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Abstract. The paper analyzes four classical signal-plus-noise models: the factor model,
spiked sample covariance matrices, the sum of a Wigner matrix and a low-rank perturbation,
and canonical correlation analysis with low-rank dependencies. The objective is to construct
confidence intervals for the signal strength that are uniformly valid across all regimes –
strong, weak, and critical signals. We demonstrate that traditional Gaussian approximations
fail in the critical regime. Instead, we introduce a universal transitional distribution that
enables valid inference across the entire spectrum of signal strengths. The approach is
illustrated through applications in macroeconomics and finance.

1. Introduction

1.1. Motivation. In the modern era researchers increasingly have access to high-
dimensional data sets across a wide range of fields. These data sets are inevitably con-
taminated by various forms of error and noise, making the separation of meaningful struc-
ture from background noise a central challenge. To address this analysts commonly employ
dimension-reduction techniques. The two dominant approaches are low-rank methods, which
assume that the underlying signal lies in a lower-dimensional subspace, and sparsity-based
methods, which assume that only a small subset of variables or parameters are truly rele-
vant, i.e., non zero. This paper adopts the low-rank perspective. For a discussion of settings
where this assumption is appropriate, we refer to Udell and Townsend [2019], Giannone et al.
[2021], and Thibeault et al. [2024]. In particular, Giannone et al. [2021] argue that numerous
data sets in macroeconomics, microeconomics, and finance exhibit dense, rather than sparse,
structures.

A prototypical example of a low rank setting is the factor model, where one observes an
N × S data matrix X and assumes that it can be decomposed as

(1.1) X = LFT + E ,
where F is an S × r matrix of factors, L is an N × r matrix of factor loadings, and LFT

represents the low-rank signal of interest. The signal rank r is small relative to the large
dimensions N and S. The remainder E is a noise matrix, often assumed to have i.i.d. mean-
zero entries in the simplest setting.

The feasibility of consistently estimating the signal component LFT from the observed data
X hinges on the strength of the signal, which can be quantified by the singular values of LFT.
When these singular values are large, the signal is strong and estimation is reliable, as can
be directly predicted from the form of (1.1). As the signal weakens, the data X becomes less
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informative, and below a certain critical threshold, accurate recovery becomes impossible.
The relationships between the strength of the signal and feasibility of reconstruction of LFT

have been rigorously analyzed in a number of studies, see, e.g., Stock and Watson [2002],
Bai and Ng [2002], Bai [2003], Paul [2007], Onatski [2012], Johnstone and Paul [2018], Bai
and Ng [2023], Fan et al. [2024], Barigozzi and Hallin [2024] and references therein.

Given this behavior, applied work using factor models should begin by assessing the
strength of the factors, since the validity of any inference on L or F critically depends
on it. However, in practice, this step is often overlooked1, and most studies tacitly assume
that the factors are strong, without conducting any formal diagnostics.

This paper seeks to emphasize the importance of assessing signal strength in a broad class
of “signal plus noise” models. To that end, we develop novel procedures for constructing
confidence intervals for signal strength. Crucially, we do not assume that the signals are
strong – an assumption often unjustified in empirical applications. Instead, our analysis
remains valid across the full range of regimes: strong, weak, and critical signals.

1.2. Models and results. We analyze four classical high-dimensional statistical models:
the factor model (1.1), spiked sample covariance, the spiked Wigner model, and spiked canon-
ical correlations. These models correspond to three fundamental ensembles from random ma-
trix theory: the Laguerre/Wishart ensemble for the first two, the Hermite/Gaussian/Wigner
ensemble for the third, and the Jacobi ensemble for the fourth. Each of these models can
be viewed as an instance of the signal-plus-noise framework – also known as spiked random
matrices, a term originating with Johnstone [2001] – in which a low-rank signal matrix is
embedded in a high-dimensional noisy environment. The goal is to detect and quantify the
embedded signal.

The signal in each model can be decomposed into a sum of rank-one components. Each
component is characterized by a positive scalar (its strength) and one or two unit-norm
vectors (its direction), depending on the setup. In this work we focus solely on the signal
strength and do not consider inference on directions.

Our analysis is based on spectral methods, whereby signal strength is inferred from the
eigenvalues of certain model-specific matrices. In all four setups a well-documented phase
transition phenomenon arises: the signal strength can be consistently estimated (in the high-
dimensional asymptotic regime with proportional growth of data dimensions) only when it
exceeds a critical threshold, see Jones et al. [1978], Baik and Silverstein [2006], Onatski [2012],
Bao et al. [2019] and more references in Section 2. When the signal strength falls below the
threshold, only partial probabilistic information, such as asymptotics of the likelihood ratio
test can be recovered about the signal, but reliable point estimation becomes impossible, see,
e.g. Onatski et al. [2013, 2014], Dobriban [2017], Johnstone and Onatski [2020], El Alaoui
et al. [2020]. The intermediate regime, where the signal strength is close to the threshold,
is typically referred to as the “critical” regime. This regime is particularly challenging for
inference.

In the super-critical case, where the strength is significantly above the threshold, the
estimation procedure is quite straightforward: one takes the largest eigenvalue, applies to
it a certain explicit function (see Section 2 for the formulas) and gets the strength of the
strongest signal. Repeating the same with the second, third, etc., eigenvalues one gets

1This pattern is evident in the vast majority of approximately 120 papers that employ factor models or
PCA-related techniques, published in the five leading economics journals between 2015 and 2025.
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strengths of the further components of the signal and the only question is when to stop,
i.e., after which step one should declare that the following signals are too weak and can
not be recovered. There are many results in the literature proposing various algorithms to
choose the stopping point. We further remark that for very strong signals the function one
should apply to the eigenvalues is close to identity (f(x) = x), whereas for weaker signals
the function exhibits stronger dependence on the model of interest.

Once point estimates of the signal strengths are obtained, the next natural question is
how to quantify uncertainty – specifically, how to construct confidence intervals for these
estimates. The existing literature offers little guidance on this front – particularly guidance
that is consistent across models and signal strengths – with most results focusing on strong
signals. The technical challenge is rooted in the nonstandard asymptotic behavior of the
eigenvalues near the phase transition threshold. While the fluctuations of the top eigen-
values are asymptotically Gaussian for well-separated (super-critical) signals, the limiting
distribution becomes highly non-Gaussian and analytically intricate as the signal strength
approaches the critical boundary (see Baik et al. [2005], Mo [2012], and Bloemendal and
Virág [2013] for rigorous results in the sample covariance setting).

Our paper fills this gap by proposing a general procedure for constructing confidence
intervals for signal strength. Remarkably, across all four models we study, the confidence
intervals are characterized by a common limiting (stochastic) object, which we call the Airy–
Green function and denote G(w). Our main contributions are: a rigorous construction of
this function, a unified set of theorems linking it to the four canonical models, and tabulated
confidence intervals based on G(w). The only model-specific components are a set of scaling
constants, which we provide explicitly for each setting.

1.3. Econometrics and statistics contributions. In economics and finance it has long
been observed that many data sets contain factors that are either non-informative or far
from strong – see e.g. Giglio et al. [2023] and Kim et al. [2024] for overviews and extensive
references. This concern is especially apparent in the vast “factor zoo” of potential variables
proposed to explain stock returns. This empirical reality has motivated a line of theoretical
research focused on inference for weaker factors. Broadly speaking, factors can be classified
by their strength into three categories: strong (as in, e.g. Bai and Ng [2002], Stock and
Watson [2002]), semi-strong (as in, e.g. Bai and Ng [2023], Fan et al. [2024]), and weak2 (as
in, e.g., Onatski [2012]). The literature also includes statistical procedures for testing and
distinguishing between these types of factors (see, in particular, Kim et al. [2024]). Over the
past decades a growing body of research has focused specifically on factor strength, including
contributions by Chudik et al. [2011], Bailey et al. [2016], Wang and Fan [2017], Lettau and
Pelger [2020], Cai et al. [2020], Bailey et al. [2021], Freyaldenhoven [2022], Uematsu and
Yamagata [2022], and Pesaran and Smith [2025].

In comparison to this literature, our main methodological contribution is a unified proce-
dure for constructing confidence intervals for signal strength across all four models and all
signal ranges, as presented in Section 3. This approach does not rely on standard Gaussian
quantiles, but instead uses a novel random transition process T (Θ), whose quantiles are tab-
ulated in Table 1. As shown in Figure 1a, the Gaussian approximation performs poorly near
the critical threshold, making T (Θ) essential for accurate inference in that regime. This is

2What we call semi-strong factors are sometimes referred to as weak, while weak factors may be termed
weakly influential or extremely weak.
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reminiscent of the construction of uniform confidence intervals for autoregressive models in
Stock [1991], Mikusheva [2007], where the non-standard asymptotics near the unit root are
smoothly connected to the standard normal behavior in the stationary region.

Beyond quantifying uncertainty in signal strength, our framework also enables signal de-
tection and the assessment of factor informativeness. Specifically, one can check whether the
uniform confidence intervals include zero and the identification cut-off, respectively.

A surprising finding is that the same transition process T (Θ) governs all four models. In
fact, the proofs in Section 9 follow different paths depending on the model, and only in the
final step does a structural identity emerge, revealing that all four asymptotic distributions
coincide. Random matrix theory has many universality theorems, and based on our results,
we predict that the same transition process T (Θ) governs a much wider class of signal-plus-
noise models, beyond the ones analyzed here.

1.4. Mathematical contributions. From a mathematical perspective, we develop a new
approach to analyzing critical spikes, grounded in perturbation theory equations that relate
the eigenvalues of spiked and unspiked random matrices. This contrasts with earlier treat-
ments of critical spikes in real symmetric matrices, which relied on Pfaffian point processes
(as in Mo [2012]) or on tridiagonal matrix models (as in Bloemendal and Virág [2013, 2016],
Lamarre and Shkolnikov [2019]). Our central technical contribution is to show that these
perturbation equations admit a well-defined edge-scaling limit, which captures the asymp-
totic behavior of the largest eigenvalues. While our approach is novel in all four settings, we
particularly emphasize the fourth – canonical correlations – where no prior results on critical
spikes were available.

In Section 4 and 8 we establish this edge limit result under two key assumptions on the
unspiked model: (i) the asymptotics of the largest eigenvalues converge to the Airy1 point
process, and (ii) a form of the local law holds for the Stieltjes transform near the spectral
edge. These assumptions are known to hold for a wide range of random matrix ensembles,
including the four models considered in this paper. A notable strength of our approach is
its minimal reliance on model-specific structure: we require only the two inputs above.

We build on some of the ideas in Aizenman and Warzel [2015]. In contrast, however, we
focus on the limit at the spectral edge—rather than in the bulk—which requires subtracting
diverging counterterms. Moreover, we establish convergence in a stronger topology, which
allows us to work directly on the real axis; see Appendix 8 for further details.

1.5. Outline of the paper. Section 2 introduces the four main signal-plus-noise mod-
els. Section 3 presents a unified procedure for constructing confidence intervals for signal
strengths. Section 4 lays out the theoretical foundations underlying this procedure. Section
5 offers three empirical illustrations. Some extensions are discussed in Section 6. Section 7
concludes. All proofs are in Appendices 8 and 9.

2. Four signal plus noise models

In this section we present the four models, beginning with the simplest case – the spiked
Wigner model – then proceeding to sample covariance and factor models based on PCA, and
concluding with canonical correlation analysis (CCA). Although PCA-based models are the
most widely used in practice, we adopt this order because the formulas are simpler in the
Wigner case, making the key ideas more transparent.
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2.1. Spiked Wigner matrix. Suppose we observe an N ×N matrix A of the form

(2.1) A =
r∑

i=1

θi · u∗
i (u

∗
i )

T + E ,

where r is fixed (not growing with N) and θ1 > · · · > θr > 0 ∈ R are the strengths of
r signals, with corresponding directions u∗

1, . . . ,u
∗
r, which are assumed to be orthonormal

N–dimensional vectors. The noise matrix E is a (Wigner) matrix sampled from the Gaussian
Orthogonal Ensemble, meaning that E = 1√

2N
(Z + ZT), where Z is an N × N matrix of

i.i.d. N (0, σ2) entries (see Section 6.1 for the discussion of non-Gaussian setting). We assume
that θi and u∗

i are unknown deterministic parameters; one could alternatively allow u∗
i to be

random, provided they are independent of E . Our goal is to estimate the signal strengths
θ1, . . . , θr.

We first assume that the variance of the underlying noise Z, σ2, is known and, without
loss of generality, set it to 1 by rescaling the model.3 In Section 3.3 we discuss adjustments
for the case when σ2 is unknown.

One common application of the spiked Wigner framework is modeling symmetric interac-
tion networks, for instance, economic or social activity among N agents. In such cases each
rank-one component θiu

∗
i (u

∗
i )

⊤ captures a latent structure in agent attributes u∗
i , while the

observed interactions are contaminated by noise E . Low-rank approximations of this form
underpin seminal network models including the stochastic block model of Holland et al.
[1983], where communities are inferred from block-structured adjacency matrices, and latent
space models.

The following result establishes the threshold for the estimation of θi via spectral methods.

Proposition (Jones et al. [1978], Füredi and Komlós [1981], Capitaine et al. [2009, 2012]).
Suppose that all θi are distinct and ordered θ1 > θ2 > · · · > θr, σ

2 = 1. Let λ1 ≥ λ2 · · · ≥ λN

denote the eigenvalues of A sampled from (2.1) with σ2 = 1. Denote

(2.2) θc = 1, λ+ = 2, λ(θ) = θ +
1

θ
, V (θ) = 2

θ2 − 1

θ2
.

For each 1 ≤ i ≤ r, if θi > θc, then as N → ∞, in the sense of convergence in distribution

(2.3) λi = λ(θi) +
1√
N
N
(
0, V (θi)

)
+ o

(
1√
N

)
,

and the Gaussian limits N
(
0, V (θi)

)
are independent over i. If θi ≤ θc, then

limN→∞ λi = λ+, in probability.

Informally, the proposition says that “good” recovery of θi from the largest eigenvalues
of A is possible if and only if θi is larger than the critical value θc = 1. In this case, to
estimate θi, one should take λi and apply the inverse of the mapping θ 7→ λ(θ), which is
λ 7→ 1

2

(
λ+

√
λ2 − 4

)
.

We assess the quality of estimating θi by constructing a confidence interval for
it. Specifically, for each fixed i and significance level α we aim to find endpoints
θ−i (λi, N, α), θ+i (λi, N, α) such that

(2.4) Prob
(
θi ∈ [θ−i (λi, N, α), θ+i (λi, N, α)]

)
≈ 1− α,

3The prefactor 1√
2N

in the definition of E ensures that its eigenvalues remain bounded and fill the interval

[−2, 2] as N → ∞.
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(a) Spiked Wigner matrix of Section 2.1
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(b) Factor model of Section 2.3

Figure 1. Confidence intervals for θ as functions of the observed largest
eigenvalue via Gaussian approximations and via our procedure of Section 3.

where ≈ denotes an N → ∞ approximation, which should be uniform over the model
parameters θ1, . . . , θr and u∗

1, . . . ,u
∗
r in (2.1).

In principle, since we deal with multiple θi simultaneously, one could consider joint multi-
dimensional confidence sets. However, due to the asymptotic independence of λi in (2.3), it
is sufficient to construct separate intervals for each θi, which is the approach we take.4

The asymptotics (2.3) provides a way to construct confidence intervals by approximating θi

in the argument of V (θi) with θ(λi) =
1
2

(
λi +

√
λ2
i − 4

)
and then using Gaussian quantiles.

This leads to the following formula for the confidence interval:

(2.5) θi ∈

[
λi

2
+

√
λ2
i

4
− 1−

zα/2√
N

√
1 +

λi√
λ2
i − 4

,
λi

2
+

√
λ2
i

4
− 1 +

zα/2√
N

√
1 +

λi√
λ2
i − 4

]
,

where zα/2 denotes the α/2 quantile of N (0, 1). E.g., to obtain a 95% confidence interval for
a single fixed i, we set zα/2 = 1.96.

The formula (2.5) reveals a problem as θ → 1 (i.e., λ → 2): the confidence intervals diverge

due to the
√

λ2
i − 4 singularity in the denominator. However, Monte Carlo simulations in

Figure 1a indicate that no such explosion actually occurs. This suggests that the approx-
imation error in the confidence interval (2.5) becomes non-negligible when λi is close to 2,
making the formula unreliable in this regime. In contrast, our novel procedure, introduced
in Section 3, closely matches the simulations across all values of λi.

Remark 2.1. An alternative way to construct confidence intervals using Gaussian asymp-
totics is to rewrite (2.3) in the equivalent form

λi ∈

[
θi +

1

θi
−

zα/2√
N

√
2
θ2i − 1

θ2i
+ o

(
1√
N

)
, θi +

1

θi
+

zα/2√
N

√
2
θ2i − 1

θ2i
+ o

(
1√
N

)]
.

4In contrast, if θi coincide, then the limits in (2.3) are neither Gaussian nor independent, cf. Capitaine
et al. [2012, Theorem 3.3].
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We drop o
(

1√
N

)
terms, plot the intervals from the preceding formula on the (θ, λ)–plane,

and then transpose the axes to obtain the desired confidence intervals on the (λ, θ)–plane; see
the 2nd method in Figure 1a. For θ bounded away from 1 (equivalently, λ bounded away from
2), this procedure is equivalent to the intervals (2.5) as N → ∞, though their finite-sample
behavior differs near the cutoff. Compared to Monte Carlo intervals, both methods exhibit
substantial bias, but in different directions.

2.2. Spiked covariance model. For the second setup we consider a deterministic N ×N
matrix

(2.6) Ω = σ2IN +
r∑

i=1

(θi − σ2) · u∗
i (u

∗
i )

T

where r is a fixed, small number, θ1 > · · · > θr > σ2 are the signal strengths, and u∗
1, . . . ,u

∗
r

are orthonormal N -dimensional vectors representing r signal directions. The eigenvalues
of Ω are θ1, θ2, . . . , θr, and σ2 with multiplicity (N − r). As before, we assume that σ2 is
known and set it to 1 without loss of generality; adjustments for unknown σ2 are discussed
in Section 3.3.

We observe an N × S data matrix X, whose columns are i.i.d. N (0,Ω), and aim to
estimate θ1, . . . , θr from the sample covariance matrix 1

S
XXT. This model has been central

in statistics and random matrix theory since Johnstone [2001]; see Johnstone and Paul [2018]
for a comprehensive overview, historical context, and many practical examples. Typically,
the dimension S reflects multiple independent observations: across individuals, measurement
points, time periods, etc. An exact analogue of (2.3) holds in this setting as well.

Proposition (Baik et al. [2005], Baik and Silverstein [2006], Paul [2007], Bai and Yao
[2008]). Suppose that σ2 = 1 and θ1 > θ2 > · · · > θr in (2.6). Let λ1 ≥ λ2 · · · ≥ λN denote
the eigenvalues of 1

S
XXT in (2.6). Assume5:

(2.7)
N

S
= γ2 +O

(
1

N

)
, N → ∞, γ ∈ (0, 1].

Denote

(2.8) θc = 1+γ, λ+ = (1+γ)2, λ(θ) = θ+
γ2θ

θ − 1
, V (θ) = 2θ2γ2

(
1− γ2

(θ − 1)2

)
.

For each 1 ≤ i ≤ r, if θi > θc, then as N → ∞, in the sense of convergence in distribution

(2.9) λi = λ(θi) +
1√
N
N
(
0, V (θi)

)
+ o

(
1√
N

)
,

and the limits are independent over i. If θi ≤ θc, then limN→∞ λi = λ+, in probability.

As in the previous section, we can use this Gaussian approximation to construct confidence
intervals for each θi, yielding a modification of (2.5). However, this approach faces the same
issue: the intervals become unreliable as λi approaches λ+ and must be corrected using the
procedures in Section 3.

5The case γ > 1 can be also covered by similar methods.
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2.3. Factor model. For the third setup we consider a random N × S matrix X defined by

(2.10) X =
r∑

i=1

√
θiS · u∗

i (v
∗
i )

T + E ,

where r is a fixed small number, θ1, . . . , θr > 0 are the signal strengths, u∗
1, . . . ,u

∗
r are N -

dimensional orthonormal vectors of signal directions, called “loadings”6, and v∗
1, . . . ,v

∗
r are

S-dimensional orthonormal vectors called “factors”. The noise matrix E has independent
N (0, σ2) entries. For now, we assume σ2 to be known and set it to 1; adjustments for
unknown σ2 are discussed in Section 3.3.

Our goal is to estimate θ1, . . . , θr from the eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λN of the sample
covariance matrix 1

S
XXT. While the factor model has similarities to the spiked covariance

model of the previous section, they are not equivalent, because we treat
√
θi ·u∗

i (v
∗
i )

T in (2.10)
as deterministic parameters (the models would have been equivalent up to shift θi → θi+σ2,

if each
√
Sv∗

i were a mean 0 Gaussian vector with i.i.d. components). This distinction allows
the factor model to capture complex structures along the S-dimension, which is essential in
applications across finance, macroeconomics, natural sciences, and other fields. Once again,
an analogue of (2.3) holds.

Proposition (Onatski [2012], Benaych-Georges and Nadakuditi [2012], Onatski [2018, The-
orem 5]). Suppose that σ2 = 1 and θ1 > θ2 > · · · > θr in (2.10). Let λ1 ≥ λ2 · · · ≥ λN denote
the eigenvalues of 1

S
XXT. Assume7:

(2.11)
N

S
= γ2 +O

(
1

N

)
, N → ∞, γ ∈ (0, 1].

Denote

(2.12) θc = γ, λ+ = (1+γ)2, λ(θ) = (θ+1)(1+
γ2

θ
), V (θ) = 2γ2 (2θ + 1 + γ2)(θ2 − γ2)

θ2
.

For each 1 ≤ i ≤ r, if θi > θc, then as N → ∞, in the sense of convergence in distribution

(2.13) λi = λ(θi) +
1√
N
N
(
0, V (θi)

)
+ o

(
1√
N

)
,

and the limits are independent over i. If θi ≤ θc, then limN→∞ λi = λ+, in probability.

As in Section 2.1, the Gaussian approximation of λi leads to two methods for constructing
confidence intervals. An analogue of (2.5) is

θi ∈
[
θ(λi)−

σ(λi)√
N

zα/2, θ(λi) +
σ(λi)√

N
zα/2

]
,

where

θ(λ) =
λ− 1− γ2 +

√
(1 + γ2 − λ)2 − 4γ2

2
, σ(λ) =

√
2γ2(2θ(λ) + 1 + γ2)(θ(λ)2 − γ2)√

(1 + γ2 − λ)2 − 4γ2
.

There is also a direct analogue of the second Gaussian method described in Remark 2.1.
Figure 1b compares these two Gaussian-based intervals with our new approach, which we
present in Section 3. The comparison reveals the same key features as in the spiked Wigner
model.

6Sometimes {
√
θiu

∗
i } rather than {u∗

i } are referred to as loadings.
7Swapping the roles of N and S we also cover the case γ > 1.
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2.4. Canonical correlation analysis. For the final setup we fix a small integer r and
parameters 1 ≥ θ1, . . . , θr ≥ 0. We consider a deterministic symmetric positive-definite
(N +M)× (N +M) matrix Ω that satisfies

(2.14)

(
A 0N×M

0M×N B

)
Ω

(
AT 0N×M

0M×N BT

)
=

(
IN diag(

√
θ1, . . . ,

√
θr)

diag(
√
θ1, . . . ,

√
θr) IM

)
,

where A and B are non-degenerate N×N and M×M matrices, respectively, IN and IM are
identity matrices of N ×N and M ×M dimensions, respectively, and diag(

√
θ1, . . . ,

√
θr) is

a rectangular matrix with
√
θ1, . . . ,

√
θr on the first r elements of the main diagonal and 0

everywhere else.
Let x be an (N+M)–dimensional Gaussian mean 0 random vector with covariance Ω, and

let u and v denote its first N and last M coordinates, respectively. The parameters θ1, . . . , θr
are the squared canonical correlations between u and v; see Bykhovskaya and Gorin [2024],
as well as classical statistics references such as Thompson [1984], Gittins [1985], Anderson
[2003], Muirhead [2009] for detailed introductions to canonical correlation analysis (CCA).
Algorithmically, θi are the largest eigenvalues of the matrix (EuuT)−1EuvT(EvvT)−1EvuT.
Given S independent samples of x, we construct two matrices: the N × S matrix U has

S samples of u as its columns and the M × S matrix V has S samples of v as its columns.
The sample squared canonical correlations λ1 ≥ λ2 ≥ . . . are the eigenvalues of the N ×N
matrix (UUT)−1UVT(VVT)−1VUT. Our goal is to estimate θ1, . . . , θr from these observed
eigenvalues.

In typical applications CCA is used to explore dependencies between two data sets, for
example, two sets of individual characteristics, brain measurements versus behavioral scores,
or two groups of stocks. The parameter θi quantify the strength of these dependencies. Once
again, an analogue of (2.3) holds.

Proposition (Bao et al. [2019], Yang [2022b], Bai et al. [2022], Hou et al. [2023],
Bykhovskaya and Gorin [2025]). Suppose θ1 > θ2 > · · · > θr in (2.14). Let λ1 ≥ λ2 · · · ≥ λN

denote the sample squared canonical correlations. Assume
(2.15)
S

N
= τN +O

(
1

N

)
,

S

M
= τM +O

(
1

N

)
, N → ∞, τN , τM > 1, τ−1

N + τ−1
M < 1.

Denote

θc =
1√

(τM − 1)(τN − 1)
, λ+ =

(√
τ−1
M (1− τ−1

N ) +
√
τ−1
N (1− τ−1

M )

)2

,

λ(θ) =

(
(τN − 1)θ + 1

)(
(τM − 1)θ + 1

)
θτNτM

,

V (θ) = 2
(1− θ)2

θ2τ 2Mτ 3N

(
2(τM − 1)(τN − 1)θ + τM + τN − 2

)(
(τM − 1)(τN − 1)θ2 − 1

)
.

(2.16)

For each 1 ≤ i ≤ r, if θi > θc, then as N → ∞, in the sense of convergence in distribution

(2.17) λi = λ(θi) +
1√
N
N
(
0, V (θi)

)
+ o

(
1√
N

)
,

and the limits are independent over i. If θi ≤ θc, then limN→∞ λi = λ+, in probability.
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Remark 2.2. The choice of 1√
N

normalization introduces an asymmetry between M and N

in the expression for the variance V (θ) in (2.16).

The same conclusion applies here: using (2.16) and Gaussian quantiles we can construct
confidence intervals for θi that perform well when λi is bounded away from λ+, but become
inaccurate as λi approaches λ+ and, therefore, require correction.

3. Construction of confidence intervals

In this section we present our algorithm for constructing confidence intervals and explain
how they can be interpreted and used to distinguish between noise, non-informative signals,
and meaningful signals. We begin by introducing the transition process T (Θ) and its proper-
ties, and then show how to use it to construct confidence intervals. The underlying theorems
will be presented in Section 4.

