
Ro(λ) is single-peaked.

Part (iii). This is an immediate corollary of Parts (i)–(ii) and the fact that d(Ro(λ)/λ)dλ =[
R′

o(λ)− Ro(λ)
λ

]
/λ. ■

Proposition 1. There exists a unique equilibrium for all (c, s) such that c ̸= U(λo) and

s ̸= s̄o. The form of the equilibrium varies across the regions of Figure 4 as follows:

1. If (c, s) is in the unshaded region, then λ∗ = 0 (no trade).

2. If (c, s) is in shaded Region I, then λ∗ = λo (s) and q∗ = 1.

3. If (c, s) is in shaded Region II, then λ∗ = λ
c
and q∗ = s/R′

o(λ
c
).

Proof of Proposition 1.

Part 1. The (c, s) in the unshaded region are such that s > s̄o or c > U(λo). If s > s̄o,

then by (7), λ = 0 is the seller’s unique optimal choice for any q∗. Therefore, λ∗ = 0 with

q∗ = 1 and µ∗(0) = 1 is the unique equilibrium in this case.

If c > U(λo) and s < s̄o, then the following is an equilibrium: λ∗ = 0, q∗ satisfies

s̄o = s
q∗
, and µ∗ has support on {0, λo} with µ∗(0)U(0) + µ∗(λo)U(λo) = c. Such a µ∗

exists because c ∈ (U(0), U(λo)). The choice of µ
∗ implies Eµ∗(U(λ)) = c, so q∗ is bidder-

optimal. The choice of q∗ also implies maxλ Πo(λ, q
∗) = 0 and argmaxλ Πo(λ, q

∗) =

{0, λo}. Hence, λ∗ = 0 is seller-optimal, and µ∗ satisfies equilibrium condition E2(iii) (the

refinement).

The uniqueness of this equilibrium is established by the following two arguments.

First, there is no equilibrium with λ∗ > 0, since it would have to satisfy λo ≤ λ∗ ≤ λ
c
.

But this contradicts c > U(λo), which implies λ
c
< λo.

Second, to verify that there is no other equilibrium with λ∗ = 0, recall that in such

an equilibrium seller optimality would imply maxλ Πo(λ, q
∗) = 0 . Hence, equilibrium

condition E2(iii) implies that Πo(λ, q
∗) = 0 for any λ in the support of µ∗. Observe

that µ∗(0) < 1, since µ∗(0) = 1 implies q∗ = 1, which together with s < s̄o imply

Πo(λo(s), 1) > 0 contradicting maxλΠo(λ, 1) = 0. Now, since any λ > 0 in the support of

36



µ∗ must be profit maximizing and yield profit 0, it follows that such λ and q∗ must satisfy

λ = λo(
s
q∗
) = λo. Therefore,

s
q∗

= s̄o, which establishes the uniqueness.

Parts 2&3. For c < U(λo) and s < s̄o, the profiles described in Parts 2 and 3 of

Proposition 1 satisfy the bidders’ and the seller’s optimality conditions. Since λ∗ > 0, the

point beliefs are confirmed, and so these are equilibria.

Uniqueness is established by the following four steps.

Step I: There is no equilibrium with λ∗ = 0.

When λ∗ = 0, seller optimality requires that maxλΠo(λ, q
∗) = 0 . So, by the equilibrium

refinement, Πo(λ, q
∗) = 0 for any λ in the support of µ∗. Thus, by (7), the support of µ∗

is contained in {0, λo}. Since c < U(λo) implies λo < λ
c
, and since U is decreasing, it

follows that Eµ∗ [U(λ)] > c, and so q∗ = 1. However, when s < s̄o, we have Πo(λo, 1) > 0,

which contradicts the requirement that maxλ Πo(·, q∗) = 0; thus, there is no equilibrium

with λ∗ = 0. □

Step II: When λ∗ > 0,

λ∗ = min{λc
, λo(s)}. (26)

From seller optimality (7), it follows that if λ∗ > 0, then λ∗ ≥ λo and R′
o (λ

∗) = s
q∗
. From

bidder optimality (2), it follows that q∗ may differ from 1 only if λ∗ = λ
c
. Therefore, the

only possibilities are λ∗ = λ
c
or λ∗ = λo(s). If λ

c
> λo(s), then for any q, the fact that

R′
0 is decreasing means that R′

o

(
λ
c
)
< s

q
, so λ

c
cannot be an equilibrium outcome. If

λ
c
< λo(s), then U (λo(s)) < c, so λo(s) cannot be an equilibrium outcome. □

Step III: If s̄o > s > R′
o(λ

c
) and λ∗ > 0, it must be that (λ∗, q∗) = (λo(s), 1).

Since R′
o is decreasing, λo(s) < λ

c
. Therefore, if λ∗ > 0, it follows from (26) that

λ∗ = λo(s). And λo(s) < λ
c
implies q∗ = 1. □

Step IV: If s < R′
o(λ

c
) and λ∗ > 0, it must be that (λ∗, q∗) = (λ

c
, s
R′

o(λ
c
)
).

Since R′
o is decreasing, λo(s) > λ

c
. So (26) implies λ∗ = λ

c
. Hence, (7) implies that q∗

satisfies R′
o(λ

c
) = s

q∗
. □

Thus, Step I rules out λ∗ = 0, and Steps II - IV establish the uniqueness of the

equilibrium with λ∗ > 0. ■

7.2 Proofs for the PU scenario

Claim 4. (i) Ru(λ, βλ̂) is twice differentiable (in λ and λ̂), and for λ̂ > 0 it is strictly

concave in λ.
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(ii)
ξ(λ) =

∫ 1

0

1

2
[1−G (v)]2 λe−λ(1−G(v))dv ≡ 1

2
R′

o(λ), (27)

and hence it is single-peaked, and continuous, ξ(0) = 0, and ξ(λ) → 0 for λ → ∞.

Proof of Claim 4: Part (i) The CDF of the first-order statistic (maximum value) given

Poisson(λ) arrival is

F(1)(t;λ) = Pr(max v ≤ t;λ) = e−λ(1−G(t)).

