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Abstract

A monopolist offers personalized prices to consumers with unit demand, heteroge-

neous values, and idiosyncratic costs, who differ in a protected characteristic, such as

race or gender. The seller is subject to a non-discrimination constraint: consumers

with the same cost, but different characteristics must face identical prices. Such con-

straints arise in regulated markets like credit or insurance. The setting reduces to

an optimal transport, and we characterize the optimal pricing rule. Under this rule,

consumers may retain surplus, and either group may benefit. Strengthening the con-

straint to cover transaction prices redistributes surplus, harming the low-value group

and benefiting the high-value group.
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1 Introduction

Motivation Advances in data collection have enabled firms to tailor prices to consumers

based on a wide range of observable characteristics. In many markets, sellers now have access

to rich datasets that allow for increasingly fine-grained segmentation, often approaching fully

personalized pricing. At the same time, legal frameworks prohibit discrimination based on

protected characteristics—such as gender, race, or age.1 This raises questions about how

anti-discrimination laws should apply in data-rich environments, where pricing algorithms

operate on rich data.

In such settings, legal prohibitions on disparate treatment—that is, the explicit use of

protected characteristics in decision-making—may have little effect: Because many non-

protected variables can serve as proxies, firms may reproduce outcomes that disproportion-

ately disadvantage protected groups.2 Due to this concern, anti-discrimination regulations

are often assessed based on the notion of disparate impact, rather than disparate treatment.

This means that, rather than simply prohibiting the use of protected characteristics as inputs

for pricing decisions, consumers with different protected characteristics must face the same

price distributions.3

In this paper, we study how a seller optimally maximizes profit through personalized

1For instance, in the U.S., Title VII of the Civil Rights Act and the Equal Pay Act (EPA) protect
workers from gender-based wage discrimination; the Fair Housing Act (FHA) prohibits housing discrimination
based on protected characteristics such as race and gender; the Equal Credit Opportunity Act (ECOA)
prevents lenders from offering different loan terms to borrowers based on protected characteristics; and
recent legislation in California (AB1287) explicitly prohibits businesses from price discrimination based on
gender.

2As noted in The White House (2015): “Big data naturally raises concerns among groups that have
historically been victims of discrimination. Given hundreds of variables to choose from, it is easy to imagine
that statistical models could be used to hide more explicit forms of discrimination by generating customer
segments that are closely correlated with race, gender, ethnicity, or religion [...], even if the profit motive
is different from, and in many cases fundamentally inconsistent with, the sort of prejudice that our anti-
discrimination laws seek to prohibit.”

3For example, according to The White House (2015): “It is often straightforward to conduct statistical
tests for disparate impact by asking whether the prices generated by a particular algorithm are correlated
with variables such as race, gender or ethnicity.” Likewise, in credit markets, according to 12 CFR Regulation
B, “The [ECO] Act and regulation may prohibit a creditor practice that is discriminatory in effect because
it has a disproportionately negative impact on a prohibited basis, even though the creditor has no intent to
discriminate and the practice appears neutral on its face.” In the context of employment, title VII of the Civil
Rights Act holds employers accountable for “practice that causes a disparate impact on the basis of race,
color, religion, sex, or national origin”. In the context of housing, the FHA and its regulations (c.f., 24 CFR)
establishes “liability [...] based on a practice’s discriminatory effect, even if not motivated by discriminatory
intent.”
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pricing while complying with anti-discrimination regulations that require no disparate im-

pact across protected characteristics. We show that the seller’s problem reduces to a non-

standard optimal transport formulation, in which consumers must be paired across groups

to form segments with equal price distributions. We solve for the profit-maximizing non-

discriminatory pricing rule and characterize how non-discrimination constraints shape price

outcomes, surplus, and deadweight loss across different consumer groups.

Specifically, we consider a model where a monopolist faces a unit mass of consumers with

unit demands, different values, and different costs of being served. Consumers differ along a

binary protected characteristic: conditional on having the same cost, consumers in the “l”

group have lower values and more elastic demand, while consumers in the “h” group have

higher values and less elastic demand. The seller can charge consumers personalized prices,

but the prices must satisfy a non-discrimination constraint—namely, among consumers who

are equally costly to serve, the price distributions faced by the two protected groups must

be identical.

Results Our main result characterizes the profit-maximizing pricing strategies under the

non-discrimination constraint. We show that finding an optimal non-discriminatory pricing

rule is equivalent to solving a non-standard optimal transport problem: among all consumers

who have the same cost, the seller chooses a matching scheme that matches the l-characteristic

and h-characteristic consumers into pairs, where each pair faces the same price but has

distinct values. The seller then selects the profit-maximizing price for each matched pair. This

transport problem differs significantly from classical formulations: the objective is non-linear,

non-convex and non-monotonic in consumer values, and it lacks properties such as translation

invariance and supermodularity that are typically used to derive closed-form solutions. Using

duality results, Theorem 1 solves the optimal transport problem and explicitly constructs the

profit-maximizing non-discriminatory pricing rule that is Pareto undominated. Under this

pricing rule, consumers with intermediate values are matched assortatively and face a price

equal the lower value of the matched pair; while consumers with high values are matched

with consumers from the other protected group who have low values, and face a price equal

the higher value of the matched pair.

We then turn to the welfare consequences of non-discriminatory pricing. While consumers

from both protected groups can retain positive surplus under optimal pricing rules, not all

consumers are served. In particular, consumers with lower values are priced out of the market,
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generating deadweight loss (Proposition 2). Meanwhile, consumers with high values have

their surplus extracted, and thus only consumers with intermediate values retain positive

surplus. The surplus distribution is shaped by the underlying value distributions and by

the relative sizes of the groups. As one group becomes more prevalent, the seller gains

greater incentives to tailor prices more finely to that group, thereby reducing its surplus—an

effect analogous to diminishing information rents in screening models (Proposition 4). As

a result, although anti-discrimination regulations may strictly benefit consumers from both

groups, they do not necessarily favor the disadvantaged group the regulations are designed

to protect. In some cases, the advantaged group may benefit more, while some consumers in

the disadvantaged group may be completely excluded from the market.

In addition to price-based fairness, we explore a stricter notion of non-discrimination that

requires outcome distributions—not just price distributions—to be identical across groups.

This stronger constraint ensures that, for a fixed cost, transaction probabilities and trans-

action prices are statistically independent of protected characteristics. In Proposition 5, we

establish that the profit-maximizing policy under this notion differs from the optimal non-

discriminatory pricing rule: it increases surplus for h-consumers while reducing surplus for

l-consumers. These results highlight that the choice of fairness definition—whether it is based

on inputs, distributions, or outcomes—can meaningfully influence both efficiency and equity

in personalized pricing.

Lastly, we consider a number of extensions of our main model. First, we study a model

that allows for imperfect price discrimination, where the seller observes only a noisy signal

of consumer values. The pricing problem continues to admit an optimal transport repre-

sentation and can sometimes be solved explicitly, leading to similar insights as in our main

model (Section 5.1). We also examine the set of implementable welfare outcomes and show

that while some surplus-maximizing segmentations remain feasible under non-discrimination

constraints, others do not (Section 5.2). In Section 5.3 and Section 5.4, we characterize all

optimal pricing rules, including the undominated ones, and the ones where the seller can

extract the full surplus despite non-discrimination requirements.

Related Literature The literature on price discrimination has studied the welfare effects

of monopolistic price discrimination. In particular, they explore whether third degree price

discrimination benefits consumers (see, e.g., Varian 1985; Aguirre, Cowan and Vickers 2010;

Cowan 2016). Bergemann, Brooks and Morris (2015) show that any surplus division between
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the consumers and a monopolist can be achieved by some market segmentation.4 In an

environment where the seller only observes protected characteristics, Cohen, Elmachtoub

and Lei (2022) introduce multiple non-discrimination constraints and characterize the optimal

prices. Similarly, Kallus and Zhou (2021) introduces several notions of non-discriminatory

pricing, and characterize the optimal prices in a linear demand model. In contrast, this

paper characterizes the optimal non-discriminatory pricing rules when the seller can engage

in personalized pricing.

The personalized pricing model, where sellers are able to offer each consumer a price that

depends on their values, has also been widely adopted in oligopoly models: Thisse and Vives

(1988) show that in a Hotelling duopoly model consumer surplus can be higher under per-

sonalized pricing compared to uniform pricing. This framework is adopted by various papers

that further investigate the effects of brand name (Shaffer and Zhang 2002), advertisement

(Chen and Iyer 2002), or data sharing (Montes, Sand-Zantman and Valletti 2019). Rhodes

and Zhou (2024) provide a comprehensive welfare analysis in a general oligopoly setting.

Strack and Yang (2024) and He, Sandomirskiy and Tamuz (2024), characterize signals

that do not reveal certain information, which are referred to as privacy-preserving signals. A

non-discriminatory pricing rule is mathematically equivalent to a privacy-preserving signal

where the privacy sets are defined by the protected characteristics. Section 5.3 in Strack and

Yang (2024) illustrates the relation of privacy and non-discriminatory pricing through an

example. The notion of non-discriminatory pricing is also related to the notion of statistical

parity in the algorithmic fairness literature (see, e.g., Darlington 1971; Calders and Verwer

2010; Hardt, Price and Srebro 2016).5 These papers study the optimal fair algorithms for

specific decision problems, typically with a binary state or a binary action.6

The rest of the paper is organized as follows: Section 2 introduces the model, Section 3

solves for the profit-maximizing non-discriminatory pricing rules, and discusses welfare im-

plications and comparative studies. Section 5 presents extensions. Section 7 concludes.

4See also: Haghpanah and Siegel (2022) and Haghpanah and Siegel (2023), who further consider segmen-
tations in environments that feature nonlinear pricing; and Farboodi, Haghpanah and Shourideh (2025), who
characterize when does more information on consumers’ characteristics lead to higher (lower) welfare.

5Two other commonly adopted criteria are separation and sufficiency. It is well-known that none of any
pairs of these three common fairness criteria can be satisfied at the same time (see Barocas, Hardt and
Narayanan (2019) and Carey and Wu (2023) for a comprehensive review of these criteria).

6In economics, Liang, Lu, Mu and Okumura (2024) and Doval and Smolin (2024) further characterize the
entire Pareto frontier in terms of the payoffs of each protected group in a general setting.
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2 Model

A monopolist sells a good or service to a continuum of consumers, each of whom demands

one unit. We normalize the total mass of consumers to one.

Consumer Types Each consumer is described by their value for the good v ∈ V ⊆ R+, the

cost c ∈ C ⊆ R+ of being served, a protected characteristic θ ∈ Θ ∶= {l, h}, and an auxiliary

index r ∈ [0,1]. We denote by ω = (v, c, θ, r) ∈ Ω ∶= V ×C ×Θ × [0,1] a consumer’s type.

The value v is the willingness-to-pay of the consumer and c is the (potentially consumer-

specific) cost the seller incurs for supplying the good or service. For example, in an insurance

market, the cost c could capture the expected damages; in a credit market, it could capture

the expected cost of default; and for a physical good, it could simply be the production cost.

The protected characteristic θ could indicate whether the consumer is male or female, or

black or white, which might be correlated with both a consumer’s value v and cost c. The

index r serves as a randomization device that allows the seller to charge different prices to

consumers with the same v, c, and θ.7

Distribution of Consumer Types Let P be the product of a probability distribution on

V ×C ×Θ and the Lebesgue measure on [0,1]. We denote by G(⋅) = P [c ≤ ⋅] the distribution

of cost, by αc = P [θ = h ∣ c] the fraction of consumers with characteristic h conditional on

having cost c,8 and by Fc,θ(⋅) ∶= P[v ≤ ⋅ ∣ c, θ] the distribution of values v of consumers of

characteristic θ and cost c. We assume that Fc,θ admits a density fc,θ, has full support on

an interval [vc, vc] for some 0 ≤ vc < vc ≤ ∞,9 and h-consumers have higher values for the

product in the likelihood ratio order. That is, fc,h(v)/fc,l(v) is increasing in v on [vc, vc] for

all c. This assumption implies that, conditional on having the same cost, consumers with

protected characteristic l have lower values (in first-order stochastic dominance) and react

more strongly to price changes (i.e., are more elastic).