3.1. Transition process. As highlighted in Figure 1, the Gaussian limits in (2.3), (2.9),
(2.13), and (2.17) ought to be replaced by a different limiting object, which we call the
transition process T (Θ). This is a random function of Θ ∈ R. Its formal definition is
provided in Section 4.1, while for the purposes of constructing confidence intervals, the key
quantities of interest are the quantiles of its distribution, which may be computed as follows:

• For −3 ≤ Θ ≤ 6, quantiles are tabulated in Table 1 using the algorithm described in
Section 4.1.

• For large positive values of Θ, the Gaussian approximation T (Θ) ≈ N (Θ2, 4Θ) should
be used, i.e.,

P {T (Θ) ≤ t} ≈ Φ((t−Θ2)/(2
√
Θ)) .

• For large negative values of Θ, the Tracy–Widom1 approximation should be used:

P {T (Θ) ≤ t} ≈ F1(t+ 1/Θ) ,

where the relevant Tracy–Widom quantiles are provided in Table 2.

The transition process T (Θ), with appropriate centering and scaling, can be used to
approximate the fluctuations of the largest eigenvalues, leading to the following algorithm.

Procedure 3.1. For each of the four models in Section 2 with σ2 = 1, the asymptotic
distribution of the largest eigenvalues λi can be approximated as:

(3.1)

λ(θi)− κ
3/2
2

2

√
V (θi)(θi − θc)3 +

κ
−1/2
2

2N2/3

√
V (θi)
θi−θc

T
(
κ2N

1/3(θi − θc)
)
+ κ3

N
, if θi > θc,

λ+ +N−2/3κ1T
(
κ2N

1/3(θi − θc)
)
+ κ3

N
, if θi ≤ θc,

where the constants are taken from (2.2), (2.8), (2.12), (2.16); κ1 = 1
2
[V ′(θc)]2/3

[λ′′(θc)]1/3
,

κ2 =
[λ′′(θc)]2/3

[V ′(θc)]1/3
, κ3 = −3

2
κ1

κ2θc
, and we assume θi−1 > θc.

Theorem 4.6 and Corollary 4.8 establish that the approximation (3.1) is valid both when θ
is bounded away from the critical value θc and when θ is close to θc. These results also show
that, in many cases, the approximations for different λi are asymptotically independent.
Hence, we can use (3.1) as a foundation for constructing confidence intervals.
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Θ
α .005 .025 .05 .5 .95 .975 .995

-3.0 -3.85 -3.22 -2.89 -0.96 1.32 1.80 2.78
-2.9 -3.85 -3.22 -2.88 -0.95 1.32 1.80 2.79
-2.8 -3.84 -3.20 -2.86 -0.94 1.33 1.81 2.80
-2.7 -3.83 -3.20 -2.86 -0.93 1.35 1.83 2.82
-2.6 -3.82 -3.19 -2.85 -0.92 1.36 1.85 2.83
-2.5 -3.82 -3.18 -2.84 -0.91 1.38 1.86 2.83
-2.4 -3.80 -3.17 -2.83 -0.89 1.38 1.87 2.85
-2.3 -3.80 -3.16 -2.82 -0.89 1.42 1.91 2.90
-2.2 -3.79 -3.15 -2.82 -0.87 1.42 1.90 2.86
-2.1 -3.77 -3.13 -2.79 -0.85 1.44 1.93 2.94
-2.0 -3.75 -3.12 -2.78 -0.84 1.46 1.95 2.97
-1.9 -3.75 -3.11 -2.77 -0.82 1.49 1.98 2.98
-1.8 -3.74 -3.10 -2.75 -0.80 1.52 2.01 3.03
-1.7 -3.73 -3.09 -2.74 -0.78 1.54 2.03 3.05
-1.6 -3.71 -3.06 -2.72 -0.76 1.57 2.07 3.11
-1.5 -3.69 -3.05 -2.70 -0.74 1.61 2.11 3.14
-1.4 -3.67 -3.03 -2.69 -0.71 1.64 2.14 3.19
-1.3 -3.65 -3.01 -2.66 -0.69 1.68 2.19 3.26
-1.2 -3.64 -2.99 -2.65 -0.66 1.72 2.23 3.27
-1.1 -3.61 -2.97 -2.63 -0.63 1.77 2.29 3.37
-1.0 -3.58 -2.94 -2.59 -0.59 1.83 2.35 3.44
-0.9 -3.57 -2.91 -2.56 -0.56 1.88 2.41 3.52
-0.8 -3.55 -2.89 -2.54 -0.53 1.94 2.48 3.62
-0.7 -3.53 -2.87 -2.51 -0.48 2.01 2.57 3.70
-0.6 -3.51 -2.84 -2.49 -0.44 2.08 2.64 3.79
-0.5 -3.49 -2.82 -2.46 -0.39 2.17 2.74 3.93
-0.4 -3.45 -2.77 -2.42 -0.35 2.27 2.85 4.10
-0.3 -3.41 -2.74 -2.38 -0.28 2.38 2.97 4.25
-0.2 -3.37 -2.70 -2.33 -0.22 2.48 3.09 4.39
-0.1 -3.35 -2.66 -2.30 -0.15 2.61 3.24 4.59
0.0 -3.31 -2.62 -2.25 -0.08 2.75 3.40 4.76
0.1 -3.26 -2.57 -2.20 0.00 2.91 3.57 4.96
0.2 -3.22 -2.52 -2.14 0.09 3.08 3.77 5.24
0.3 -3.17 -2.47 -2.09 0.19 3.25 3.95 5.45
0.4 -3.13 -2.40 -2.02 0.29 3.46 4.19 5.72
0.5 -3.08 -2.34 -1.96 0.41 3.67 4.42 5.99
0.6 -3.01 -2.28 -1.89 0.54 3.90 4.68 6.29
0.7 -2.96 -2.21 -1.80 0.69 4.17 4.96 6.60
0.8 -2.90 -2.14 -1.73 0.83 4.41 5.23 6.91
0.9 -2.81 -2.04 -1.62 1.01 4.73 5.57 7.30
1.0 -2.71 -1.95 -1.53 1.18 5.02 5.88 7.62
1.1 -2.63 -1.86 -1.42 1.39 5.37 6.23 8.01
1.2 -2.56 -1.75 -1.31 1.60 5.69 6.59 8.38
1.3 -2.47 -1.64 -1.18 1.84 6.06 6.96 8.80
1.4 -2.37 -1.52 -1.05 2.10 6.44 7.37 9.22
1.5 -2.25 -1.38 -0.89 2.37 6.82 7.79 9.72

Θ
α .005 .025 .05 .5 .95 .975 .995

1.5 -2.25 -1.38 -0.89 2.37 6.82 7.79 9.72
1.6 -2.14 -1.23 -0.73 2.67 7.27 8.22 10.19
1.7 -2.03 -1.08 -0.55 3.00 7.67 8.65 10.66
1.8 -1.88 -0.91 -0.37 3.34 8.12 9.13 11.19
1.9 -1.73 -0.72 -0.14 3.70 8.59 9.62 11.71
2.0 -1.56 -0.53 0.07 4.09 9.09 10.14 12.20
2.1 -1.39 -0.30 0.34 4.50 9.61 10.66 12.84
2.2 -1.21 -0.05 0.62 4.91 10.12 11.20 13.31
2.3 -0.99 0.22 0.92 5.37 10.67 11.75 13.96
2.4 -0.77 0.51 1.24 5.84 11.24 12.36 14.52
2.5 -0.53 0.82 1.59 6.32 11.82 12.94 15.14
2.6 -0.24 1.16 1.96 6.82 12.45 13.57 15.88
2.7 0.04 1.52 2.37 7.35 13.05 14.22 16.52
2.8 0.36 1.91 2.78 7.90 13.68 14.85 17.18
2.9 0.73 2.34 3.23 8.47 14.35 15.55 17.90
3.0 1.08 2.77 3.70 9.04 15.02 16.21 18.60
3.1 1.52 3.27 4.22 9.67 15.71 16.92 19.38
3.2 1.93 3.72 4.72 10.28 16.42 17.63 20.07
3.3 2.41 4.25 5.26 10.93 17.15 18.40 20.85
3.4 2.93 4.79 5.82 11.61 17.91 19.18 21.74
3.5 3.40 5.36 6.41 12.29 18.65 19.93 22.48
3.6 3.96 5.95 7.03 13.01 19.48 20.78 23.37
3.7 4.52 6.59 7.68 13.72 20.26 21.56 24.14
3.8 5.12 7.18 8.30 14.48 21.13 22.47 25.05
3.9 5.76 7.89 9.01 15.25 21.95 23.31 25.98
4.0 6.38 8.57 9.72 16.05 22.83 24.17 26.87
4.1 7.04 9.25 10.41 16.85 23.70 25.06 27.75
4.2 7.70 9.93 11.15 17.68 24.61 25.96 28.68
4.3 8.41 10.69 11.91 18.52 25.55 26.94 29.71
4.4 9.14 11.49 12.73 19.41 26.49 27.88 30.62
4.5 9.93 12.27 13.52 20.28 27.43 28.84 31.60
4.6 10.68 13.09 14.35 21.20 28.43 29.81 32.63
4.7 11.46 13.91 15.19 22.12 29.41 30.84 33.67
4.8 12.23 14.76 16.07 23.06 30.44 31.88 34.68
4.9 13.12 15.63 16.94 24.03 31.52 32.99 35.90
5.0 13.97 16.54 17.87 25.04 32.55 34.02 36.98
5.1 14.88 17.44 18.80 26.04 33.64 35.13 38.05
5.2 15.76 18.39 19.73 27.06 34.74 36.22 39.18
5.3 16.70 19.36 20.71 28.11 35.83 37.34 40.37
5.4 17.67 20.35 21.75 29.19 37.01 38.52 41.57
5.5 18.57 21.35 22.75 30.28 38.14 39.70 42.71
5.6 19.63 22.36 23.78 31.40 39.34 40.91 43.98
5.7 20.67 23.43 24.85 32.54 40.53 42.08 45.15
5.8 21.65 24.46 25.91 33.67 41.72 43.31 46.43
5.9 22.78 25.52 27.00 34.83 42.97 44.54 47.70
6.0 23.82 26.63 28.11 36.03 44.25 45.86 48.95

Table 1. Quantiles of T (Θ) for −3 ≤ Θ ≤ 6 based on MC = 106 Monte
Carlo simulations.



12 ANNA BYKHOVSKAYA, VADIM GORIN, AND SASHA SODIN

α .005 .025 .05 .5 .95 .975 .995
quantile F−1

1 (α) -4.15 -3.52 -3.18 -1.27 0.98 1.45 2.42

Table 2. Quantiles of the Tracy–Widom1 distribution from Bejan [2005].

Spiked Wigner matrix Spiked covariance model

1

2π

√
4− x2 1[−2,2] dx

1

2π

√
(λ+ − x)(x− λ−)

γ2x
1[λ−,λ+] dx

Semicircle law Marchenko-Pastur law

Factor model CCA

1

2π

√
(λ+ − x)(x− λ−)

γ2x
1[λ−,λ+] dx

τN
2π

√
(λ+ − x)(x− λ−)

x(1− x)
1[λ−,λ+] dx

Marchenko-Pastur law Wachter law

Table 3. Limiting behavior of the empirical measures of eigenvalues,
limN→∞

1
N

∑N
i=1 δλi

, in signal plus noise models.

3.2. Confidence intervals with known σ2. We begin with the case where the noise vari-
ance σ2 is known, as specified in Section 2. A simple rescaling allows us to assume σ2 = 1
without loss of generality. The algorithm then proceeds as follows:

The first step is to draw a histogram of all eigenvalues λ1, λ2, . . . . In the settings of
(2.1), (2.6), (2.10), or (2.14), the histogram should closely resemble a known limiting shape;
namely, the semicircle law, Marchenko-Pastur law, or Wachter law, depending on the model,
as detailed in Table 3, with parameters specified in Table 4, see Appendix 8.4 for more
details. If the histogram is reminiscent of one of these shapes, we regard the modelling
assumptions as valid and apply Procedure 3.1 to construct confidence intervals. Section 6.2
discusses possible extensions when the empirical histogram deviates from the expected limit
shape.

For the second step, we choose a significance level α (or confidence level 1 − α) and,
using Section 3.1, construct two deterministic functions tα/2,+(Θ) and tα/2,−(Θ) such that

(3.2) Prob
(
T (Θ) > tα/2,+(Θ)

)
= Prob

(
T (Θ) < tα/2,−(Θ)

)
=

α

2
.

Following (3.1) and using the parameter choices from Table 4, we rescale the functions
tα/2,±(Θ) to obtain t̂±(θ), defined as
(3.3)

t̂±(θ) =

λ(θ)− κ
3/2
2

2

√
V (θ)(θ − θc)3 +

κ
−1/2
2

2N2/3

√
V (θ)
θ−θc

tα/2,±

(
κ2N

1/3(θ − θc)
)
+ κ3

N
, θ > θc,

λ+ + κ1N
−2/3tα/2,±

(
κ2N

1/3(θ − θc)
)
+ κ3

N
, θ ≤ θc.

For the third step, we fix an index i and consider the ith largest eigenvalue λi, such
that λi > λ+. We then determine two numbers θ− < θ+ such that

(3.4) t̂+(θ−) = t̂−(θ+) = λi.

Visually, the procedure amounts to plotting the functions θ 7→ t̂±(θ) and finding their inter-
section with the horizontal line y = λi. The resulting interval [θ−, θ+] serves as the confidence
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Spiked Wigner matrix Spiked covariance model

Parameters – γ2 = N
S
∈ (0, 1]

θc 1 1 + γ

λ± ±2 (1± γ)2

λ(θ) θ + 1
θ

θ + γ2 θ
θ−1

V (θ) 2 θ2−1
θ2

2θ2γ2
(
1− γ2

(θ−1)2

)
κ1, κ2, κ3 1, 1, −3

2
γ(1 + γ)4/3, 1

γ(1+γ)2/3
, −3

2
γ(1 + γ)2

Factor model CCA

Parameters γ2 = N
S
∈ (0, 1]

τN = S
N

> 1, τM = S
M

> 1,

with τ−1
N + τ−1

M < 1, τN ≥ τM
θc γ 1√

(τM−1)(τN−1)

λ± (1± γ)2
(√

τ−1
M (1− τ−1

N )±
√

τ−1
N (1− τ−1

M )

)2

λ(θ) θ + 1 + γ2 θ+1
θ

(
(τN−1)θ+1

)(
(τM−1)θ+1

)
θτN τM

V (θ) 2γ2 (2θ+1+γ2)(θ2−γ2)
θ2

2
(1− θ)2

θ2τ2Mτ3N

(
2(τM−1)(τN−1)θ+τM+τN−2

)
×
(
(τM − 1)(τN − 1)θ2 − 1

)

κ1, κ2, κ3 γ(1 + γ)4/3, 1
γ(1+γ)2/3

, −3
2
γ(1 + γ)2

(
√
τN−1

√
τM−1−1)4/3(

√
τN−1+

√
τM−1)4/3

τ
5/3
N τM (τN−1)1/6(τM−1)1/6

,

τ
1/3
N (τN−1)5/6(τM−1)5/6

(
√
τN−1

√
τM−1−1)2/3(

√
τN−1+

√
τM−1)2/3

,

−3
2
(
√
τN−1

√
τM−1−1)2(

√
τN−1+

√
τM−1)2

τ2N τM
√
τN−1

√
τM−1

Table 4. Parameters. In the factor model the roles of S and N can be
swapped when γ2 > 1. In CCA N and M can be swapped when τN < τM .

interval for the ith largest signal strength θi. Corollary 4.8 ensures that as N → ∞ we have
Prob(θi ∈ [θ−, θ+]) → 1− α.

There are two special cases to consider at this step. First, it may happen that no value θ−
satisfies t̂+(θ−) = λi. This occurs when the shifted and rescaled λi falls below the (1−α/2)
quantile of the Tracy-Widom distribution F1. In this case the confidence interval becomes
one-sided, and one should set θ− = −∞ or, equivalently, to the lower bound of admissible
values of θi, that is θi ≥ σ2 for the spiked covariance and θi ≥ 0 for the others. Second, it
may happen that θ− exists, but lies below the lower bound for admissible values of θi. In
this case θ− should again be replaced by the appropriate lower bound. In terms of statistical
consequences the two cases are equivalent.

3.3. Unknown variance. For the CCA setting in Section 2.4 the asymptotics in Theorem
4.6 do not depend on the noise covariance, i.e., the matrices A and B in (2.14). In contrast,
for the three other settings, Sections 2.1, 2.2, and 2.3, the scaling depends on the noise
variance, denoted by σ2. Procedure 3.1 assumes σ2 = 1. If σ2 ̸= 1 but is known, then the
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entries of the data matrix A or X should be divided by σ to reduce to the baseline case
σ2 = 1. If σ2 is unknown, it must first be estimated.

We propose estimating the variance by discarding 25% of the eigenvalues from both the
lower and upper ends, and matching sample moments to their theoretical values in order to
solve for σ2.
For the spiked Wigner model, let ℓ ≈ 0.81 denote the positive number such that

(3.5)

∫ −ℓ

−2

1

2π

√
4− x2dx =

∫ 2

ℓ

1

2π

√
4− x2dx =

1

4
,

and set

(3.6) σ2
0 =

∫ ℓ

−ℓ

x2

2π

√
4− x2dx.

Given eigenvalues λ1 ≥ · · · ≥ λN of A, we can form an estimate

(3.7) σ̂2 =
1

σ2
0

1

N

⌊3N/4⌋∑
i=⌊N/4⌋+1

λ2
i .

The Wigner semicircle law for the GOE with explicit estimates for the remainders (see e.g.,
O’Rourke [2010]), combined with the interlacing inequalities between the eigenvalues of A
and B in (2.1), as in Corollary 9.3, can be used to show that

(3.8) σ̂2 = σ2 +O

(
log(N)

N

)
, N → ∞.

Note that the scale of the random component in Theorem 4.6 is much larger than the error
term in (3.8). As a result, our confidence intervals are much wider than this error term and
normalizing the data by σ̂ does not change the validity of the confidence intervals constructed
in the previous section.

For the spiked covariance and factor models, the procedure is analogous, but relies on the
Marchenko-Pastur law (see Table 3) rather than the semicircle law. Fixing the parameter
γ2 = N

S
∈ [0, 1), we define ℓ− and ℓ+ as two positive numbers such that

(3.9)

∫ ℓ−

λ−

1

2π

√
(λ+ − x)(x− λ−)

γ2x
dx =

1

4
,

∫ λ+

ℓ+

1

2π

√
(λ+ − x)(x− λ−)

γ2x
dx =

1

4
.

and set

(3.10) σ2
0 =

∫ ℓ2

ℓ1

x

2π

√
(λ+ − x)(x− λ−)

γ2x
dx.

Given eigenvalues λ1 ≥ · · · ≥ λN of 1
S
XXT, we can form an estimate

(3.11) σ̂2 =
1

σ2
0

1

N

⌊3N/4⌋∑
i=⌊N/4⌋+1

λi.

The Marchenko–Pastur law with explicit estimates for the reminders (see e.g., Bourgade
et al. [2022]), combined with the interlacing inequalities between the eigenvalues of spiked
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and unspiked models, as in Corollaries 9.8 and 9.12, can be used to show that

(3.12) σ̂2 = σ2 +O

(
log(N)

N

)
, N → ∞.

Once again, normalizing the data by dividing by σ̂ does not affect the validity of the confi-
dence intervals constructed in the previous section.

For a discussion of alternative procedures for estimating σ2 see, for example, Kritchman
and Nadler [2009, Section III.C], Shabalin and Nobel [2013, Section 4.1], Gavish and Donoho
[2014, Section 3.E], or Ke et al. [2023, End of Section 2].

3.4. Implications and interpretations. Confidence intervals serve two important roles in
the analysis of signal strength. First, they provide a measure of uncertainty: the narrower
the confidence interval, the more precisely the signal strength is estimated.

Second, confidence intervals help assess the informativeness of estimated signals. If the
lower bound of a confidence interval starts at −∞ or at the minimal admissible value of θ,
(which is σ2 for the spiked covariance and zero for other models), then the signal may be
spurious and could reflect pure noise – that is, a situation in which no true signal is present.
Alternatively, if the confidence interval is bounded away from the minimal admissible value,
but contains the identification threshold θc, then we know that a signal exists, but we cannot
reject the null hypothesis that its strength falls below the identification cutoff. When θ ≤ θc

the sample estimates of the signal directions u and v are asymptotically orthogonal to their
true population counterparts (see, e.g., Paul [2007], Onatski [2012], Benaych-Georges and
Nadakuditi [2012], Johnstone and Paul [2018], Bykhovskaya and Gorin [2025]), rendering
the signal effectively non-informative.

4. Asymptotics through the Airy–Green function

The new asymptotics, which improves upon the Gaussian approximations (2.3), (2.9),
(2.13), and (2.17), is based on a novel stochastic object we call the Airy–Green function. Its
definition, along with the transition process T (Θ) constructed from it, is presented in Section
4.1. Further discussion of its nature is provided in Section 4.2. Theorem on the convergence
of the eigenvalue distributions in four signal plus noise models towards this object is stated
in Section 4.3.

4.1. Definition of G(w) and T (Θ). We begin by recalling the Airy1 point process, a random
sequence of points a1 ≥ a2 ≥ a3 ≥ . . . , which can be defined as the scaling limit of the largest
eigenvalues of Wigner matrices.

Proposition (Forrester [1993], Tracy and Widom [1996]). Let YN be an N × N matrix
of i.i.d. N (0, 2

N
) Gaussian random variables and let λ1;N ≥ λ2;N ≥ · · · ≥ λN ;N be the

eigenvalues of B = 1
2

(
YN + Y T

N

)
. Then in the sense of convergence of finite-dimensional

distributions

(4.1) lim
N→∞

{
N2/3 (λi;N − 2)

}N
i=1

= {ai}∞i=1.

Similar asymptotic results hold for the other models we consider, see further below. All
existing formulae for the finite-dimensional distributions of {ai}∞i=1 are quite complicated and
do not provide explicit distribution function, see, e.g., Forrester [2010]. Nevertheless, the
distribution can be sampled and tabulated, see Bornemann [2009], Bykhovskaya et al. [2024].
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In particular, Table 2 lists quantiles of the Tracy–Widom distribution, which describes the
law of a1.

The following theorem defines the Airy–Green function G(w); see Section 8.1 for the proof.

Theorem 4.1. Let a1 ≥ a2 ≥ a3 ≥ . . . be a realization of the Airy1 point process and let
{ξj}∞j=1 be i.i.d. N (0, 1) independent of {aj}∞j=1. Almost surely, for each w ∈ C \ {aj} there
exists a (random) limit

(4.2) G(w) = lim
x→−∞

 ∑
j: aj>x

ξ2j
w − aj

− 2

π

√
−x

 ,

and, moreover, the convergence is uniform on any compact set W ⊂ C disjoint from {aj}.
Note that any fixed w ∈ C is almost surely not in {aj}, hence, for such w the convergence

holds almost surely. Eq. (4.2) and Proposition 8.3 imply that G(w) changes monotonically
from +∞ to −∞ over the interval [a1,+∞), allowing us to state the following key definition.

Definition 4.2. The transition process T (Θ), Θ ∈ R, is a random function, defined as the
unique solution to the equation G(w) = −Θ satisfying w ∈ [a1,+∞).

Proposition 4.3. Almost surely, Θ 7→ T (Θ) is an increasing bijection of R onto (a1,∞).
As Θ → +∞, T (Θ) is asymptotically Gaussian:

(4.3) lim
Θ→+∞

T (Θ)−Θ2

2
√
Θ

d
= N (0, 1).

Remark 4.4. For large negative Θ we have distributional approximations:

(4.4) T (Θ)
d
= a1 −

ξ21
Θ

+O

(
1

Θ2

)
d
= a1 −

1

Θ
+O

(
1

Θ2

)
, Θ → −∞.

The first approximation follows directly from (4.2); the second from writing the distribution

function as the expectation of the distribution function of a1 shifted by random
ξ21
Θ
.

Figure 2 shows the simulated quantiles for the random variables T (Θ) as functions of Θ,
or equivalently, confidence intervals for Θ as a function of T . The underlying data is given
in Table 1. These results are based on MC = 106 Monte Carlo simulations of the

√
N ×

√
N

top-left corners of N × N tridiagonal matrices of Dumitriu and Edelman [2002], with a
perturbed (1, 1) matrix element and N = 108; see Edelman and Persson [2005, Section 1.1]
and Johnstone et al. [2021, Lemma 5.2] for justifications of this approach. The figure shows
that the Gaussian approximation from Proposition 4.3 performs very well for large Θ, but
deteriorates near Θ = 0.

4.2. Discussion of the definition. Let us clarify the terminology. The term “Airy” in
the name G(w) refers to the Airy point process, whose points ai appear in its definition.
The term “Green” stands from the tradition in random matrix theory to refer to matrix
elements of the resolvent (zI −D)−1 of a symmetric matrix D as the Green’s function. Via

eigenvalue decomposition, the (1, 1) matrix element of (zI − D)−1 is
∑

i
u2
1i

z−di
, where u1i is

the first coordinate of the ith normalized eigenvector of D corresponding to the eigenvalue
di, making it reminiscent of the sum in (4.2).
The term “transition” in the name of T (Θ) refers to its role in capturing the transition

between subcritical θ < θc and supercritical θ > θc behavior in (2.3), (2.9), (2.13), (2.17).
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Figure 2. Quantiles of T (Θ) from Corollary 4.8 and from the Gaussian ap-
proximations based on Proposition 4.3.

This phenomenon is commonly known as the BBP phase transition, following Baik et al.
[2005].

There are two other approaches to the transition process T (Θ) in the literature. One is
based on the limit of tridiagonal matrix model: Bloemendal and Virág [2013], Lamarre and
Shkolnikov [2019] construct T (Θ) as the largest eigenvalue of the Stochastic Airy Operator
with Θ–dependent boundary condition. Another approach, developed by Mo [2012] using
the framework of Pfaffian point processes, provides an integral representation for the one-
dimensional marginal distribution of T (Θ).

An advantage of our definition via the Airy–Green function is its robustness. Proving
convergence to either of the two alternative definitions, requires finding delicate algebraic
structures (tridiagonalization or Pfaffians) in the prelimit objects, which are not known in
some cases (e.g., CCA). In contrast, our approach relies only on identifying the eigenvalues
of a spiked model as solutions to an equation, that can be obtained in all spiked models via
finite-rank perturbation theory.

Remark 4.5. One can go beyond real matrices, and deal with complex, quaternionic, or even
general β random matrix ensembles. In the latter setting the definition of the Airy–Green
function should be extended to

(4.5) Gβ(w) = lim
x→−∞

 ∑
j: aj,β>x

β−1ξ2j,β
w − aj,β

− 2

π

√
−x

 ,

where for β > 0, (aj,β)
∞
j=1 are the points of the Airyβ point process (see e.g., Ramirez et al.