Hence,
Ru(λ, βλ̂) =

∫ 1

0

βλ̂ (v) dF(1)(v;λ). (28)

Substitute into (11) both Pλ (n) =
λn

n!
e−λ and the explicit expression for βFPA from (1),

and rearranging by using that
∑∞

n=0
λn

n!
e−λG (x)n = e−λ(1−G(x)) yields

βλ (v) = v −
∫ v

0

e−λ(G(v)−G(x))dx. (29)

Next, substituting the explicit forms of F(1) and βλ̂ (v) into the RHS of (28),

Ru(λ, βλ̂) =

∫ 1

0

[
v −

∫ v

0

e−λ̂(G(v)−G(x))dx

]
λg(v)e−λ(1−G(v))dv

=

[(
v −

∫ v

0

e−λ̂(G(v)−G(x))dx

)
e−λ(1−G(v))

]1

0

−
∫ 1

0

[
1− e−λ̂(G(v)−G(v)) + λ̂g(v)

∫ v

0

e−λ̂(G(v)−G(x))dx

]

= 1−
∫ 1

0

e−λ̂(1−G(x))dx−
∫ 1

0

(∫ v

0

e−λ̂(G(v)−G(x))dx

)
λ̂g(v)e−λ(1−G(v))dv,

where the second equality is obtained from integration by parts. Obviously, Ru(λ, βλ̂) is

twice differentiable in λ and λ̂. Concavity in λ, given λ̂ > 0, follows from

∂2

∂λ2
Ru(λ, βλ̂) = −

∫ 1

0

(∫ v

0

e−λ̂(G(v)−G(x))dx

)
λ̂
[
(1−G(v))2

]
g(v)e−λ(1−G(v))dv < 0.

(For an alternative, direct argument see the footnote.31)

Part (ii) We have

ξ(λ) =
∂

∂λ
Ru(λ, βλ̂) |λ̂=λ=

∫ 1

0

(1−G(v))

(∫ v

0

e−λ(G(v)−G(x))dx

)
λg(v)e−λ(1−G(v))dv

31A direct argument: Since Ru(λ, βλ̂) is the expected first-order statistic when sampling from the bid
distribution induced by βλ̂, Concavity is implied by the concavity of the expected first-order statistic in
the (expected) number of samples.
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=

[
−1

2
(1−G(v))2λ

(∫ v

0

e−λ(1−G(x))dx

)]1

0

+
1

2

∫ 1

0

(1−G(v))2λ

(∫ v

0

e−λ(1−G(x))dx

)′

v

dv

=
1

2

∫ 1

0

(1−G(v))2λe−λ(1−G(v))dv,

where the third equality follows from integration by parts. This establishes the first

equality in (27); the second equality follows from inspecting (24) in Claim 3 above.

It is immediate from its explicit expression that ξ is continuous, ξ (0) = 0, and

limλ→∞ ξ (λ) = 0. The single-peakedness follows from the single-peakedness of R′
o(λ)

that was established by Claim 3. ■

Claim 1: (i) If (λ∗, q∗) and (λ∗∗, q∗∗) are equilibria (for possibly different (c, s) configu-

rations), then

λ∗∗ > λ∗ =⇒ Πu(λ
∗∗, βλ∗∗ , q∗∗) > Πu(λ

∗, βλ∗ , q∗).

(ii) The maximal PU equilibrium profit is weakly decreasing in c and s.

Proof of Claim 1. The CDF of the third-order statistic is

F(3)(v;λ) = e−λ(1−G(v)) + (1−G(v))λe−λ(1−G(v)) +
1

2
(1−G(v))2λ2e−λ(1−G(v)).

We show that the profit is the expectation of the third-order statistic,

Ru(λ, βλ)− λξ(λ) =

∫ 1

0

(1− F(3)(v;λ))dv.

Combining the previous findings from the proof of Claim 4, Ru(λ, βλ)− λξ(λ) equals

1−
∫ 1

0

e−λ(1−G(x))dx−
∫ 1

0

(∫ v

0

e−λ(G(v)−G(x))dx

)
λg(v)e−λ(1−G(v))dv−λ

1

2

∫ 1

0

(1−G(v))2λe−λ(1−G(v))dv.

Evaluating the second term shows

∫ 1

0

(∫ v

0

e−λ(G(v)−G(x))dx

)
λg(v)e−λ(1−G(v))dv =

∫ 1

0

(∫ v

0

e−λ(1−G(x))dx

)
λg(v)dv

=

{
−
[
(1−G(v))λ

∫ v

0

e−λ(1−G(x))dx

]1

0

−
∫ 1

0

[− (1−G(v))]λe−λ(1−G(v))dv

}

=

∫ 1

0

[(1−G(v))]λe−λ(1−G(v))dv,

which proves the claim.■
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7.3 Proofs for the comparison of the PO and PU scenarios

Proposition 3: The boundary ŝ (c) has the following characteristics:

1. ξ
(
λ̄c
)
≤ ŝ (c) ≤ R′

o

(
λ̄c
)
;

2. ŝ (c) is continuous and strictly increasing on [0, c#], for some c# ∈ (0, U (λo)), with

ŝ (0) = 0; ŝ
(
c#
)
= ξ(λpeak);

3. ŝ (c) = ξ(λpeak) for c ∈ [c#, U
(
λpeak

)
];

4. ŝ (c) = ξ (λc) for c ∈ (U
(
λpeak

)
, U (0)).

Proof of Proposition 3: Propositions 1 and 2 imply that Regions I and IV in Figure

11 are above and below ŝ (c), respectively. Let λ∗
i (c, s), q

∗
i (c, s), and Πi (c, s) respectively

denote the equilibrium participation, entry probability, and profit, as functions of (c, s),

where i = o stands for the PO scenario and i = u stands for the maximal profit equilibrium

of the PU scenario. Propositions 1 and 2 imply that for (c, s) in Regions II and III of

Figure 11, λ∗
i (c, s) > 0 for i = o, u. The discussion surrounding Figures 9 and 10 earlier

in this section established that, for c < U (λo),

Πu (c, s) > Πo (c, s) if s ≤ ξ
(
λ̄c
)
;

Πu (c, s) < Πo (c, s) if s ≥ R′
o

(
λ̄c
)
.