One natural case captured by the above assumption is that of a normal good when

consumers with θ = h are richer. Alternatively, consumers of with θ = h could be the group

7All our results remain unchanged without r, as the optimal pricing rules we obtain turn out to be
non-random.

8When there is no risk of confusion, we slightly abuse the notation and use v, c, θ, r to denote the random
variable as well as a realization.

9In particular, Fc,l and Fc,h have common supports. This assumption is for the ease of exposition, and
the result can be readily extended to distributions with different (interval) supports.
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with worse outside options. In particular, depending on the context, h-consumers could be

either the advantaged group (e.g., rich consumers) or the disadvantaged group (e.g., those

who have worse outside options).

Pricing Rules A pricing rule p ∶ Ω → R+ is a random variable, where p(ω) ∈ R+ is the

price faced by consumers with type ω ∈ Ω. In particular, a pricing rule p allows prices to

be personalized, as different consumers could face different prices. The seller’s profit under

pricing rule p equals

Π(p) ∶= E[(p(ω) − c)1{v ≥ p(ω)}] .

For a pricing rule to be non-discriminatory, the distribution of prices consumers face can

depend on the cost of serving them, but not on their protected characteristic (even if it

correlates with their values).

Definition 1. A pricing rule p is non-discriminatory if for all c ∈ C and M ⊆ R+,

P [p ∈M ∣ c, θ = l] = P [p ∈M ∣ c, θ = h] .

Let D be the set of all non-discriminatory pricing rules. Non-discriminatory pricing rules

exist, since charging a constant price to all consumers is always non-discriminatory.

As an example, U.S. fair lending laws require that in a loan market, black and white

consumers with the same expected cost of default must be offered the same interest rates.

This regulation is enforced: The Consumer Financial Protection Bureau (CFPB) launched 32

fair lending probes in 2022. For example, the CFPB investigated Wells Fargo for “statistically

significant disparities” in the rates at which the bank offered pricing exemptions (which

correspond to 0.25% − 0.75% interest reductions relative to the rate calculated based on

credit risk) to female and black loan applicants (CNBC 2023).

Remark 1 (Pricing Rules and Market Segmentations). A pricing rule is closely related

to market segmentation, in the sense of Bergemann et al. (2015). A market segmentation

s ∶ Ω → S is a random variable that maps consumers’ types into some measurable space

S. Each realization s(ω) corresponds to a market segment, so that s(ω) = s(ω′) means

consumers with type ω and ω′ belong to the same segment. In this regard, a pricing rule p

itself is a market segmentation, where consumers who face the same price belong to the same

segment. The converse is also true: given any market segmentation s, any pricing rule p that
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is measurable with respect to s can be interpreted as a rule that charges all consumers in the

same segment the same price.

Consumer Surplus and Welfare Loss Finally, we denote by

CS(c, θ;p) = E [(v − p)+ ∣ c, θ]

the average consumer surplus, and by

WL(c, θ;p) = E [1{p > v}(v − c)+ ∣ c, θ]

the welfare loss, of a θ-consumer with cost c under pricing rule p.

3 Optimal Non-Discriminatory Pricing

We now maximize the seller’s profit over non-discriminatory pricing rules. That is, we solve

Π⋆ ∶= sup
p∈D

Π(p) . (1)

A pricing rule p ∈ D is undominated if there does not exist another pricing rule p′ ∈ D such

that both h-consumers and l-consumers have a higher average surplus, and the seller has a

higher profit, with at least one of them being strictly higher. We focus on the undominated

pricing rules among all profit-maximizing pricing rules.10

3.1 Optimal Pricing as an Optimal Transport

We begin the analysis by establishing that the pricing problem (1) is equivalent to an optimal

transport problem. Fix a non-discriminatory pricing rule p ∈ D. For all cost c̃ ∈ C, define a

probability measure ρc̃ ∈∆(V 2) on pairs of values (vl, vh):11 For all measurable sets Vl, Vh ⊆ V ,

ρc̃(Vl × Vh) ∶= E [P [v ∈ Vl ∣ p, c = c̃, θ = l] × P [v ∈ Vh ∣ p, c = c̃, θ = h] ∣ c = c̃] . (2)

That is, among those consumers who face the same price and have a cost c, ρc randomly

10We will further characterize the welfare outcomes of all profit-maximizing pricing rules later in Section 5.3.
11Note that ρc is indeed a probability measure, as it is a mixture of product measures.

8



matches the values of l-consumers to values of h-consumers into pairs.12 Since p is non-

discriminatory, it follows that the marginals of ρc equal Fc,l and Fc,h, respectively.

Lemma 1. If p ∈ D, then ρc has marginal distributions (Fc,l, Fc,h) for all c ∈ C.

Given such matching schemes (ρc)c∈C , an upper bound on the expected profit of the seller

is thus given by setting the price optimally for each matched pair (vl, vh) and each cost c:

Π(p) ≤ ∫
C
(∫

V 2
πc(vl, vh)dρc)G(dc) ,

where πc(vl, vh) is the optimal profit when selling to a pair of consumers with values (vl, vh)

and cost c:

πc(vl, vh) ∶=max
p̃≥0
(p̃ − c) [(1 − αc)1{vl ≥ p̃} + αc1{vh ≥ p̃}] . (3)

Clearly, the optimal price when trade occurs must be either vl or vh, and thus

πc(vl, vh) =max{min{vl, vh} − c, αc(vh − c)
+, (1 − αc)(vl − c)+} .

Denote by Rc ⊂ ∆(V 2) the set of all probability measures on V 2 with marginals Fc,l, Fc,h.

The above arguments imply that the seller’s optimal profit Π⋆ is bounded from above by

choosing a joint distribution ρc ∈Rc to maximize πc for all c. Moreover, given any matching

schemes (ρc)c∈C with ρc ∈ Rc for all c, the pricing rule induced by charging an optimal price

that solves (3) for each realized matched pair (vl, vh) must be non-discriminatory. Together,

we have the following representation of the seller’s problem (1):

Proposition 1 (Optimal Transport Representation). Let π⋆ be the value of the optimal

transport problem:

π⋆ ∶= ∫
C
(max
ρc∈Rc

∫
V 2
πc(vl, vh)dρc)dG(dc) . (4)

Then π⋆ = Π⋆. Moreover, any solution of (4) induces a solution of (1); while any solution

of (1) corresponds to a solution of (4), via (2).

Intuitively, while the non-discrimination constraint prohibits the seller from tailoring

prices to each individual consumer, the seller will optimally tailor to pairs of consumers,

according to Proposition 1.

12For example, if a constant price p ∈ R+ is charged to all consumers with a given cost c, the resulting
distribution ρc is the product distribution generated by Fc,l and Fc,h.
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3 10

3

vh

π̃c(3, vh)

Figure 1: The cost function min{vl, vh, ∣vh − vl∣} for α = 0.5, c = 0, and vl = 3.

Relation to Other Optimal Transport Problems The optimal transport problem given

by (4) is a non-standard problem along several dimensions. To illustrate, suppose that

αc = 1/2 and c = 0. In this case, maximizing the profit function πc is equivalent to minimizing

π̃c(vl, vh) ∶= min{∣vh − vl∣, vh, vl}.13 In comparison, the objective function in classical optimal

transport problems take form of π̂(vl, vh) = d(∣vh−vl∣), where d ∶ R+ → R+ is a convex function.

It is well-known that the assortative matching is optimal (see, e.g., Villani 2009) for these

problems.

More broadly, the objective function π̃c does not satisfy the common properties studied

in the optimal transport literature (see Figure 1 for an illustration of π̃c):

(i) The profit function is not supermodular or submodular.

(ii) The profit function is not translation invariant, i.e. π̃c(vl, vh) ≠ π̃c(vl + ϵ, vh + ϵ).

(iii) The profit function is non-monotone, i.e. ∣vh − vl∣ > ∣v′h − vl∣⇏ π̃c(vl, vh) > π̃c(vl, v′h).

(iv) The profit function is non-convex/concave, i.e. vh ↦ π̃c(vh, vl) is neither (quasi) convex,

nor (quasi) concave.

Due to these differences, the solution to our problem will be quite different from the typical

solutions in the optimal transport literature.14

3.2 Profit-Maximizing Pricing Rules

By Proposition 1, the seller’s problem (1) is equivalent to a family of optimal transport

problems indexed by c. For the ease of exposition, we first impose the following assumption

13To see this, note that max{min{vl, vh},0.5vl,0.5vh} = max{0.5min{vl − vh, vh − vl},−0.5vh,−0.5vl} +
0.5(vh + vl) = −0.5min{∣vh − vl∣, vl, vh} , where the last equality follows as the marginals of vl, vh are fixed.

14To our knowledge, the only other paper that establishes explicit properties of the solution for a concrete
optimal transport problem without imposing these assumption is Boerma, Tsyvinski and Zimin (2025), who
study the function ∣vl − vh∣β for β ∈ (0,1) and thus relax condition (i) while keeping (ii)-(iv).
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fc,h

fc,l

θ = h

θ = l

c

c

F −1c,h(1 − qc)

F −1c,l (qc)

(a) Assortative.

fc,h

fc,l

θ = h

θ = l

c

c

F −1c,h(1 − qc)

F −1c,l (qc)

(b) Partly Anti-Assortative.

Figure 2: Assortative and Partly Anti-Assortative Pricing Rules. Regions of values matched
are of the same color. The arrows illustrate a generic pair of values that are matched together,
and the direction indicate the price each matched pair faces, conditional on being above c.

on Fc,l and Fc,h, which allows us to focus on the more economically interesting cases, and

defer the characterization of optimal pricing rules for general distributions to Section 5.4.

Assumption 1. P [v ≤ c ∣ c, θ = l] < ∥Fc,l − Fc,h∥ for almost all c ∈ C.

Here, ∥ ⋅ ∥ denotes the total variation distance.15 Assumption 1 thus requires that, condi-

tional on each cost, the distance between the value distribution of h-consumers and that of

l-consumers is always greater than the share of l-consumers whose cost exceed their value.

As we show in Corollary 1, the seller can in fact fully extract all gains from trade conditional

on some c ∈ C if and only if Assumption 1 does not hold. Note that when providing the good

is always costless (i.e., c = 0), Assumption 1 is trivially satisfied, and the only pricing rule

that achieves full surplus extraction is to charge each consumer their value p(v, c, θ, r) = v,

which is discriminatory if Fc,l ≠ Fc,h.

To make the pricing rule non-discriminatory, in the spirit of Proposition 1, the seller

could first match consumers into pairs and charge each matched pair the same price. As

demonstrated by the following examples:

Definition 2 (Assortative Matching). The assortative pricing rule pass∶Ω → V is defined

by matching consumers into pairs assortatively conditional on c, and charging each pair the

maximum of the lower value of the pair and c. That is:

pass(v, c, θ, r) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

max{(F −1c,l ○ Fc,h)(v), c} if θ = h

max{v, c} if θ = l
(5)

15Formally, ∥G −H∥ = supA⊆R+ ∣∫A dG − ∫A dH ∣ for all CDFs G,H.
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The pricing rule pass yields a profit equals the gains from trade of l-consumers: Π(pass) =

E [(v − c)+ ∣ θ = l]. Alternatively, the seller could charge higher prices on average, by matching

some high-value l-consumers with low-value h-consumers and charge these pairs the value

of the h-consumer, while matching the rest of the low-value l-consumers with the remaining

high-value h-consumers and charge these pairs the higher value of the pair.