[2011]) and ξ2j,β are i.i.d. chi–squared random variables with β degrees of freedom, defined as
Gamma-distributions for general β. For β = 1 we are back to (4.2). For β = 2, 4, Gβ(w)
and the corresponding transition function, defined as in Definition 4.2, play the same role as
G1(w) in the signal plus noise models for complex and quaternionic matrices respectively.

4.3. Universal asymptotics for spiked models. The next theorem presents the asymp-
totics of the largest eigenvalues for all signal plus noise models of Section 2.
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Theorem 4.6. Consider any of the four models of Section 2 with signal strengths θ1 > · · · >
θr, with σ2 = 1, and in the regime (2.7), (2.11), or (2.15). Fix an index 1 ≤ q ≤ r and
suppose that as N → ∞:

(1) θ1, . . . , θq−1 are fixed, distinct, and all larger than θc.

(2) θq = θc +N−1/3θ̃ for a fixed θ̃ ∈ R.
(3) θq+1, . . . , θr are fixed and all smaller than θc.

Then, in the sense of joint convergence in distribution,
√
N(λi − λ(θi))

d−→ N (0, V (θi)), 1 ≤ i ≤ q − 1,(4.6)

N2/3(λq − λ+)
d−→ κ1T (κ2θ̃),(4.7)

where the q limiting random variables in (4.6), (4.7) are jointly independent and the constants
are as in (2.2),(2.8),(2.12),(2.16) with

(4.8) κ1 =
1

2

[
[V ′(θc)]2

λ′′(θc)

] 1
3

, κ2 =

[
[λ′′(θc)]2

V ′(θc)

] 1
3

.

If no signal strengths are close to θc, then the same limits hold without the (4.7) part.

Remark 4.7. While the distributional limit of λq+1, . . . , λr can be also computed, it is of no

use for the confidence intervals: the limiting random variables would depend on θ̃, but not
on θq+1, . . . , θr.

Note that the two limit regimes (4.6) and (4.7) heuristically agree with each other: if one

sets θ̃ = εN1/3 with a small ε > 0, then using (4.7) and Proposition 4.3, we expect

λq ≈ λ+ +N−2/3κ1T (κ2θ̃) ≈ λ+ + κ1κ
2
2ε

2 + 2N−1/2κ1

√
εκ2N (0, 1).

On the other hand, if one sets θi = θc + ε, then using (4.6) and Taylor expanding (noting
V (θc) = λ′(θc) = 0), we expect

λi ≈ λ+ +
ε2

2
λ′′(θc) +N−1/2

√
εV ′(θc)N (0, 1).

Using (4.8), we see that the last two asymptotic expansions are the same. In parallel, using
Proposition 4.3 we can combine two asymptotic regimes of Theorem 4.6 into one (among
several asymptotically equivalent formulas, we chose the one with the best finite sample
performance):

Corollary 4.8. The asymptotics (4.6) and (4.7) can be written in unified form as:

(4.9) λi ≈ λ(θi)−
κ
3/2
2

2

√
V (θi)(θi − θc)3 +

κ
−1/2
2

2N2/3

√
V (θi)

θi − θc
T
(
κ2N

1/3(θi − θc)
)
+

κ3

N
,

where the error is o
(
N−2/3 +N−1/2(V (θi))

1/2
)
for θi > θc. For θi ≤ θc, one instead uses

(4.10) λi ≈ λ+ +
κ1

N2/3
T
(
κ2θ̃
)
+

κ3

N
.

In (4.9) and (4.10) we use κ1 =
1
2
[V ′(θc)]2/3

[λ′′(θc)]1/3
, κ2 =

[λ′′(θc)]2/3

[V ′(θc)]1/3
, and κ3 = −3

2
κ1

κ2θc
.
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The formula (4.10) is a direct corollary of (4.7), while (4.9) combines (4.6) and (4.7)
together. Indeed, when θi is bounded away from θc, (4.3) converts (4.9) into

λ(θi)−
κ
3/2
2

2

√
V (θi)(θi − θc)3+

κ
−1/2
2

2

√
V (θi)

θi − θc
κ2
2(θi−θc)2+

κ
−1/2
2

N1/2

√
V (θi)

θi − θc

√
κ2(θi − θc)N (0, 1),

which is readily seen to be equivalent to (4.6). When θi is close to θc, θi = θc + N−1/3θ̃,
Taylor expanding λ(·) and V (·) near θc, (4.9) turns into

λ+ +
λ′′(θc)

2
(θi − θc)2 −

√
V ′(θc)

κ
3/2
2

2
(θi − θc)2 +

κ
−1/2
2

2N2/3

√
V ′(θc)T

(
κ2N

1/3(θi − θc)
)
,

which is the same as (4.7).
Note that κ3/N is o(N−2/3), and therefore the choice of κ3 does not affect the validity of

the asymptotic formulas (4.9) and (4.10). These terms are introduced to further improve
the performance of the formulas for intermediate values of N , cf. Johnstone [2008], Ma
[2012], Johnstone and Ma [2012], which emphasize the importance of 1/N corrections for
the practical applicability of limit theorems. The reasoning behind our choice of κ3 is as
follows. First, we require continuity at θc; hence, (4.9) and (4.10) use the same κ3/N .

Second, we leverage additional information available at q = r = 1 and θ̃ = −N1/3θc for the
spiked Wigner, factor, and CCA models. (For the spiked covariance model, one instead takes

θ̃ = −N1/3γ and adjusts the formula accordingly.) On one hand, combining (4.10) with the
asymptotic approximation (4.4), we obtain

(4.11) λ1 ≈ λ+ +
κ1

N2/3

(
a1 +

1

κ2N1/3θc

)
+

κ3

N
.

On the other hand, θ̃ = −N1/3θc corresponds to θ = 0 (or θ = 1 for the spiked covari-

ance model with θ̃ = −N1/3γ), meaning that in all four models of interest, we are in the
unspiked regime without a signal component. In this setting, the convergence of λ1 to the
Tracy–Widom distribution a1 is well established, and 1/N -order asymptotic corrections have
been studied in Johnstone [2008], Ma [2012], Johnstone and Ma [2012]. From these works,
one can extract
(4.12)

λ1 ≈ λ++
κ1

N2/3
a1−

1

2N
×


1 for spiked Wigner,

γ(1 + γ)2 for spiked covariance and factors,
(
√
τN−1

√
τM−1−1)2(

√
τN−1+

√
τM−1)2

τ2N τM
√
τN−1

√
τM−1

for CCA.

Equating (4.11) with (4.12) yields the formula for κ3, as recorded in Table 4. An interesting
observation is that in each case the term κ1

κ2θc
in (4.11) is twice the 1

N
correction term in

(4.12), which leads to the 3
2
coefficient appearing in κ3 across all four models.

Remark 4.9. We expect that (4.9) also remains asymptotically valid on all mesoscropic

scales, i.e., when θi = θc +N−αθ̃, 0 < α < 1/3. We omit a detailed proof.

The proof of Theorem 4.6 is given in Section 9. It begins with a rank-one perturbation
equation, which expresses the eigenvalues in a signal plus noise model with r spikes (the
“target model”) as solutions to an algebraic equation involving a simpler model with r − 1
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spikes (the “base model”). Analyzing the asymptotic behavior of this equation leads to the
following conclusion, stated informally below:

• If the strength of the added spike is subcritical, θ < θc, then the largest eigenvalues
in the target model are very close to the largest eigenvalues in the base model.

• If the strength of the added spike is supercritical, θ > θc, then the largest eigenvalues
in the target model are very close to the largest eigenvalues for the base model, except
for one additional eigenvalue for the target model, which is close to λ(θ).

• If the strength of the added spike is critical, θ = θc + N−1/3θ̃, then in the target
model eigenvalues which are (macrosopically) larger than λ+ are very close to the

eigenvalues in the base model. Near λ+ the equations rescale to G(w) = −κ2θ̃, where
{aj} in the definition of G(w) arise as limits of the eigenvalues in the base model,
and the eigenvalues in the target model converge to the roots of this equation.

On the technical level, the key novelty is in our ability to handle the most delicate case,
when the spike is critical. If all spikes are subcritical or supercritical, the arguments are much
simpler and follow ideas similar to those found in the references cited in Section 2. Some
special cases of Theorem 4.6 can be handled by other methods, for example, the r = 1 case
for the spiked Wigner and spiked covariance models is addressed in Mo [2012], Bloemendal
and Virág [2013]; see also Bloemendal and Virág [2016], Lamarre and Shkolnikov [2019].
However, we believe that the level of generality achieved here – particularly our treatment
of the factor model and CCA – was not previously available in the literature and is beyond
the reach of those alternative methods.

Remark 4.10. We expect that our methods can be extended to handle the case of multiple
(k > 1) critical spikes, as well as the remaining largest eigenvalues λq+1, λq+2, . . . . The
limiting behavior should be described by a higher-rank Airy point process, which we define
recursively. The rank 0 process is the classical Airy point process {aj}. The rank 1 process

{a(Θ)
j } consists of all real solutions to the equation G(w) = −Θ; in particular, the largest

point a
(Θ)
1 coincides with T (Θ) from Definition 4.2. We then iterate this construction: given

the rank k point process {a(Θ1,...,Θk)
j } depending on k real parameters Θ1, . . . ,Θk, we define

the rank (k + 1) process {a(Θ1,...,Θk,Θk+1)
j } as the set of all real solutions to the equation

(4.13) lim
x→−∞


 ∑

j: a
(Θ1,Θ2,...,Θk)

j >x

[ξ
(k)
j ]2

w − a
(Θ1,Θ2,...,Θk)
j

− 2

π

√
−x

 = −Θk+1,

where ξ
(k)
j , j = 1, 2, . . . are N (0, 1), independent over j and k.

We anticipate that in a signal plus noise model with k critical spikes the eigenvalues
near λ+ converge, after the same recentering and rescaling as in Theorem 4.6, to the points

{a(Θ̃1,Θ̃2,...,Θ̃k)
j }. A different construction is provided in Bloemendal and Virág [2016], but it

is ultimately expected to yield the same point process
{
a
(Θ̃1,Θ̃2,...,Θ̃k)
j

}∞
j=1

.

5. Empirical illustrations

In this section, we present three examples that illustrate the application of the proce-
dure described in Section 3 to empirical data sets. In each case, the first step reveals a
strong agreement between the histogram of eigenvalues and the corresponding theoretical
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Figure 3. IP sample correlation eigenvalues: signals, their 95% confidence
intervals, noise, and Marchenko-Pastur distribution with N = 117, S = 139.

curve—specifically, the Marchenko-Pastur law in the first two examples (factor models) and
the Wachter law in the third (CCA). This suggests that the data aligns well with our mod-
eling assumptions.

5.1. Industrial Production. Industrial production (IP) accounts for more than 10% of the
United States’ Gross Domestic Product (GDP), making it a significant component of total
U.S. output. In this subsection we use data from Andreou et al. [2019], which investigates
whether IP constitutes a dominant factor in U.S. economic activity. The data set contains
quarterly IP growth rates across 117 sectors, spanning the period from 1977 : Q1 to 2011 :
Q4. We de-mean the data and standardize each sector to have unit sample variance, thereby
working with the sample correlation matrix of IP.

Figure 3 shows all eigenvalues of the standardized IP and highlights four of them
(3.75, 4.26, 6.12, 30.05) that lie to the right of the theoretical Marchenko–Pastur upper edge,
λ+ = 3.68. The largest eigenvalue, 30.05, stands out markedly and represents a strong “mar-
ket” factor. The two smallest among the four, being close to the cutoff, may reflect spurious
signals arising from noise. To assess their significance, we construct 95% confidence intervals.
Notably, the interval for the eigenvalue at 3.86 intersects the critical identification thresh-
old θc = 0.92, indicating that we cannot reject the null hypothesis that it represents noise
(or non-informative signal). For the remaining eigenvalues, the null is rejected. We thus
conclude that the IP growth rate is driven by three factors: strong, semi-strong, and weak.

5.2. S&P100. Analyzing stock returns is essential for understanding market dynamics, eval-
uating investment performance, and guiding both individual and institutional investment
strategies. A key statistical object in this context is the covariance matrix of stock returns,
which plays a central role in portfolio optimization, such as in the Markowitz mean–variance
framework. The vast “factor zoo” – the large number of potential variables proposed to ex-
plain stock returns – highlights the practical challenge of distinguishing meaningful factors
from noise in high-dimensional settings (see Cochrane [2011] for an influential discussion).
Here we demonstrate how our methodology can be applied to the sample covariance matrix
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Figure 4. S&P100 sample covariance: signals, their 95% confidence intervals,
noise, and Marchenko-Pastur distribution with N = 92, γ2 = 0.4, σ = 0.02.

of weekly S&P100 stock returns. We use data from Bykhovskaya and Gorin [2022], which
covers 92 stocks over the period from January 1, 2010, to January 1, 2020.

Figure 4 presents the full spectrum of the sample covariance matrix and identifies ten
eigenvalues – 0.0365, 0.005, 0.004, 0.003, 0.0026, 0.0021, 0.0018, 0.0015, 0.00139, 0.00136 –
that lie to the right of the theoretical Marchenko–Pastur upper edge, λ+ = 0.0013. To
better fit the empirical data, we adopt an effective parameter value γ2 = 0.4, in contrast to
the true value N/S = 0.18. This adjustment may reflect temporal dependence in the data,
which effectively reduces the sample size and increases γ2 = 0.4. We also set σ = 0.02 to
align the overall variance of the eigenvalues in the data.

Figure 4 reports the 95% confidence intervals for the ten candidate signals. The two
smallest eigenvalues among them yield intervals that intersect the identification threshold
θc = 0.0003, indicating that they cannot be statistically distinguished from being non-
informative. We therefore conclude that only eight of the ten observed spikes represent
useful signals. As in previous examples, the largest eigenvalue corresponds to the “market”
factor.

5.3. Cyclical vs. non-cyclical stocks. Financial stocks are typically classified into cyclical
and non-cyclical (defensive) categories, depending on whether their performance tends to
track economic business cycles. These groups are generally assumed to be uncorrelated,
aside from exposure to a common “market” factor. Bykhovskaya and Gorin [2025] identify
three non-zero canonical correlations between these two groups, suggesting the presence of
three common factors. Here we revisit their analysis using the same data set to assess
whether these observed correlations reflect genuine signals or could instead be attributed to
noise.

The data set comprises weekly returns for 80 cyclical and 80 defensive stocks, spanning
the period from January 1, 2010, to January 1, 2020. Figure 5 reproduces the canonical
correlations reported by Bykhovskaya and Gorin [2025] and augments it with 95% confi-
dence intervals. Bykhovskaya and Gorin [2025] used the signal strengths to estimate the
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Figure 5. Squared sample canonical correlations between cyclical and non-
cyclical stocks: signals, their 95% confidence intervals, noise, and Wachter
distribution with N = M = 80, S = 520.

angles between true and estimated canonical variables. By incorporating our results, one
can generate confidence intervals for these angles.

As shown in Figure 5, the 95% confidence intervals for three largest canonical correlations,
0.58, 0.62, and 0.89, lie above the cutoff θc = 0.18, confirming them as true signals. In
contrast, the confidence interval for the fourth largest value intersects the cutoff, indicating
that it cannot be reliably distinguished from noise and is therefore classified as a non-
informative component.

A comparison of Figures 3, 4, and 5 reveals an interesting pattern: in the factor models of
the first two figures, the confidence intervals widen as the signal strengths increase, whereas
in the CCA setting, the intervals become narrower as the signals approach 1. Theoretically,
this behavior in CCA can be attributed to the factor (1− θ)2 in V (θ), as shown in Table 4.

6. Extensions

In this section we discuss possible extensions of our results, focusing on non-Gaussian data
and broader classes of models than those considered in Section 2.

6.1. Non-Gaussian noise. The four models in Section 2 are all based on Gaussian noise
matrices. A natural generalization is to replace the Gaussian vectors with more general
random vectors having the same mean and covariance. It is well known (see Lee and Yin
[2014], Ding and Yang [2018], Yang [2022a] and the broader reviews Deift and Gioev [2009],
Tao and Vu [2012], Erdős and Yau [2017]) that for pure noise models without any signal, the
distribution of the largest eigenvalues remains unchanged in many non-Gaussian settings.
This raises the natural question of whether the same robustness extends to the confidence
intervals discussed in Section 3.

Figure 6 shows the results of Monte Carlo simulations of confidence intervals for Wigner
matrices with a single spike and non-Gaussian noise. These can be compared to the Gaussian
case in Figure 1a. The bold gray line depicts sample confidence intervals based on 105
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(e) Binomial(2, 0.3) noise, localized signal
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(f) Binomial(2, 0.3) noise, delocalized signal

Figure 6. Confidence intervals for Wigner matrices with non-Gaussian noise.

simulations of 100 × 100 matrices. The noise matrix E in (2.1) is still defined as E =
1√
2N

(Z + ZT), with Z having i.i.d. entries. We vary the distribution of these entries, each

rescaled to have mean 0 and variance 1, to be: (i) uniform on [0, 1], (ii) Bernoulli with
success probability p = 1/2, or (iii) Binomial with parameters n = 2, p = 0.3. We also
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consider two signal vectors: a localized signal u∗ = (1, 0, . . . , 0)T and a delocalized signal
u∗ = 1√

N
(1, 1, . . . , 1)T. While in the Gaussian setting the choice of u∗ is irrelevant due to

rotational invariance, this is no longer true for general noise distributions.
Figure 6 shows that, while the sample confidence intervals remain reasonably close to those

constructed via the procedure in Section 3, the agreement is notably better for delocalized
signals. For the localized signal significant deviations appear at larger values of the observed
eigenvalue λ1. A heuristic explanation follows directly from the model A = θ · u∗(u∗)T + E
in (2.1). When u∗ = (1, 0, . . . , 0)T, the parameter θ enters A only through its sum with the
(1, 1) entry of E , so the distribution of that single element directly affects any estimate of θ.
By contrast, when u∗ = 1√

N
(1, 1, . . . , 1)T, the projection of the noise onto the signal direction

aggregates many independent entries. Thus, by the central limit theorem, the influence of
the individual noise distribution diminishes as N grows, leading to behavior indistinguishable
from the Gaussian case. Similar robustness is expected for other delocalized signals, though
a precise definition of “delocalized” can be delicate.

For spiked Wigner matrices with supercritical signals (θ > θc), non-Gaussian cases have
been rigorously analyzed in several papers. Non-trivial dependence of the asymptotics of λ1

on the distribution of the noise has been established in Capitaine et al. [2009, 2012], Pizzo
et al. [2013], Knowles and Yin [2013, 2014] for localized signals. In contrast, universality of
the limit for delocalized signals has been shown under various conditions (including different
definitions of “delocalized”) in Féral and Péché [2007], Benaych-Georges et al. [2011], Capi-
taine et al. [2012], Pizzo et al. [2013], Renfrew and Soshnikov [2013], Knowles and Yin [2013,
2014]. In addition, Knowles and Yin [2013, Remark 2.18] explain that the dependence of the
limit on the noise distribution is washed out as θ approaches θc. Similar phenomenology is
expected (and in some cases proven) for other signal plus noise models.

This discussion, together with the simulation results, leads us to conjecture that for all
signal plus noise models of interest, the confidence intervals constructed via the procedure
in Section 3 remain good approximations even under non-Gaussian noise, particularly when
the signal is delocalized. From a practical standpoint, this reinforces the robustness of our
method, especially in light of Giannone et al. [2021], who argue that many economic data
sets are non-sparse and should therefore be modeled using delocalized signals.

6.2. General models and empirical distributions of eigenvalues. In all four models
from Section 2 the empirical distributions of eigenvalues take specific parametric forms, as
summarized in Table 3. Although our estimation procedure relies only on the largest eigenval-
ues, the formulas in Table 4 were derived using information from the empirical distributions
in Table 3.

In other signal plus noise models and some empirical data sets the eigenvalue histograms
may differ substantially from the four cases we consider. For θ > θc, the fluctuations of the
largest eigenvalues have been analyzed in various alternative settings; see, e.g., Benaych-
Georges et al. [2011], Benaych-Georges and Nadakuditi [2012], Onatski [2012]. These works
develop analogues of (2.3), (2.9), and (2.13), but the formulas for θc, λ+, λ(θ), and V (θ)
become more complex. We conjecture that the confidence interval procedure from Section 3
remains valid in such broader contexts, with only the model-dependent parameters from
Table 4 needing to be updated.

One applied setting of particular interest is the approximate factor model, which resembles
the setup in Section 2.3 but allows the noise matrix E to have a more complex correlation
structure rather than being i.i.d. To apply our confidence interval procedure in this context,
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one can proceed as follows: first, select a value for λ+; then use all eigenvalues below λ+

to estimate the empirical distribution of noise eigenvalues (replacing the parametric forms
in Table 3); next, substitute this estimate into the formulas from Onatski [2012] for λ(θ)
and V (θ); and finally, apply our method to construct confidence intervals for the eigenvalues
exceeding λ+. Choosing λ+ optimally is delicate; one approach, suggested in Onatski [2010,
Section 4], is to select it based on the characteristic

√
x behavior of the eigenvalue density

near the edge – a feature clearly visible in the four models of Table 3 and present in many
other cases.

7. Conclusion

The paper presents a unified framework for conducting inference on signal strength in high-
dimensional signal plus noise models, with a particular focus on the critical regime where
standard Gaussian approximations fail. We demonstrate that the limiting distribution of
top eigenvalues is governed by a universal stochastic process, the transition process T (Θ),
whose quantiles can be tabulated and used to construct valid confidence intervals. This
approach applies uniformly across four canonical models: spiked Wigner matrices, spiked
sample covariance matrices, factor models, and canonical correlation analysis.

Our procedure is robust to both weak and critical signals, enabling practitioners to distin-
guish between informative and non-informative components without imposing assumptions
on signal strength. Moreover, our methodology reveals a surprising universality: despite
differences in the statistical structure of the models, the same transition process governs the
fluctuations of their top eigenvalues. We believe that this suggests deeper underlying prin-
ciples in high-dimensional inference and opens a broad avenue for future research in more
general signal plus noise settings.

8. Appendix A: Random Stieltjes transform at the edge and general
asymptotic theorem

Our goal in this section is to rigorously introduce the Airy–Green function G(w) and limit
theorems related to it. Universally, in all settings we study, the equations connecting the
parameters of the spiked model with observed largest eigenvalues will be asymptotically
written in terms of G(w).

Let us recall the definitions of meromorphic functions and their convergence, which will
be used in the proofs. A function f(z) of a complex variable is called meromorphic if it is
defined and analytic on C \ {xj}, where {xj} is at most a countable set of isolated points,
each of which is a pole of finite order. Equivalently, f is an analytic function from C to
the Riemann sphere C. If fn and f are meromorphic, we write fn

mer→ f if for any compact
W ⊂ C we have

sup
z∈W

d(fn(z), f(z)) → 0 ,

where

d(ζ, ζ ′) =
|ζ − ζ ′|√

1 + |ζ|2
√

1 + |ζ ′|2

is the spherical distance. Note that if fn and f are meromorphic functions, then fn
mer→ f if

and only if fn → f uniformly on any compact W ⊂ C not containing the poles of f .
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8.1. The function G(w). In this subsection we restate, elaborate on, and prove the state-
ments from Section 4.1.

Theorem 8.1. Let a1 ≥ a2 ≥ a3 ≥ . . . be a realization of the Airy1 point process and let
{ξj}∞j=1 be i.i.d. Gaussian N (0, 1) independent of {aj}∞j=1. Almost surely, for every w ∈
C \ {aj} there exists a limit

(8.1) G(w) = lim
x→−∞

 ∑
j: aj>x

ξ2j
w − aj

− 2

π

√
−x

 ,

and, moreover, the convergence is uniform on any compact W ⊂ C \ {aj}.

Remark 8.2. The conditional expectation E(Gβ(w)|{aj}) (equivalent to replacing 1
β
ξ2j by 1)

was also used recently in another context by Huang and Zhang [2024].

In the notation above, the theorem asserts that almost surely the functions converge in
the topology

mer→ .

Proposition 8.3. G(w) is a meromorphic function with poles at {aj}∞j=1 and satisfying:

(8.2) lim
w→∞

Re(w)≥0

∣∣G(w) +√
w
∣∣ = 0, almost surely.

For real w, in the sense of convergence in distribution, we also have

(8.3) lim
w→+∞

w1/4
(
G(w) +

√
w
) d
= N (0, 1).

Remark 8.4. For
√
w in (8.2), one should use the branch of the square root which is positive

on positive reals. In particular,
√
iR = 1+i√

2

√
R, R > 0, where i =

√
−1. While we do not need

this, the asymptotics (8.2) can be extended from Re(w) ≥ 0 to all w such that | arg(w)| < π−ε
for a fixed ε > 0. Similarly, (8.3) can be extended to complex w.

Proposition 8.5. Recall T (Θ) of Definition 4.2 that solves G(w) = −Θ. Almost surely,
Θ 7→ T (Θ) is an increasing bijection of R onto (a1,∞). As Θ → +∞, T (Θ) is asymptotically
Gaussian: in distribution

(8.4) lim
Θ→+∞

T (Θ)−Θ2

2
√
Θ

d
= N (0, 1).

The proofs are based on four lemmas describing the asymptotics of aj.

Lemma 8.6. Let ρ(x)dx be the first correlation measure of {aj}, which means that for any
compactly supported bounded f(x) with finitely many discontinuity points, we have

E
∞∑
j=1

f(aj) =

∫ ∞

−∞
f(x)ρ(x)dx.

Then:

(1) ρ(x) is a bounded continuous function of x;
(2) ρ(x) decays faster than exp(−Cx) for any C > 0 as x → +∞;
(3) At −∞, ρ(x) has the asymptotics

(8.5) ρ(x) =
(−x)1/2

π
+O(1/|x|), x → −∞ .