Therefore, the following discussion focuses on the remaining cases of (c, s) for which

c < U (λo) and ξ
(
λ̄c
)
< s < R′

o

(
λ̄c
)
. (30)

Claim: At any (c, s) in the interior of the relevant range (30),

∂Πo (c, s)

∂c
< 0 and

∂Πu (c, s)

∂c
= 0; (31)

∂Πo (c, s)

∂s
= 0 and

∂Πu (c, s)

∂s
< 0. (32)

Proof of Claim: For all (c, s) in the relevant range (30),

Πo (c, s) = Ro

(
λ̄c
)
−R′

o

(
λ̄c
)
λ̄c, (33)
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and

Πu (c, s) = Ro (λ
∗
u)− ξ (λ∗

u)λ
∗
u, (34)

where λ∗
u is the larger solution to ξ (λ) = s. The RHS of (33) is independent of s and is

decreasing in c since, by the discussion around (8), it is increasing in λ̄c, which in turn

is decreasing in c. Hence, ∂Πo(c,s)
∂s

= 0 and ∂Πo(c,s)
∂c

< 0. The RHS of (34) is independent

of c since ξ
(
λ̄c
)
< s implies λ∗

u < λ̄c; it is also decreasing in s since, by the discussion

around (19), it is increasing in λ∗
u, which in turn is decreasing in s. Hence, ∂Πu(c,s)

∂c
= 0

and ∂Πu(c,s)
∂s

< 0. □

Define λ# to be the unique solution to

Ro

(
λpeak

)
− λpeakξ(λpeak) = Ro

(
λ#
)
− λ#R′

o

(
λ#
)
.

Observe that the LHS is equal to Πu

(
0, ξ(λpeak)

)
(by the revenue equivalence (14)), while

the RHS is equal to Πo

(
0, R′ (λ#

))
.32 The LHS is strictly positive since the profit of a PU

equilibrium with positive participation is always strictly positive. Therefore, there must

be a unique λ# > λo that satisfies the equality. Of course, this equality of profits holds for

any c such that λ̄c ≥ λ# (or, equivalently, c ≤ U
(
λ#
)
). In particular, let c# ≜ U

(
λ#
)
;

it follows that:

Πu

(
c#, ξ(λpeak)

)
= Πo

(
c#, R′ (λ#

))
. (35)

We are now ready to derive the following segments of the boundary curve ŝ (c). First,

(35) and (31) imply

Πu (c, s) > Πo (c, s) for all c > c# and s ≤ ξ(λpeak). (36)

Equation (36) implies that ŝ (c) = ξ(λpeak) is the boundary between Regions II and III

for c ≥ c#, as claimed.

Second, (31) and (35) imply

Πu

(
c, ξ(λpeak)

)
< Πo

(
c, ξ(λpeak)

)
for all c < c#, (37)

and since at s = ξ (λc), λ∗
o = λ∗

u = λ̄c and q∗o < q∗u = 1, we also have

Πu (c, ξ (λ
c)) > Πo (c, ξ (λ

c)) for all c < c#. (38)

32The c = 0 argument of Πo and Πu in this sentence just stands for a sufficiently small c such that λ
c

does not constrain the profit maximizing choices with the relavant values of s.
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Therefore, for any c ∈
(
0, c#

)
, inequalities (37) and (38), and the continuity of Πo and

Πu, imply via the intermediate value theorem that there exists some ŝ (c) between ξ (λc)

and ξ(λpeak) such that

Πu (c, ŝ (c)) = Πo (c, ŝ (c)) . (39)

Then (32) implies that, for c ∈
(
0, c#

)
, we have Πu(c, s) > Πo(c, s) if s < ŝ (c) and

Πu(c, s) < Πo(c, s) if s > ŝ (c). Thus, ŝ (c) is the boundary between Regions II and III in

Figure 11, for c ∈
(
0, c#

)
as well.

Finally, to verify that ŝ is continuously increasing in c over
(
0, c#

)
, pick any c′ and c′′

with 0 ≤ c′ < c′′ ≤ c#. The fact that (31) and (39) hold for c = c′ implies Πu (c
′′, ŝ (c′)) >

Πo (c
′′, ŝ (c′)). This inequality and (32) imply

Πu (c
′′, s) > Πo (c

′′, s) for all s ≤ ŝ (c′) .

Thus, for (39) to hold at c = c′′, it must be that ŝ (c′′) > ŝ (c′), as claimed. Finally, the

continuity of ŝ (c) follows from that of Πo and Πu for (c, s), which satisfies (30). ■

7.4 Proof for the welfare discussion

Claim 5. (i) For any Λ, there is λ > Λ such that U(λ) < R′
o(λ). (ii) There is λ̃ > λ such

that U(λ) ≥ R′
o(λ) for λ ≤ λ̃, and U(λ) < R′

o(λ) at least over some interval just above λ̃.

Proof of Claim 5: Obviously, Ro(λ) is the residual surplus not received by the bidders,

Ro(λ) = T (λ)− λU(λ).

Observe that Ro(λ) → T (λ) as λ → ∞, since both the expected maximal bid and the

expected maximal value approach 1.

Part (i). If there is Λ such that U(λ) > R′
o(λ) for all λ ≥ Λ, then, by (21), for all such

λ, T (λ) − Ro(λ) > T (Λ) − Ro(Λ) > 0, which contradicts the fact that Ro(λ) → T (λ) as

λ → ∞.

Part (ii). By (21),

R′
o(λ) = −λU ′(λ) = λ

∫ 1

0

e−(1−G(v))λ[1−G (v)]2dv (40)

and

U(λ)−R′
o(λ) = U(λ) + λU ′(λ) =

∫ 1

0

e−(1−G(v))λ[1−G (v)] [1− (1−G (v))λ] dv. (41)
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Therefore,

R′′
o(λ) = −U ′(λ)− λU ′′(λ) =

∫ 1

0

e−(1−G(v))λ[1−G (v)]2dv (42)

−λ

∫ 1

0

e−(1−G(v))λ[1−G (v)]3dv

=

∫ 1

0

e−(1−G(v))λ[1−G (v)]2 [1− (1−G (v))λ)] dv.