Definition 3 (Partly Anti-Assortative Matching). A partly anti-assortative pricing rule

panti ∶ Ω→ V is defined by

panti(v, c, θ, r) =

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

max{F −1c,h(Fc,l(v) − qc), c} if θ = l and v > F −1c,l (qc)

max{F −1c,h(Fc,l(v) + 1 − qc), c} if θ = l and v ≤ F −1c,l (qc)

max{v, c} if θ = h

, (6)

for some quantiles (qc)c∈C .

Regardless of the quantiles (qc)c∈C , h-consumers always have their surplus extracted under

panti, and thus the seller’s profit is at least E [αc(v − c)+ ∣ θ = h]. How many more l-consumers

purchase, on the other hand, depends on the choice of quantiles. For instance, if qc = 1, then

no l-consumers would purchase. More specifically, all l-consumers with values below F −1c,l (qc)

would not purchase, while l-consumers with values above F −1c,l (qc) may or may not purchase,

and fewer of these consumers would purchase as qc becomes smaller.16

In essence, panti charges higher prices to h-consumer at the cost of excluding some l-

consumers and thus might obtain a higher or lower profit than pass, which sells to more

consumers at lower prices. The trade-off between efficiency and profit that results from the

non-discrimination constraint resembles that of standard screening concerns, even though

buyers hold no private information here.

Figure 2 illustrates the assortative pricing rule and the partly anti-assortative pricing

rule. Although both of these pricing rules are simple and non-discriminatory, it turns out

that neither is optimal and the optimal non-discriminatory pricing rule takes a more intricate

form that balances the efficiency-profit trade-off.

An Optimal Pricing Rule We now describe an optimal pricing rule, which we denote

by p⋆. For all c ∈ C, let ∆c(v) ∶= Fc,l(v) − Fc,h(v) and let ∆
−1
c ,∆

−1
c ∶ [0,1] → V be the larger

16As we show in the Appendix, the smallest qc such that all these consumers would purchase is given by
qc = q⋆c ∶=maxx∈V (Fc,l(x) − Fc,h(x)).
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and smaller inverses of ∆c, and let v⋆c be the unique solution to fc,l(v⋆c ) = fc,h(v⋆c ).17 The

following lemma identifies some critical cutoffs.

Lemma 2. For all c ∈ C, there exists a unique increasing vector κc ∈ R5 with κ4c < v
⋆
c < κ

5
c

such that
κ2c = F

−1
c,l (∆c(κ

3
c) + Fc,h(κ

1
c)) = F

−1
c,l (∆c(κ

4
c)) = F

−1
c,l (∆c(κ

5
c))

κ1c − c = (1 − αc) ⋅ (κ
3
c − c) = αc ⋅ (κ

5
c − κ

4
c) .

(7)

Henceforth, we will call κc the unique solution to (7) and define the pricing rule p⋆ as:

p⋆(v, c, l, r) ∶=

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

∆
−1
c (∆c(κ5c) − Fc,l(v)), if v < κ2c

F −1c,h(Fc,l(v) − Fc,l(κ
2
c) + Fc,h(κ

1
c)), if v ∈ [κ2c , κ

3
c)

v, if v ≥ κ3c

;

p⋆(v, c, h, r) ∶=

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

∆−1c (Fc,h(v) +∆c(κ3c)) , if v < κ1c

F −1c,l (Fc,h(v) +∆c(κ4c)), if v ∈ [κ4c , κ
5
c)

v, if v ∈ [κ5c ,∞) ∪ (κ
1
c , κ

4
c)

.

(8)

Theorem 1 (Optimal Pricing).

(i) p⋆ is a profit-maximizing non-discriminatory pricing rule. That is, p⋆ solves (1).

(ii) Every undominated profit-maximizing non-discriminatory pricing rule p induces the

same average surplus for consumer of each protected characteristic and cost. That is,

CS(c, θ;p) = CS(c, θ;p⋆) for all c ∈ C and θ ∈ {l, h}.

Figure 3 plots the optimal pricing rule p⋆. Under p⋆, for l-consumers, those with values

above the cutoff κ3c face a price equal to their value; those with values in the interval [κ2c , κ
3
c)

face a price less than their value; and those with values below κ2c face a price that exceeds

their value. The prices faced by h-consumers have the same feature, except that the cutoffs

are different. Using (7), it can be verified that for all c ∈ C, the distributions of p⋆ conditional

on (c, l) and on (c, h) are the same, and thus p⋆ is indeed non-discriminatory. Notably, the

pricing rule p⋆ is non-monotone in consumers’ values given c and θ; and does not depend on

the randomization device r.

17Formally, since Fc,h dominates Fc,l in the likelihood ratio order, ∆c is quasi-concave and is maximized

at v⋆c Thus, for any q ∈ [0,∆c(v⋆c )], there are exists a unique pair (∆−1c (q),∆
−1
c (q)) ∈ V 2 such that ∆−1c (q) ≤

v⋆c ≤∆
−1
c (q) and ∆c(∆−1c (q)) = q =∆c(∆

−1
c (q)).

13
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θ = l
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κ3cκ1c κ4c κ5c

κ5c

θ = h

Figure 3: Optimal Pricing Rule p⋆.

The optimality of p⋆ stems from delicately balancing the efficiency-profit trade-off imposed

by the non-discrimination constraint. Under p⋆, low-value consumers do not purchase (i.e.,

p⋆ is above the 45-degree line for low values in Figure 3), which in turn allows the seller to

carefully choose the price they face in order to be able to target the high-value consumers

with a different protected characteristic (i.e., p⋆ coincides with the 45-degree line for high

values) while maintaining the same price distributions for both groups. In the meantime,

intermediate-value consumers all purchase, and some of them purchase at a price below their

values (i.e., p⋆ is below the 45-degree line for some intermediate values). This allows the

seller to sell to more consumers while leaving them as little surplus as possible.

From Proposition 1, the pricing rule p⋆ can alternatively be described by a family of

matching schemes {ρ⋆c}c∈C that solves (4). Figure 4 plots the matching scheme ρ⋆c for a

given c. In Figure 4, the top interval depicts values of h-consumers, and the bottom interval

depicts values of l-consumers. Subintervals with the same colors on each side are matched

together: subintervals connected by solid arrows are matched positively assortatively, whereas

subintervals connected by dashed arrows are matched by pairing consumers with the same

values. The direction of the arrow indicates which value in a matched pair equals the price

under p⋆. According to Figure 4, ρ⋆c matches h-consumers who have values v ≤ κ1c with l-

consumers who have values v ∈ (κ3c , κ
4
c]. The seller’s optimal price, by (7), for each of these

matched pairs, equals the high value of the pair. Meanwhile, l-consumers with v ≤ κ2c are

matched with an equal mass of h-consumers with v > κ5c , and the the seller’s optimal price

14



for each of these matched pairs, by (7), equals the high value of the pair; l-consumers with

v ∈ (κ2c , κ
3
c] are matched assortatively with h-consumers with v ∈ (κ1c , κ

3
c], and the seller’s

optimal price for each of these matched pairs, by (7), equals the low value of the pair;

consumers with v ∈ (κ4c , κ
5
c] are matched assortatively, and the seller’s optimal price for each

of these matched pairs, by (7), equals the low value of the pair. Lastly, all the remaining

consumers are matched with those with the same values, and the seller’s optimal price equals

their values. By (7), each of these matching regions have equal mass of consumer values and

thus the matching scheme ρ⋆c is well-defined.

fc,h

fc,l

θ = h

θ = l

κ1c

κ2c

κ3c

κ3c

v⋆c

v⋆c

κ4c

κ4c

κ5c

κ5c

Figure 4: Matching Scheme ρ⋆c .

As some consumers face a price below their values under p⋆, Theorem 1 implies that the

seller cannot fully extract all gain from trade under the non-discrimination constraint.

Remark 2. There are many other pricing rules beyond p⋆ that maximize the sellers profit.

For example, in the interval [κ4c , κ
5
c] where the seller matches l and h consumers, any other

matching that ensures every l-consumer is matched with an h-consumer of higher value yields

the same expected profit of E [v ∣ c, θ = l, v ∈ [κ4c , κ5c]] − c. As a result, for each individual

consumer, their surplus might be different under different undominated profit-maximizing

pricing rules. Nonetheless, Theorem 1 ensures that all undominated optimal pricing rules

lead to the same average consumer surplus for each protected characteristic θ and cost c.

An Example of Insurance Demand To illustrate Theorem 1, we next present a simple

example in the context of insurance markets. Suppose that the values of consumers with cost

c and protected characteristic θ are exponentially distributed with mean E [v ∣ c, θ] = λθc, for
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some 0 < λl < λh.18 In the context of insurance, this means that consumers who face greater

risk (i.e., higher c) have on average higher value for insurance (i.e., higher E[v ∣ c]).

Defining γ = λh/λl, we show in the appendix that Assumption 1 is satisfied if and only if

1 − e
− 1

λl < γ
−γ
γ−1 (γ − 1) .

Intuitively, this assumption is satisfied if either (i) the difference in the expected valuations

for the product as measured by γ is large or (ii) low type consumers value the product not

too little relative to its production cost (i.e., λl = E [v/c ∣ c, θ = l] is large). For example, if h-

consumers value the product on average twice as much than l-consumers, then Assumption 1

is satisfied whenever l-consumers’ values are approximately three times has high as their

costs on average. Furthermore, under this distribution, it follows that the cutoffs defined by

(7), as well as the average consumer surplus, must be linear in c: κc = c ⋅κ1 and CS(c, θ;p⋆) =

c ⋅CS(1, θ;p⋆) for all c and θ.19

Figure 5 illustrates the consumer surplus under the optimal non-discriminatory pricing

rule p⋆ for the case of αc = 1/2, λl = 1, and λh = 3. The left panel displays the average surplus

of l and h consumers with each level of gains from trade E [v ∣ c] − c. Meanwhile, the right

panel displays all consumer types (v, c, θ, r) who receive strictly positive surplus. According

to this panel, some consumers receive positive surplus, and l-consumers who receive positive

surplus always value the product less than h-consumers who receive positive surplus.

4 Welfare Implications

In this section, we discuss the welfare implications of non-discrimination regulations using

the characterization given by Theorem 1.

4.1 Consumer Surplus and Welfare Losses

An immediate consequence of Theorem 1 is that consumers generally retain a positive surplus

under any optimal non-discriminatory pricing rule, as stated in Proposition 2 below.

18Formally, Fc,l(x) = 1−e−x/λlc and Fc,h(x) = 1−e−x/λhc. Since λh > λl, Fc,h dominates Fc,l in the likelihood
ratio order.

19In fact, we show in the Appendix that for any distributions that take the form of Fc,θ(x) = Fθ(x/c), and
αc = α ∈ (0,1), for all c and θ, Assumption 1 holds if and only if Fl(1) < ∥Fl − Fh∥, and the cutoffs κc and
consumer surplus CS(c, θ;p⋆) must be linear in c.
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Figure 5: Consumer Surplus for αc = 1/2, λl = 1, λh = 3. The left panel plots the average
surplus of l and h consumers as a function of gains from trade. The right panel plots the
consumers who retain a positive surplus under p⋆.

Proposition 2. Under the optimal pricing rule p⋆, for all c ∈ C,

(i) CS(c, h;p⋆) > 0; while WL(c, h;p⋆) > 0 whenever vc ≤ c;

(ii) CS(c, l;p⋆) > 0 and WL(c, l;p⋆) > 0 if and only if αc ⋅ (vc − c) > vc − c.