28 ANNA BYKHOVSKAYA, VADIM GORIN, AND SASHA SODIN

Proof. Recall that the Airy function Ai(x) is a solution of the differential equation Ai′′(x)−
xAi(x) = 0, and is given by the improper integral Ai(x) = 1

π

∫∞
0

cos(t3 + xt)dt. We need
two asymptotic expansions for Ai(x), which can be found in Abramowitz and Stegun [1972,
Section 10.4]:

Ai(x) =
1

2
√
π · x1/4

exp

(
−2

3
x3/2

)
·
[
1 +O

(
x−3/2

)]
, x → +∞,(8.6)

Ai(x) =
1√

π(−x)1/4
sin

(
2

3
(−x)3/2 +

π

4

)
·
[
1 +O

(
(−x)−3/2

)]
, x → −∞.(8.7)

The expansions are valid in a complex neighborhood of the real axis and, hence, can be
differentiated to get

Ai′(x) = − x1/4

2
√
π
exp

(
−2

3
x3/2

)
·
[
1 +O

(
x−3/2

)]
, x → +∞,(8.8)

Ai′(x) = −(−x)1/4√
π

cos

(
2

3
(−x)3/2 +

π

4

)
·
[
1 +O

(
(−x)−3/2

)]
, x → −∞.(8.9)

Pastur and Shcherbina [2011, (6.3.2), (6.1.18), (5.3.6)] give an explicit formula for the first
correlation measure of the Airy1 point process in terms of the Airy function:

ρ(x) = [Ai′(x)]2 − x[Ai(x)]2 +
1

2
Ai(x)

(
1−

∫ +∞

x

Ai(z)dz

)
(8.10)

=

∫ ∞

0

Ai(z + x)2dz +
1

2
Ai(x)

(
1−

∫ +∞

x

Ai(z)dz

)
.(8.11)

Plugging the asymptotics of Ai(x) into the definition of ρ(x), we see that it decays super-
exponentially as x → +∞, while for x → −∞

□(8.12) ρ(x) =
(−x)1/2

π
·
[
1 +O

(
(−x)−3/2

)]
+O

(
(−x)−1

)
.

Lemma 8.7. For a1 > a2 > a3 > . . . being (a realisation of) the Airy1 point process,

(8.13) E
(
#{j ≥ 1 | aj > −T}

)
=

2

3π
T 3/2 +O(ln(T )), T → +∞ .

Proof. We can write the expectation in terms of the first correlation measure of {aj}:

(8.14) E
(
#{j ≥ 1 | aj > −T}

)
=

∫ +∞

−T

ρ(x)dx.

Plugging the result of Lemma 8.6 into (8.14) and integrating, we get (8.13). □

Lemma 8.8. For a1 > a2 > a3 > . . . being the Airy1 point process,

(8.15) lim
T→+∞

Var
(
#{j ≥ 1 | aj > −T}

)
ln(T )

=
11

6π2
.

Proof. We use a trick from O’Rourke [2010]. The edge scaling limit of Forrester and Rains
[2001, Theorem 4.3] is the following identity in law:

(8.16) even
(
{ai}∞i=1 ∪ {a′i}∞i=1

) d
= {aβ=2

i }∞i=1,
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where {ai} and {a′i} are two independent copies of the Airy1 point process, a
β=2
i is the Airy2

point process, and “even” is the operation of removing all particles with odd indices, i.e.,
keeping the 2nd, 4th, 6th, etc, largest ones. From Soshnikov [2000, Theorem 1], it is known

that as T → +∞, Var
(
#{j ≥ 1 | aβ=2

j > −T}
)
∼ 11

12π2 ln(T ). Through (8.16) this implies

lim
T→+∞

Var
(
#{j ≥ 1 | aj > −T}+#{j ≥ 1 | a′j > −T}

)
ln(T )

= 4 · 11

12π2
=

11

3π2
,

because the “even” operator divides the number of particles by two (up to error of at most
1), and therefore divides the variance by four (up to an error negligible as T → ∞). Since
variances for independent random variables are added, we get (8.15). □

Lemma 8.9. For each ε > 0 there exists a random variable J = J(ε), such that almost
surely we have

(8.17)

∣∣∣∣∣aj +
(
3πj

2

)2/3
∣∣∣∣∣ ≤ jε, for all j > J.

Proof. Choose 0 < ε < 1
3
. For n = 1, 2, . . . , let An be the event∣∣#{j ≥ 1 | aj > −n} − E#{j ≥ 1 | aj > −n}

∣∣> n1/2+ε.

Using Chebyshev’s inequality, we have

Prob(An) ≤
Var
(
#{j ≥ 1 | aj > −n}

)
n1+2ε

.

Combining with (8.15), we conclude that
∑∞

n=1 Prob(An) < ∞. Therefore, by the Borel–
Cantelli lemma, there exists a random variable n, such that∣∣#{j ≥ 1 | aj > −n} − E#{j ≥ 1 | aj > −n}

∣∣≤ n1/2+ε, for all n > n.

Combining with (8.13) and increasing n, if necessary, we conclude that almost surely∣∣∣∣#{j ≥ 1 | aj > −n} − 2

3π
n3/2

∣∣∣∣ ≤ n1/2+ε, for all n > n.

Therefore,

a⌊ 2
3π

n3/2+n1/2+ε⌋ ≤ −n and a⌊ 2
3π

n3/2−n1/2+ε⌋ > −n− 1, for all n > n.

Denoting k = ⌊ 2
3π
n3/2 + n1/2+ε⌋, ℓ = ⌊ 2

3π
n3/2 − n1/2+ε⌋ we conclude that for large k and ℓ,

(8.18) ak < −
(
3πk

2

)2/3

+
1

2
kε and aℓ > −

(
3πℓ

2

)2/3

− 1

2
ℓε.

In order to extend the inequalities from k and ℓ of special form we used to all large k and ℓ,
note that the distance between adjacent allowed values of k is (assuming k is large):

2

3π
(n+ 1)3/2 + (n+ 1)1/2+ε −

(
2

3π
n3/2 + n1/2+ε

)
<

1

3
n1/2 < k1/3,

and similarly for ℓ. Hence, the monotonicity of ak in k and the first inequality in (8.18)
imply that for a (random) K, we have almost surely

ak < −
(
3(k − k1/3)

2π

)2/3

+
1

2
kε < −

(
3k

2π

)2/3

+ kε, for all k > K.
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Similarly producing a corollary of the second inequality in (8.18), we get (8.17). □

Proof of Theorem 8.1. We split G(w) into two parts:

(8.19) G(w) = lim
x→−∞

 ∑
j: aj>x

1

w − aj
− 2

π

√
−x

+ lim
x→−∞

 ∑
j: aj>x

ξ2j − 1

w − aj

 = G1(w) + G2(w).

For G1(w), we further write it as:

(8.20) G1(w) = lim
x→−∞

∑
j: aj>x

[
1

w − aj
− 1

i− aj

]
+ lim

x→−∞

 ∑
j: aj>x

1

i− aj

− 2

π

√
−x

 .

Note that
1

w − aj
− 1

i− aj
=

i− w

(w − aj)(i− aj)
.

Hence, using (8.17), the j–th term in the first sum of (8.20) decays as j−4/3 and the sum
is absolutely convergent, uniformly in w bounded away from aj. For the second sum, its
imaginary part is

lim
x→−∞

 ∑
j: aj>x

−i

1 + a2j

 ,

which is again absolutely convergent. The real part is

(8.21) lim
x→−∞

 ∑
j: aj>x

−aj
1 + a2j

− 2

π

√
−x

 .

Using (8.17), for large j we have −aj =
(
3πj
2

)2/3
+O(jε), and, therefore, for large m and n:

(8.22)
n∑

j=m

−aj
1 + a2j

=
n∑

j=m

1(
3πj
2

)2/3
+O(jε)

=
n∑

j=m

[
1(

3πj
2

)2/3 +O(j−4/3+ε)

]

=

(
2

3π

)2/3 ∫ n

m

x−2/3dx+ o(1) = 3

(
2

3π

)2/3 (
n1/3 −m1/3

)
+ o(1).

We check the Cauchy criterion for (8.21) and compute the difference of its values at x = −y
and x = −z for large y > z > 0. Using (8.22), we get

(8.23) 3

(
2

3π

)2/3 (
n(y)1/3 −m(z)1/3

)
− 2

π

√
y +

2

π

√
z + o(1),

where n(y) is the index j for the closest to −y point aj and m(z) is the index for the closest
to −z point aj. Assuming y and z large enough, so that n(y) > J and m(z) > J, we can use
(8.17) and get

n(y) =
2

3π

(
y +O(yε)

)3/2
=

2

3π
y3/2 +O

(
y1/2+ε

)
, m(z) =

2

3π
z3/2 +O

(
z1/2+ε

)
.
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Plugging into (8.23) and choosing ε to be small enough, we get

3

(
2

3π

)2/3
((

2

3π
y3/2 +O

(
y1/2+ε

))1/3

−
(

2

3π
z3/2 +O

(
z1/2+ε

))1/3
)
− 2

π

√
y+

2

π

√
z+o(1)

= O(y−1/2+ε) +O(z−1/2+ε) + o(1) → 0, as y > z → ∞.

Therefore, (8.21) has an almost sure limit and G1(w) is well-defined. We proceed to G2(w)
and again split it into two parts:

(8.24) G2(w) = lim
x→−∞

 ∑
j: aj>x

ξ2j − 1

i− aj

+ lim
x→−∞

 ∑
j: aj>x

(ξ2j − 1)(i− w)

(w − aj)(i− aj)

 .

We would like to condition on the (typical) values of {aj}, and then prove that both limits
exist almost surely with respect to the randomness coming from ξj. For the imaginary part
of the sum in the first limit, we notice that∣∣∣∣Im(ξ2j − 1

i− aj

)∣∣∣∣ = |ξ2j − 1|
1 + (aj)2

.

Using (8.17) and the monotone convergence theorem (conditionally on {aj} the sum of
expectations with respect to ξj is finite), we see that almost surely

∞∑
j=1

|ξ2j − 1|
1 + (aj)2

< ∞.

Hence, the imaginary part of the first sum in (8.24) is absolutely convergent and x → −∞
limit is well-defined. The same monotone convergence argument shows that the second sum
in (8.24) is dominated by a convergent series, and, therefore, it is absolutely convergent
uniformly over w in compact sets bounded away from aj. It remains to deal with the real
part of the first sum in (8.24):

lim
x→−∞

Re

 ∑
j: aj>x

ξ2j − 1

i− aj

 = lim
x→−∞

 ∑
j: aj>x

(ξ2j − 1)
−aj

1 + (aj)2

 .

We condition on {aj} and note that we deal with a sum of independent mean 0 random
variables. Hence, by the Kolmogorov two-series theorem (see, e.g., Durrett [2019, Theo-
rem 2.5.6]), the almost sure convergence would follow from the convergence of the sum of
(conditional) variances, i.e., convergence of the series

∞∑
j=1

E
[
(ξ2j − 1)2

] (aj)
2

(1 + (aj)2)2
,

which readily follows from (8.17). We conclude that G2(w) is also well-defined. □

Proof of Proposition 8.3. We rewrite the definition (8.1) of G(w) as
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G(w)

= lim
x→−∞

 ∑
j: aj>x

(
1

w +
(
3πj
2

)2/3 +
ξ2j − 1

w +
(
3πj
2

)2/3 + ξ2j

[ (
3πj
2

)2/3
+ aj

(w − aj)(w +
(
3πj
2

)2/3
)

])
− 2

π

√
−x

 .

Splitting the sum into three and using Lemma 8.9, the last expression is transformed into

(8.25) G(w) = lim
x→−∞


 ∑

j: ( 3πj
2 )

2/3
<−x

1

w +
(
3πj
2

)2/3
− 2

π

√
−x

+
∞∑
j=1

ξ2j − 1

w +
(
3πj
2

)2/3
+

∞∑
j=1

ξ2j

[ (
3πj
2

)2/3
+ aj

(w − aj)(w +
(
3πj
2

)2/3
)

]
.

Let us show that as w becomes large (constrained by Re(w) ≥ 0), the second and third sums
in (8.25) tend to 0.

For the third sum, let us show that it is o(|w|−1/4), in the sense that there exists a random
variable c, such that for all w with Re(w) ≥ 0 and |w| ≥ 1, we have:

(8.26)

∣∣∣∣∣
∞∑
j=1

ξ2j

[ (
3πj
2

)2/3
+ aj

(w − aj)(w +
(
3πj
2

)2/3
)

]∣∣∣∣∣ ≤ c|w|−1/4.

We use Lemma 8.9 and note that for j > J, the numerator satisfies |
(
3πj
2

)2/3
+ aj| ≤ jε. In

addition, since ξ2j has exponential tails, the Borel–Cantelli lemma implies that there exists

a random C = C(ε) > 0, such that almost surely ξ2j < Cjε for all j = 1, 2, . . . . We choose ε
to be small enough and upper-bound the series (8.26) by three sums:

(8.27)
J∑

j=1

ξ2j

∣∣∣(3πj2 )2/3 + aj

∣∣∣
|w − aj||w +

(
3πj
2

)2/3 | +
⌊|w|3/2⌋∑
j=J+1

2Cj2ε

|w +
(
3πj
2

)2/3 |2 +
∞∑

j=⌊|w|3/2⌋+1

2Cj2ε

|w +
(
3πj
2

)2/3 |2 .
The first sum is finite, and, therefore, almost surely converges to 0 at speed |w|−2 as |w| → ∞.
The second sum has at most |w|3/2 terms and each term is upper-bounded as O(|w|−2); hence,
the sum is O(w−1/2). The terms of the last sum can be upper-bounded by a constant times

j2ε−4/3, and therefore the sum is upper bounded by a constant times |w| 32 (2ε−1/3). Combining
all three bounds, we arrive at (8.26).

For the second sum in (8.25), we do summation by parts:

M∑
j=1

ξ2j − 1

w +
(
3πj
2

)2/3 =
1

w +
(

3π(M+1)
2

)2/3 M∑
k=1

(ξ2k − 1)

−
M∑
j=1

[
j∑

k=1

[ξ2k − 1]

] 1

w +
(

3π(j+1)
2

)2/3 − 1

w +
(
3πj
2

)2/3
 .



UNIFORM INFERENCE FOR SIGNAL STRENGTH 33

Taking absolute values, we get an upper-bound for a deterministic constant C > 0∣∣∣∣∣
M∑
j=1

ξ2j − 1

w +
(
3πj
2

)2/3
∣∣∣∣∣ ≤ C

|w|+M2/3

∣∣∣∣∣
M∑
k=1

(ξ2k − 1)

∣∣∣∣∣+
M∑
j=1

∣∣∣∣∣
j∑

k=1

[ξ2k − 1]

∣∣∣∣∣ Cj−1/3

(|w|+ j2/3)2
.

Applying the Law of Iterated Logarithm to the sums
∑j

k=1[ξ
2
k − 1], we find another random

variable C′ > 0, not dependent on w, such that∣∣∣∣∣
M∑
j=1

ξ2j − 1

w +
(
3πj
2

)2/3
∣∣∣∣∣ ≤ C′

|w|+M2/3

√
M ln lnM +

M∑
j=1

√
j ln ln(j + 2)

C′j−1/3

(|w|+ j2/3)2
.

The last expression clearly tends to 0 as |w| → ∞, uniformly in M . We conclude that for
large w, up to o(1) error only the first term in (8.25) contributes to the w → ∞ asymptotics.
This term is deterministic and we can analyze it by converting sums into integrals. For large
x and large w with Re(w) ≥ 0, we have

∑
j: ( 3πj

2 )
2/3

<−x

1

w +
(
3πj
2

)2/3 =
∑

j: ( 3πj
2 )

2/3
<−x

∫ j

j−1

dy

w +
(
3πy
2

)2/3 +O

 j−1/3∣∣∣w +
(
3πj
2

)2/3∣∣∣2

 .

Let us upper bound the sum of the O(·) terms:

(8.28)
∞∑
j=1

j−1/3∣∣∣w +
(
3πj
2

)2/3∣∣∣2 =

⌊|w|3/2⌋∑
j=1

j−1/3∣∣∣w +
(
3πj
2

)2/3∣∣∣2 +
∞∑

j=⌊|w|3/2⌋+1

j−1/3∣∣∣w +
(
3πj
2

)2/3∣∣∣2
≤ |w|3/2|w|−2 + const ·

∞∑
j=⌊|w|3/2⌋+1

j−5/3 ≤ |w|−1/2 + const · |w|−
3
2
· 2
3 = O(|w|−1/2).

It remains to analyze the integral, for which we change the variables v =
(
3πy
2

)2/3
:∫ 2

3π
(−x)3/2

0

dy

w +
(
3πy
2

)2/3 =
1

π

∫ −x

0

√
v

w + v
dv =

1

π

[
2
√
v − 2

√
w arctan

(√
v√
w

)]v=−x

v=0

=
2

π

√
−x− 2

π

√
w arctan

(√
−x√
w

)
.

We conclude that

lim
x→−∞


 ∑

j: ( 3πj
2 )

2/3
<−x

1

w +
(
3πj
2

)2/3
− 2

π

√
−x


= − 2

π

√
w lim

x→−∞
arctan

(√
−x√
w

)
+O(|w|−1/2)

= − 2

π

√
w lim

x→−∞

(
π

2
− arctan

( √
w√
−x

))
+O(|w|−1/2) = −

√
w +O(|w|−1/2).

(8.29)

Plugging back into (8.25), we arrive at (8.2):

G(w) = −
√
w + o(1), as w → ∞ with Re(w) ≥ 0.
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In order to prove (8.3), we again use (8.25). (8.26) and (8.29) imply that the sum of the
first and the third terms is −

√
w + o

(
w−1/4

)
and it remains to analyze the second term.

Note that it is a sum of mean 0 independent random variables, and therefore the Central
Limit Theorem applies. Hence, it remains to compute the asymptotic variance of the sum
as w → ∞, which is

(8.30)
∞∑
j=1

2(
w +

(
3πj
2

)2/3)2 = (2 + o(1))

∞∫
0

dx(
w +

(
3πx
2

)2/3)2 = (2 + o(1))
1

2
√
w
,

which matches the claim of (8.2). □

Proof of Proposition 8.5. An equivalent statement with a different proof can be found in
Bloemendal [2011, Theorem 4.1.1]. Our proof is based on (8.3), which we restate as

(8.31) G(w) = −
√
w + w−1/4N (0, 1) + o

(
w−1/4

)
, w → +∞.

Using Definition 4.2, the main computation of the proof is to replace G(w) with −Θ and
then solve (8.31), viewed as an equation on unknown w, and treating Θ as a parameter. In
this way we get the desired equivalent form of (8.4):

T (Θ) = w = Θ2 + 2Θ1/2N (0, 1) + o
(
Θ1/2

)
, Θ → +∞.

In order to justify the validity of this computation, we use the monotonicity of G(w)
on [a1,+∞). The distributional limit of T (Θ)−Θ2

2
√
Θ

is obtained from the computation of the

following probabilities for t ∈ R, in which we used Definition 4.2:

Prob
(
T (Θ) ≤ 2t

√
Θ+Θ2

)
= Prob

(
−Θ ≥ G(2t

√
Θ+Θ2), a1 ≤ 2t

√
Θ+Θ2

)
.

The second condition a1 ≤ 2t
√
Θ + Θ2 has probability approaching 1 as Θ → ∞, and,

therefore, can be dropped. For the first condition, we use (8.31) to transform it as Θ → +∞:

Prob

(
−Θ ≥ −

√
2t
√
Θ+Θ2 + (2t

√
Θ+Θ2)−1/4N (0, 1) + o

(
(2t

√
Θ+Θ2)−1/4

))
= Prob

(
−Θ ≥ −Θ− tΘ−1/2 +Θ−1/2N (0, 1) + o

(
Θ−1/2

))
= Prob

(
t ≥ N (0, 1) + o (1)

)
,

and the last probability clearly tends to the Gaussian distribution function as Θ → ∞. □

8.2. A class of meromorphic functions. In this subsection we first consider determin-
istic meromorphic complex functions. We then introduce randomness and establish general
theorems that aid in proving convergence to G(w).

Definition 8.10. Given a real number γ ∈ R, a sequence of real numbers x1 ≥ x2 ≥ x3 ≥ . . .
with limn→∞ xn = −∞, and a sequence of non-negative weights {wj}∞j=1, satisfying

(8.32)
∞∑
j=1

wj

1 + x2
j

< ∞,

we define a complex function

(8.33) f(z) = γ +
∞∑
j=1

wj

(
1

z − xj

+
xj

1 + x2
j

)
, z ∈ C \ {xj}∞j=1.
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We let Ω− denote the convex cone of all complex functions of this form. The minus in the
notation Ω− indicates that xn → −∞.

Note that we allow some wj to vanish, so (8.33) may reduce to a finite sum.

Lemma 8.11. The sum (8.33) converges uniformly on any compact subset of C \ {xj}∞j=1;

that is, it converges in the topology
mer→ .

Proof. For z in a compact set Z ⊂ C \ {xj}∞j=1, we have∣∣∣∣wj

(
1

z − xj

+
xj

1 + x2
j

)∣∣∣∣ = ∣∣∣∣1 + zxj

z − xj

· wj

1 + x2
j

∣∣∣∣ ≤ C(Z) · wj

1 + x2
j

.

Hence, the absolute and uniform convergence of (8.33) follows from (8.32). □

Our arguments crucially use the sublinearity of functions in Ω−:

Lemma 8.12. For any f ∈ Ω−, we have

lim
R→±∞

f(iR)

R
= 0.

Proof. We have

f(iR)− f(i) = i(1−R)
∞∑
j=1

wj

(iR− xj)(i− xj)
.

For R > 1, the magnitude of the sum is bounded by (8.32) and each term goes to 0 as R → ∞.
Hence, by the dominated convergence theorem the sum goes to 0 and f(iR)− f(i) = o(R).
Since obviously also f(i) = o(R) as R → ∞, the conclusion follows. □

Now we state a distributional convergence theorem for random functions from Ω−. Note
that we make no assumptions on γn or γ.

Theorem 8.13. Take random functions fn, n = 1, 2, . . . , and f from Ω−, corresponding
to random (γn, {xj;n}∞j=1, {wj;n}∞j=1) and (γ, {xj}∞j=1, {wj}∞j=1). Suppose that, in the sense of
convergence in finite-dimensional distributions:

(8.34) lim
n→∞

xj;n = xj, and lim
n→∞

wj;n = wj, for each j = 1, 2, . . . ,

and there exists a deterministic function ϕ : R+ → C such that for any ε > 0 and R > 0

(8.35) lim
R→+∞

Prob(|f(iR)− ϕ(R)| > ε) = lim
R→+∞

lim sup
n→∞

Prob(|fn(iR)− ϕ(R)| > ε) = 0.

Then there exists a coupling that places all fn and f on the same probability space such that
almost surely fn

mer→ f .

As noted earlier, this implies convergence in distribution fn
mer, d→ f , and thus convergence

in distribution of (fn(zj))
k
j=1 to (f(zj))

k
j=1 at any finite set of points.

Theorem 8.13 is inspired by Aizenman and Warzel [2015], see Theorem 3.1 and Section
6 there, as well as Sodin [2018, Section 1.4]. There are, however, important differences: in
Aizenman and Warzel [2015] the function ϕ(R) was constant – this does not hold in our main
application. Additionally, our topology of convergence is stronger than that of Aizenman
and Warzel [2015], which will be crucial for us when we want to solve equations of the form
fn(z) = θ. Unlike Sodin [2018], we do not make use of any results from complex analysis,
beyond the basic theory.
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Remark 8.14. One can also deal with several sequences of functions f
[k]
n (z) converging

towards f [k](z), k = 1, 2, . . . , K. The tail condition (8.35), the conclusion of the theorem,
and the proof remain exactly the same for such extension.

In the rest of this subsection we prove Theorem 8.13. We start with a deterministic statement.

Lemma 8.15. Let fn, n = 1, 2, . . . , and f be deterministic functions from Ω−, corresponding
to (γn, {xj;n}∞j=1, {wj;n}∞j=1), and (γ, {xj}∞j=1, {wj}∞j=1) . Suppose that:

(8.36) lim
n→∞

wj;n = wj, and lim
n→∞

xj;n = xj, for each j = 1, 2, . . . , and

(8.37) lim
n→∞

fn(i) = f(i).

Then fn
mer→ f , i.e., fn(z) → f(z), uniformly over z in compact subsets of C \ {xj}∞j=1.

Proof. We have

fn(z)− fn(i) =
∞∑
j=1

wj;n

(
1

z − xj;n

− 1

i− xj;n

)
= (i− z)

∞∑
j=1

wj;n

(z − xj;n)(i− xj;n)
.

Each term in the last series converges towards its counterpart for the series of f(z) − f(i),
and we need to produce a uniform tail bound. For that we note∣∣∣∣∣

∞∑
j=M

wj;n

(z − xj;n)(i− xj;n)

∣∣∣∣∣ ≤
∞∑

j=M

∣∣∣∣ i+ xj;n

z − xj;n

∣∣∣∣ · wj;n

1 + x2
j;n

≤
[
1 + max

j≥M

{
|z|+ 1

|z − xj;n|

}] ∞∑
j=M

wj;n

1 + x2
j;n

.

The first factor stays uniformly bounded as n → ∞, and it remains to show that the second
factor tends to 0 as M → ∞ (uniformly in n). For that we observe

(8.38)
∞∑

j=M

wj;n

1 + x2
j;n

= −Imfn(i)−
M−1∑
j=1

wj;n

1 + x2
j;n

.

For an arbitrary ε > 0, we choose M large enough, so that

∞∑
j=M

wj

1 + x2
j

= −Imf(i)−
M−1∑
j=1

wj

1 + x2
j

< ε.

Then sending n → ∞, in the finite sum in the right-hand side of (8.38), we deduce existence
of n0 such that for all n > n0,

(8.39)
∞∑

j=M

wj;n

1 + x2
j;n

< 2ε.

Because
∑∞

j=1
wj;n

1+x2
j;n

< ∞ for each n, at the expense of increasing M , we can guarantee that

(8.39) holds for all n = 1, 2, . . . . □

The next step is to study the value fn(i) which appeared in the previous lemma.

Lemma 8.16. Under the conditions of Theorem 8.13, the random variables fn(i) converge
in distribution as n → ∞ towards f(i), jointly with the convergence (8.34).
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Proof. We take two constants Q > q > 1, which are both large. Consider

(8.40) fn(iq)− fn(i) =
∞∑
j=1

wj;n

[
1

iq − xj;n

− 1

i− xj;n

]
= i(1− q)

∞∑
j=1

wj;n

(iq − xj;n) · (i− xj;n)
.

Using (8.34), term-by-term the last series converges as n → ∞ towards

f(iq)− f(i) = i(1− q)
∞∑
j=1

wj

(iq − xj) · (i− xj)
,

which is a well-defined finite random variable due to f ∈ Ω− and (8.32). In order to justify
the interchange of the order of summation and taking the n → ∞ limit, we need to produce
an additional tail bound. We observe that for large Q− q we have∣∣∣∣∣∣

∑
j: |xj;n|>Q

wj;n

(iq − xj;n) · (i− xj;n)

∣∣∣∣∣∣ ≤ 2
∑

j: |xj;n|>Q

wj;n

Q2 + x2
j;n

≤ − 2

Q
Im
[
fn(iQ)

]
.

We claim that by choosing first large Q, and then large n we can make 2
Q
Im
[
fn(iQ)

]
arbi-

trarily small with probability arbitrary close to 1. Indeed, combining Lemma 8.12 with the
first limit of (8.35), we conclude that ϕ(Q) = o(Q) for large Q. Then the second limit in
(8.35) implies that for large n also fn(iQ) = o(Q) with high probability.
On the other hand, using (8.34) and limn→∞ |xn| = ∞ from the definition of Ω−, we

conclude that for large n, the part of the sum (8.40) with |xj;n| ≤ Q has only finitely many
(with the number dependent only on Q) terms with high probability. It follows that we are
allowed to pass to the limit n → ∞ in (8.34) and we have proven that for each q > 1

(8.41) lim
n→∞

(
fn(iq)− fn(i); (xj;n, wj;n)

∞
j=1

)
d
=
(
f(iq)− f(i);

(
xj, wj

)∞
j=1

)
.