Recall that R′
o(λ) is single-peaked and let λ denote the argument of the peak. Thus,

R′′
o(λ) = 0, and it follows from (42) that there must be an x such that (1−G (x))λ = 1.

Hence, the integrand on the right-hand side of (42) is positive for v > x and negative for

v < x. Therefore,

0 = R′′
o(λ) <

∫ x

0

e−(1−G(v))λ[1−G (x)][1−G (v)]
[
1−

(
1−G (v))λ

)]
dv

+

∫ 1

x

e−(1−G(v))λ[1−G (x)][1−G (v)]
[
1−

(
1−G (v))λ

)]
dv

= [1−G (x)]

∫ 1

0

e−(1−G(v))λ[1−G (v)]
[
1−

(
1−G (v))λ

)]
dv

= [1−G (x)][U(λ)−R′
o(λ)].

The first inequality follows from 1 − G (x) < 1 − G (v) for the range v < x where the

integrand is negative, and from 1 − G (x) > 1 − G (v) for the range v > x where the

integrand is positive; the last equality follows from (41). Therefore, U(λ) > R′
o(λ). Since

U is decreasing and R′
o is increasing for λ < λ, it follows that U(λ) > R′

o(λ) for all λ ≤ λ.

This and Part (i) imply that U and R′
o first intersect at some λ̃ > λ. ■
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A Online appendix

This appendix is not intended for publication. It includes the discussion of mixed equilib-

ria as well as some variations of the model, namely, non-linear recruitment costs, optimal

fees, (optimal) reserve prices, and bidder entry with known values. Finally, we illustrate

our findings with a numerical example in which the value distribution is uniform.

A.1 Equilibria with mixed recruitment effort

PO Scenario. For generic parameters, there is no equilibrium in which the seller mixes.

Step II of Proposition 1 also holds for such equilibria. Hence, the seller cannot mix

between two positive participation levels, but only between 0 and λo. For mixing between

these to be optimal requires s/q∗ = s̄o, and q∗ > 0 requires λc ≥ λo. If the seller puts

any positive probability on 0, the latter inequality implies q∗ = 1. So, mixed recruitment

happens in equilibrium only if s = s̄o. As we mention in the paper, in this case, both

λ = 0 and λ = λo are zero-profit, pure strategy equilibria.

PO Scenario. The seller’s revenue is strictly concave for any non-degenerate bidder

strategy; see Footnote 31. Thus, the seller’s best response is unique for any given strategy

of the bidders, so there is no equilibrium where the seller mixes.

A.2 Non-linear recruitment cost

The main qualitative insights do not depend on the assumption of linear recruitment cost.

Suppose that the recruitment cost is described by S(γ) = Kγ + kγ2 with K > 0 and

k > 0. Expressing this cost instead in terms of λ = qγ and q

S(λ; q) =
K

q
λ+

k

q2
λ2 with K > 0 and k > 0.

Figure 13 depicts the R′
o and ξ curves and the marginal recruitment cost curve S ′(λ; q),

which is drawn for q = 1. The figure is drawn for small bidders’ entry cost c, which

implies a λ
c
large enough to not constrain the equilibria (marked by the heavy dots). The

unique PO equilibrium has λ∗
o satisfying R′

o(λ
∗
o) = S ′(λ∗

o; 1) and q∗ = 1. The PU scenario

has three equilibria with λ∗ equal to 0, λ∗
u and λ

∗
u, respectively; and with q∗ = 1. The

two PU equilibria with trade correspond to the intersections of ξ(λ) and S ′(λ; 1). Thus,

the sets of equilibria and their relative positions resemble closely their counterparts in the

linear cost case.

46



R′
o(λ)

ξ(λ)

S′(λ)

λ∗
u λ

∗
u λ∗

o

K

λ
c

K ′

K

λoλpeak λ

Figure 13: Equilibria with nonlinear recruitment costs.

The ranking of these equilibria with respect to profit is also the same as in the linear

cost case: the PO profit is larger than the PU profits, which in turn are ranked in the

order of the expected participation in the corresponding equilibria.

One notable difference is that λo (the maximizer of the average revenue) is no longer the

minimum scale for an equilibrium with trade. If the slope of the marginal cost k is made

larger so that S ′(λ; 1) intersects R′
o(λ) just to the left of λo, then the λ solving R′

o(λ) =

S ′(λ; 1) would still be a PO equilibrium, provided that the profit is nonnegative, Ro(λ) ≥
S(λ; 1). This is indeed the case for λ close enough to λo, since Ro(λ)/λ ≈ Ro(λo)/λo

= R′
o(λo) ≈ R′

o(λ) = S ′(λ; 1) > S(λ; 1)/λ, where the approximate equality is due to the

continuity of Ro(λ) and R′
o(λ), and where the first equality is by the definition of λo. Since

the gap represented by the inequality is bounded away from zero, S ′(λ; 1)−S(λ; 1)/λ = kλ,

it follows that Ro(λ) > S(λ; 1).33

The observation of the previous paragraph implies that if c is sufficiently larger so

that λ
c
is just below λo, there will be some q < 1 that will support an equilibrium with

λ
c
. Lowering q below 1 will increase the intercept and slope of S ′(λ; q) continuously to

achieve R′
o(λ

c
) = S ′(λ

c
; q).

The comparison of the scenarios is also very similar its counterpart in the linear

recruitment-cost case, and is explained by the same sort of considerations. If recruit-

ment becomes more costly (e.g., by shifting the intercept to K ′ while keeping the slope k

33This verification was not needed for the PO equilibrium depicted in Figure 13, since for λ > λo, we
have Ro(λ)/λ > R′

o(λ) and therefore profit is automatically nonnegative for any λ > λo that satisfies
R′

o(λ) = S′(λ; 1). Such verification was also not needed for the PU equilibria, since there the first-order
condition is also sufficient.
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unchanged), then only the PO scenario will have an equilibrium with trade. Of course,

there is a range of upward shifts of the recruitment-cost functions that would produce

this effect. This observation is the counterpart of s ∈ (ξ(λpeak), s̄o] in the linear cost case.