According to Proposition 2, h-consumers always retain a positive surplus under the opti-

mal non-discriminatory pricing rule p⋆, and would have a positive deadweight loss whenever

the lowest value does not have strictly positive gains from trade (e.g., when vc = 0, as in

the insurance example in Section 3 with exponential value distributions). In the meantime,

l-consumers retain a positive surplus if and only if αc(vc−c) > vc−c for some c. This condition

means that when the highest-value consumer is matched with the lowest-value consumer, it

would be more profitable for the seller to only sell to the high-value consumer by charging

a high price, which is satisfied whenever the support [vc, vc] of the value distribution con-

ditional on cost is wide enough, and, in particular, whenever vc ≤ c. Overall, Proposition 2

implies that consumers would typically retain a positive surplus under the optimal pricing

rule p⋆, but at the expense of some consumers who are efficient to trade with being excluded.

The fact that consumers generally retain a positive surplus and the deadweight loss is

generally positive under the optimal non-discriminatory pricing rule p⋆ is reminiscent of the

notion of information rents in screening problems. In standard monopolistic screening prob-
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lems, agents typically retain some information rents because the principal does not observe

the agent’s private type, and thus has to pay the agent some rents to elicit this information.

In the context of non-discriminatory personalized pricing, although the seller observes the

consumers’ types and can propose personalized prices that depend on each consumer’s type,

the non-discrimination constraint effectively prohibits the seller from using certain informa-

tion conveyed by a consumer’s type. Indeed, by requiring the price distribution to be the

same for different protected characteristics, the non-discrimination constraint prohibits the

seller from using any information—even though it is observable—conveyed by the protected

characteristics θ when designing personalized prices. As a result, consumers would be able

to keep some rents as a part of their types are effectively private.

However, the information rents are manifested differently under non-discriminatory per-

sonalized pricing. In standard screening problems with one-dimensional types and single-

crossing preferences, information rents are enjoyed by high-type agents. However, under

non-discriminatory personalized pricing, it is the consumers with intermediate values (i.e.,

those with v ∈ (κ2c , κ
3
c), θ = l and v ∈ (κ

4
c , κ

5
c), θ = h) who retain a positive surplus, while the

high-value consumers have their surplus extracted and the low-value consumers are excluded.

In other words, while both creating information rents, unobserved information and prohibited

information would generally lead to different distribution of welfare among consumers. Under

non-discriminatory pricing, intermediate-value consumers benefit from the regulation at the

expense of high-value consumers being extracted and low-value consumers being excluded.

4.2 Profit Loss Due to Non-Discrimination Constraints

In this section, we briefly explore how much profit the seller loses due to the non-discrimination

constraint. In the case where there is no cost c = 0, αc = 1/2, and values are exponentially

distributed with means E [v ∣ c, θ = l] = 1 and E [v ∣ c, θ = h] ≥ 1,20 Figure 6 plots the share of

the seller’s profit relative to the total surplus, under various non-discriminatory pricing rules,

including the optimal pricing rule p⋆, the assortative pricing rule pass, the anti-assortative

pricing rule panti with qc = 1 and qc = q⋆c ∶= ∆c(v⋆c ), as well as the (optimal) uniform pricing

rule. As illustrated by Figure 6, even though the seller is prevented from full surplus ex-

traction due to the non-discrimination constraint, the seller can still guarantee a significant

share of the total gains from trade using non-discriminatory personalized pricing (≥ 95%).

20Note that Assumption 1 always holds here as Fc,l(c) = 0.
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Figure 6: Seller profit divided by total surplus for different pricing rules with c = 0, αc = 1/2,
and E [v ∣ c, θ = l] = 1.

This contrasts with the optimal non-personalized pricing rule, which always yields the seller

less than 40% of the social surplus.

In what follows, we provide a general lower bound on the share of total surplus the seller

can guarantee using a non-discriminatory pricing rule. To this end, for any cost c̃ ∈ C, let

rc̃ + 1 be the ratio of gains from trade of l and h types

rc̃ ∶=
E[(v − c)+ ∣ c = c̃, θ = h]
E[(v − c)+ ∣ c = c̃, θ = l]

− 1 .

The following proposition establishes a lower bound on the share of surplus the seller can

extract from consumers under p⋆ conditional on c, which depends only on rc but not on other

details of the distributions of values Fc,l and Fc,h.

Proposition 3. For all c̃ ∈ C,

E [(p⋆ − c)1{v ≥ c} ∣ c = c̃]
E [(v − c)+ ∣ c = c̃]

≥
max{1, αc̃ (rc̃ + 1)}

αc̃ rc̃ + 1
≥
rc̃ + 1

2 rc̃ + 1
>
1

2
.

In particular,

Π⋆ = Π(p⋆) ≥ E [
rc + 1

2rc + 1
] >

1

2
.
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According to Proposition 3, the seller can always guarantee E [rc/(2rc + 1)] share of total

surplus under the non-discrimination constraint. For example, if h-consumers have 40%

higher gains from trade compared to l-consumers (i.e., rc = 0.4), then the seller can extract at

least 77% of total gains from trade under the optimal non-discriminatory personalized pricing

rule. We note that optimal non-discriminatory personalized pricing always guarantees the

seller strictly more than half of the surplus, which exceeds the best guarantee uniform pricing

can give.21 The bound in Proposition 3 is not tight in general, and the seller could typically

obtain an even higher surplus extraction rate under the optimal pricing rule p⋆, as illustrated

by Figure 6.

4.3 Who Benefits More from Anti-Discrimination Regulation

Next, we explore which protected characteristic benefits more from anti-discrimination reg-

ulations. The answer depends on the relative size of the population of different consumers

and the underlying value distributions. As the next result establishes, the more consumers

with the same protected characteristic there are in the market, the lower their surplus would

be.

Proposition 4 (Effects of Population Sizes). Fix the value distributions Fc,l, Fc,h. Let

CS(c, θ;p⋆, αc) denote the consumer surplus under pricing rule p⋆ when P[θ = h ∣ c] = αc.

(i) The surplus of h-consumers CS(c, h;p⋆, αc) decreases in αc.

(ii) The surplus of l-consumers CS(c, l;p⋆, αc) increases in αc.

Furthermore, limαc→1CS(c, h;p⋆, αc) = limαc→0CS(c, l;p⋆, αc) = 0. In particular, for all

c ∈ C, there exists αc, α′c such that CS(c, h;p⋆, αc) > CS(c, l;p⋆, αc) and CS(c, h;p⋆, α′c) <

CS(c, l;p⋆, α′c).

Intuitively, if there are more consumers of the same characteristic, the seller has higher in-

centives to tailor prices finely to that consumer group, which reduces their surplus. Again, this

is reminiscent of classical information rents stemming from private information in screening

problems, where the agent’s information rent decreases as their types become more similar.

Proposition 4 implies that it is impossible to determine who benefits more from anti-

discrimination regulation without restrictions on the size of consumer groups. Indeed, if one

21Uniform pricing can guarantee half the surplus when the seller’s profit—as a function of the uniform
price—is concave, but not otherwise (Bergemann, Castro and Weintraub 2022). In the example of Figure 6,
the seller’s profit function is not concave and thus uniform pricing only gives a profit that is less than 40%
of the total surplus.
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group has vanishing size, the seller will (almost) perfectly tailor the prices to the other group

and leave members of that group with no surplus.

In fact, even with fixed population sizes, with different value distributions Fc,l and Fc,h, it

could be that either l-consumers benefit more or h-consumers benefit more, as illustrated by

Figure 7, in the context of the insurance example with exponential distributions introduced

in Section 3.
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Figure 7: Consumer Surplus for αc = 1/2, λl = 1. The left panel has λh = 3 and the right panel
has λh = 12.

As a result, while non-discrimination regulations could strictly benefit consumers of both

types, it is noteworthy that consumers’ gains might be disproportional across groups with

different protected characteristics, and either h-consumers or l-consumer could benefit more,

depending on the relative population and the underlying value distributions. Meanwhile,

although non-discriminatory requirements could benefit consumers, such requirements would

also create deadweight losses, according to Proposition 2. In other words, the benefit con-

sumers get under the non-discrimination regulations is partly due to the fact that some

low-value consumers are excluded from the market.

Together, perhaps contrary to goal of non-discrimination regulations, which typically

seeks to protect the socially disadvantaged group of consumers, our results suggest that it is

not immediately clear whether such regulations always benefit the disadvantaged group that

regulators wish to protect the most. Depending on the underlying value distributions and
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population sizes, it is possible that the other group of consumers could benefit even more, at

the expense of some consumers from the disadvantaged group being excluded.

4.4 Non-Discriminatory Outcomes

Our notion of non-discriminatory pricing applies to the distribution of prices offered to con-

sumers. In a sense, this requires that consumers in different protected groups are given equal

opportunities, so that they face, on average, the same prices before they decide whether to

purchase. Alternatively, one could consider a stronger notion of non-discriminatory pric-

ing, which requires consumers in different protected groups to face equal outcomes, so that

after they make purchase decisions, the resulting outcomes (i.e., transaction outcomes and

transaction prices) must be the same.

Specifically, given a pricing rule p, denote by y(ω) = 1{v ≥ p} the random variable that

indicates whether or not the product is sold to a given consumer.

Definition 4. A pricing rule p induces non-discriminatory outcomes if for all c ≥ 0 and

M ⊆ R × {0,1},

P[(p, y) ∈M ∣ c, θ = 0] = P[(p, y) ∈M ∣ c, θ = 1] .

In other words, a pricing rule p induces non-discriminatory outcomes if the event of

transaction and the transaction price, (p, y), are independent of protected characteristic θ

conditional on cost c. Clearly, any pricing rule that induces non-discriminatory outcomes

must be non-discriminatory. Recall that in (5) we defined pass to be the pricing rule which

matches h and l consumers associatively and charges each pair the lower of their values.

Proposition 5 (Optimal Pricing Rule with Non-Discriminatory Outcomes).

(i) pass induces non-discriminatory outcomes and maximizes the seller’s profit among all

pricing rules that induce non-discriminatory outcomes.

(ii) pass yields a lower profit than the optimal non-discriminatory pricing rule: Π(p⋆) ≥

Π(pass), and the inequality is strict if and only if αc(vc − c) > vc − c for a positive

measure of c ∈ C.

(iii) The surplus of h-consumers is higher under pass than under p⋆ and the surplus of l-

consumers is lower. That is, for all c,

CS(c, h;p⋆) ≤ CS(c, l;pass) and CS(c, l;p⋆) ≥ CS(c, h;pass) ,
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where the inequalities are strict if and only if αc(vc − c) > vc − c.

Proposition 5 thus establishes that the pricing policy used by the seller, and thus the

welfare implications, depend delicately on the notion of non-discriminatory pricing poli-

cies. Strengthening the protection, and require non-discriminatory outcomes, instead of

non-discriminatory prices, would hurt the group who has lower values. In some settings

(e.g., when the disadvantaged group has lower values because they are poorer), this would

mean that stricter non-discrimination regulations may actually make the disadvantaged group

worse-off and the seller worse-off, while benefiting the advantaged group.

Remark 3 (Equalizing Consumer Surplus). While more difficult to implement, one might

also wonder—as a theoretical benchmark—what would the welfare implications be if the

notion of non-discrimination is based on welfare directly, as opposed to of observable outcomes

such as prices and transactions. In other words, we could also consider another notion of

non-discriminatory pricing that requires the average consumer surplus across groups to be

the same conditional on costs: CS(c, h;p) = CS(c, l;p). Clearly, under such notion, perfect

price discrimination p = max{v, c} is feasible and both h-consumers and l-consumers would

have zero surplus, which is even worse compared to non-discriminatory outcomes defined

above.

Overall, the above analyses suggest that the welfare implications of Theorem 1 may serve

as a cautionary tale and underlines the importance of more careful analyses for the welfare

implications of non-discrimination regulations.

5 Extensions

5.1 Imperfect Price Discrimination

Thus far, we assumed that every pricing rule that satisfy the non-discrimination constraint

is feasible. This requires the seller knowing each consumer’s type. In practice, sometimes

the seller may not have access to enough of data to perfectly estimate consumers’ types, and

can only obtain a noisy signal.