In order to finish the proof of the lemma, it remains to get rid of fn(iq). For that we notice
that by (8.35), fn(iq) − fn(i) ≈ ϕ(q) − fn(i) and also f(iq) − f(i) ≈ ϕ(q) − f(i), i.e., the
differences of the left-hand sides and the right-hand sides are small with probability close to
1 when q and n are large. Subtracting ϕ(q) from both sides, we are done. □

Proof of Theorem 8.13. By Lemma 8.16, in distribution,

(8.42) lim
n→∞

(
fn(i); (xj;n, wj;n)

∞
j=1

)
d
=
(
f(i);

(
xj, wj

)∞
j=1

)
.

By the Skorokhod’s representation theorem (see, e.g., Billingsley [1999, Chapter 1, Theorem
6.7]) one can construct a coupling, so that (8.42) becomes almost sure convergence. Then

Lemma 8.15 implies fn
mer→ f . □

The setting of Theorem 8.13 is tailored to our main application – convergence to G(w) –
which is why we assume x1 ≥ x2 ≥ . . . . However, we could instead consider functions of
the form (8.33) constructed from a sequence x1 ≤ x2 ≤ . . . with xn → +∞; we denote the
class of such functions by Ω+. Similarly, we could allow both types of sequences and work
with sums of the form f(z) = f−(z) + f+(z), where f± ∈ Ω±. The following theorem can
be proved by repeating the argument of Theorem 8.13 word for word.
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Theorem 8.17. In Theorem 8.13, instead of fn, f ∈ Ω−, we can take fn = f+
n +

f−
n , f = f+ + f−, with f±

n , f
± ∈ Ω± corresponding to (γ±

n , {xj;n±}∞j=1, {w±
j;n}∞j=1) and

(γ±, {x±
j }∞j=1, {w±

j }∞j=1). Replacing (8.34) with

(8.43) lim
n→∞

x±
j;n = x±

j , and lim
n→∞

w±
j;n = w±

j , for each j = 1, 2, . . . ,

and keeping (8.35), the conclusion continues to hold in the same sense as in Theorem 8.13:

almost surely fn
mer→ f .

Remark 8.18. For both f ∈ Ω− and f ∈ Ω+, the function −f(z) belongs to the Herglotz-
Nevanlinna class, meaning it maps the upper half-plane to itself. Our proofs can be adapted
to handle most other Herglotz–Nevanlinna functions, as long as they exhibit sublinear growth.
However, the linear Herglotz-Nevanlinna function az, a > 0, is excluded from our definitions:
Lemma 8.12 is essential for the arguments.

Theorems 8.13 and 8.17 can be applied in various situations in random matrix theory,
where xj;n are eigenvalues converging to various universal scaling limits (such as Airy, sine,
or Bessel point processes). When all wj;n equal 1, we deal with the Stieltjes transform or
the log-derivative of the charateristic polynomial, connecting us to the vast literature on the
latter, see, e.g., Lambert and Paquette [2020], Johnstone et al. [2025], Collins-Woodfin and
Le [2025] for the most recent results related to the edge limits. In our main application,
instead, wj;n are i.i.d. random variables.

8.3. Convergence to G(w). In this section we use Theorem 8.13 to derive sufficient con-
ditions for convergence towards G(w) of Theorem 8.1. For each N = 1, 2, . . . , we are given
an N–tuple of random variables λ1;N ≥ λ2;N ≥ · · · ≥ λN ;N ; we assume that for each N
these variables are defined on its own probability space, which therefore depends on N . In
addition, for each N we are given a sequence of i.i.d. Gaussian random variables ξ1, ξ2, . . . , ξN
on the same N–dependent probability space (we omit an additional N from the index of ξi,
because the distribution of ξi does not depend on it), which are independent of {λi;N}Ni=1.
In addition, we are given a continuous non-negative function h(x) ≥ 0. We encode the data
via the empirical Stieltjes transform:

mN(z) =
1

N

N∑
i=1

h(λi;N)

z − λi;N

.

The data is assumed to satisfy the following:

Assumption 8.19. There exists a function m(z) and constants λ+ ∈ R, s > 0, m ∈ R,
ε > 0, and C > 0 such that

(i) In the sense of convergence of finite-dimensional distributions:

(8.44) lim
N→∞

{
N2/3s2/3 (λj;N − λ+)

}N
j=1

d
= {aj}∞j=1,

where a1 ≥ a2 ≥ . . . is the Airy1 point process.
(ii) As R → 0 we have

(8.45) m(λ+ + iR) = m− s
1 + i√

2

√
R + o (1) .



UNIFORM INFERENCE FOR SIGNAL STRENGTH 39

(iii) For all N = 1, 2, . . . and all N−2/3 < R < N−2/3+ε we should have

(8.46) E
[
|mN(λ+ + iR)−m(λ+ + iR)|2

]
≤ C

N2R2
.

While not required by the assumptions, it is typical to have

m(z) =

∫
R

h(x)

z − x
µ(x)dx,

where µ(x)dx is an independent of N probability measure µ(x)dx, supported on a finite
interval [λ−, λ+] ⊂ R, and which is a limit of the empirical measures of λi;N .

The first condition in Assumption 8.19 specifies the edge limit of λi;N ; the second condition

is related to the square root behavior h(x)µ(x) ≈ s
π

√
λ+ − x for x close to λ+ from the left;

the third condition is the optimal local law meaning that the empirical measure of λi;N is
close to the limit given by µ(x)dx.

We denote

(8.47) GN(w) = N1/3s−2/3

(
1

N

N∑
j=1

h(λj;N) ξ
2
j

λ+ +N−2/3s−2/3w − λj;N

−m

)
.

The next theorem asserts that one can couple the processes defined for the different values
of N in such a way that GN converge to the Airy-Green function.

Theorem 8.20. Under Assumption 8.19, there exists a coupling that places random variables(
{λj;N}Nj=1, {ξj}Nj=1

)∞
N=1

and the Airy-Green function G(w) on the same probability space,
such that almost surely

(8.48) GN(w)
mer→ h(λ+)G(w), N → ∞.

Corollary 8.21. For any finitely many deterministic w1, . . . , wk ∈ C, the convergence in
(8.48) holds in joint distribution over w = w1, . . . , w = wk.

Corollary 8.22. Fix θ ∈ R and let w̃N denote the largest real solution of the equation
GN(w) = θ and let w̃ denote the largest real solution of the equation G(w) = θ. Under
Assumption 8.19,

(8.49) lim
N→∞

w̃N
d
= w̃.

Remark 8.23. For some settings we might have more than one sequence ξj and more than
one choice for h(x). One can take finite K and consider simultaneous edge limits for

1

N

N∑
j=1

h(k)(λj;N) · (ξ(k)j )2

z − λj;N

, k = 1, 2, . . . , K,

where {ξ(k)j } are all i.i.d. Gaussian N (0, 1) over j, but might be correlated over k. Theorem
8.20 and Corollaries 8.21, 8.22 have immediate extensions to such setting, where each of
the k functions converges to its own G(k)(w), constructed by the same {aj}, but distinct

sequences {ξj} = {ξ(k)j }, which might be correlated over k. The convergence would be joint
over k = 1, 2, . . . , K, while the proof remains exactly the same.
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Proof of Theorem 8.20. We want to apply Theorem 8.13 with n = N , fn = GN , f = h(λ+)·G.
Condition 1. We need to check that the functions GN and G are almost surely in the

class Ω−. For GN this is immediate. G also belongs to Ω−, as can be seen by rewriting the
definition:

G(z) = lim
x→−∞

 ∑
j: aj>x

ξ2j
z − aj

− 2

π

√
−x


= lim

x→−∞

∑
j: aj>x

ξ2j

[
1

z − aj
+

aj
1 + a2j

]
+ lim

x→−∞

 ∑
j: aj>x

−aj
1 + a2j

− 2

π

√
−x


and noting that almost sure convergence of

∞∑
j=1

ξ2j
1 + a2j

follows from Lemma 8.9 and monotone

convergence theorem (applied conditionally on the values of {aj}∞j=1).
Condition 2. Limits (8.34) are included in assumption (8.44) for the particle positions,

while the distribution of wj;n = h(λj;N)ξ
2
j converges to that of h(λ+)ξ

2
j by continuity of h(x).

Condition 3. It remains to check (8.35). We set ϕ(R) = −1+i√
2

√
R. Proposition 8.3 yields

that G(iR) + 1+i√
2

√
R goes to 0 as R → ∞ almost surely, and, therefore, also in probability,

verifying the first limit in (8.35). For the second limit we prove that

(8.50) lim
R→+∞

lim sup
N→∞

E
∣∣∣∣GN(iR) +

1 + i√
2

√
R

∣∣∣∣2 = 0.

By the Markov inequality, (8.50) is sufficient for establishing (8.35). The limit (8.50) is a
corollary of the assumptions (8.45) and (8.46). Indeed, taking the expectation with respect
to ξj first and using E(ξ2j − 1)2 = 2, we have

E
∣∣∣∣GN(iR) +

1 + i√
2

√
R

∣∣∣∣2 = E
(
GN(iR) +

1 + i√
2

√
R

)(
GN(iR) +

1− i√
2

√
R

)
(8.51)

= E
∣∣∣∣N1/3s−2/3mN

(
λ+ +

iR

N2/3s2/3

)
−mN1/3s−2/3 +

1 + i√
2

√
R

∣∣∣∣2
+ E

N∑
j=1

2h2(λj;N)

|iR−N2/3s2/3(λj;N − λ+)|2

= E

∣∣∣∣∣N1/3s−2/3m

(
λ+ +

iR

N2/3s2/3

)
−mN1/3s−2/3 +

1 + i√
2

√
R

+N1/3s−2/3

(
mN

(
λ+ +

iR

N2/3s2/3

)
−m

(
λ+ +

iR

N2/3s2/3

))∣∣∣∣∣
2

+
N1/3s−2/3

iR
E
[
mN

(
λ+ − iR

N2/3s2/3

)
−mN

(
λ+ +

iR

N2/3s2/3

)]
.
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The fourth line of (8.51) becomes small as R → ∞ by (8.45), in which one needs to rescale
R. The fifth line becomes small by (8.46), again with rescaled R. The sixth line becomes
small as R → ∞ by a combination of (8.45) and (8.46). □

Proof of Corollary 8.21. Take W = {w1, w2, . . . , wk}. The distribution of each aj is abso-
lutely continuous (e.g., because there is a well-defined density of the first correlation measure
(8.10)), and therefore almost surely no aj belong to W . Hence, (GN(w1), . . . ,GN(wk)) con-
verges towards (G(w1), . . . ,G(wk)) almost surely and, therefore, also in distribution. □

Proof of Corollary 8.22. Directly subtracting the values at two points inside the definition
of G(w), we see that it is a strictly monotone decreasing function of real w > a1. Proposition
8.3 implies that it varies from +∞ to −∞ on (a1,+∞). We conclude that for each θ ∈ R,
there exists a unique random w̃ > a1, such that G(w̃) = θ.

Next, we consider the coupling of Theorem 8.20 and note that by Rouché’s theorem
(see e.g., Ahlfors [1979]) locally-uniform convergence of meromorphic functions implies the
convergence of their zeros. Hence, w̃N → w̃ almost surely, and, therefore, also in distribution.

□

8.4. Universal bound for β–ensembles. In order to verify the conditions of Theorem
8.20, we are going to use the following universal bound valid for all β–ensembles. Take β > 0,
a function V (x) : [a, b] → R, often called a potential, and consider for each N = 1, 2, . . . ,
a probability measure on {λi}Ni=1, such that b ≥ λ1 > λ2 > · · · > λN ≥ a, with probability
density proportional to

(8.52)
∏

1≤i<j≤N

(λi − λj)
β

N∏
i=1

exp

(
−βN

2
VN(λi)

)
.

We will be interested in the case β = 1 and the following three options for VN(λ), although
the theorems we use hold in much greater generality.

• GOE ensemble. The distribution of the eigenvalues of E = 1√
2N

(Z+ZT) with σ2 = 1

as in Section 2.1 takes the form (8.52) with (see, e.g., Forrester [2010, Chapter 1],
Pastur and Shcherbina [2011, Chapter 4]):

a = −∞, b = +∞, VN(λ) =
λ2

2
.

• LOE ensemble. The distribution of the eigenvalues of 1
S
XXT, where S ≥ N and

X is N × S matrix of i.i.d. N (0, 1), as in Sections 2.2 and 2.3 in the case of no
signals θ, takes the form (8.52) with (see, e.g., Forrester [2010, Chapter 1], Pastur
and Shcherbina [2011, Chapter 7]):

a = 0, b = +∞, VN(λ) = −S −N − 1

N
ln(λ) +

S

N
λ.

• JOE ensemble. The distribution of the squared sample canonical correlations between
independent matrices U and V of dimensions N × S and M × S, respectively, and
filled with i.i.d. N (0, 1), as in Section 2.4 in the case of no signals θ, with N ≤ M ,
M +N ≤ S takes the form (8.52) with (see e.g. Forrester [2010, Section 3.6.1])

a = 0, b = 1, VN(λ) = −M −N − 1

N
ln(λ)− S −N −M − 1

N
ln(1− λ).
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We let µV denote the equilibrium measure or limit shape for each of the ensembles, which
is a deterministic measure, approximating the (random) empirical measure 1

N

∑N
i=1 δλi

for
large N . Explicitly, its density is given by:

• For GOE, µV is the semicirle law of density 1
2π

√
4− x2 1[−2,2] dx.

• For LOE, µV is the Marchenko-Pastur law of density 1
2π

√
(λ+−x)(x−λ−)

γ2x
, where (1±γ)2

and the parameter γ satisfies N
S
= γ2 +O(1) as N → ∞.

• For JOE, µV is the Wachter law of density τN
2π

√
(x−λ−)(λ+−x)

x(1−x)
1[λ−,λ+] dx, where λ± =(√

τ−1
M (1− τ−1

N )±
√

τ−1
N (1− τ−1

M )

)2

and the parameters τN , τN satisfy S
N

= τN +

O(1), S
M

= τM +O(1) as N → ∞.

In all three cases [λ−, λ+] denotes the support of µV . Let us also introduce the empirical
and limiting Stieltjes transforms:

(8.53) mN(z) =
1

N

N∑
i=1

1

z − λi

, mV (z) =

∫ λ+

λ−

µV (dx)

z − x
.

In all situation of interest the function mV (z) is explicit and satisfies (8.45). We will present
the formulas for mV (z) when they are needed.

Theorem 8.24. For each of GOE, LOE, JOE, there exist constants η̃ > 0 and C > 0
(depending on γ, τN , τM in a continuous way), such that for all N ≥ 1, q = 1, 2, . . . , and
z = E + iη with 0 < η < η̃, λ− − η̃ < E < λ+ + η̃, we have

(8.54) E |mN(z)−mV (z)|q ≤
(
Cq2

Nη

)q

.

This theorem under the name “Optimal Local Law” can be found in Bourgade et al.
[2022, Proposition 3.5], [Huang and Zhang, 2024, Remark 7.8], and Alt et al. [2025], where
general β-ensembles (8.52) are analyzed. Related statements can also be found in many
other sources, e.g., Bao et al. [2019, Lemma B.2 on arXiv or Lemma S5.2 in the supplement
to the published version] and Yang [2022a, Theorem 2.14] contain slightly weaker bounds
for the CCA setting.

Theorem 8.24 readily implies the condition (8.46) of Assumption 8.19 for the case h(x) = 1.
Several more forms of h(x) will also be needed.

Corollary 8.25. For LOE or JOE ensembles, the bound (8.54) extends to the case h(x) =√
x, in the following form: there exist η̃ > 0 and C > 0, such that for all N ≥ 1, and

z = E + iη with 0 < η < η̃, max(λ− − η̃, 0) < E < λ+ + η̃, we have

(8.55) E

[
1

N

N∑
i=1

√
λi

z − λi

−
∫ λ+

λ−

√
xµV (dx)

z − x

]2
≤ C

N2η2
+

C ln2(N)

N2
.

Remark 8.26. It is plausible that the second term in the right-hand side of (8.55) can be
dropped. Yet, the current form is sufficient for us, as it clearly implies (8.46).
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Proof of Corollary 8.25. Note a deterministic bound
∣∣∣ 1
z−λi

∣∣∣ ≤ 1
η
. This bound allows us to

discard (for the purpose of proving (8.55)) various events, whose probabilities are decaying
fast with N . We will do this several times in the proof.
Let us first assume that λ− > 0 (which happens whenever p is bounded away from 0).

By the large deviations principle for the support of the empirical measure of eigenvalues
(see, e.g., Borot and Guionnet [2013, Proposition 2.1]) for each δ > 0, with probability
exponentially close to 1 for large N all the eigenvalues λ1, . . . , λN lie in the positive segment
[λ− − δ, λ+ + δ] ⊂ (0,+∞). We choose a contour Γ enclosing both this segment and a point
z, intersecting real axis in positive points, and lying inside the domain of validity of (8.54).
We write using (8.53) and residue expansion of the contour integral:

1

N

N∑
i=1

√
λi

z − λi

=
1

2πi

∮
Γ

mN(u)
√
u

u− z
du−mN(z)

√
z,(8.56) ∫ λ+

λ−

√
xµV (dx)

z − x
=

1

2πi

∮
Γ

mV (u)
√
u

u− z
du−mV (z)

√
z.(8.57)

Using the inequality |a+ b|2 ≤ 2|a|2+2|b|2, it is sufficient to separately analyze the first and
second terms. The second moment of the difference of the second terms in (8.56) and (8.57)
is upper-bounded by (8.54). For the first terms, we split the integration contour into two
parts: Γ1 is the part at distance at most 1/N from the real axis and Γ2 is the remaining part
away from the real axis. Hence, it remains to upper-bound

(8.58) E
∣∣∣∣∫

Γ1

(mN(u)−mV (u))
√
u

u− z
du

∣∣∣∣2 + E
∣∣∣∣∫

Γ2

(mN(u)−mV (u))
√
u

u− z
du

∣∣∣∣2 .
For the first term in (8.58), the integrand is upper-bounded by a deterministic constant,
because Γ1 is away from [λ− − δ, λ+ + δ] by construction and we ignore the event when
eigenvalues are not in this segment, as explained at the beginning of the proof. The length
of Γ1 is of order 1/N , and therefore the first term is upper-bounded by C1N

−2.
For the second term in (8.58), using E|ab| ≤ (E|a|2)1/2(E|b|2)1/2 and the bound (8.54), we

produce an estimate:

(8.59) E
∫
Γ2

(mN(u)−mV (u))
√
u

u− z
du

∫
Γ2

(mN(v)−mV (v))
√
v

v − z
dv

=

∫∫
Γ2×Γ2

E
[
(mN(u)−mV (u))(mN(v)−mV (v))

] √
u
√
v

(u− z)(v − z)
dudv

≤ C2

N2

∫∫
Γ2×Γ2

1

|Reu||Re v|
|du||dv| ≤ C3

ln2(N)

N2
.

Summing three upper bounds, we arrive at (8.55).
In the case λ− = 0 we need to be more careful, because if we argue in the same way as for

λ− > 0, then Γ has to loop around 0 and
√
u is no longer holomorphic on the contour. Instead,

we choose the contour Γ passing directly through 0 and enclosing (0, λ+ + δ). Compared to
the previous argument, it is no longer true that on the part of the contour at distance 1

N
from 0 the integrand is upper-bounded by a constant. However, in this case the splitting of
the contour Γ is not required at all: the 1/η singularity of the bound (8.54) is compensated
by

√
u factor in the integrand, and the resulting expression η−1/2 is integrable at η = 0. □
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Corollary 8.27. For JOE ensembles, the bound (8.54) further extends to the cases h(x) =√
1− x and h(x) =

√
x(1− x), in the same form: there exist η̃ > 0 and C > 0, such that

for all N ≥ 1, and z = E + iη with 0 < η < η̃, max(λ− − η̃, 0) < E < min(λ+ + η̃, 1), we
have

(8.60) E

[
1

N

N∑
i=1

h(λi)

z − λi

−
∫ λ+

λ−

h(x)µV (dx)

z − x

]2
≤ C

N2η2
+

C ln2(N)

N2
.

The proof for Corollary 8.27 is the same as for Corollary 8.25 and is omitted.
We also need to check the same condition for finite-rank perturbations of β–ensembles

(8.52), which, in fact, follows automatically as the following lemma asserts.

Lemma 8.28. There exist two positive constants e1 and e2 such that the following holds.
Suppose that λN

i , 1 ≤ i ≤ N , satisfies (8.46) of Assumption 8.19 with C = C1 and µN
i

interlaces with it, which means either

(8.61) µN
1 ≥ λN

1 ≥ µN
2 · · · ≥ µN

N ≥ λN
N or λN

1 ≥ µN
1 ≥ λN

2 · · · ≥ λN
N ≥ µN

N .

Then µN
i , 1 ≤ i ≤ N , satisfies (8.46) with C = e1C1 + e2. This holds with h(x) = 1;

additionally with h(x) =
√
x if the eigenvalues are positive; and with h(x) =

√
1− x and

h(x) =
√
x(1− x) if the eigenvalues lie in the interval [0, 1].

Proof. We only consider the case h(x) = 1, as other cases are similar. We would like to
upper bound the absolute value of the difference,

1

N

N∑
i=1

1

z − λi;N

− 1

N

N∑
i=1

1

z − µi;N

.

The real part of the difference is

(8.62)
1

N

N∑
i=1

Rez − λi;N

(Rez − λi;N)2 + (Imz)2
− 1

N

N∑
i=1

Rez − µi;N

(Rez − µi;N)2 + (Imz)2
.

Note that the function x 7→ Rez−x
(Rez−x)2+(Imz)2

is monotone on each of the three segments x ∈
(−∞,Rez−|Imz|], x ∈ (Rez−|Imz|,Rez+ |Imz|), x ∈ [Rez+ |Imz|,+∞). We split the first
sum in (8.62) into three parts, corresponding to λi;N in each of these three segments. Let N1,
N2, N3 be the numbers of terms in the corresponding parts. Using the interlacement (8.61)
we match the N1 terms in the first segment to N1 − 1 terms in the second sum in (8.62)
corresponding to µi;N which are between those N1 terms. By monotonicity, the difference
between the two subsums is at most 1

N
maxx∈R

Rez−x
(Rez−x)2+(Imz)2

= 1
2N |Imz| . Similarly, the N2

terms in the second segment are matched to N2 − 1 terms in the second sum in (8.62) again
leading to the difference between the two subsums at most 1

2N |Imz| . The same is true for

the remaining N3 terms in the third segment, matched to N3 − 1 terms in the second sum
in (8.62). Note that as a result of this procedure, three terms in the second sum of (8.62)
remained unmatched. Their contribution is upper bounded by 3 · 1

2N |Imz| . We conclude that∣∣∣∣∣Re
(

1

N

N∑
i=1

1

z − λi;N

− 1

N

N∑
i=1

1

z − µi;N

)∣∣∣∣∣ ≤ 3

N |Imz|
.
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For the imaginary part, the argument is similar: we need to bound

1

N

N∑
i=1

Imz

(Rez − λi;N)2 + (Imz)2
− 1

N

N∑
i=1

Imz

(Rez − µi;N)2 + (Imz)2
,

which is done by noticing that the function x 7→ Rez−x
(Rez−x)2+(Imz)2

is monotone on each of the

two segments x ∈ (−∞,Rez], x ∈ (Rez,+∞). Repeating the real part arguments, we get∣∣∣∣∣Im
(

1

N

N∑
i=1

1

z − λi;N

− 1

N

N∑
i=1

1

z − µi;N

)∣∣∣∣∣ ≤ 3

N |Imz|
.

Hence, using the inequality |a+ b|2 ≤ 2|a|2 + 2|b|2, we get∣∣∣∣∣ 1N
N∑
i=1

1

λ+ + iR− µi;N

−m(λ+ + iR)

∣∣∣∣∣
2

≤ 2

∣∣∣∣∣ 1N
N∑
i=1

1

λ+ + iR− λi;N

−m(λ+ + iR)

∣∣∣∣∣
2

+
36

N2R2
.

Taking expectation and using (8.46) for λi;N , we are done. □

9. Appendix B: Applications of general theorem to four models

In this section we use Theorem 8.13 to prove Theorem 4.6. The proofs for all four settings
follow similar outlines, and we present the most detailed exposition for spiked Wigner ma-
trices. The difficulty of the argument increases steadily from the Wigner to the CCA case,
and we recommend sequential reading.

9.1. Spiked Wigner matrices. For the spiked Wigner case of Theorem 4.6, our first task
is to introduce an equation governing the change of the eigenvalues of a symmetric matrix
under a rank one perturbation.

Take N×N real symmetric matrix B with eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λN and normalized
eigenvectors ui, 1 ≤ i ≤ N , satisfying ⟨ui,uj⟩ = δi=j. In addition, take a column-vector u∗.
For a real constant θ ̸= 0 we define

A = θ · u∗(u∗)T +B.

Proposition 9.1. For each eigenvalue a of A, either

(9.1)
1

θ
=

N∑
i=1

⟨ui,u
∗⟩2

a− λi

;

or a = λj for 1 ≤ j ≤ N , where λj is an eigenvalue of B of multiplicity one, ⟨u∗,uj⟩ = 0,
and the equation (9.1) holds with the j-th term excluded; or a = λj, where λj is an eigenvalue
of B of multiplicity larger than one.

We omit the proof, see, e.g., Jones et al. [1978] or Arbenz et al. [1988].

Remark 9.2. We mostly use Proposition 9.1 in the generic situations of all distinct λi and
all non-zero ⟨ui,u

∗⟩. Hence (9.1) will hold.

Corollary 9.3. The eigenvalues of A and B interlace: if µ1 ≥ · · · ≥ µN are the eigenvalues
of A, then µ1 ≥ λ1 ≥ µ2 ≥ . . . for θ > 0 and λ1 ≥ µ1 ≥ λ2 ≥ . . . for θ < 0.
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Proof. Assuming without loss of generality that all λi are distinct and for all i we have
⟨ui,u

∗⟩ ≠ 0 (general case is obtained by a limit transition), note that (9.1) is a polynomial
equation on a of degree N , and therefore has N roots which are µ1, . . . , µN . Tracking
the sign changes of the difference between the RHS and the LHS on intervals (−∞, λN),
(λN , λN−1),. . . , (λ1,+∞), we localize the roots, so that they satisfy the desired interlace-
ments. □

The plan for the rest of the section is to recursively use (9.1) to produce an inductive proof
of Theorem 4.6 for the spiked Wigner model by growing r. On each step, we need to know
the law of the scalar products ⟨ui,u

∗⟩ appearing in the equation. This is simplified by the
following observation:

Lemma 9.4. One can replace the vectors u∗
i in (2.1) with r vectors uniformly distributed

on the N–dimensional unit sphere, independent from each other and from E: Theorem 4.6
for deterministic orthonormal vectors as in Section 2.1 is equivalent to the same theorem for
independent unit vectors.