On the other hand, if c is relatively large so that λ
c
< λpeak, then given the cost-

function parameters K and k of Figure 13, there will be no PO equilibrium with trade,

since there is no q that will make λ
c
a profit maximizer (i.e., for q such that R′

o(λ
c
) =

S ′(λ
c
; q), the second-order condition for maximum profit fails since R′′

o(λ
c
) > S ′′(λ

c
; q)).

In contrast, the PU scenario would feature an equilibrium with trade. Thus, there is a

range of relatively large c for which the PO scenario does not have an equilibrium with

trade but the PU scenario does. This observation is the counterpart of λ
c
< λo in the

linear cost case.

We have not conducted a complete analysis of the nonlinear cost case. The purpose

of this subsection is just to point out that in the big picture, the type of equilibria in the

two scenarios and the relationship among them remain very similar to their counterparts

in the linear cost case. Among the issues that a more thorough analysis could tackle are:

(i) the case of K = 0; (ii) stating the precise conditions on K and k that guarantee the

existence of a no-trade equilibrium in the PO scenario when there is no equilibrium with

trade; (iii) more general increasing cost functions S(λ; q).

A.3 Fees to influence participation

The question of optimal entry fees (or subsidies, when they are negative) is of sec-

ondary importance for this paper for two reasons. First, it belongs more to the “design”

paradigm of auction theory, which assumes significant seller commitment power that we

de-emphasize in this paper. Second, nonserious bidders and sellers may abuse entry fees,

so their credible implementation may require commitment and enforcement capabilities.

Here, we put aside those issues and consider a flat fee that is collected from, or offered

to, each auction entrant in the PO scenario. Let D denote this fee (D < 0 means it is

a subsidy). The subsequent interaction is formally equivalent to the PO scenario with

bidders’ cost c+D and seller’s marginal cost s
q
−D. Let λ∗(D) and q∗(D) be the unique

equilibrium magnitudes given D, and let λ
c+D

be the solution to U(λ
c+D

) = c+D.

Claim 6. (i) If the seller can commit to recruitment effort γ, then profit is maximized at

γ = λw with D = s.

(ii) Suppose that the seller cannot commit to γ. If there exists a D that enables trade

(i.e., s−D ≤ so and λ
c+D ≥ λo), then profit is maximized with D∗ that satisfies s−D∗ =
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R′
o(λ

c+D∗

), with

λ∗(D∗) = λ
c+D∗

and q∗(D∗) = 1.

Part (ii) implies that the profit-maximizing fee is related to the equilibrium configu-

ration that prevails when fees cannot be imposed (i.e., the case of D = 0). If λ∗(0) < λ
c

(i.e., recruiting is unconstrained when fees are not allowed), then D∗ > 0 (i.e., a fee). If

λ∗(0) = λ
c
, then D∗ < 0 (i.e., a subsidy).

Proof of Claim 6: Part (i). If the seller commits to γ = λw and imposes an entry

fee D such that U(λw) = c + D, then all contacted bidders will choose to enter: q = 1.

Therefore, the surplus is maximal and the seller fully appropriates it since the bidders’

payoff is 0. Since U(λ) is decreasing and λ
c
> λw, it follows that D = s > 0.

Part (ii). We noted that, given D, this is the PO scenario with seller cost s
q
− D and

bidders’ cost c+D. Thus, in equilibrium, given D, either λ∗(D) ≤ λ
c+D

and R′
o(λ

∗(D)) =

s−D, or λ∗(D) = λ
c+D

and R′
o(λ

∗(D)) = s
q∗

−D.

If λ∗(D) < λ
c+D

, then any fee D′ > D, such that λ∗(D′) < λ
c+D′

still holds, yields

λ∗(D′) > λ∗(D) and higher profit.

If λ∗(D) = λ
c+D

and R′
o(λ

∗(D)) > s−D, then q∗(D) < 1. In this case, a fee of D′ < D

defined by

s−D′ =
s

q∗(D)
−D

results in q∗(D′) = 1, λ
c+D′

> λ
c+D

, and λ∗(D) = λ∗(D′). This, together with the equality

of the marginal recruitment costs, implies that the profits for D and D′ are equal as well.

But then, by the argument of the previous paragraph, a fee slightly higher than D′ would

be even more profitable.

Thus, by elimination, D∗ satisfies λ∗(D∗) = λ
c+D∗

and R′
o(λ

c+D∗

) = s−D∗. ■

The welfare effects of fees depend on whether the seller can commit. With commit-

ment, the optimal fee leads to an efficient equilibrium outcome: the seller chooses the

welfare-maximizing effort γw and all bidders enter when contacted. Without fees, the

outcome is generally inefficient, as discussed in Section 5.1. In contrast, without commit-

ment, fees might actually decrease welfare. For instance, in the PO scenario without fees,

if the parameters are such that λw < λ∗ < λ
c
, then the profit-maximizing fee is strictly

positive and pushes the equilibrium λ farther away from λw.

The version of our model with s = 0 and seller commitment is related to the model of

Levin and Smith (1994). In this case, Claim 6(i) implies D = 0, which is consistent with
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their finding that an auction without fees maximizes the seller’s profit.34

A.4 Reserve price

Here we discuss the effects of a reserve price r—a minimum bid below which the item

is not sold. Before turning to the details, we note that the imposition of a reserve price

requires commitment power that might not be available in the less formal settings we

have in mind; see the discussion in the introduction. Nevertheless, it is still interesting

to understand the role of reserve prices, even if just to enhance the understanding of the

model.