Our method can still be applied to characterize the profit-maximizing non-discriminatory

pricing rule in this environment. Specifically, suppose now that consumers’ true values are

denoted by w ≥ 0, whose distribution depends on an observable type v. The observable types
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v are distributed according to Fc,l, Fc,h among consumers with protected characteristics l

and h conditional on cost c, respectively. A pricing rule p ∶ V ×C ×Θ × [0,1]→ R+ is defined

as before, except that v does not stand for a consumer’s true value but only provides noisy

information about a consumer’s value. Given a pricing rule p, the seller’s profit is given by

Π(p) ∶= E [max
p≥0 (p − c) ⋅ 1{w ≥ p}] .

By the same arguments as the proof of Proposition 1,22 we may still recast the problem into

an optimal transport:

π̃⋆ ∶= ∫
C
(max
ρc∈Rc

∫
V 2
π̃c(vl, vh)dρc)G(dc) , (9)

where

π̃c(vl, vh) ∶=max
p≥0 [(p − c) ⋅ (αcP[w ≥ p ∣ vh] + (1 − αc)P[w ≥ p ∣ vl])] .

As a result, the profit-maximizing pricing rules can still be found by solving the optimal

transport problem (9).

To illustrate the solution, suppose that there are no cost to serve consumers (i.e., c = 0

almost surely), αc = 1/2, and that consumers’ values w are distributed uniformly on [0,2v]

conditional on v. It then follows that

π̃c(vl, vh) =max{
vl
4
,
vh
4
,
vlvh
vl + vh

} .

The solution to the optimal transport problem (9) in this case is qualitatively similar to

the solution in the baseline model. To describe the solution, let κ̃c ∈ [0, vc]5 be the unique

increasing vector with κ̃4c < v
⋆
c < κ̃

5
c that solves following system of equations

κ̃2c = F
−1
c,l (∆c(κ̃

3
c) + Fc,h(κ̃

1
c)) = F

−1
c,l (∆c(κ̃

4
c)) = F

−1
c,l (∆c(κ̃

5
c))

κ̃1c κ̃
2
c

κ̃1c + κ̃
2
c

=
κ̃3c
4
− ∫

κ̃3c

κ̃2c

(
β
c
(z)

z + β
c
(z)
)

2

dz = ∫
κ̃5c

κ̃4c

(
βc(z)

z + βc(z)
)

2

dz , (10)

where

β
c
(z) ∶= F −1c,h(Fc,l(z) −∆c(κ̃

3
c))

22Alternatively, this can be derived from Lemma 3 of Strack and Yang (2024).
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for all z ∈ [κ̃2c , κ̃
3
c], and

βc(z) ∶= F
−1
c,h(Fc,l(z) −∆c(κ̃

4
c)) .

for all z ∈ [κ̃4c , κ̃
5
c]. Then, let

p̃⋆(v, c, l, r) ∶=

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

∆
−1
c (∆c(κ̃5c) − Fc,l(v)), if v < κ̃2c

F −1c,h(Fc,l(v) − Fc,l(κ̃
2
c) + Fc,h(κ̃

1
c)), if v ∈ [κ̃2c , κ̃

3
c)

v, if v ≥ κ̃3c

;

p̃⋆(v, c, h, r) ∶=

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

∆−1c (Fc,h(v) +∆c(κ̃3c)) , if v < κ̃1c

F −1c,l (Fc,h(v) +∆c(κ̃4c)), if v ∈ [κ̃4c , κ̃
5
c)

v, if v ∈ [κ̃5c ,∞) ∪ (κ̃
1
c , κ̃

4
c)

,

for all v ∈ V and r ∈ [0,1]. Then, we have:

Proposition 6. p̃⋆ is an optimal non-discriminatory pricing rule.

The optimal pricing implied by Proposition 6 is qualitatively identical to the optimal

pricing rule given by Theorem 1, with the only difference being how the thresholds κ̃c are

defined.

5.2 Implementable Welfare Outcomes

While we have so far focused on how the seller can maximize their profits using a non-

discriminatory pricing rule, another natural question is what consumer welfare can be achieved.

To explore this question, recall that from Remark 1, we may view pricing rules as price dis-

criminating consumers based on a given market segmentation. In what follows, we explore

the welfare outcomes (i.e., consumer surplus and seller profit) that can be induced by a non-

discriminatory pricing rule that charges an optimal price in each market segment. That is,

we calculate the average consumer surplus and the seller’s profit that can be induced by some

non-discriminatory pricing rule p that is

(i) measurable with respect to some segmentation s ∶ Ω→ S, and

(ii) is optimal given each segment for the seller.23

23That is, the price p(s) in each segment s satisfies p(s) ∈ argmaxx≥0 E[(x − c)1{v ≥ x} ∣ s].
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Figure 8: Feasible Welfare Outcomes for c = 0, αc = 1/4, Fc,h = (β +α(1− β))F + (1− (β + (1−
β)α))F and Fc,l = (1 − β)αF + (1 − (1 − β)α)F .

The set of feasible pairs of seller profit and average consumer surplus without the non-

discrimination constraint is characterized by Bergemann et al. (2015) for c = 0, as the triangle

spanned by the points

(E [v],0), (r⋆,0), (r⋆,E [v] − r⋆) ,

where r⋆ =maxp p ⋅P [v ≥ p] is the optimal uniform pricing revenue. That is, Bergemann et al.

(2015) show that any surplus division where the seller’s revenue is between r⋆ and E [v], and

the consumers’ average surplus is below the total surplus E [v] net of the seller’s revenue, is

implementable by some segmentation. With the non-discrimination constraint, however, not

every outcome in this triangle is feasible.

As an example, suppose that c = 0 and αc = 1/4 =∶ α of consumers are of protected

characteristic h, and let F ,F be exponential distributions with means 10 and 1. Consider a

parameterization of Fc,h and Fc,l where for some β ∈ [0,1],

Fc,h ∶= (β + α(1 − β))F + (1 − (β + (1 − β)α))F

Fc,l ∶= (1 − β)αF + (1 − (1 − β)α)F .

By construction, Fc,h dominates Fc,l in the likelihood ratio order for all β ∈ [0,1], and the

total variation distance ∥Fc,h − Fc,l∥ increases in β. Meanwhile, the overall distribution of
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values αFc,h + (1 − α)Fc,l in the population remains unchanged in β. As a consequence, the

surplus triangle of Bergemann et al. (2015) remains the same for all β ∈ [0,1].

Figure 8 plots the set of feasible pairs of seller profit and average consumer surplus with

the non-discrimination constraint for this parameterized family of type distributions. The

shaded triangle corresponds to the feasible surplus division given by Bergemann et al. (2015),

whereas the colored curves depict the boundary of the set of feasible welfare outcomes for a

different values of the parameter β.

As noted above, when c = 0 almost surely, Assumption 1 holds, and hence the highest

feasible revenue is less than the total gains from trade E [v], due to the non-discrimination

constraint. This is reflected in Figure 8 by the fact that the top-left corner of the triangle not

included in feasible surplus region. One notable feature of the example is the relatively minor

restriction on implementable welfare outcomes even when the distributions of values become

vastly different across consumer groups (recall that in this example, h-consumers value the

good 10 times more than l-consumers at β = 1 ).

In this parametric example, there exists a segmentation that keeps the seller’s revenue

the same as the uniform pricing revenue, induces a non-discriminatory pricing rule in which

all consumers buy, and thus the boundaries all reach the bottom-right corner of the trian-

gle. However, this is not the case in general. Characterizing explicitly the feasible welfare

outcomes in general, and in particular, when can the consumer-optimal outcome be attained

under the non-discrimination constraint, is an exciting question for future research.

5.3 All Profit-Maximizing Pricing Rules

So far, we have focused on revenue maximizing pricing rules that are undominated, in the

sense that there does not exist another revenue maximizng pricing rule that generates a

higher surplus for all consumer groups. We now explore the welfare outcomes of all optimal

non-discriminatory pricing rules, including the dominated ones. In particular, we charac-

terize the surplus of consumers with each protected characteristics under all optimal non-

discriminatory pricing rules. To state our welfare results, for all c ∈ C, we say that (σc,l, σc,h)

is a surplus outcome induced by an optimal non-discriminatory pricing rule if there exists a

non-discriminatory pricing rule p such that Π(p) = Π(p⋆) and that σ is the induced consumer

surplus CS(c, θ;p) = σc,θ for all c ∈ C, θ ∈ {l, h}.

Proposition 7 (Welfare Outcomes). (σc,l, σc,h) is a surplus outcome induced by an optimal
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non-discriminatory pricing rule if and only if

0 ≤ σc,l ≤ CS(c, l;p
⋆) and σc,h = CS(c, h;p

⋆)

The proof of Proposition 7 relies on the optimality of p⋆, as well as the duality the-

orem of the optimal transports (4). Details of the proof can be found in the Appendix.

According to Proposition 7, h-consumers retain the same amount of surplus under every

optimal non-discriminatory pricing rule, whereas the average surplus of l-consumers range

from zero to E [CS(c, θ;p⋆) ∣ θ = l] across all optimal non-discriminatory pricing rules. More-

over, since profits are the same across all optimal non-discriminatory pricing rules, Proposi-

tion 7 in turn implies that h-consumers’ deadweight losses are the same across all optimal

non-discrimiantory pricing rules, whereas the average surplus of l-consumers range from

WL(c, l, p⋆) to E [(v − c)+] −Π(p⋆) − E [CS(c, θ;p⋆) +WL(c, θ;p⋆) ∣ θ = h] across all optimal

non-discriminatory pricing rules.

5.4 General Distributions

We now relax Assumption 1 and characterize the undominated profit-maximizing pricing

rules for all distributions of values. According to Proposition 1, the optimal pricing rule can

be found by solving an optimal transport problem for each c ∈ C. To this end, let

C1 ∶={c ∈ C ∶ Fc,l(c) < ∥Fc,l − Fc,h∥}

C2 ∶={c ∈ C ∶ Fc,l(c) ≥ ∥Fc,l − Fc,h∥ , c < v
⋆
c }

C3 ∶={c ∈ C ∶ Fc,l(c) ≥ ∥Fc,l − Fc,h∥ , c ≥ v
⋆
c } .

By definition, C1,C2,C3 partitions the set of possible costs C into three regions. Note that

Assumption 1 imposes that c ∈ C1 almost surely.

We now define an optimal pricing rule p⋆ for general distributions conditioning on different

realizations of c. When c ∈ C1, let p⋆ be defined in (8). When c ∈ C2, since Fc,l(c) ≥ ∆c(v⋆c ),

there exists a unique value ηlc ≤ c such that Fc,l(c)−Fc,l(ηlc) =∆c(v⋆c ). Let ηhc ∶= F −1c,h(Fc,l(η
l
c)).
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Figure 9: Optimal Pricing Rule when c ∈ C2.
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Figure 10: Optimal Pricing Rule when c ∈ C3.

The pricing rule p⋆, when c ∈ C2, is defined as follows:

p⋆(v, c, l, r) ∶=

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

c, if v < ηlc

∆
−1
c (∆c(v⋆c ) + Fc,l(ηlc) − Fc,l(v)), if v ∈ [ηlc, c)

v, if v ≥ c

p⋆(v, c, h, r) ∶=

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

c, if v < ηh

∆−1c (Fc,h(v) − Fc,h(ηhc ) +∆c(c)), if v ∈ [ηhc , c)

v, if v ≥ c
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Figure 9 depicts the optimal pricing rule p⋆ when c ∈ C2.

When c ∈ C3, the pricing rule p⋆ is defined as follows:

p⋆(v, c, l, r) ∶=

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

c, if v < F −1c,l (Fc,h(c))

∆
−1
c (∆c(c) + Fc,h(c) − Fc,l(v)), if v ∈ [F −1c,l (Fc,h(c)), c)

v, if v ≥ c

p⋆(v, c, h, r) ∶=max{v, c}

Figure 10 depicts the optimal pricing rule p⋆ when c ∈ C3.