Proof. We first note that the asymptotics in Theorem 4.6 does not depend on the choice
of the unit vectors u∗

i in (2.1) as long as they are orthogonal to each other. Indeed, any r
orthogonal vectors can be obtained from any other r orthogonal vectors by an orthogonal
transformation of the space. Such transformation does not change the eigenvalues of A, and
also does not change the probability distribution of the matrix E (which uses Gaussianity of
its matrix elements).

Now let v∗
1, . . . ,v

∗
r be r independent vectors uniformly distributed on the unit sphere.

We consider the matrix Mr =
∑r

i=1 θiv
∗
i (v

∗
i )

T and would like to decompose it as Mr =∑r
i=1 θ

′
iw

∗
i (w

∗
i )

T with orthonormal vectors w∗
i ; v∗

i were not orthonormal. Clearly, θ′i are
non-zero eigenvalues of Mr and w∗

i are corresponding eigenvectors. We claim that

(9.2) θi = θ′i +O

(
1

N

)
, N → ∞.

Note that (9.2) implies the statement of Lemma 9.4, because addition of O(1/N) does not
change any of the asymptotics statements of Theorem 4.6. Hence, it remains to prove (9.2).
This can be done by induction on r. Using (9.1) with B = Mr−1, the non-zero eigenvalues
of Mr solve an equation

(9.3)
1

θr
=

r−1∑
i=1

⟨wi,v
∗
r⟩2

a− θ′i
+

N∑
i=r

⟨wi,v
∗
r⟩2

a
,

where wi are eigenvectors of Mr−1 and θ′i are non-zero eigenvalues. Representing the unit
vector v∗

r as a vector with i.i.d. N (0, 1) components divided by its length, using the Law of
Large Numbers and the induction hypothesis, the equation is rewritten as

(9.4)
1

θr
=

1

N

r−1∑
i=1

χ2
i (1 +O( 1√

N
))

a− θi +O( 1
N
)
+

1 +O( 1
N
)

a
,

where χi are i.i.d. N (0, 1) random variables. (9.4) is a polynomial equation on a of degree
r, which clearly has r roots of the form θi +O( 1

N
), thus proving (9.2). □
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The induction can proceed in various orders of spike addition, and we choose to first add
all subcritical and supercritical spikes, and then add the critical spike with index q at the
very end. Hence, as an intermediate statement we have the following:

Proposition 9.5. Consider the spiked Wigner model A =
∑r

i=1 θi·u∗
i (u

∗
i )

T+E of Section 2.1,
where E = 1√

2N
(Z+ZT), with Z being N×N matrix of i.i.d. N (0, 1), and θ1 > θ2 > · · · > θr

split into two groups: θ1, . . . , θq−1 > θc = 1 and θq, . . . , θr < θc = 1. Then, in the sense of
convergence in joint distribution and using (2.2):

lim
N→∞

√
N(λi − λ(θi))

d
= N (0, V (θi)), 1 ≤ i ≤ q − 1,(9.5)

lim
N→∞

N2/3(λi − 2)
d
= ai−q+1, i ≥ q,(9.6)

where N (0, V (θi)), 0 ≤ i ≤ q − 1, are independent and {aj}j≥1 are points of the Airy1 point
process independent from (9.5). In addition, (8.46) with h(x) = 1 holds for the eigenvalues
of A.

Proof. The final statement, (8.46) is proven by induction on r, starting from Theorem 8.24
for r = 0, and using Lemma 8.28 with Corollary 9.3 for the induction step. Here

(9.7) µ(x)dx =
1

2π

√
4− x2 1[−2,2] dx, m(z) =

z −
√
z2 − 4

2
,

and the constants of (8.45) are computed as s = 1, m = 1, λ+ = 2.
Statements close to (9.5), (9.6) are known from Capitaine et al. [2012], Benaych-Georges

et al. [2011], Knowles and Yin [2013]; we sketch the proof in order to be self-contained.
We proceed by induction on r; the base case r = 0 is Proposition 4.1. We analyze the

equation (9.1) with θ = θ1 and λi being eigenvalues of A =
∑r

i=2 θi · u∗
i (u

∗
i )

T + E . We
start by considering the case θ1 > θc (i.e., q > 1) and comment on the changes for the case
q = 1 at the end. We first look at the interval a ∈ [λ1,+∞). The right-hand side of the
equation (9.1) is a monotone-decreasing function of a in this interval, changing from +∞ to
0. Hence, there is a unique â ∈ (λ1,+∞) solving (9.1). In order to locate this â, we make
an asymptotic expansion of the equation. Using Lemma 9.4, we can assume u∗ in (9.1) to
be a uniformly random vector on the unit sphere, independent from everything else. Then
⟨ui,u

∗⟩ are coordinates of a similar vector, because ui are orthonormal. Hence, the equation
(9.1) is recast as

(9.8)
1

θ1
=

N∑
j=1

ζ2j
a− λj

, (ζ1, . . . , ζN) ∼ Uniform on unit sphere SN−1.

We further approximate the RHS as N → ∞ for a > λj, by writing it as

(9.9)
1

N

N∑
j=1

1

a− λj

+
N∑
j=1

ζ2j − 1
N

a− λj

.

Let us first imagine that (λ1, . . . , λN) are eigenvalues of GOE, i.e., of the matrix
E = 1√

2N
(Z + ZT) from the statement of the proposition. Then, using the semicircle law

(see Theorem 8.24 or Bai and Silverstein [2010, Chapter 2 and Theorem 9.2]), the first term
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in (9.9) becomes

(9.10)

∫ 2

−2

1

2π

√
4− x2

dx

a− x
+O

(
1

N

)
=

1

2

(
a−

√
a2 − 4

)
+O

(
1

N

)
.

For the second term, note that ζ2j − 1
N
, j = 1, 2, . . . , N , are weakly dependent mean 0 random

variables. Hence, conditionally on λ1, . . . , λN , CLT applies and the sum is asymptotically
Gaussian. The limit of the variance can be computed using

E
(
ζ2j − 1

N

)2
=

2

N2
+ o

(
1

N2

)
, E

(
ζ2i − 1

N

) (
ζ2j − 1

N

)
= − 2

N3
+ o

(
1

N3

)
,

where the first identity comes from writing ζ2j
d
=

ξ2j∑N
ℓ=1 ξ

2
ℓ

with i.i.d. N (0, 1) random variables

ξj and the second identity comes from combining the first one with E
[∑N

j=1(ζ
2
j − 1

N
)
]2

=

E[0]2 = 0. Hence,

E

( N∑
j=1

ζ2j − 1
N

a− λj

)2
∣∣∣∣∣∣λ1, . . . , λN

 =
2

N2

N∑
j=1

1

(a− λj)2
− 2

N3

[
N∑
j=1

1

a− λj

]2
+ o

(
1

N

)
,

and plugging in the semicircle law, we further approximate the variance as

2

N

(∫ 2

−2

1

2π

√
4− x2

dx

(z − x)2
−
[∫ 2

−2

1

2π

√
4− x2

dx

z − x

]2)
+ o

(
1

N

)
=

1

N

(
−1 +

a√
a2 − 4

)
− 1

2N

(
a−

√
a2 − 4

)2
+ o

(
1

N

)
=

(a−
√
a2 − 4)3

4N
√
a2 − 4

+ o

(
1

N

)
.

We conclude that on the interval (λ1,+∞), the equation (9.8) is approximated by

(9.11)
1

θ1
=

1

2

(
a−

√
a2 − 4

)
+

1√
N

√
(a−

√
a2 − 4)3

4
√
a2 − 4

N (0, 1) + o

(
1√
N

)
.

Recall that this approximation was obtained assuming λi to be eigenvalues of GOE. What
we actually need for them is instead to be coming from a deformation of GOE, i.e., to be
the eigenvalues of

∑r
i=2 θi · u∗

i (u
∗
i )

T + E . The approximation (9.11) remains true for such a
finite rank deformation, as follows from the interlacements of Corollary 9.3, by repeating the
arguments in the proof of Lemma 8.28.

Solving the equation (9.11) as N → ∞, we get

(9.12) a = θ1 +
1

θ1
+N (0, 1)

√
2√
N

√
θ21 − 1

θ21
+ o

(
1√
N

)
,

which matches (9.5) and proves the desired asymptotics for the largest eigenvalue.
For the remaining eigenvalues, the idea is to show that the (i + 1)st largest root of (9.8)

is very close to λi and then use the induction hypothesis. By Corollary 9.3, the (i + 1)st
largest root is the unique root in the interval (λi+1, λi) and our task is to show that it is
much closer to the right end-point of this segment rather than to the left end-point.
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Case 1: θi+1 > θc, so that λi is bounded away from λ+. Let us approximate (9.8) as
N → ∞ near λi. For the sum over j ̸= i, the same arguments leading to (9.11) continue to
hold and the equation turns into:

(9.13)
1

θ1
− 1

2

(
a−

√
a2 − 4

)
− 1√

N

√
(a−

√
a2 − 4)3

4
√
a2 − 4

N (0, 1) =
ζ2i

a− λi

+ o

(
1√
N

)
.

Note that for a close to λi, the value of
1
2

(
a−

√
a2 − 4

)
is close to 1/θi+1 > 1/θ1 by induction

assumption (9.5). Hence, for large N the left-hand side of (9.13) is negative and bounded
away from zero. On the other hand ζ2i = O( 1

N
). We conclude that a should be smaller than

λi, at distance O( 1
N
), in order for (9.13) to hold. Hence, this root a satisfies the asymptotics

(9.5).
Case 2: θi+1 < θc, so that λi is close to λ+. We approximate the right-hand side of (9.8)

as N → ∞ near λ+ by writing ζ2j
d
=

ξ2j∑N
ℓ=1 ξ

2
ℓ

with i.i.d. N (0, 1) random variables ξj and then

using Theorem 8.20 with s = m = 1, h(x) = 1, whose assumptions hold by the induction
hypothesis. The right-hand side of (9.8) has asymptotics 1 +N−1/3 · G(b) + o(N−1/3) where
the rescaled variable is b = N2/3(a − 2). The interval a ∈ (λi+1, λi) turns asymptotically
into b ∈ (ai−q+2, ai−q+1), and the equation becomes G(b) = N1/3(1/θ1 − 1) + o(N−1/3). Since
1/θ1 < 1/θc = 1, we are looking for a value of b ∈ (ai−q+2, ai−q+1), where G(b) would be large
and negative. Clearly, then b needs to be close to the right end-point of the segment, i.e., to
ai−q+1 and we achieve (9.6).

To finish the proof it remains to analize the case θ1 < θc, i.e., q = 1. The argument then
repeats the just presented Case 2, with the only difference being that we now look for a value
of b ∈ (ai−q+2, ai−q+1), where G(b) would be large and positive. Then b needs to be close to
the left end-point of the segment8, which is ai−q+2 = ai+1 and we arrive at (9.6). □

Proof of Theorem 4.6 for the spiked Wigner model of Section 2.1. We note that the con-
stants (4.8) simplify to κ1 = κ2 = 1. We analyze the equation (9.1) for θ = θq, (λi,ui)

N
i=1

being eigenvalues and eigenvectors of

A =
∑
1≤i≤r
i ̸=q

θi · u∗
i (u

∗
i )

T + E ,

and u∗ being a uniformly random unit vector independent from the rest. By Proposition 9.1
and Lemma 9.4 the N solutions of this equation denoted a1 ≥ a2 ≥ · · · ≥ aN , are precisely
the eigenvalues of Theorem 4.6 (which were λi there) and we need to establish (4.6) and
(4.7). We rely on Proposition 9.5 for the asymptotics of λ1, λ2, . . . and therefore know that
the largest ones satisfy (4.6) (equivalently, (9.5)), while the next ones converge to the points
of the Airy1 point process by (9.6).

We first claim that

(9.14) ai − λi = O

(
1

N

)
, 1 ≤ i ≤ q − 1.

The proof of (9.14) is exactly the same as Case 1 in the proof of Proposition 9.5, i.e., using
(9.13) (with θ1 replaced by θq this time). (9.14) combined with (9.5) implies the desired
asymptotics (4.6) for a1, . . . , aq−1.

8For i = q = 1 the segment of interest is (a1,+∞).
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It remains to compute the asymptotics of aq. Because u
∗ is uniformly random and [ui]

N
i=1

are orthonormal, the vector ⟨uj,u
∗⟩2, 1 ≤ j ≤ N , has the same distribution as

ξ2j∑N
ℓ=1 ξ

2
ℓ

with

i.i.d. N (0, 1) random variables ξj. Hence, recalling θq = θc + N−1/3θ̃ = 1 + N−1/3θ̃, (9.1)
becomes:

(9.15)
1

1 +N−1/3θ̃
=

1∑N
ℓ=1 ξ

2
ℓ

N∑
i=q

ξ2i
a− λi

+
1∑N

ℓ=1 ξ
2
ℓ

q−1∑
i=1

ξ2i
a− λi

.

By Corollary 9.3, aq is the unique root of (9.15) in the interval9 (λq, λq−1). In order to locate
this root, we change the variables

(9.16) b = N2/3(a− 2), a = 2 +N−2/3b,

and investigate the asymptotics of (9.15) for finite b, i.e., for a close to λ+ = 2. Because
λ1, . . . , λq−1 are bounded away from 2 by Proposition 9.5, the second sum in the right-hand
side of (9.15) is O( 1

N
) and can be omitted. For the first sum we apply Theorem 8.20 with

s = m = 1, h(x) = 1. Hence, (9.15) turns into

(9.17)
1

1 +N−1/3θ̃
− 1 = N−1/3G(b) + o

(
N−1/3

)
.

Taylor expanding the left-hand side in small N−1/3θ̃ and using Corollary 8.22, we conclude
that the desired root b converges towards the largest root of the equation −θ̃ = G(b). Com-
paring with Definition 4.2, we are done. □

9.2. Spiked covariance model. The proof of Theorem 4.6 for the spiked covariance model
of Section 2.2 follows the same outline as the argument in the previous section, but with
a different computational part. We explain the new computations, but otherwise try being
brief on the technical details which repeat the previous section. We start with an analogue
of Proposition 9.1.

Suppose that we are given N × S matrix U, in which the rows are indexed by i =
0, 1, . . . , N − 1 and S ≥ N . We let λ∗ denote the squared length of the zeroth row of U
(treated as an S–dimensional vector) and let v∗ be the unit vector in the direction of this

row. Let Ũ denote the (N − 1)× S matrix formed by rows i = 1, 2, . . . , N − 1 of U.
We would like to connect the singular values and singular vectors of U to: singular values

and vectors of Ũ, λ∗, and v∗. We let (ui,vi,
√
λi), 1 ≤ i ≤ N − 1, be the left singular

vector (of (N−1)×1 dimensions), right singular vector (of S×1 dimensions), singular value

triplets for Ũ, which means that

Ũ =
(
u1;u2; . . . ;uN−1

)

√
λ1 0 . . .
0

√
λ2 0

0
. . .

0
√

λN−1




vT
1

vT
2
...

vT
N−1

 =
N−1∑
i=1

√
λiuiv

T
i

and ⟨ui,uj⟩ = δi=j, ⟨vi,vj⟩ = δi=j. We order the singular values so that λ1 ≥ · · · ≥ λN−1 ≥ 0.

9If q = 1, then we should set λq−1 = +∞.
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Proposition 9.6. Suppose that a ≥ 0 is an eigenvalue of UUT. Then either

(9.18) λ∗

(
1 +

N−1∑
i=1

λi⟨v∗,vi⟩2

a− λi

)
= a,

or a = λj for 1 ≤ j ≤ N , where
√
λj is a singular value of multiplicity one, ⟨v∗,vj⟩ = 0,

and (9.18) holds with the jth term excluded, or a = λj, where
√

λj is a singular value of
multiplicity greater than 1.

We omit the proof, see, e.g., Bykhovskaya and Gorin [2025, Appendix A] (which has λi

squared and v’s replaced with u’s).
In order to see how Proposition 9.6 is relevant for the setting of Section 2.2, we choose one

index 1 ≤ k ≤ r and a deterministic orthogonal matrix O, which maps u∗
k into the zeroth

basis vector and orthogonal complement of u∗
k to the span of the basis vectors with labels

1, 2, . . . , N − 1, so that

OΩOT =


θk 0 . . . 0
0
... Ω′

0

 ,

where Ω′ is (N−1)×(N−1) symmetric matrix with eigenvalues {θi}i ̸=k and 1 of multiplicity
N − r. Conjugating with O does not change the eigenvalues of the sample covariance matrix
1
S
XXT; it also does not change the fact that the columns of X are i.i.d. On the other hand,

after transformation by O, we can use Proposition 9.6 for U = ΩX. We reach the following
conclusion:

Corollary 9.7. For each 1 ≤ k ≤ r, the eigenvalues of 1
S
XXT solve an equation in a

(9.19)
1

S

∑S
i=N ξ2i
a

+
1

S

N−1∑
i=1

ξ2i
a− λi

=
1

θk
,

where λ2
1 ≥ · · · ≥ λ2

N−1 are eigenvalues of 1
S
Y Y T, with Y being (N−1)×S matrix with i.i.d.

Gaussian columns of covariance Ω′, and ξ1, . . . , ξS are i.i.d. N (0, 1) independent from Y .

Proof. After we rotate by O defined above, the zeroth row of OX is a vector with i.i.d.√
θkN (0, 1) random variables as its components, independent from the remaining rows of

X. Hence, the scalar products of the zeroth row with orthonormal vectors vi are again i.i.d.√
θkN (0, 1) and we can denote them

√
θkξi. The values of ⟨v∗,vi⟩ in (9.18) differ from these

scalar product by the normalization of v∗, i.e., they are

θkξ
2
i∑S

l=1 θkξ
2
l

=
ξ2i∑S
l=1 ξ

2
l

.

On the other hand, the value of λ∗ in (9.18) is the squared length of the zeroth row, ∥v∗∥2 =∑S
l=1 θkξ

2
l . Finally, Proposition 9.6 deals with UUT, while in the corollary the matrix XXT

is divided by S and, therefore, we should rescale by S both λi and a. Hence, dividing (9.18)
by a and θk, we get

1

a

(∑S
i=1 ξ

2
i

S
+

1

S

N−1∑
i=1

λiξ
2
i

a− λi

)
=

1

θk
.

Rearranging the terms, we arrive at (9.19). □
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Corollary 9.8. In Corollary 9.7, the eigenvalues a1 ≥ · · · ≥ aN of 1
S
XXT interlace with

those of 1
S
Y Y T: a1 ≥ λ1 ≥ a2 ≥ · · · ≥ λN−1 ≥ aN .

Proof. After multiplying by denominators, (9.19) is a degree N polynomial equation and
we locate its roots by keeping track of the signs of the difference between left-hand and
right-hand sides on intervals (λ1,+∞), (λ2, λ1), . . . , (λN−1, λN). □

Proposition 9.9. Consider the spiked covariance model Ω = σ2IN + (θi − σ2) · u∗
i (u

∗
i )

T of
Section 2.2 with σ2 = 1, and θ1 > θ2 > · · · > θr ≥ 0 split into two groups: θ1, . . . , θq−1 >
θc = 1 + γ and θq, . . . , θr < θc = 1 + γ. Then, with N

S
= γ2 + O

(
1
N

)
, in the sense of

convergence in joint distribution and using (2.8):

lim
N→∞

√
N(λi − λ(θi))

d
= N (0, V (θi)), 1 ≤ i ≤ q − 1,(9.20)

lim
N→∞

N2/3λi − (1 + γ)2

γ(1 + γ)4/3
d
= ai−q+1, i ≥ q,(9.21)

where N (0, V (θi)), 0 ≤ i ≤ q − 1, are independent and {aj}j≥1 are points of the Airy1 point
process independent from (9.20). In addition, (8.46) with h(x) = 1 holds for the eigenvalues
of the sample covariance matrix 1

S
XXT.

Proof. The final statement, (8.46) with h(x) = 1 follows by induction on r from Theorem
8.24 for r = 0, and using Lemma 8.28 with Corollary 9.8 for the induction step. Here
λ± = (1± γ)2,
(9.22)

µ(x)dx =
1

2π

√
(λ+ − x)(x− λ−)

γ2x
1[λ−,λ+] dx, m(z) =

z + γ2 − 1−
√

(z − λ+)(z − λ−)

2γ2z
,

which are the Marchenko-Pastur law and its Stieljes transform, respectively, and the con-

stants of (8.45) are computed to be s =

√
λ+−λ−

2γ2λ+
= 1

γ3/2(1+γ)2
, m = (1+γ)2+γ2−1

2γ2(1+γ)2
= 1

γ(1+γ)
,

Statements close to (9.20), (9.21) are known from Paul [2007], Bai and Yao [2008], Bloe-
mendal et al. [2016]. Alternatively, the proof can be obtained by the same argument as in
Proposition 9.5, by induction on r with the base case r = 0 given in Johnstone [2001], Sosh-
nikov [2002] and the step based on Corollary 9.7. We only highlight the key computation,
which is an analogue of (9.11) and (9.12).

We rewrite (9.19) as

(9.23)
1

S
· S −N + 1

a
+

1

S

N−1∑
i=1

1

a− λi

+
1

S

∑S
i=N(ξ

2
i − 1)

a
+

1

S

N−1∑
i=1

ξ2i − 1

a− λi

=
1

θk
,

and analyze its asymptotics, assuming that λ1, . . . , λN are eigenvalues of 1
S
XXT, where X

is (N − 1)×S matrix of i.i.d. N (0, 1). Then, using the Marchenko-Pastur law (see Theorem
8.24 or Bai and Silverstein [2010, Chapter 3 and Theorem 9.10]), formulas for the limit
(9.22), and CLT, the first two terms in (9.23) become deterministic as S → ∞, while the
third and fourth terms become independent Gaussians. Hence, (9.23) becomes

(9.24)
1− γ2

a
+ γ2m(a) +

√
2√
N
N (0, 1)

√
γ2(1− γ2)

a2
− γ4m′(a) + o

(
1√
N

)
=

1

θk
.
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Plugging the formula for m(z) from (9.22), we get

(9.25)
a+ 1− γ2 −

√
(a− λ+)(a− λ−)

2a

+
γ

a
√
N
N (0, 1)

√
1− γ2 − (1− γ2)2 − a(1 + γ2)√

(a− λ+)(a− λ−)
+ o

(
1√
N

)
=

1

θk
.

Treating the last identity as an equation on a, we solve it asymptotically as N → ∞, getting:

(9.26) a = θk

(
1 +

γ2

θk − 1

)
+N (0, 1)

γ
√
2√
N

θk

√
1− γ2

(θk − 1)2
+ o

(
1√
N

)
,

which matches (2.8). □

Proof of Theorem 4.6 for the spiked covariance model of Section 2.2. The constants (4.8)
simplify to κ1 = γ(1 + γ)4/3, κ2 = 1

γ(1+γ)2/3
. Note that κ1 matches the denominator in

(9.21), as it should; it also equals s−2/3, where s is the constant in (8.45), as computed after
(9.22). Hence, Assumption 8.19 will be satisfied.

We analyze the equation (9.19) for k = q. In this situation the asymptotics of (λi)
N
i=1 is

given to us by Proposition 9.9. Arguing as in the previous section, the q− 1 largest roots of
the equation are close to λ1, . . . , λq−1, resulting in (4.6). In order to establish (4.7), we need
to approximate (9.19) for a close to λ+ = (1+ γ)2 and locate the root of the equation in the
(λq, λq−1) interval. We change the variables

(9.27) b = N2/3a− λ+

κ1

= N2/3a− (1 + γ)2

γ(1 + γ)4/3
, a = (1 + γ)2 +N−2/3γ(1 + γ)4/3b,

and apply Theorem 8.20 with h(x) = 1, converting (9.19) into (recall that θc = 1 + γ and
m = 1

γ(1+γ)
, as computed after (9.22)):

S + 1−N

S
· 1

(1 + γ)2
+
N

S

[
1

γ(1 + γ)
+N−1/3 1

γ(1 + γ)4/3
G(b)

]
=

1

1 + γ +N−1/3θ̃
+o
(
N−1/3

)
.

Recalling that N
S
= γ2 +O

(
1
N

)
, we convert the last equation into

1− γ

1 + γ
+

γ

(1 + γ)
+N−1/3 γ

(1 + γ)4/3
G(b) = 1

1 + γ

(
1−N−1/3 θ̃

1 + γ

)
+ o

(
N−1/3

)
.

The finite order term cancel out and we finally get after multiplying by N1/3 the equation

γ

(1 + γ)4/3
G(b) = −θ̃

1

(1 + γ)2
+ o(1) ⇐⇒ G(b) = −θ̃

1

γ(1 + γ)2/3
+ o(1).

Recognizing the constant κ2 in the right-hand side of the last formula and comparing with
Definition 4.2, we arrive at (4.7). □

9.3. Factor models. The proof of Theorem 4.6 for the factor model of Section 2.3 follows
the same outline as in the previous two sections. However, an analogue of Propositions 9.1
and 9.6 becomes more complicated in this case.
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Proposition 9.10. For N ≤ S, let X be an N × S matrix of the form

(9.28) X =
√
θS · u∗(v∗)T + Y, with Y =

N∑
i=1

√
λiS · ui(vi)

T,

where u∗ and ui are N–dimensional unit vectors; ui, 1 ≤ i ≤ N , are pairwise orthogonal;
v∗ and vi are S–dimensional unit vectors; vi, 1 ≤ i ≤ N , are pairwise orthogonal. If a is a
non-zero squared singular value of X/

√
S, i.e., an eigenvalue of 1

S
XXT, then either it solves

an equation:

(9.29)

(
1−

√
θ

N∑
i=1

√
λi⟨u∗,ui⟩⟨v∗,vi⟩

a− λi

)2

= aθ

(
N∑
i=1

⟨u∗,ui⟩2

a− λi

)(
S∑

j=1

⟨v∗,vj⟩2

a− λj

)
,

where vN+1, . . .vS are arbitrary vectors complimenting v1, . . . ,vN to an orthonormal basis,
⟨·, ·⟩ is the scalar product, and we set λj = 0 for N < j ≤ S. Or a = λi for 1 ≤ i ≤ N ,
where λi has multiplicity one, ⟨u∗,ui⟩ = ⟨v∗,vi⟩ = 0, and the equation (9.29) holds with the
i-th terms excluded; or a = λi, where λi has multiplicity larger than one.

Remark 9.11. A somewhat similar statement can be found in Benaych-Georges and Nadaku-
diti [2012, Lemma 4.1]. Also if for some i we have λi = 0, u∗ = ui, and ⟨u∗,ui′⟩ = 0 for all
i ̸= i′, then (9.29) turns into (9.18) of the previous subsection.