Assume that the auctions in both scenarios are subject to a reserve price r > 0 (not

necessarily the optimal one). The equilibrium then differs in some details, but not in the

main qualitative features, from that of the r = 0 case analyzed above. Graphically, the

marginal revenue curves in the diagrams change somewhat: for small λ they lie above the

r = 0 curve (in particular, the intercept at λ = 0 is r(1 − G(r)) rather than 0), and for

large λ they lie below the r = 0 curve. However, their general properties (such as the

single-peakedness of dRo/dλ and the relationship between the PO and PU curves) remain

the same, as does the relationship between the curves and the nature of the equilibria.

One immediate implication of the intercept at λ = 0 being r(1−G(r)) is that, in the PU

scenario, the no-trade equilibrium λ = 0 continues to exist only for s ≥ r(1−G(r)). For

smaller s, the equilibrium necessarily involves trade. The reserve price also affects the

bidders’ entry decisions, since it lowers the benefit of entry for any level of anticipated

participation.

Recall from the auction literature the well-known result that, under the assumptions

maintained on G, the revenue-maximizing rmax for a standard auction solves r = 1−G(r)
g(r)

.

Obviously, this is true for post entry auction in the PO scenario, which is just an ordinary

FPA. It also follows immediately that this is true for the FPA with stochastic participation

in the PU scenario. Therefore, if the seller commits to r only after bidders enter, then

the profit-maximizing r is rmax.
35

Let us add the argument r to our functions, writing U(λ; r), Ro(λ; r), Πo(λ, q; r), etc.

Claim 7. (i) For a given λ, Ro(λ; r) (and hence Ru(λ, βλ(r)))
36 is maximized at rmax.

34Furthermore, since the seller captures the full surplus, even if she could set a positive reserve price,
doing so would only lower profits.

35Of course, since rmax maximizes the revenue in any realized auction, it also maximizes the expected
revenue in both scenarios, given any fixed participation rate λ.

36By revenue equivalence, Ru(λ, βλ(r)) = Ro(λ; r).
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(ii) If the seller commits to r only after bidders enter, the reserve price is rmax in any

equilibrium.

If the seller can commit to a reserve price before bidders enter, then it affects their

entry; hence,cost the profit-maximizing r may differ from rmax. Suppose the seller commits

to a reserve price r, and then the interaction proceeds as in the PO scenario. Essentially

the same arguments as in the r = 0 case establish that in the subgame following the

selection of r, there is a unique equilibrium. Let λ∗(r), q∗(r), and λ
c
(r) denote the

equilibrium magnitudes in that subgame, and let r∗ denote the seller’s profit-maximizing

r, i.e., r∗ = argmaxr Πo(λ
∗(r), q∗(r); r).

Claim 8. In the PO scenario, the following hold:

(i) If λ∗(r∗) > 0 and the bidders’ entry cost does not constrain the equilibrium, i.e.,

λ∗(r∗) < λ
c
(r∗), then r∗ = rmax.

(ii) If the bidders’ entry constrains the equilibrium, i.e., λ∗(r∗) = λ
c
(r∗), then r∗ ̸= rmax.

The formal proof is at the end of this section. The idea of the proof is quite obvious.

In Part (i), the bidders’ entry cost does not constrain the equilibrium, so the seller has

no reason to deviate from rmax. In Part (ii), the bidders’ entry cost does constrain the

equilibrium, so the first-order effect of a change in r at r = rmax is its effect on entry,

which does not vanish.

The introduction of r > 0 affects both the seller’s profit and the bidders’ expected

benefit. First, it makes the auction more profitable, which increases the range of s for

which an equilibrium with trade can be sustained; i.e., so(r) > so(0). Second, it lowers

the bidders’ benefit from entry for any expected level of participation, which decreases

the maximal level of participation for which entry is profitable; i.e., λ
c
(r) < λ

c
(0).

Intuitively, it seems that r∗ should be lower than rmax, because decreasing r slightly

when it is above rmax makes the auction more profitable and relaxes the bidders’ entry

constraint. However, this intuition is incomplete, because changing r would change q∗

and increase the total recruitment cost. For this reason, although r∗ < rmax might hold in

general, we have been able to establish it only under additional conditions that guarantee

that the λ
c
(r) values corresponding to the r values in the relevant range are not too small.

This will be the case if c is not too large.37

Analogous results most likely hold for the equilibria with trade in the PU scenario,

but we have not proved this. However, it is immediate that if s ≤ r[1−G(r)] and c is not

37The precise condition is λ
c
(r) [2−G(r)] > 1.
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prohibitive, then the no-trade outcome is not an equilibrium in the PU scenario. Since

r[1 − G(r)] is maximized at rmax, it follows that if s < rmax[1 − G(rmax)], the seller can

avoid the no-trade outcome by selecting an appropriate reserve price.

Proof of Claim 8: Obviously, r∗ satisfies dΠo(λ∗
o(r),q

∗(r);r)
dr

|r=r∗ = 0. Observe that

dΠo(λ
∗
o(r), q

∗(r); r)

dr
=

d

dr

[
Ro(λ

∗
o(r); r)−

s

q∗(r)
λ∗
o(r)

]

=

(
∂Ro(λ

∗
o(r); r)

∂λ
− s

q∗(r)

)
dλ∗

o(r)

dr
+

λ∗
o(r)s

(q∗(r))2
dq∗(r)

dr
+

∂Ro(λ
∗
o(r); r)

∂r

=
λ∗
o(r)s

(q∗(r))2
dq∗(r)

dr
+

∂Ro(λ
∗
o(r); r)

∂r
,

where the first term on the second line vanishes because it is the first-order condition with

respect to λ. Also observe that, using integration by parts,

Ro(λ; r) = 1− e−λ(1−G(r))

[
r − 1−G(r)

g(r)

]
−
∫ 1

r

e−(1−G(b))λ

[
b− 1−G(b)

g(b)

]′

b

db,

and therefore
∂

∂r
Ro(λ; r) = −g(r)λe−(1−G(r))λ

[
r − 1−G(r)

g(r)

]
.

Hence, ∂
∂r
Ro(λ; r) = 0 if and only if r = rmax.