Theorem 2 below establishes that p⋆ is an optimal non-discriminatory pricing rule.

Theorem 2 (Optimal Pricing for General Distributions).

(i) p⋆ is a profit-maximizing non-discriminatory pricing rule, that is, p⋆ solves (1).

(ii) Every undominated profit-maximizing non-discriminatory pricing rule induces the same

average surplus CS(θ, c;p⋆) for consumer of each protected characteristic θ and cost c.

We note that Theorem 2 immediately implies Theorem 1, since c ∈ C1 almost surely under

Assumption 1. As another immediate consequence of Theorem 2, under the optimal pricing

rule p⋆, the seller is able to fully extract all gains from trade whenever c ∈ C2 ∪C3.

Corollary 1. For all c̃ ∈ C2 ∪C3,

E[(p⋆ − c)1{v ≥ p⋆} ∣ c = c̃] = E[(v − c)+ ∣ c = c̃] .

As a result,

CS(c, θ;p⋆) =WL(c, θ;p⋆) = 0 ,

for all c ∈ C2 ∪C3 and θ ∈ {l, h}.

According to Corollary 1, the restrictions on the value distributions imposed by Assump-

tion 1 are in fact equivalent to restricting attention to distributions where the seller cannot

fully extract all gains from trade.
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6 A Proof Sketch for Theorem 1 and Theorem 2

In this section, we outline the main steps of the proof for Theorem 1 and Theorem 2. Details

of the proof can be found in the appendix. From Proposition 1, optimal pricing rules can be

identified by solving the optimal transport problem

π⋆(c) ∶=max
ρ∈Rc
∫
V 2
πc(vl, vh)dρc , (11)

for each cost c ∈ C. We solve (11) by a duality argument. The dual problem corresponding

to (11) is given by

π⋆(c) ∶= inf
ϕc,ψc

[∫
V
ϕc(vl)Fc,l(dvl) + ∫

V
ψc(vh)Fc,h(dvh)]

s.t. ϕc(vl) + ψc(vh) ≥ πc(vl, vh) , (12)

where the infimum is taken over all measurable functions ϕc, ψc ∶ V → R. Since πc is continu-

ous, the Kantorovich duality theorem holds (see, e.g., Villani 2009, Theorem 5.10).

Lemma 3 (Kantorovich Duality). π⋆(c) = π⋆(c) for all c ∈ C. Moreover, for any c ∈ C, for

any measurable ϕc, ψc such that ϕc(vl) + ψc(vh) ≥ πc(vl, vh) for all (vl, vh) ∈ V × V , and for

any ρc ∈Rc, ρc is a solution of (11) and ϕc, ψc is a solution of (12) if and only if

ϕc(vl) + ψc(vh) = πc(vl, vh) (13)

for all (vl, vh) ∈ supp(ρc).

Therefore, to solve (11), it suffices to find, for each c ∈ C, a joint distribution ρ⋆c ∈ Rc
and a pair of functions ϕ⋆c and ψ⋆c such that (ϕ⋆c , ψ⋆c ) is feasible in the dual problem (12)

and that the complementary slackness condition holds: ψ⋆c (vl) + ψ⋆c (vh) = πc(vl, vh) for all

(vl, vh) ∈ supp(ρ⋆c). In the appendix, we construct explicitly the optimal dual variables

(ϕ⋆c , ψ⋆c ). Figure 11a illustrates the functions ϕ⋆c and ψ⋆c when αc = 1/2 and c = 0.

Then, we show that the complementary slackness condition (13) holds under the joint

distribution ρ⋆c associated with the pricing rule p⋆. Figure 11b illustrates the support of the

joint distribution of ρ⋆c when c ∈ C1, where the blue region indicates the support of ρ⋆c and

the dashed red region indicates the set of (vl, vh) at which ϕ⋆c(vl) + ψ⋆c (vh) = πc(vl, vh).
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Figure 11: Structure of the optimal dual variables and complementary slackness conditions.

7 Conclusion

We characterize the profit-maximizing non-discriminatory pricing rules. We show that the

pricing problem can be represented by a family of optimal transport problems and explicitly

solve the optimal transports. Under the optimal non-discriminatory pricing rule, consumers

could retain a positive surplus given the non-discrimination constraint, even if the seller ob-

serves their types can engage in personalized pricing. This is reminiscent of information rents

in screening problems, since some information is prohibited from being used even though it

is not private. The distribution of information rents, however, differ qualitatively from stan-

dard screening problems: surplus is allocated to consumers with intermediate values, while

low-value consumers are excluded, and high-value consumers are extracted. Furthermore,

welfare gains could be distributed unevenly between protected groups. Depending on the

value distribution and the population size, it is possible that the advantaged group bene-

fits more from non-discrimination regulations than the disadvantaged group, at the expense

of low-value consumers from the disadvantaged group being excluded. When strengthen-

ing the notion of non-discrimination, and requiring both the transaction outcomes and the

transaction prices to be the same across protected groups, the protected group with lower
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values are worse-off whereas the protect group with higher values are better-off. We also

consider several extensions to the baseline model, including imperfect price discrimination

and implementable outcomes.
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Appendix

A.1 Proof of Main Results

Proof of Lemma 1. Consider any non-discriminatory pricing rule p. By definition, p is

independent of θ conditional on c. Therefore, for any c̃ ∈ C and for any z ⊆ V ,

ρc̃([0, z] × V ) =E[P[v ∈ [0, z] ∣ p, c = c̃, θ = l] × P[v ∈ V ∣ p, θ = h, c = c̃] ∣ c = c̃]

=E[P[v ∈ [0, z] ∣ p, c = c̃, θ = l] ∣ c = c̃]

=E[P[v ∈ [0, z] ∣ c = c̃, θ = l]]

=Fc̃,l(z) .

Likewise,

ρc̃(V × [0, z]) =E[P[v ∈ V ∣ p, c = c̃, θ = l] × P[v ∈ [0, z] ∣ p, θ = h, c = c̃] ∣ c = c̃]

=E[P[v ∈ [0, z] ∣ p, c = c̃, θ = h] ∣ c = c̃]

=E[P[v ∈ [0, z] ∣ c = c̃, θ = h]]

=Fc̃,h(z) .

Therefore, the marginals of ρc equals Fc,l and Fc,h for all c ∈ C, as desired.

Proof of Proposition 1. Consider any non-discriminatory pricing rule p, for each c ∈ C,

let ρc be defined by (2). We first claim that

Π(p) ≤ ∫
C
(∫

V 2
πc(vl, vh)ρc(dvl,dvh))G(dc) .

Indeed, note that, for all ĉ ∈ C, by the definition of πĉ,

∫
V 2
πĉ(vl, vh)ρĉ(dvl, vh) = ∫

V 2
max
p̃
(p̃ − ĉ) [(1 − αĉ)1{vl ≥ p̃} + αĉ1{vh ≥ p̃}]ρĉ(dvl,dvh) .
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By the definition of ρĉ, for all ĉ ∈ C, we have

∫
V 2

max
p̃
(p̃ − ĉ) [(1 − αĉ)1{vl ≥ p̃} + αĉ1{vh ≥ p̃}]ρĉ(dvl,dvh)

=E [max
p̃

E [(p̃ − c)(1 − αc)1{v ≥ p̃} ∣ p, θ = l, c = ĉ] × E [(p̃ − c)αc1{v ≥ p̃} ∣ p, θ = h, c = ĉ] ∣ c = ĉ]

=E [max
p̃

E [(p̃ − c)1{v ≥ p̃} ∣ p, c = ĉ] ∣ c = ĉ]

≥E [E [(p − c)1{v ≥ p} ∣ p, c = c̃] ∣ c = ĉ]

=E [(p − c)1{v ≥ p} ∣ c = ĉ] .
(A.1)

Therefore,

Π(p) = E[(p − c)1{v ≥ p}] ≤ ∫
C
(∫

V 2
πc(vl, vh)ρc(dvl,dvh))G(dc) ,

as desired.

Next, we show that

sup
p∈D

Π(p) ≥ ∫
C
(∫

V 2
max
ρc∈Rc

πc(vl, vh)ρc(dvl,dvh))G(dc) .

To this end, we show that any {ρc}c∈C such that ρc ∈ Rc for all c ∈ C, we can construct a

non-discriminatory pricing rule p such that

Π(p) = ∫
C
(∫

V 2
πc(vl, vh)ρc(dvl,dvh))G(dc) .

Indeed, consider any {ρc}c∈C such that ρc ∈Rc for all c ∈ C. Since V ⊆ R+ is a standard Borel

space, by the disintegration theorem (see, e.g., Çinlar 2010, Theorem 2.17, pp. 151), for each

c ∈ C, there exists transition probabilities γc,l ∶ V →∆(V ) and γc,h ∶ V →∆(V ) such that for

all measurable Vl, Vh ⊆ V

∫
Vh
γc,l(Vl ∣ vh)Fc,h(dvh) = ρc(Vl × Vh) = ∫

Vl
γc,h(Vh ∣ vl)Fc,l(dvl) . (A.2)

Let Γc,θ(⋅ ∣ v) be the CDF associated with γc,θ(⋅ ∣ v), for all v ∈ V , c ∈ C and θ ∈ {l, h}. In the
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meantime, let ξc ∶ V 2 → R+ be a measurable selection of

argmax
p̃≥0

(p̃ − c)(αc1{vh ≥ p̃} + (1 − αc)1{vl ≥ p̃}) .

Then, let

p(v, c, θ, r) ∶=

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

ξc(v,Γ−1c,h(r ∣ v)), if θ = l

ξc(Γ−1c,l(r ∣ v), v), if θ = h
, (A.3)

for all (v, c, θ, r) ∈ Ω. By construction,

Π(p) =E[(p − c)1{v ≥ p}]

=E[E[E[(p − c)1{v ≥ p} ∣ c, θ] ∣ c]]

=∫
C
(αc∫

V ×[0,1]
(ξc(Γ

−1
c,l(r ∣ vh), vh) − c)1{vh ≥ ξc(Γ

−1
c,l(r ∣ vh), vh)}drFc,h(dvh)

+ (1 − αc)∫
V ×[0,1]

(ξc(vl,Γ
−1
c,h(r ∣ vl)) − c)1{vl ≥ ξc(v,Γ

−1
c,h(r ∣ vl))}drFc,l(dvl))G(dc)

=∫
C
(αc∫

V 2
(ξc(vl, vh) − c)1{vh ≥ ξc(vl, vh)}Γc,l(dvl ∣ vh)Fc,h(dvh)

+ (1 − αc)∫
V 2
(ξc(vl, vh) − c)1{vl ≥ ξc(vl, vh)}Γc,h(dvh ∣ vl)Fc,l(dvl))G(dc)

=∫
C
(∫

V 2
(ξc(vl, vh) − c)(αc1{vh ≥ ξc(vl, vh) + (1 − αc)1{vl ≥ ξc(vl, vh)})ρc(dvl,dvh))G(dc)

=∫
C
(∫

V 2
πc(vl, vh)ρc(dvl,dvh))G(dc) ,

(A.4)

where the second equality follows from the law of iterated expectation, the fourth equality

follows from changing variables of the integration, the fifth equality follows from (A.2), and

the last equality follows from the definition of ξc.
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Moreover, for any c ∈ C and for any measurable M ⊆ V ,

P[p ∈M ∣ c, θ = l] =P[ξc(v,Γ−1c,h(r ∣ v)) ∈M ∣ c, θ = l]

=∫
V ×[0,1]

1{ξc(vl,Γ
−1
c,h(r ∣ vl)) ∈M}dr dFc,l(dvl)

=∫
V 2

1{ξc(vl, vh) ∈M}Γc,h(dvh ∣ vl)Fc,l(dvl)

=∫
V 2

1{ξc(vl, vh) ∈M}ρc(dvl,dvh) ,

where the third equality again follows from changing variables of the integration, and the

last equality follows from (A.2). Likewise,

P[p ∈M ∣ c, θ = h] =P[ξc(Γ−1c,l(r ∣ v), v) ∈M ∣ c, θ = h]

=∫
V ×[0,1]

1{ξc(Γ
−1
c,l(r ∣ vh), vh) ∈M}dr dFc,h(dvh)

=∫
V 2

1{ξc(vl, vh) ∈M}Γc,l(dvl ∣ vh)Fc,h(dvh)

=∫
V 2

1{ξc(vl, vh) ∈M}ρc(dvl,dvh) .