Proof of Proposition 9.10. We only describe the situation when all λi are distinct and for
each index i either ⟨u∗,ui⟩ ≠ 0 or ⟨v∗,vi⟩ ≠ 0. Other cases can be obtained by continuously
deforming the parameters.

Let a be a squared singular value of X/
√
S corresponding to vectors û and v̂. Then

a = pq/S, where p and q solve:{
Xv̂ = pû,

XTû = qv̂.
⇐⇒

{
⟨Xv̂,ui⟩ = p⟨û,ui⟩, 1 ≤ i ≤ N,

⟨XTû,vj⟩ = q⟨v̂, v̂j⟩, 1 ≤ j ≤ S.

Denoting αi = ⟨û,ui⟩ and βj = ⟨v̂, v̂j⟩, we rewrite these N + S equations as:
⟨X
∑S

j′=1 βj′vj′ ,ui⟩ =
√
θS
∑S

j′=1 βj′⟨v∗,vj′⟩⟨u∗,ui⟩+
√
λiSβi = pαi, 1 ≤ i ≤ N,

⟨XT
∑N

i′=1 αi′ui′ ,vj⟩ =
√
θS
∑N

i′=1 αi′⟨u∗,ui′⟩⟨v∗,vj⟩+
√

λjSαj = qβj, 1 ≤ j ≤ N,

⟨XT
∑N

i′=1 αi′ui′ ,vj⟩ =
√
θS
∑N

i′=1 αi′⟨u∗,ui′⟩⟨v∗,vj⟩ = qβj, N + 1 ≤ j ≤ S.

Combining the equations corresponding to the same i = j and solving as two linear equations
in two variables αi, βi, we get

(9.30)

{
αi =

√
θS q⟨u∗,ui⟩β̃+

√
λiS⟨v∗,vi⟩α̃

pq−λiS
, 1 ≤ i ≤ N,

βi =
√
θS

√
λiS⟨u∗,ui⟩β̃+p⟨v∗,vi⟩α̃

pq−λiS
, 1 ≤ i ≤ S,

where in the last formula for N < i ≤ S we should use λi = 0 and

α̃ =
N∑

i′=1

αi′⟨u∗,ui′⟩, β̃ =
S∑

j′=1

βj′⟨v∗,vj′⟩.
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We should further identity the values of α̃ and β̃, for which we plug (9.30) back into their
definitions, getting a system of two equations:

α̃ = α̃
√
θS

N∑
i=1

√
λiS⟨u∗,ui⟩⟨v∗,vi⟩

pq−λiS
+ β̃

√
θS

N∑
i=1

q⟨u∗,ui⟩2
pq−λiS

,

β̃ = α̃
√
θS

S∑
j=1

p⟨v∗,vj⟩2
pq−λjS

+ β̃
√
θS

S∑
j=1

√
λjS⟨u∗,uj⟩⟨v∗,vj⟩

pq−λjS
.

The system of two homogeneous linear equations has a non-zero solution if and only if the
determinant of the matrix coefficients is zero, which is precisely the condition (9.29). □

An analogue of Corollaries 9.3 and 9.8 becomes more delicate for the factor model, which,
however, does not lead to any significant changes in the ways we use it in our arguments.

Corollary 9.12. In Proposition 9.10, let a1 ≥ · · · ≥ aN be the eigenvalues of 1
S
XXT and let

λ1 ≥ · · · ≥ λN be the eigenvalues of 1
S
Y Y T. Then there exists another set of N eigenvalues,

µ1 ≥ · · · ≥ µN , such that

(9.31) a1 ≥ µ1 ≥ a2 ≥ · · · ≥ aN ≥ µN , and λ1 ≥ µ1 ≥ λ2 ≥ · · · ≥ λN ≥ µN .

Proof. Using (9.28), we write

XXT = θS · u∗(u∗)T +
√
θS ·

[
u∗(v∗)TY ∗ + Y v∗(u∗)T

]
+ Y Y ∗,

which implies that 1
S
XXT is a sum of 1

S
Y Y T and a rank two symmetric matrix. In the

(non-orthogonal) basis (u∗, Y v∗), this matrix has the form(
θS + c

√
θS cθS + d

√
θS√

θS c
√
θS

)
, c = ⟨u∗, Y v∗⟩, d = ⟨Y v∗, Y v∗⟩.

The determinant of this matrix is (c2 − d)θS < 0, because u∗ is a unit vector. Hence,
the matrix has one positive and one negative eigenvalues. It remains to use Corollary 9.3
twice. □

Next we state an analogue of Lemma 9.4.

Lemma 9.13. One can replace the vectors u∗
i and v∗

i in the factor model

X =
∑r

i=1

√
θi
√
S · u∗

i (v
∗
i )

T + E of (2.10) with 2r vectors uniformly distributed on the N–
dimensional and S–dimensional unit spheres, respectively, independent from each other and
from E: Theorem 4.6 for deterministic orthonormal vectors as in Section 2.3 is equivalent
to the same theorem for independent unit vectors.

Proof. We first note that the asymptotics in Theorem 4.6 does not depend on the choice of
the unit vectors {u∗

i }ri=1 and {v∗
i }ri=1 in (2.10) as long as they form two orthonormal systems.

Indeed, any r orthonormal vectors can be obtained from any other r orthonormal vectors
by an orthogonal transformation of the space. Such transformation does not change the
eigenvalues of 1

S
XXT, and also does not change the probability distribution of the matrix E

(which uses Gaussianity of its matrix elements).
Now let ũ∗

1, . . . , ũ
∗
r be r independent vectors uniformly distributed on the N–dimensional

unit sphere and let ṽ∗
1, . . . , ṽ

∗
r be r independent vectors uniformly distributed on the S–

dimensional unit sphere. We consider the matrix Mr =
∑r

i=1

√
θi
√
Sũ∗

i (ṽ
∗
i )

T and would like

to decompose it as Mr =
∑r

i=1

√
θ′i
√
Su∗

i (v
∗
i )

T with orthonormal vectors u∗
i and v∗

i ; ũ
∗
i and
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ṽ∗
i were not orthonormal. Clearly,

√
θ′i are non-zero singular values of Mr and u∗

i , v
∗
i are

corresponding left and right singular vectors. We claim that

(9.32) θi = θ′i +O

(
1

N
+

1

S

)
, N, S → ∞.

Note that (9.32) implies the statement of Lemma 9.13, because addition of O(1/N) does not
change any of the asymptotics statements of Theorem 4.6. Hence, it remains to prove (9.32).
This can be done by induction on r. Using (9.29) with Y = Mr−1, the non-zero eigenvalues
of Mr solve an equation

(9.33)

(
1−

√
θr

r−1∑
i=1

√
θ′i⟨ũ∗

r,ui⟩⟨ṽ∗
r ,vi⟩

a− θ′i

)2

= aθr

(
r−1∑
i=1

⟨ũ∗
r,ui⟩2

a− θ′i
+

N∑
i=r

⟨ũ∗
r,ui⟩2

a

)(
r−1∑
j=1

⟨ṽ∗
r ,vj⟩2

a− θ′j
+

S∑
j=r

⟨ṽ∗
r ,vj⟩2

a

)
,

where (ui,vi, θ
′
i) are singular vectors and values of Mr−1 for 1 ≤ i ≤ r − 1, and ui, vi with

i ≥ r complement those to othonormal bases of N– and S–dimensional spaces, respectively.
We note that after multiplying by the denominators a, a− θ′1, . . . , a− θ′r−1, (9.33) becomes
a polynomial equation of degree r (there is a cancelation between the left and right hand
sides which guarantees that denominators (a − θ′i)

2 do not appear) and therefore it has r
roots. Let us locate these roots.

Representing the unit vectors ũ∗
r and ṽ∗

r as vectors with i.i.d. N (0, 1) components divided
by their lengths, using the Law of Large Numbers and the induction hypothesis, the equation
is rewritten as N,S → ∞ as

(9.34)

1−
√

θr
NS

r−1∑
i=1

√
θi +O

(
1
N
+ 1

S

)
χiξi

(
1 +O

(
1√
N
+ 1√

S

))
a− θi +O

(
1
N
+ 1

S

)


2

= aθr

×

 1

N

r−1∑
i=1

χ2
i

(
1 +O

(
1√
N

))
a− θi +O

(
1
N
+ 1

S

) + 1 +O
(

1
N

)
a

 1

S

r−1∑
j=1

ξ2i

(
1 +O

(
1√
S

))
a− θj +O

(
1
N
+ 1

S

) + 1 +O
(
1
S

)
a

 ,

where χi and ξi are i.i.d. N (0, 1) random variables. (9.34) clearly has r roots of the form
θi +O( 1

N
+ 1

S
), 1 ≤ i ≤ r, thus proving (9.32). □

Next, we prove an analogue of Propositions 9.1 and 9.9.

Proposition 9.14. Consider the factor model X =
∑r

i=1

√
θiS · u∗

i (v
∗
i )

T + E of Section 2.2
with σ2 = 1, and θ1 > θ2 > · · · > θr ≥ 0 split into two groups: θ1, . . . , θq−1 > θc = γ
and θq, . . . , θr < θc = γ. Then, with N

S
= γ2 + O

(
1
N

)
, in the sense of convergence in joint

distribution and using (2.12):

lim
N→∞

√
N(λi − λ(θi))

d
= N (0, V (θi)), 1 ≤ i ≤ q − 1,(9.35)

lim
N→∞

N2/3λi − (1 + γ)2

γ(1 + γ)4/3
d
= ai−q+1, i ≥ q,(9.36)
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where N (0, V (θi)), 0 ≤ i ≤ q − 1, are independent and {aj}j≥1 are points of the Airy1 point
process independent from (9.35). In addition, (8.46) holds for the eigenvalues of 1

S
XXT both

with h(x) = 1 and with h(x) =
√
x.

Proof. The final statement, (8.46) with h(x) = 1 and h(x) =
√
x follows by induction on r

from Theorem 8.24 and Corollary 8.25 for r = 0, and using Lemma 8.28 with Corollary 9.12
for the induction step. Here λ± = (1± γ)2, and for h(x) = 1
(9.37)

µ(x)dx =
1

2π

√
(λ+ − x)(x− λ−)

γ2x
1[λ−,λ+] dx, m(z) =

z + γ2 − 1−
√

(z − λ+)(z − λ−)

2γ2z
,

which are the same as in (9.22), and the constants of (8.45) are computed to be s =√
λ+−λ−

2γ2λ+
= 1

γ3/2(1+γ)2
, m = (1+γ)2+γ2−1

2γ2(1+γ)2
= 1

γ(1+γ)
. For the choice h(x) =

√
x, the corresponding

function m(z) can be also computed, but we do not need this expression.
Statements similar to (9.35) are known from Onatski [2012] and Benaych-Georges and

Nadakuditi [2012]; (9.36) is harder to locate in the literature (although it is also probably
known to the specialists). Alternatively, the proof can be obtained by the same argument
as in Proposition 9.5, by induction on r with the base case r = 0 given in Johnstone
[2001], Soshnikov [2002] and the step based on Proposition 9.10. We only highlight the key
computation, which is an analogue of (9.11) and (9.12).

In view of Lemma 9.13, and representing uniformly random unit vectors as Gaussian
vectors with i.i.d. components divided by their norms, we rewrite (9.29) as
(9.38)(

1−
√

θ∑N
i=1 ξ

2
i

∑S
j=1 η

2
j

N∑
i=1

√
λiξiηi

a− λi

)2

=
aθ∑N

i=1 ξ
2
i

∑S
j=1 η

2
j

(
N∑
i=1

ξ2i
a− λi

)(
S∑

j=1

η2j
a− λj

)
,

where ξi and ηj are i.i.d. N (0, 1). We analyze the asymptotics of (9.38) assuming that
λ1, . . . , λN are eigenvalues of 1

S
EET, where E is N × S matrix of i.i.d. N (0, 1). We multiply

(9.38) by
∑N

i=1 ξ
2
i

∑S
j=1 η

2
j

NS
and then rewrite separating the terms of different orders as N → ∞:

(9.39)

∑N
i=1 1

∑S
j=1 1

NS
+

N∑
i=1

ξ2i − 1

N
+

S∑
j=1

η2j − 1

S
− 2

√
θ

NS

N∑
i=1

√
λiξiηi

a− λi

+ o

(
1√
N

)

=
aθ

NS

[
N∑
i=1

1

a− λi

S∑
j=1

1

a− λj

+
N∑
i=1

1

a− λi

S∑
j=1

η2j − 1

a− λj

+
S∑

j=1

1

a− λj

N∑
i=1

ξ2i − 1

a− λi

]
.

Using the Marchenko-Pastur law (see Theorem 8.24 or Bai and Silverstein [2010, Chapter 3
and Theorem 9.10]), formulas for the limit (9.22), and N

S
= γ2 + O

(
1
N

)
the equation (9.39)

becomes:

(9.40) 1− aθm(a)m̃(a) +
N∑
i=1

ξ2i − 1

N

[
1− aθ

a− λi

1

S

S∑
j=1

1

a− λj

]

+
S∑

j=1

η2j − 1

S

[
1− aθ

a− λj

1

N

N∑
i=1

1

a− λi

]
− 2

√
θ

NS

N∑
i=1

√
λiξiηi

a− λi

= o

(
1√
N

)
,
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where we used the notation

m̃(a) =

[
γ2m(a) +

1− γ2

a

]
.

Since ξ2i −1, η2j −1, ξiηi are three mean 0 i.i.d. in i sequences, we are in a position to apply the
Central Limit Theorem; note that all pairwise covariances between these random variables
vanish (using E(ξ2i − 1)ξiηi = 0), and therefore different sums give rise to independent
Gaussian limits. Using E(ξ2i − 1)2 = E(ξ2j − 1)2 = 2, Eξ2i η2i = 1 and applying CLT, we
further transform (9.40) into

(9.41) 1− aθm(a)m̃(a) +
N (0, 1)√

N

[
2

N

N∑
i=1

(
1− aθ

a− λi

1

S

S∑
j=1

1

a− λj

)2

+

+
2γ2

S

S∑
j=1

(
1− aθ

a− λj

1

N

N∑
i=1

1

a− λi

)2

+ 4
θ

S

N∑
i=1

λi

(a− λi)2

]1/2
= o

(
1√
N

)
.

Applying the Marchenko-Pastur law, we finally get

(9.42) 1− aθm(a)m̃(a) +
N (0, 1)√

N

[
[2− 4aθm(a)m̃(a)− 2a2θ2m′(a)m̃2(a)]

+[2γ2−4γ2aθm(a)m̃(a)−2γ2a2θ2 m̃′(a)m2(a)]−[4γ2θm(a)+4γ2a θm′(a)]
]1/2

= o

(
1√
N

)
.

In the leading order, the solution a is found from the equation 1−aθm(a)m̃(a) = 0. Plugging
the formula for m(z) from (9.22), this becomes

(9.43) 1 = aθ
a−

√
(a− λ+)(a− λ−) + γ2 − 1

2γ2a
·
a−

√
(a− λ+)(a− λ−) + 1− γ2

2a

= θ
a− 1− γ2 −

√
(a− λ+)(a− λ−)

2γ2
,

which is equivalent to

(9.44) a = θ + 1 + γ2 +
γ2

θ
=

1

θ
(γ2 + θ)(1 + θ),

which matches the formula for λ(θ) in (2.12).
Further, continuing to treat (9.42) as an equation on a, we develop the second order

expansion of the solution as N → ∞. For that we note the following simplifications whenever
a is given by (9.44):

(9.45)
√
(a− λ+)(a− λ−) = θ − γ2

θ
, m (a) =

1

θ + γ2
, m̃(a) =

1

1 + θ
.

(9.46) m′(a) =
−θ2

(γ2 + θ)2 (θ2 − γ2)
, m̃′(a) =

−θ2

(θ2 − γ2) (1 + θ)2
.

Hence, if we assume that a is close to (9.44) and define small ∆a through

(9.47) a = θ + 1 + γ2 +
γ2

θ
+∆a,
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then expanding in ∆a using (9.45), (9.46), we get

1− aθm(a)m̃(a) = ∆a
θ

θ2 − γ2
+O(∆a2).

In addition, the expression after N (0, 1) under [·]1/2 in (9.42) simplifies upon plugging a from
(9.44): using (9.45), (9.46), we get

2γ2 1 + γ2 + 2θ

θ2 − γ2
.

Hence, in terms of ∆a the equation (9.42) becomes

∆a
θ

θ2 − γ2
+

N (0, 1)√
N

[
2γ2 1 + γ2 + 2θ

θ2 − γ2

]1/2
+O(∆a2) + o

(
1√
N

)
= 0.

Its solution gives the desired asymptotic statement (9.35), matching the formula for V (θ) in
(2.12). □

Proof of Theorem 4.6 for the factor model of Section 2.3. The constants (4.8) simplify to
κ1 = γ(1 + γ)4/3, κ2 =

1
γ(1+γ)2/3

– exactly the same as in the proofs for the spiked covariance

model in Section 2.2. Hence, Assumption 8.19 will be satisfied.
We analyze the equation (9.29) for θ = θq in the form of (9.38), i.e., we study

(9.48)(
1−

√
θq∑N

i=1 ξ
2
i

∑S
j=1 η

2
j

N∑
i=1

√
λiξiηi

a− λi

)2

=
aθq∑N

i=1 ξ
2
i

∑S
j=1 η

2
j

(
N∑
i=1

ξ2i
a− λi

)(
S∑

j=1

η2j
a− λj

)
,

where the asymptotics of (λi)
N
i=1 is given to us by Proposition 9.14 and ξi and ηj are i.i.d.

N (0, 1). Arguing as in the previous sections, the q− 1 largest roots of the equation are close
to λ1, . . . , λq−1, resulting in (4.6). In order to establish (4.7), we need to approximate (9.48)
for a close to λ+ = (1 + γ)2 and locate the root of the equation in the (λq, λq−1) interval.
We change the variables

(9.49) b = N2/3a− λ+

κ1

= N2/3a− (1 + γ)2

γ(1 + γ)4/3
, a = (1 + γ)2 +N−2/3γ(1 + γ)4/3b,

recall that θc = γ, θq = γ + N−1/3θ̃, and aim to apply Theorem 8.20 to (9.48). For this

computation, we can approximate
∑N

i=1 ξ
2
i ≈ N and

∑S
j=1 η

2
j ≈ S, because the relative

errors in these approximations are of order N−1/2, which is smaller than N−1/3, the scale of
our interest. Hence, (9.48) becomes

(9.50)

1−

√
γ +N−1/3θ̃

NS

N∑
i=1

√
λiξiηi

a− λi

2

=

(
(1 + γ)2 +N−2/3γ(1 + γ)4/3b

)
(γ +N−1/3θ̃)

NS

(
N∑
i=1

ξ2i
a− λi

)(
S∑

j=1

η2j
a− λj

)
.
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For the factors in the right-hand side of (9.50) we apply Theorem 8.20 with h(x) = 1. For
the left-hand side we write

ξiηi =
1

2

[(
ξi + ηi√

2

)2

−
(
ξi − ηi√

2

)2
]

and apply Theorem 8.20 twice with h(x) =
√
x. In view of Remark 8.23, the convergence is

joint over all four applications of Theorem 8.20, and we get a limit expressed in terms of the
four (correlated through the choices of ξj sequences) copies of G(w). As noted after (9.37),
we use s = 1

γ3/2(1+γ)2
, m = 1

γ(1+γ)
; we also recall N

S
→ γ2+O

(
1
N

)
. As a result, after dropping

all o(N−1/3) terms, (9.50) becomes:

(9.51) 1−N−1/3γ1/2(1 + γ)−4/3
√

(1 + γ)2
(
G(1)(b)− G(2)(b)

)
+ o(N−1/3)

= o(N−1/3) +N−1/3θ̃(1 + γ)2γ2 1

γ(1 + γ)

(
1

γ(1 + γ)
+

1
γ2 − 1

(1 + γ)2

)

+(1+γ)2γ3

(
1

γ(1 + γ)
+

N−1/3

γ(1 + γ)4/3
G(3)(b)

)(
1

γ(1 + γ)
+

N−1/3

γ(1 + γ)4/3
G(4)(b) +

1
γ2 − 1

(1 + γ)2

)
.

The order 1 terms cancel out and multiplying (9.51) by N1/3, we finally get:

(9.52) − θ̃
1

γ
+ o(1) =

1

(1 + γ)1/3
G(3)(b) +

γ

(1 + γ)1/3
G(4)(b) + γ1/2

(
G(1)(b)− G(2)(b)

)
(1 + γ)1/3

.

At this step an algebraic miracle happens; the following claim is responsible for the appear-
ance of exactly the same function T (Θ) in the asymptotics of the factor model:

Claim. The right-hand side of (9.52) is the same random function as (1 + γ)2/3G(b).
The claim is established by recalling which noises enter into the functions G(k), k = 1, 2, 3, 4:

these are
(

ξj+ηj√
2

)2
,
(

ξj−ηj√
2

)2
, ξ2j , η

2
j , respectively. Hence, in the linear combination of G(k) of

(9.52), the noises combine into

1

(1 + γ)1/3
ξ2j +

γ

(1 + γ)1/3
η2j + γ1/2 2ξjηj

(1 + γ)1/3
=

(
ξj + γ1/2ηj

)2
(1 + γ)1/3

d
= (1 + γ)2/3

[
N (0, 1)

]2
.

Using the claim, we conclude that (in distribution) the solution of the equation (9.52) con-
verges as N → ∞ to the solution of

(9.53) − θ̃
1

γ(1 + γ)2/3
= G(b).

Recognizing the constant κ2 in the left-hand side of the last formula and comparing with
Definition 4.2, we arrive at (4.7). □

9.4. Canonical Correlation Analysis. The proof of Theorem 4.6 for CCA of Section
2.4 follows the same outline as in the previous three sections. However, an analogue of
Propositions 9.1, 9.6, 9.10 becomes even more complicated, which introduces new challenges
in the proofs. Note that the CCA setting is symmetric under N ↔ M and there is no loss
of generality to assume N ≤ M , as we do throughout this section. The reader may consult
Bykhovskaya and Gorin [2024] for general information on CCA.
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Suppose that we are given N × S matrix U and M × S matrix V, in which the first rows

are denoted u∗ and v∗, respectively. The remaining rows form matrices Ũ and Ṽ of sizes
(N − 1) × S and (M − 1) × S, respectively. We would like to connect sample canonical
correlations between U and V to u∗, v∗, and the sample canonical correlations and variables

between Ũ and Ṽ. The latter are denoted c1, . . . , cN−1, u1, . . . ,uN−1, v1, . . . ,vM−1, where
1 ≥ c1 ≥ · · · ≥ cN−1 ≥ 0, ui are S–dimensional vectors forming an orthonormal basis in the

space spanned by rows of Ũ, vj are S–dimensional vectors forming an orthonormal basis in

the space spanned by the rows of Ṽ, and ⟨ui,vj⟩ = ciδi=j, 1 ≤ i ≤ N − 1, 1 ≤ j ≤ M − 1.
For the convenience of notation, we also introduce numbers cN = cN+1 = · · · = cM−1 = 0.

Proposition 9.15. For each squared sample canonical correlation a between U and V, either[
⟨u∗,v∗⟩+

M−1∑
j=1

⟨u∗,vj⟩(cj⟨v∗,uj⟩ − a⟨v∗,vj⟩)
a− c2j

− a
N−1∑
i=1

⟨u∗,ui⟩(⟨v∗,ui⟩ − ci⟨v∗,vi⟩)
a− c2i

]2

= a

[
−⟨u∗,u∗⟩+

M−1∑
j=1

⟨u∗,vj⟩2 − 2cj⟨u∗,vj⟩⟨u∗,uj⟩
a− c2j

+ a
N−1∑
i=1

⟨u∗,ui⟩2

a− c2i

]

×

[
−⟨v∗,v∗⟩+

N−1∑
i=1

⟨v∗,ui⟩2 − 2ci⟨v∗,ui⟩⟨v∗,vi⟩
a− c2i

+ a
M−1∑
j=1

⟨v∗,vj⟩2

a− c2j

]
,

(9.54)

or a = c2i for 1 ≤ i ≤ N − 1, where ci has multiplicity one, ⟨u∗,ui⟩ = ⟨u∗,vi⟩ = ⟨v∗,ui⟩ =
⟨v∗,vi⟩ = 0, and the equation (9.54) holds with the i-th terms excluded; or a = c2i , where ci
has multiplicity larger than one.

We omit the proof, see Bykhovskaya and Gorin [2025, Appendix A], with N = K. The next
equation replaces (9.8), (9.19), (9.38) in the context of CCA.

Corollary 9.16. In the setting of Section 2.4, for each 1 ≤ k ≤ r, the squared sample
canonical correlations of U and V solve an equation in variable a

(9.55)

[
S∑

i=1

ξiηi +
M−1∑
j=1

((1− c2j)
1
2 ξj+N−1 + cjξj)((1− a)cjηj − a(1− c2j)

1
2ηj+N−1)

a− c2j

− a
N−1∑
i=1

(1− c2i )
1/2ξi

(
(1− c2i )

1/2ηi − ciηi+N−1

)
a− c2i

]2

= a

[
−

S∑
i=1

ξ2i +
M−1∑
j=1

(
(1− c2j)

1/2ξj+N−1 + cjξj
)2 − 2cjξj

(
(1− c2j)

1/2ξj+N−1 + cjξj
)

a− c2j
+ a

N−1∑
i=1

ξ2i
a− c2i

]

×

[
−

S∑
i=1

η2i +
N−1∑
i=1

η2i − 2ciηi((1− c2i )
1/2ηi+N−1 + ciηi

)
a− c2i

+ a

M−1∑
j=1

((1− c2j)
1/2ηj+N−1 + cjηj

)2
a− c2j

]
,
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where (ξi, ηi) are i.i.d. Gaussian mean 0 two-dimensional vectors with covariance matrix

(9.56)

(
Eξ2i Eξiηi
Eηiξi Eη2i

)
=

(
Cuu Cuv

Cuv Cvv

)
,

C2
uv

CuuCvv

= θk,

and ci are squared sample canonical correlations between Ũ, Ṽ, which are (N − 1)× S and
(M − 1)×S matrices, independent from (ξi, ηi) and produced trough the same mechanism as
U, V, but with r smaller by 1 and θk removed from {θ1, θ2, . . . , θr}.

Remark 9.17. Due to invariance of (9.55) under multiplications of ξi or ηj by constants,
there is no loss of generality in assuming Cuu = Cvv = 1.

Proof of Corollary 9.16. We fix the index 1 ≤ k ≤ r and connect Proposition 9.15 to the

setting of Section 2.4. For that we choose two deterministic invertible matrices Ã of size

N ×N and B̃ of size M ×M , so that:

• The first coordinate of Ãu is independent from all the coordinates other than the

first in Ãu and in B̃v.
• The first coordinate of B̃v is independent from all the coordinates other than the

first in Ãu and in B̃v.
• The variances of the first coordinates of Ãu and B̃v are 1.
• The squared correlation coefficient between the first coordinates of Ãu and B̃v is θk.