Now if λ∗
o(r

∗) < λ
c
(r∗), then q∗(r) = 1 in a neighborhood of r∗. Hence dq∗(r)

dr
|r=r∗ = 0

and
dΠo(λ

∗
o(r), q

∗(r); r)

dr
=

∂Ro(λ
∗
o(r); r)

∂r
.

Therefore, dΠo(λ∗
o(r),q

∗(r);r)
dr

= 0 if and only if r = rmax, which implies that r∗ = rmax.

If λ∗
o(r) = λ

c
(r), then dq∗(r)

dr
is obtained from total differentiation of the first-order

condition with respect to λ, ∂Ro(λ∗
o(r);r)

∂λ
− s

q∗(r)
= 0. Thus,

dq∗(r)

dr
= −

∂2Ro(λ∗
o(r);r)

∂λ2

dλ∗
o(r)
dr

+ ∂2Ro(λ∗
o(r);r)

∂λ∂r
s

(q∗(r))2
.

Now, dλ∗
o(r)
dr

= dλ
c
(r)

dr
= −

∂U(λ∗o(r);r)
∂r

∂U(λ∗o(r);r)
∂λ

< 0 and ∂2Ro(λ∗
o(r);r)

∂λ2 < 0 from the second-order

condition of profit maximization with respect to λ. Furthermore, at r = rmax both
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∂2

∂λ∂r
Ro(λ; r) = 0 and ∂Ro(λ∗

o(r);r)
∂r

= 0. Therefore, at r = rmax,

dΠo(λ
∗
o(r), q

∗(r); r)

dr
= λ∗

o(r)
∂2Ro(λ

∗
o(r); r)

∂λ2

∂U(λ∗
o(r);r)
∂r

∂U(λ∗
o(r);r)
∂λ

< 0,

which implies that r∗ ̸= rmax. ■

A.5 Bidder entry with known values

The models discussed so far feature costly information acquisition: bidders learn their

private values only after incurring the cost c. If, however, the bidders readily know their

own values are and their main costs lie in bid preparation or other aspects of bidding,

then it would be more suitable to assume that their costly entry decisions take place with

knowledge of their values. We now outline how to expand our analysis to cover this case.

A full analysis would take too much space, but we believe that it would be doable and

that the main qualitative insights would be the same as for the models discussed earlier.

In particular, we show below for the case of small s that the recruitment cost is higher in

the PO scenario than in the PU scenario.

Consider the PO scenario in this case. If entry is profitable for a bidder with value v,

then it is profitable for all bidders with higher values. Therefore, a prospective bidder will

enter if and only if his value v exceeds a certain cutoff v ∈ (0, 1), at which he is indifferent

about entry.

As before, let γ denote the Poisson rate of contacts made by the seller. The probability

that a contacted bidder enters (the counterpart of q above) is 1−G(v), and the effective

Poisson rate of entry into the auction is λ = γ(1 − G(v)). For a given v, the seller’s

problem of choosing γ at marginal cost s is equivalent to choosing λ at marginal cost

s/(1−G(v)). As before, it will be convenient to express the relevant magnitudes in terms

of λ rather than γ.

The bidding game among entrants is an FPA with observable participation and private

values independently drawn from [v, 1]. In equilibrium, if there is only one entrant, the

winning bid is 0; if there are two or more entrants, the bids lie in [v, 1] and are monotone

in values. Therefore, the seller’s revenue is 0 if fewer than two bidders enter, and otherwise

it is the appropriate equilibrium winning bid which lies in [v, 1]. Given λ and v < 1, the

seller’s payoff Πo(λ, v) is

Πo(λ, v) = Ro(λ, v)− λs/(1−G(v)). (43)
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Since the equilibrium bids are monotone in values when there are two or more entrants,

the marginal entrant with value v will win only if he is the sole entrant, in which case he

will pay 0. The probability that he is the sole entrant is e−λ. Therefore, his payoff from

entering is ve−λ, and his indifference with respect to entry implies

ve−λ = c. (44)

An equilibrium with trade is characterized by some λ > 0 and v < 1 such that λmaximizes

Πo(λ, v) and v satisfies (44).

Consider next the PU scenario. Here, too, a bidder enters if his value v exceeds a

threshold v. Given the Poisson rate γ of contacts made by the seller, the effective Poisson

rate of entry into the auction is λ = γ(1−G(v)). As before, we express all magnitudes in

terms of λ rather than γ. The bidding game among entrants is an FPA with unobservable

participation and independent private values drawn from [v, 1]. Given that bidders expect

an effective Poisson rate λ̂ of entry, the entrants’ equilibrium bidding strategy, β(v; v, λ̂),

is strictly increasing in v ∈ [v, 1].

With probability e−λ, no bidders enter, in which case the seller’s revenue is 0; other-

wise, it is the winning bid. Let Ru(λ, v, λ̂) denote the expected winning bid given λ, λ̂,

and v < 1. The seller’s payoff Πu(λ, v, λ̂) is

Πu(λ, v, λ̂) = Ru(λ, v, λ̂)− λs/(1−G(v)). (45)

Since β(v; v, λ) is strictly increasing in v, the marginal entrant v will win only if he is the

sole entrant. Therefore, β(v; v, λ̂) = 0, and v satisfies the same entry condition (44).

An equilibrium with trade is characterized by λ > 0 and v < 1 such that λ maximizes

Πu(λ, v, λ̂) with λ̂ = λ and v satisfies (44).

The existence of an equilibrium here is somewhat more complicated than in Sections

2.2 and 3.2, since now v varies with λ. We do not analyze this case in full, but we

conjecture that for sufficiently small s and c, equilibria with trade exist in both scenarios.

Under this assumption, we compare the equilibrium outcomes in the limit as s → 0.

Let λi(s) and vi(s) denote the equilibrium magnitudes in the equilibrium with maximal

λ in the PO (i = o) and PU (i = u) scenarios, respectively.38

Claim 9. (i) We have lims→0 λi(s) = − ln c for i = u and i = o.