As a result, for all c ∈ C, and for all measurable M ⊆ [0,1],

P[p ∈M ∣ c, θ = l] = ∫
V 2

1{ξc(vl, vh) ∈M}ρc(dvl,dvh) = P[p ∈M ∣ c, θ = h] ,

and thus p is indeed non-discriminatory.

Together, we have

sup
p∈D

Π(p) = ∫
C
(max
ρc∈Rc

∫
V 2
πc(vl, vh)ρc(dvl,dvh)) . (A.5)

Furthermore, for any profit-maximizing non-discriminatory pricing rule p, let ρc be defined

by (2), (A.1) and (A.5) then implies that {ρc}c∈C solves (4). Conversely, for any {ρc}c∈C that

solves (4), let p be defined by (A.3). Then p solves (1) by (A.4) and (A.5). This completes

the proof.

Proof of Lemma 2. Since ∆c is continuous and quasi-concave, it has a unique maximizer.

Let v⋆c be the unique maximizer of ∆c for all c ∈ C. Since Fc,l and Fc,h are CDFs on R+ that

38



are absolutely continuous, ∆c(0) = 0 and limv→∞∆c(v) = 0, and

∥Fc,l − Fc,h∥ =max
A⊆R+
∣∫

A
[fc,l(v) − fc,h(v)]dv∣ =max

v
∆c(v) =∆c(v

⋆
c ) .

Moreover, since ∆c is continuous and quasi-concave, for any v ≥ v⋆c , there exists a unique

gc(v) ∈ [vc, v
⋆
c ] such that ∆c(v) = ∆c(gc(v)). Moreover, the function gc ∶ [v⋆c ,∞) → [vc, v⋆c ] is

continuous and decreasing in v, with gc(v⋆c ) = v⋆c and limv→∞ gc(v) = vc. For any v ≥ v⋆c , let

hc(v) ∶= v − gc(v) .

Note that hc is increasing on [v⋆c , vc] and hc(v⋆c ) = 0, limv→∞ hc(v) =∞. In particular, since

Fc,l(c) < ∥Fc,l − Fc,h∥ = ∆c(v⋆c ), and thus c < v⋆c , there exists a unique ṽc > v⋆c such that

αchc(ṽc) = (1 − αc)(v⋆c − c). Meanwhile let v̂c ∶= inf{v ≥ v⋆c ∶ αchc(v) ≥ (1 − αc)(vc − c)}. Since

hc is nondecreasing, it must be that v̂c ∈ [v⋆c , ṽc].

Note that, if v̂c = v⋆c , then it must be that

∆c (
αc

1 − αc
hc(v̂c) + c) + Fc,h(αchc(v̂c) + c) = Fc,l(c) < ∥Fc,l − Fc,h∥ =∆c(v

⋆
c ) =∆c(v̂c) ;

If v̂c ∈ (v⋆c , vc), then it must be that 0 ≤ αchc(v̂c) = (1 − αc)(vc − c), and thus αchc(v̂c) + c =

(1 − αc)vc + αcc ≤ vc. Therefore,

∆c (
αc

1 − αc
hc(v̂c) + c) + Fc,h(αchc(v̂c) + c) = 0 <∆c(v̂c) .

If v̂c ≥ vc, then

∆c (
αc

1 − αc
hc(v̂c) + c) + Fc,h(αchc(v̂c) + c) = 0 =∆c(v̂c) .

Since ∆c is quasi-concave, and hence is decreasing on [v⋆c , vc] while ∆c(v) = 0 for all v ≥ vc.

In the meantime, since αchc(v)/(1 − αc) + c ≤ v⋆c for all v ∈ [v⋆c , ṽc] and since hc is increasing

in v, the function

v ↦∆c (
αc

1 − αc
hc(v) + c) + Fc,h(αchc(v) + c)
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is increasing on [v⋆c , ṽc]. Together, there exists a unique κ5c ∈ [v̂c, ṽc] such that

∆c(κ
5
c) =∆c (

αc
1 − αc

hc(κ
5
c) + c) + Fc,h(αchc(κ

5
c) + c) , (A.6)

and that
αc

1 − αc
hc(κ

5
c) ≤

αc
1 − αc

hc(ṽc) = v
⋆
c − c .

Let κ4c ∶= gc(κ
5
c) and κ

1
c ∶= αchc(κ

5
c)+ c, κ

3
c ∶= αchc(κ

5
c)/(1−αc)+ c, and κ

2
c ∶= F

−1
c,l (∆c(κ5c)). By

construction, κ5c ≥ v̂c ≥ v
⋆
c > κ

4
c , with at least one of the first two inequalities being strict, and

κ3c ≥ κ
1
c . Moreover, since κ3c = αchc(κ

5
c)/(1 − αc) + c ≤ v

⋆
c and since ∆c(κ3c) ≤ ∆c(κ4c) < ∆c(v⋆c ),

κ3c ≤ κ
4
c . In the meantime, since Fc,l(κ2c) =∆c(κ3c) + Fc,h(κ

1
c),

Fc,l(κ
3
c) − Fc,l(κ

2
c) = Fc,h(κ

3
c) − Fc,h(κ

1
c) ≥ 0 ,

and hence κ2c ≤ κ
3
c . Lastly, since κ

1
c ≤ κ

3
c ≤ v

⋆
c , it must be that ∆c(κ1c) ≤∆c(κ3c). Therefore,

Fc,l(κ
2
c) − Fc,h(κ

1
c) =∆c(κ

3
c) ≥∆c(κ

1
c) = Fc,l(κ

1
c) − Fc,h(κ

1
c) ,

and hence Fc,l(κ2c) ≥ Fc,l(κ
1
c), which in turn implies κ2c ≥ κ

1
c .

Together, it then follows that κ1c ≤ κ
2
c ≤ κ

3
c ≤ κ

4
c < v

⋆
c < κ

5
c . Moreover, for any κ̃c ∈ R5 that

solves (7) such that κ̃4c < v
⋆
c < κ̃

5
c , it must be that κ̃4c ≥ κ̃

2
c ≥ vc. Since κ

5
c is the unique solution

of (A.6) among v ∈ [v̂c, ṽc], for which gc(v) ≥ vc, it must be that κ̃5c = κ
5
c . Meanwhile, since

κ̃c solves (7), it must be that κ̃c = κc. Thus, κc is the unique increasing vector in R5 with

κ4c < v
⋆
c < κ

5
c that solves (7).

Proof of Theorem 2. Note that Theorem 2 immediately implies Theorem 1, and therefore

we prove Theorem 2 directly. For any c ∈ C, if Fc,l(c) ≥ ∥Fc,l − Fc,h∥, let

ϕ⋆c(vl) ∶= (1 − αc) ⋅ (vl − c)
+ and ψ⋆c (vh) ∶= αc ⋅ (vh − c)

+ ,
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for all (vl, vh) ∈ V × V . Meanwhile, if Fc,l(c) < ∥Fc,l − Fc,h∥, let

ϕ⋆c(vl) ∶=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

κ1c − c, if vl ≤ κ3c

(1 − αc) ⋅ (vl − c), if vl ∈ (κ3c , κ
4
c]

vl − c − αc ⋅ (κ4c − c), if vl ∈ (κ4c , κ
5
c]

(1 − αc)(vl − c) + κ1c − c, if vl > κ5c

,

and let

ψ⋆c (vh) ∶=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if vh ≤ κ1c

vh − κ1c , if vh ∈ (κ1c , κ
3
c]

αc ⋅ (vh − c), if vh ∈ (κ3c , κ
4
c]

αc ⋅ (κ4c − c), if vh ∈ (κ4c , κ
5
c]

αc(vh − c) − (κ1c − c), if vh > κ5c

.

Lemma A.1. For any (vl, vh) ∈ V × V and for any c ∈ C,

ϕ⋆c(vl) + ψ
⋆
c (vh) ≥ πc(vl, vh) .

The proof of Lemma A.1 is by inspection, using the system of equation (7) that defines

κc. Details of the proof can be found in Section A.2. Next, we define a joint distribution

ρ⋆c ∈∆(V 2). When Fc,l < ∥Fc,l−Fc,h∥, define a transition probability γ⋆c ∶ V →∆(V ) as follows:

γ⋆c (vl ≤ x ∣ vh) ∶=
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1{∆−1c (Fc,h(vh +∆c(κ3c)) ≤ x}, if vh ≤ κ1c

1{F −1c,l (Fc,h(vh) +∆c(κ3c)) ≤ x}, if vh ∈ (κ1c , κ
3
c]

1{vh ≤ x}, if vh ∈ (κ3c , κ
4
c]

1{F −1c,l (Fc,h(vh) +∆c(κ4c)) ≤ x}, if vh ∈ (κ4c , κ
5
c]

fc,l(vh)
fc,h(vh) ⋅ 1{vh ≤ x} +

fc,h(vh)−fc,l(vh)
fc,h(vh) ⋅ 1{F −1c,l (∆c(κ5c) −∆c(vh)) ≤ x}, if vh > κ5c ,

,

for all x ∈ V and for all vh ∈ V . Meanwhile, when Fc,l ≥ ∥Fc,l − Fc,h∥ and c < v⋆c , define a
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transition probability γ⋆c ∶ V →∆(V ) as:

γ⋆c (vl ≤ x ∣ vh) ∶=
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1{F −1c,l (Fc,h(vh)) ≤ x} , if vh ≤ ηhc

1{∆−1c (Fc,h(vh) − Fc,h(ηhc ) +∆c(c)) ≤ x} , if vh ∈ (ηhc , c]

1{vh ≤ x}, if vh ∈ (c, v⋆c ]
fc,l(vh)
fc,h(vh)1{vh ≤ x} +

fc,h(vh)−fc,l(vh)
fc,h(vh) 1{F −1c,l (∆c(v⋆c ) −∆c(vh) + Fc,l(ηlc)) ≤ x}, if vh > v⋆c

,

for all x ∈ V and for all vh ∈ V . When Fc,l ≥ ∥Fc,l − Fc,h∥ and c ≥ v⋆c , define γ⋆c as:

γ⋆c (vl ≤ x ∣ vh) ∶=
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1{F −1c,l (Fc,h(vh)) ≤ x} , if vh ≤ c

fc,l(vh)
fc,h(vh)1{vh ≤ x} +

fc,h(vh)−fc,l(vh)
fc,h(vh) 1{F −1c,l (Fc,l(c) −∆c(vh)) ≤ x}, if vh > c

,

for all x ∈ V and for all vh ∈ V .

Then, for all c ∈ C, let ρ⋆c ∈∆(V × V ) be defined as

ρ⋆c(vl ∈ A,vh ∈ B) ∶= ∫
B
γ⋆c (A ∣ vh)Fc,h(dvh) , (A.7)

for all measurable sets A,B ⊆ V . By construction, the marginals of ρ⋆c are exactly Fc,l and

Fc,h. That is,

Lemma A.2. ρ⋆c ∈Rc for all c ∈ C.

Combining Lemma 3, Lemma A.1 and Lemma A.2 with Lemma A.3 below, it then follows

that ρ⋆c is a solution of (11).

Lemma A.3. For any c ∈ C, ϕ⋆c(vl) + ψ⋆c (vh) = πc(vl, vh) for all (vl, vh) ∈ supp(ρ⋆c).