The existence of such Ã and B̃ readily follows from the existence of the decomposition (2.14),

which is the basic statement in CCA – the first coordinates of Ãu and B̃v are canonical
variables, corresponding to the canonical correlation θk.

Multiplying the matrices U and V by Ã and B̃, respectively, does not change the squared
sample canonical correlations, and brings them to the form of Proposition 9.15. It remains
to explain that (9.54) is the same as (9.55). The correlation structure between the last

N − 1 rows of ÃU and the last M − 1 rows of B̃V is as in (2.14) but with θk removed
from {θ1, θ2, . . . , θr}. Hence c2i in (9.54) match their description in Corollary 9.16. The first

rows of ÃU and B̃V are S–dimensional vectors with i.i.d. components, and with correlation
structure as in (9.56). We should further understand the joint distribution of the four arrays
of random scalar products appearing in (9.54).

(9.57) ⟨u∗,ui⟩, ⟨v∗,ui⟩, 1 ≤ i ≤ N − 1, ⟨u∗,vj⟩, ⟨v∗,vj⟩, 1 ≤ j ≤ M − 1.

If all ui,vj were orthonormal, then computing scalar products would be easy: scalar products
of i.i.d. mean 0 Gaussian vectors with orthonormal basis are again i.i.d. Gaussian vectors.
However, ⟨ui,vi⟩ ≠ 0. In order to fix this, we introduce new vectors v′

j, 1 ≤ j ≤ M − 1,
which are:

v1 − c1u1√
1− c21

,
v2 − c2u2√

1− c22
, . . . ,

vN−1 − cN−1uN−1√
1− c2N−1

, vN , . . . ,vM−1.

Since {ui} are orthonormal, {vj} are orthonormal, and ⟨ui,vj⟩ = ciδi=j, we conclude that
the N +M − 2 vectors u1, . . . ,uN−1, v

′
1, . . . ,v

′
M−1 are also orthonormal.

Since u∗,v∗ are Gaussian and independent from all uj, vj, the scalar products
⟨u∗,ui⟩, ⟨v∗,ui⟩, ⟨u∗,v′

j⟩, ⟨v∗,v′
j⟩ are also Gaussian and independent from all uj and vj.
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Among these scalar products, most are pairwise independent, with the only non-zero covari-
ances being:

E[⟨u∗,ui⟩]2 = E[⟨v∗,ui⟩]2 = E[⟨u∗,v′
j⟩]2 = E[⟨v∗,v′

j⟩]2 = 1.

E⟨u∗,ui⟩⟨v∗,ui⟩ = E⟨u∗,v′
j⟩⟨v∗,v′

j⟩ =
√

θk.

Let us choose an orthonormal basis w1, . . . ,wS of the S–dimensional space, such that the
first N +M −2 vectors are u1, . . . ,uN−1, v

′
1, . . . ,v

′
M−1 and the rest are arbitrary (the choice

is independent from u∗ and v∗). Define

ξi = ⟨u∗,wi⟩, ηi = ⟨v∗,wi⟩.
Then (ξi, ηi), 1 ≤ i ≤ S, are i.i.d. vectors with correlation structure (9.56). We express
various scalar products in (9.54) trough ξi and ηi:

⟨u∗,v∗⟩ =
S∑

i=1

ξiηi, ⟨u∗,u∗⟩ =
S∑

i=1

ξ2i , ⟨v∗,v∗⟩ =
S∑

i=1

η2i .

⟨u∗,ui⟩ = ξi, ⟨v∗,ui⟩ = ηi,

⟨u∗,vj⟩ =
√

1− c2j ξj+N−1 + cjξj, ⟨v∗,vj⟩ =
√

1− c2j ηj+N−1 + cjηj.

Plugging these expressions into (9.54), we get (9.55). □

We record a version of Corollaries 9.3, 9.8, 9.12, which is slightly more complicated, leading
to an additional step in the proofs, on which we comment in Remark 9.20.

Corollary 9.18. Let N roots of (9.54) be denoted a1, . . . , aN . Then all ai are real numbers
between 0 and 1. Moreover, if we arrange ai in the decreasing order, then there exists another
sequence of N − 1 real numbers y1 ≥ y2 ≥ · · · ≥ yN−1, such that two interlacing conditions
hold:

(9.58) a1 ≥ y1 ≥ a2 ≥ · · · ≥ yN−1 ≥ aN , and y1 ≥ c21 ≥ y2 ≥ · · · ≥ yN−1 ≥ c2N−1.

In the notation of the proof of Corollary 9.16, the numbers y1, . . . , yN−1 are squared sample

canonical correlations between Ũ =(last N − 1 rows of ÃU) and V .

Proof. This is a version of Lemma A.6 in Bykhovskaya and Gorin [2025]. a1, . . . , aN are
eigenvalues of the product of projections on U and on V in S–dimensional space, i.e., PUPV

(or PVPUPV or PUPVPU), while y1, . . . , yN−1 are eigenvalues of the product of projections on

smaller Ũ and V. Then (9.58) are two instances interlacing inequalities between eigenvalues
of a matrix and its principal submatrix, as in Bhatia [1997, Corollry III.1.5]. □

Next, we prove an analogue of Propositions 9.5, 9.9, 9.14.

Proposition 9.19. Consider the CCA model, as in Section 2.4, with θ1 > θ2 > · · · > θr ≥ 0
split into two groups: θ1, . . . , θq−1 > θc = 1√

(τM−1)(τN−1)
and θq, . . . , θr < θc = 1√

(τM−1)(τN−1)
.

Then, with S
N

= τN + O
(

1
N

)
, S

M
= τM + O

(
1
N

)
, in the sense of convergence in joint

distribution and using (2.16):

lim
N→∞

√
N(λi − λ(θi))

d
= N (0, V (θi)), 1 ≤ i ≤ q − 1,(9.59)

lim
N→∞

N2/3

[
(
√
τN−1+

√
τM−1)4/3(

√
τN−1

√
τM−1−1)4/3

τ
5/3
N τM (τN−1)1/6(τM−1)1/6

]−1

(λi − λ+)
d
= ai−q+1, i ≥ q,(9.60)
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where N (0, V (θi)), 0 ≤ i ≤ q − 1, are independent and {aj}j≥1 are points of the Airy1 point
process independent from (9.59). In addition, (8.46) hold for the sample squared canonical
correlations between U and V with h(x) = 1, h(x) =

√
x, h(x) =

√
1− x, and h(x) =√

x(1− x).

Proof. The final statement, (8.46) with various choices of h(x), follows by induction on r
from Theorem 8.24, Corollary 8.25, Corollary 8.27 for r = 0, and using Lemma 8.28 with
Corollary 9.18 for the induction step. Further, various parameters are:

λ± =

(√
τ−1
M (1− τ−1

N )±
√
τ−1
N (1− τ−1

M )

)2

=

(√
τN − 1±

√
τM − 1

)2
τNτM

,(9.61)

µ(x)dx =
τN
2π

√
(x− λ−)(λ+ − x)

x(1− x)
1[λ−,λ+] dx,

m(z) =
τ−1
M + τ−1

N − z +
√
(z − λ−)(z − λ+)

2τ−1
N z(z − 1)

+
1

z
,

which are the Wachter law and its Stieljes transform, respectively (see, e.g., Bykhovskaya
and Gorin [2024, Section 3]), and the constants of (8.45) are computed10 to be

s =

√
λ+ − λ−

2τ−1
N λ+(1− λ+)

= τ
5/2
N τ

3/2
M

4
√
(τN − 1)(τM − 1)

(
√
τN − 1 +

√
τM − 1)2(

√
τN − 1

√
τM − 1− 1)2

,

(9.62)

m =
τ−1
M + τ−1

N − λ+

2τ−1
N λ+(λ+ − 1)

+
1

λ+

=
τ−1
N − τ−1

M + (1− 2τ−1
N )λ+

2τ−1
N λ+(1− λ+)

=
τM − τN + (τN − 2)τMλ+

2τMλ+(1− λ+)
.

(9.63)

Statements close to (9.59), (9.60) are known from Bao et al. [2019], Yang [2022b]. Alterna-
tively, the proof can be obtained by the same argument as in Proposition 9.5, by induction
on r with the base case r = 0 given in Johnstone [2008], Han et al. [2018] and the step based
on Corollary 9.16. We only highlight the key computation, which is an analogue of (9.11),
(9.12).

We recall (9.55) and analyze its asymptotic behavior for a > λ+ and assuming that {c2i }
are squared sample canonical correlations between independent U and V of sizes (N−1)×S
and (M − 1)×S, respectively, and with i.i.d. N (0, 1) random variables as their elements. In
this situation the joint distribution of {c2i } is the JOE ensemble (see Section 8.4), and their
empirical measure converges to the Wachter law (9.61) as N → ∞. According to Remark
9.17, we use (9.56) with Cuu = Cvv = 1, Cuv =

√
θk; we also recall cj = 0 for j ≥ N . We

divide (9.55) by N2 and split its sums into their expectations (conditional on {ci}) and the
mean 0 parts. The left-hand side of (9.55) is transformed into:

10Note that 1− λ+ = (
√
τN−1

√
τM−1−1)2

τNτM
.
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(9.64)

[√
θk

(
S −M + 1

N
−

N−1∑
i=1

a(1− a)

N(a− c2i )
− a

N − 1

N

)

+
S∑

i=1

ξiηi −
√
θk

N
+

N−1∑
j=1

[
((1− c2j)

1
2 ξj+N−1 + cjξj)((1− a)cjηj − a(1− c2j)

1
2ηj+N−1)

N(a− c2j)
+

√
θk
N

]

−
M−1∑
j=N

ξj+N−1ηj+N−1 −
√
θk

N
−a

N−1∑
i=1

(1− c2i )
1/2ξi

(
(1− c2i )

1/2ηi − ciηi+N−1

)
− (1− c2i )

√
θk

N(a− c2i )

]2
,

where the first line is of constant order and deterministic as N → ∞; the second and third
lines are of order N−1/2 and become Gaussian as N → ∞. The [·] factor in the third line of
(9.55) is similarly transformed into:

(9.65)

[
2N − S − 2

N
+

M −N

N
· 1
a
+

N−1∑
i=1

1− a

N(a− c2i )

]
−

S∑
i=1

ξ2i − 1

N

+
M−1∑
j=1

(
(1− c2j)

1/2ξj+N−1 + cjξj
)2 − 2cjξj

(
(1− c2j)

1/2ξj+N−1 + cjξj
)
− 1 + 2c2j

N(a− c2j)
+a

N−1∑
i=1

ξ2i − 1

N(a− c2i )
.

The fourth line of (9.55) is transformed into:

(9.66)

[
M +N − S − 2

N
+

N−1∑
i=1

1− a

N(a− c2i )

]
−

S∑
i=1

η2i − 1

N

+
N−1∑
i=1

η2i − 2ciηi((1− c2i )
1/2ηi+N−1 + ciηi

)
− 1 + 2c2i

N(a− c2i )
+a

M−1∑
j=1

((1− c2j)
1/2ηj+N−1 + cjηj

)2 − 1

N(a− c2j)
.

Hence, using the convergence towards the Wachter law (see Theorem 8.24 or Bai and Silver-
stein [2010, Sections 4.4, 9.13, 9.14, 9.15] or Dumitriu and Paquette [2012]), in the leading
order the equation (9.55) becomes as N → ∞:

(9.67) θk
[(
τN − τNτ

−1
M − a(1− a)m(a)− a

)]2
= a
[
2− τN +

τNτ
−1
M − 1

a
+ (1− a)m(a)

][
τNτ

−1
M + 1− τN + (1− a)m(a)

]
+O

(
N−1/2

)
.

Plugging m(a) from (9.61), simplifying (see Bykhovskaya and Gorin [2025, Lemma B.6] for
such a computation), and solving the resulting equation in a, we express the solution as

a =

(
(τN−1)θ+1

)(
(τM−1)θ+1

)
θτN τM

+O(N−1/2), thus matching the expression for λ(θ) in (2.16).
Further, similarly to the proofs of Propositions 9.5, 9.9, and 9.14, applying CLT to the

second-order terms in (9.64), (9.65), (9.66), we replace O(N−1/2) in (9.67) with N−1/2 times
N (0, 1) times an explicit function of a. Then solving (9.67) again, we arrive at the statement
on the asymptotic Gaussianity of the solution a, which matches (2.16). □

Remark 9.20. In the proof of Proposition 9.5 we located all the largest eigenvalues by
analyzing the equation (9.1) for the variable a near each λ(θi) and near λ+. In addition,
we used the interlacements of Corollary 9.3 to make sure that we did not miss any other
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large eigenvalues. Similarly in the above proof, by analyzing (9.55), we locate a solving the
equation near each λ(θi) and near λ+. The argument for not missing other eigenvalues needs
to be modified this time: if we use (9.58) näıvely, then, say, in the r = 1 case it would allow
two eigenvalues λ1 ≥ λ2 larger than c21, rather than only one in Corollary 9.3.
The remedy is to still use (9.58), but compare with y1, . . . , yN−1 instead of c21, . . . , c

2
N .

Note that in the induction step of the argument of Proposition 9.19, the largest eigenvalues
y1, y2, . . . , satisfy exactly the same induction assumption and therefore exactly the same
asymptotics as c21, c

2
2, . . . (the only difference is that N got decreased by 1, but this does

not change the asymptotic behavior). With this update, the same arguments, as before, go
through. The same remark applies to the following proof.

Proof of Theorem 4.6 for the CCA setting of Section 2.4. The constants (4.8) evaluate to:

V ′(θc) =
4
√
τN − 1

√
τM − 1

(√
τN − 1

√
τM − 1− 1

)2(√
τN − 1 +

√
τM − 1

)2
τ 3Nτ

2
M

,(9.68)

λ′′(θc) = 2
(τN − 1)3/2(τM − 1)3/2

τNτM
,(9.69)

κ1 =
1

2

[V ′(θc)]
2
3

λ′′(θc)
1
3

=

(√
τN − 1

√
τM − 1− 1

)4/3(√
τN − 1 +

√
τM − 1

)4/3
τ
5/3
N τM(τN − 1)1/6(τM − 1)1/6

,(9.70)

κ2 =
[λ′′(θc)]

2
3

V ′(θc)
1
3

=
(τN − 1)5/6(τM − 1)5/6τ

1/3
N(√

τN − 1
√
τM − 1− 1

)2/3(√
τN − 1 +

√
τM − 1

)2/3 .(9.71)

This matches the constants in Proposition 9.19 and, hence, Assumption 8.19 will be satisfied.
We analyze the equation (9.55) for k = q, i.e., we study[

S∑
i=1

ξiηi +
M−1∑
j=1

((1− c2j)
1
2 ξj+N−1 + cjξj)((1− a)cjηj − a(1− c2j)

1
2ηj+N−1)

a− c2j

− a
N−1∑
i=1

(1− c2i )
1/2ξi

(
(1− c2i )

1/2ηi − ciηi+N−1

)
a− c2i

]2

= a

[
−

S∑
i=1

ξ2i + a
N−1∑
i=1

ξ2i
a− c2i

+
M−1∑
j=1

(
(1− c2j)

1/2ξj+N−1 + cjξj
)2 − 2cjξj

(
(1− c2j)

1/2ξj+N−1 + cjξj
)

a− c2j

]

×

[
−

S∑
i=1

η2i + a
M−1∑
j=1

((1− c2j)
1/2ηj+N−1 + cjηj

)2
a− c2j

+
N−1∑
i=1

η2i − 2ciηi((1− c2i )
1/2ηi+N−1 + ciηi

)
a− c2i

]
,

(9.72)

where (ξi, ηi) are mean 0, variance 1 Gaussian i.i.d. in i random variables with the squared
correlation coefficient of ξi and ηi equal to θq, the asymptotics of (c2i )

N−1
i=1 is given to us by

Proposition 9.19; cj = 0 for j ≥ N . Arguing as in the previous sections, the q − 1 largest
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roots of the equation are close to λ1, . . . , λq−1, resulting in (4.6). In order to establish (4.7),

we need to investigate (9.72) for a close to λ+ = (
√
τN−1+

√
τN−1)2

τN τM
and locate the root of the

equation in the (λq, λq−1) interval. For this computation, we can approximate
∑S

i=1 ξ
2
i ≈ S,∑S

j=1 η
2
j ≈ S, and

∑S
i=1 ξiηi ≈ S

√
θq because the relative errors in these approximations are

of order N−1/2, which is smaller than N−1/3 scale of our interest. Similarly, the sums
∑M−1

j=N

can be replaced with their expectations. Hence, up to O(N−1/2) error, (9.72) becomes

(9.73)

[
S +N −M

N

√
θq +

N−1∑
j=1

((1− c2j)
1
2 ξj+N−1 + cjξj)((1− a)cjηj − a(1− c2j)

1
2ηj+N−1)

N(a− c2j)

− a

N−1∑
i=1

(1− c2i )
1/2ξi

(
(1− c2i )

1/2ηi − ciηi+N−1

)
N(a− c2i )

]2

= a

[
− S

N
+

M −N

Na
+

N−1∑
j=1

(
(1− c2j)

1/2ξj+N−1 + cjξj
)2 − 2cjξj

(
(1− c2j)

1/2ξj+N−1 + cjξj
)

N(a− c2j)

+ a
N−1∑
i=1

ξ2i
N(a− c2i )

]

×

[
−S +M −N

N
+

N−1∑
i=1

η2i − 2ciηi((1− c2i )
1/2ηi+N−1 + ciηi

)
N(a− c2i )

+ a
N−1∑
j=1

((1− c2j)
1/2ηj+N−1 + cjηj

)2
N(a− c2j)

]
.

We change the variables

(9.74) b = N2/3a− λ+

κ1

, a = λ+ +N−2/3κ1b,

recall that θc = 1√
(τN−1)(τM−1)

, θq = 1√
(τN−1)(τM−1)

+ N−1/3θ̃, and apply Theorem 8.20 to

(9.73). Arguing exactly as for the factor model in the previous section, we need several
applications of the theorem, leading to several functions G(1)(b), G(2)(b), . . . , which are then
recombined together. The leading deterministic terms recombine into the same expression
as (9.67) evaluated at a = λ+. Recalling that m(λ+) = m, as computed in the proof of
Proposition 9.19, the first two lines of (9.73), up to o(N−1/3) error, become:

(9.75)

[√
(τN − 1)−1/2(τM − 1)−1/2 +N−1/3θ̃

(
τN − τNτ

−1
M − λ+(1− λ+)m− λ+

)
+

N−1/3

κ1

∞∑
j=1

(
(1−λ+)

1
2 ξ̌j+

√
λ+ξj

)(
(1−λ+)

√
λ+ηj−λ+(1−λ+)

1
2 η̌j

)
−λ+(1−λ+)1/2ξj

(
(1−λ+)1/2ηj−

√
λ+η̌j

)
b−aj

]2
= (τN−1)−1/2(τM−1)−1/2

(
τN−τNτ

−1
M −λ+(1−λ+)m−λ+

)2[
1+4θ̃N−1/3(τN−1)1/2(τM−1)1/2

+ 2N−1/3 (τN − 1)1/2(τM − 1)1/2(1− λ+)
√
λ+

κ1

(
τN − τNτ

−1
M − λ+(1− λ+)m− λ+

) ∞∑
j=1

ξ̌j

(
(1−λ+)1/2ηj−

√
λ+η̌j

)
b−aj

+ o(N−1/3)

]
,
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where the sum
∞∑
j=1

is a shortcut for linear combinations of several functions G(b) which should

be formally understood as in (4.2); and (ξj, ηj, ξ̌j, η̌j) are i.i.d. Gaussian random vectors which

are coordinate-wise N (0, 1), Eξjηj = Eξ̌j η̌j =
√
θc, and all the other covariances are zero.

Similarly, the third and fourth lines of (9.73) turn, up to o(N−1/3) error, into:

(9.76) λ+

(
2− τN +

τNτ
−1
M − 1

λ+

+ (1− λ+)m

)[
1 +

N−1/3

κ1(2− τN − τN τ−1
M −1

λ+
+ (1− λ+)m)

×
∞∑
j=1

(
(1− λ+)

1/2ξ̌j +
√
λ+ξj

)2 − 2
√

λ+ξj
(
(1− λ+)

1/2ξ̌j +
√

λ+ξj
)
+ λ+ξ

2
j

b− aj

]

= λ+

(
2− τN +

τNτ
−1
M − 1

λ+

+ (1− λ+)m

)[
1+

N−1/3(1− λ+)

κ1(2− τN − τN τ−1
M −1

λ+
+ (1− λ+)m)

∞∑
j=1

ξ̌2j
b− aj

]
.

The last line of (9.73) becomes, up to o(N−1/3) error:

(9.77)
(
τNτ

−1
M + 1− τN + (1− λ+)m

)[
1 +

N−1/3

κ1(τNτ
−1
M + 1− τN + (1− λ+)m)

×
∞∑
j=1

η2j − 2
√
λ+ηj((1− λ+)

1/2η̌j +
√
λ+ηj

)
+ λ+((1− λ+)

1/2η̌j +
√
λ+ηj

)2
b− aj

]

=
(
τNτ

−1
M +1−τN+(1−λ+)m

)[
1+

N−1/3(1− λ+)

κ1(τNτ
−1
M + 1− τN + (1− λ+)m)

∞∑
j=1

((1− λ+)
1/2ηj −

√
λ+η̌j)

2

b− aj

]
.

Equating (9.75) = (9.76) · (9.77), noting that the leading term cancels (this is precisely the
equation relating θc with λ+, cf. (9.67) and the paragraph after it) and multiplying by N1/3,
we get:

(9.78) − θ̃κ1(τN − 1)1/2(τM − 1)1/2 = 2
(τN−1)1/2(τM−1)1/2(1−λ+)

√
λ+

τN−τN τ−1
M −λ+(1−λ+)m−λ+

∞∑
j=1

ξ̌j

(
(1−λ+)1/2ηj−

√
λ+η̌j

)
b−aj

− (1−λ+)λ+

τN τ−1
M −1+λ+(2−τN )+λ+(1−λ+)m)

∞∑
j=1

ξ̌2j
b− aj

− (1−λ+)

τN τ−1
M +1−τN+(1−λ+)m

∞∑
j=1

((1− λ+)
1/2ηj −

√
λ+η̌j)

2

b− aj
+o(1).

Similarly to the factor model in the previous section, at this step an algebraic miracle hap-
pens, leading to the appearance of exactly the same function T (Θ) in the asymptotics. In
order to see that we simplify the right-hand side of (9.78). Let us plug the value of m from
(9.63) and analyze the coefficient of 1

b−aj
in (9.78), which is:

(9.79)
4τM(τN − 1)1/4(τM − 1)1/4

√
λ+(1− λ+)

2τMτN − τM − τN − τNτMλ+

ξ̌j
(
(1− λ+)

1/2ηj −
√

λ+η̌j
)

+
2τMλ+(1− λ+)

τM − τN + (τN − 2)τMλ+

ξ̌2j +
2τMλ+(1− λ+)

τN − τM + τN(τM − 2)λ+

((1− λ+)
1/2ηj −

√
λ+η̌j)

2.
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We observe a complete square in the last equation, which would follow from the identity:

(9.80)

[
4τM(τN − 1)1/4(τM − 1)1/4

√
λ+(1− λ+)

2τMτN − τM − τN − τNτMλ+

]2
?
= 4

[
2τMλ+(1− λ+)

τM − τN + (τN − 2)τMλ+

] [
2τMλ+(1− λ+)

τN − τM + τN(τM − 2)λ+

]
.

The last identity is equivalent to

(τN − 1)1/2(τM − 1)1/2

[2τMτN − τM − τN − τNτMλ+]2
?
=

λ+

[τM − τN + (τN − 2)τMλ+][τN − τM + τN(τM − 2)λ+]
.

Plugging the value of λ+ from (9.61), we need to show:

(9.81)

√
τN − 1

√
τM − 1

[2τMτN − τM − τN −
(√

τN − 1 +
√
τM − 1

)2
]2

?
=

(√
τN − 1 +

√
τM − 1

)2
[τMτN − τ 2N + (τN − 2)

(√
τN − 1 +

√
τM − 1

)2
][τMτN − τ 2M + (τM − 2)

(√
τN − 1 +

√
τM − 1

)2
]
,

which can be directly seen to be true by transforming the denominators:

2τMτN − τM − τN −
(√

τN − 1 +
√
τM − 1

)2
= 2

√
τN − 1

√
τM − 1(

√
τN − 1

√
τM − 1− 1),(9.82)

τMτN − τ2N + (τN − 2)
(√

τN − 1 +
√
τM − 1

)2
= 2

√
τN − 1(

√
τN − 1

√
τM − 1− 1)(

√
τM − 1 +

√
τN − 1),

τNτM − τ2M + (τM − 2)
(√

τN − 1 +
√
τM − 1

)2
= 2

√
τM − 1(

√
τN − 1

√
τM − 1− 1)(

√
τM − 1 +

√
τN − 1).

Therefore, crucially, (9.79) is the square of a mean 0 Gaussian random variable. The variance
of this random variable equals the expectation of (9.79). Recalling that ξ̌j, ηj, η̌j are N (0, 1)
with covariances

Eξ̌j η̌j =
√
θc = (τN − 1)−1/4(τM − 1)−1/4, Eηj ξ̌j = Eηj η̌j = 0,

using (9.61) and (9.82) we compute this expectation to be:

(9.83) 2τM(1− λ+)λ+

[
−2

2τM τN−τM−τN−τN τMλ+
+ 1

τM−τN+(τN−2)τMλ+
+ 1

τN−τM+τN (τM−2)λ+

]
= τ−1

M τ−2
N (

√
τN − 1

√
τM − 1− 1)

(√
τN − 1 +

√
τM − 1

)2
×
[

−2√
τN−1

√
τM−1

+ τN√
τN−1(

√
τM−1+

√
τN−1)

+ τM√
τM−1(

√
τM−1+

√
τN−1)

]
= τ−1

M τ−2
N

(
√
τN − 1

√
τM − 1− 1)2(

√
τM − 1 +

√
τN − 1)2√

τN − 1
√
τM − 1

.

We conclude that the equation (9.78) can be rewritten as

(9.84) − θ̃κ1τMτ 2N
(τN − 1)(τM − 1)

(
√
τN − 1

√
τM − 1− 1)2(

√
τM − 1 +

√
τN − 1)2

= G(b) + o(1).
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Plugging the value of κ1 from (9.70), we get

(9.85) − θ̃
τ
1/3
N (τN − 1)5/6(τM − 1)5/6

(
√
τN − 1

√
τM − 1− 1)2/3(

√
τM − 1 +

√
τN − 1)2/3

= G(b) + o(1).

Using (9.71), recognizing the constant κ2 in the left-hand side of (9.85), and comparing with
Definition 4.2, we arrive at (4.7). □
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