38In the PO scenario, this is probably the unique equilibrium. However, we do not prove this, because
a proof would essentially repeat the analysis in Section 2.2.
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(ii) In the limit, the total recruitment cost is higher in the PO scenario:

lim
s→0

λo(s)
s

1−G(vo(s))
= (ln c)2c > lim

s→0
λu(s)

s

1−G(vu(s))
.

Thus, in the limit as s → 0, both scenarios lead to the same level of effective partici-

pation, but the total recruitment cost is higher in the PO scenario. This cost ranking is

the same as in the original setting, in which bidders learn their values only after incurring

c.

Proof of Claim 9: Part (i). In both scenarios, vi(s) → 1 as s → 0. Therefore, the

entry condition ve−λ = c for both scenarios implies lims→0 λi(s) = − ln c.

Part (ii). For a given s, the respective equilibria (with trade) of the two scenarios satisfy

the first-order conditions ∂Πo(λo(s), vo(s))/∂λ = 0 and ∂Πu(λu(s), vu(s), λ̂)/∂λ|λ̂=λu(s)
=

0, where

∂Ro(λo(s), vo(s))/∂λ =
s

1−G(vo(s))
(46)

and

∂Ru(λo(s), vo(s), λ̂)/∂λ|λ̂=λo(s)
=

s

1−G(vu(s))
. (47)

Thus, in each of the scenarios, the total recruitment cost is

λi(s)
s

1−G(vi(s))
= λi(s)∂Ri/∂λ. (48)

By revenue equivalence, Ro(λ, v) and hence ∂Ro(λ, vo)/∂λ are the same as they would be

with the SPA for the same participation process. Let F SPA denote the price distribution

in the SPA; that is,

F SPA (b|λ) = e−
1−G(b)
1−G(v)

λ + e−
(1−G(b))
1−G(v)

λ 1−G (b)

1−G (v)
λ for b ≥ v

and F SPA (b|λ) = e−λ (1 + λ) for b ≤ v. By revenue equivalence, Ro(λ, v) =
∫ 1

0

(
1− F SPA (b|λ)

)
db.

Therefore,

∂Ro(λ, v)/∂λ = λve−λ +

∫ 1

v

((
1−G (b)

1−G (v)

)2

λe−
1−G(b)
1−G(v)

λ

)
db.

Since vo(s) → 1 as s → 0, we have lims→0 ∂Ro(λo(s), vo(s))/∂λ = lims→0 λo(s)e
−λo(s) =

−c ln c. Therefore, lims→0 λo(s)
s

1−G(vo(s))
= (ln c)2c.
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The inequality in Part (ii) of the claim will follow from lims→0 λi(s) = − ln c and (48)

after we have established

lim
s→0

∂Ru(λ, v, λ̂)/∂λ|λ̂=λ < lim
s→0

∂Ro(λ, v)/∂λ. (49)

To prove (49), observe that by revenue equivalence, Ro(λ, v) = Ru(λ, v, λ) and hence,

∂Ro(λ, v)/∂λ = dRu(λ, v, λ)/dλ = ∂Ru(λ, v, λ̂)/∂λ|λ̂=λ + ∂Ru(λ, v, λ̂)/∂λ̂|λ̂=λ.

Then, by adapting the arguments used in Section 3.2, we can be show that

lim
v→1

∂Ru(λ, v, λ̂)/∂λ̂|λ̂=λ =

lim
v→1

∫ 1

0

[
e−λ[1−G(β−1(b;v,λ))]/[1−G(v)]

] (G(β−1(b; v, λ))−G (v))

(1−G (v))
db > 0,

which implies (49) and hence Part (ii) of the claim. ■

A.6 Numerical example: Uniform distribution

This section provides some numerical results obtained with the uniform distribution,

G (v) = v. The following formulas that were derived in the paper are written for the case

of uniform G:

U(λ) =

∫ 1

0

e−(1−v)λ[1− v]dv

W (λ) =

∫ 1

0

[
1− e−(1−v)λ

]
dv

Ro(λ) =

∫ 1

0

[
1− e−(1−v)λ

]
− λe−(1−v)λ[1− v]dv

R′
o(λ) =

∫ 1

0

λ (1− v)2 e−λ(1−v)dv

ξ (λ) =

∫ 1

0

(1− v) e−λ(1−v)
(
1− e−λv

)
dv.

For the following plots, we chose c ≈ 0.03, implying that λ̄c ≈ 5. We first plot the

analogue of Figure 3 for the PO scenario with a uniform value distribution.

To compare the PO and PU scenario, we plot the analogue of Figure 9. As can be

seen, for s between 0.085 and 1.4, there is trade in the PO scenario but in the PU scenario,
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Figure 14: Marginal revenue and average revenue in the PO scenario with a uniform value
distribution, with s̄0 ≈ 0.14 and λo ≈ 2.69. For c = 0.03, we have λ̄c ≈ 5.

trade unravels.

Figure 15: Comparison of the PO and the PU scenario, showing R′
o (top) and ξ (bottom).

The maximum of ξ is at about ξ (1.45) ≈ 0.085.

Finally, we illustrate the welfare properties, plotting Figure 12 for this case. Recall

that the welfare optimal λw satisfies U (λw) = c + s. As noted, in the PO scenario,

R′
o (λ) > U (λ) means that the seller recruits too many bidders for all s ≤ s̄o ≈ 0.14.

We include the ξ function to show the welfare properties of equilibrium in the PU

case. In the range shown in the figure, for λ ≤ 6, we have ξ (λ) < U (λ).39 Hence, when

c = 0, the seller will recruit too few bidders in the PU scenario.

In general, the numerical analysis suggests that U−ξ is eventually monotone-decreasing.

Hence, for c small enough, this suggests that there is some cutoff ŝ such that the seller

recruits too few bidders in the PU scenario when s is above ŝ and she recruits too many

when s is smaller (in the equilibrium with larger participation).

39This remains the case for λ ≤ 50, where U and ξ become numerically indistinguishable at 20 digits.
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Figure 16: Illustrating the welfare properties, with U (λ) (downward sloping), R′
o (λ)

(top), and ξ (λ) (bottom).
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