Since ρ⋆c is a solution of (11) for all c, Proposition 1 implies that one can construct

an optimal non-discriminatory pricing rule from {ρ⋆c}c∈C . To this end, for any c ∈ C, let

β⋆c ∶ V → ∆(V ) be the conditional distribution of vh given vl implied by ρ⋆c . That is, β⋆c is a

version of the regular conditional probability defined by

ρ⋆c(vl ∈ A,vh ∈ B) = ∫
B
β⋆c (vl ∈ A ∣ vh)Fc,h(dvh) , (A.8)
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for all measurable A,B ⊆ V . Next, let γ−1c and β−1c be the quantile function defined by γ⋆c
and β⋆c , respectively. That is,

γ−1c (r ∣ vh) ∶= inf{vl ∈ V ∶ γ
⋆
c ([0, vl] ∣ vh) ≥ r} and β

−1
c (r ∣ vl) ∶= inf{vh ∈ V ∶ β

⋆
c ([0, vh] ∣ vl) ≥ r}

for all r ∈ [0,1] and for all (vl, vh) ∈ V 2. Meanwhile, for any (vl, vh) ∈ V 2, let pc(vl, vh) be the

minimum element of

argmax
p̃≥0

(p̃ − c)(αc1{vh ≥ p̃} + (1 − αc)1{vl ≥ p̃}) .

It then follows that p⋆ can be written as

p⋆(v, l, c, r) = pc(v, β
−1
c (r ∣ v)) and p

⋆(v, h, c, r) = pc(γ
−1
c (r ∣ v), v)

for all v ∈ V , c ∈ C and r ∈ [0,1]. By construction,

P[p⋆ ∈M ∣ c, θ = l] =P[pc(v, β
−1
c (r ∣ v)) ∈M ∣ θ = l, c]

=∫
V ×[0,1]

1{pc(vl, β
−1
c (r ∣ vl)) ∈M}dr dFc,l(dvl)

=∫
V 2

1{pc(vl, vh) ∈M}β
⋆
c (dvh ∣ vl)Fc,l(dvl)

=∫
V 2

1{pc(vl, vh) ∈M}ρ
⋆
c(dvl,dvh) ,

where the third equality again follows from changing variables of the integration, and the

last equality follows from (A.7) and (A.8). Likewise,

P[p⋆ ∈M ∣ c, θ = h] =P[pc(γ
−1
c (r ∣ v), v) ∈M ∣ θ = h, c]

=∫
V ×[0,1]

1{pc(γ
−1
c (r ∣ vh), vh) ∈M}dr dFc,h(dvh)

=∫
V 2

1{pc(vl, vh) ∈M}γ
⋆
c (dvl ∣ vh)Fc,h(dvh)

=∫
V 2

1{pc(vl, vh) ∈M}ρ
⋆
c(dvl,dvh) .

As a result, for all c ∈ C, and for all measurable M ⊆ [0,1],

P[p⋆ ∈M ∣ c, θ = l] = ∫
V 2

1{pc(vl, vh) ∈M}ρ
⋆
c(dvl dvh) = P[p⋆ ∈M ∣ c, θ = h] ,
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and thus p⋆ is indeed non-discriminatory. Moreover,

Π(p⋆) =E[(p⋆ − c)1{v ≥ p⋆}]

=E[E[E[(p⋆ − c)1{v ≥ p⋆} ∣ c, θ] ∣ c]]

=∫
C
(αc∫

V ×[0,1]
(pc(γ

−1
c (r ∣ vh), vh) − c)1{vh ≥ pc(γ

−1
c (r ∣ vh), vh)}drFc,h(dvh)

+ (1 − αc)∫
V ×[0,1]

(pc(vl, β
−1
c (r ∣ vl)) − c)1{vl ≥ pc(v, β

−1
c (r ∣ vl))}drFc,l(dvl))G(dc)

=∫
C
(αc∫

V 2
(pc(vl, vh) − c)1{vh ≥ pc(vl, vh)}γ

⋆
c (dvl ∣ vh)Fc,h(dvh)

+ (1 − αc)∫
V 2
(pc(vl, vh) − c)1{vl ≥ pc(vl, vh)}β

⋆
c (dvh ∣ vl)Fc,l(dvl))G(dc)

=∫
C
(∫

V 2
(pc(vl, vh) − c)(αc1{vh ≥ pc(vl, vh)} + (1 − αc)1{v ≥ pc(vl, vh)})ρ

⋆
c(dvl,dvh))G(dc)

=∫
C
(∫

V 2
πc(vl, vh)ρ

⋆
c(dvl,dvh))G(dc) ,

where the second equality follows from the law of iterated expectation, the fourth equality

follows from changing variables of the integration, the fifth equality follows from (A.7) and

(A.8), and the last equality follows from the definition of pc. Thus, by Proposition 1, p⋆ is

indeed an optimal non-discriminatory pricing rule. This completes the proof of (i). Part (ii)

then immediately follows from Proposition 7.

Proof of Proposition 2. For (i), by Theorem 1, to show that CS(c, h;p⋆) > 0, it suffices

to show Fc,h(κ5c) > Fc,h(κ
4
c) and that Fc,h(κ1c) > 0. To see this, since κ4c < v

⋆
c < κ

5
c and since

v⋆c ∈ (vc, vc), it must be that Fc,h(κ5c) > Fc,h(κ
4
c), as desired. In the meantime, to show that

WL(c, h;p⋆), it suffices to show Fc,h(κ1c) > 0 by Theorem 1. According to (7), κ1c > c for all

c. Therefore, whenever vc ≤ c, Fc,h(κ
1
c) > Fc,h(c) ≥ Fc,h(vc) = 0, as desired.

For (ii), suppose that αcvc > vc−(1−αc)c. By Theorem 1, it suffices to show that Fc,l(κ3c) >

Fc,l(κ2c) > 0. We first claim that ∆c(κ4c) > 0. To see this, suppose the contrary. ∆c(κ4c) = 0.

Then it must be that κ4c ≤ vc and κ
5
c ≥ vc. Moreover, κ2c = F

−1
c,l (∆c(κ4c)) = F

−1
c,l (0) = vc, and

∆c(κ3c) = Fc,h(κ
1
c) = 0. Since κc is increasing, it must be that κ3c ≤ κ

4
c ≤ vc. Together,

vc = κ
3
c ≤ κ

3
c ≤ κ

4
c ≤ vc ,
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Therefore, κ3c = κ
4
c = vc. Thus,

(1 − αc)(κ
3
c − c) = (1 − αc)(vc − c) = αc(κ

5
c − κ

4
c) ≥ αc(vc − vc) ,

and hence

αcvc ≤ vc − (1 − αc)c ,

a contradiction. As a result, ∆c(κ4c) > 0. This implies that Fc,l(κ2c) > 0. Together, we have

that CS(c, l;p⋆) > 0 and WL(c, h;p⋆) > 0.

Conversely, suppose that αc(vc−c) ≤ vc−c. Then, it must be that κ1c ≤ vc, since otherwise,

as κ3c ≤ κ
4
c < v

⋆
c < vc,

αc(κ
3
c − c) ≤ αc(vc) ≤ vc − c < κ

1
c − c ,

contradicting to (7). Since κ1c ≤ vc, (7) then implies that 0 = ∆c(κ3c) = ∆c(κ4c), and hence

κ3c = κ
4
c = vc, which in turn implies that κ2c = vc and κ

5
c = vc. Thus, by Theorem 1, CS(c, l;p⋆) =

WL(c, l;p⋆) = 0, as desired.

Proof of Proposition 3. Recall that the assortative pricing rule pass, defined by (5) gives

a profit of E [(v − c)+ ∣ c = c̃, θ = l] for all c̃ ∈ C. Since pass is non-discriminatory, and since

E [(v − c)+ ∣ c = c̃] = αc̃E [(v − c)+ ∣ c = c̃, θ = h] + (1 − αc̃)E [(v − c)+ ∣ c = c̃, θ = l]

we have
Π⋆c̃

E [(v − c)+ ∣ c = c̃]
≥

E [(v − c)+ ∣ c = c̃, θ = l]
E [(v − c)+ ∣ c = c̃]

≥
1

αc̃rc̃ + 1
, (A.9)

for all c̃ ∈ C. In the meantime, since the partly anti-assortative pricing rule panti defined by

(6), with qc = 1 for all c, gives a profit of E [αc(v − c)+ ∣ c = c̃, θ = h] conditional on every c̃ ∈ C,

and is also non-discriminatory, we have

Π⋆c̃
E [(v − c)+ ∣ c = c̃]

≥
αc̃E [(v − c)+ ∣ c = c̃, θ = h]

E [(v − c)+ ∣ c = c̃]
=
αc̃(rc̃ + 1)

αc̃rc̃ + 1
, (A.10)

for all c̃ ∈ C. Since the right-hand side of (A.9) is decreasing in αc̃ and the left-hand side of
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(A.10) is increasing in αc̃, the maximum of the two is minimizes at αc̃ = 1/(rc̃+1), we have

Π⋆c̃
E [(v − c)+ ∣ c = c̃]

≥max{
1

αc̃rc̃ + 1
,
αc̃(rc̃ + 1)

αc̃rc̃ + 1
} ≥

rc̃ + 1

2 rc̃ + 1
.

as desired.

Proof of Proposition 4. For (i), consider each c ∈ C, note that since ṽc defined in the

proof of Lemma 2 is decreasing in αc, and since the function

αc ↦∆c (
αc

1 − αc
hc(v) + c) + Fc,h(αchc(v) + c)

is increasing in αc for all v ∈ [v⋆c , ṽc], κ5c defined in (A.6) is decreasing in αc, which in turn

implies that κ4c is increasing in αc. Therefore, since

CS(c, h;p⋆) = ∫
Fc,h(κ5c)

Fc,h(κ4c)
(F −1c,h(q) − F

−1
c,l (q −∆c(κ

4
c)))dq,

CS(c, h;p⋆) is decreasing in αc.

For (ii), note that since ∆c(κ5c) = ∆c(κ4c) is increasing in αc as established above, and

since the function

v ↦∆c (
αc

1 − αc
hc(v) + c) + Fc,h(αchc(v) + c)

is increasing on [v⋆c , ṽc], κ3c = αchc(v)/(1 − αc) + c is also increasing in αc. Together with

κ3c ≤ v
⋆
c for all αc ∈ [0,1], it follows that ∆c(κ3c) is increasing in αc as well. In the meantime,

since Fc,l(κ4c) − Fc,l(κ
2
c) = Fc,h(κ

4
c), it is also increasing in αc.

Moreover, note that since ∆c is increasing on [0, v⋆c ] and since κ4c ≤ v
⋆
c , Fc,h(v) ≤ Fc,l(v) −

∆c(κ3c) for all v ∈ [κ
3
c , κ

4
c],

CS(c, l;p⋆) = ∫
κ3c

κ2c

(v − F −1c,h(Fc,l(v) −∆c(κ
3
c)))Fc,l(dv) = ∫

κ4c

κ2c

(v − τ(v))Fc,l(dv) ,

where

τ(v) ∶=min{v,F −1c,h(Fc,l(v) −∆c(κ
3
c))}

for all v ∈ [κ2c , κ
4
c]. Note that τ(v) is decreasing in αc for all v ∈ [κ2c , κ

4
c] since ∆c(κ3c) is

increasing in αc. Together, CS(c, l;p⋆) is increasing in αc.

For (iii), suppose first that αc → 1. Since κ5c is decreasing in αc and is bounded from
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below by v⋆. Thus, the limit of κ5c exists. As a result, the limits of κ1c , κ
2
c , κ

3
c and κ

4
c exist as

well. Moreover, since κ3c ≤ v
⋆
c for all αc ∈ (0,1), κ3c must converge to a finite value as αc → 1.

Thus, since κ3c − c = κ1c−c/(1−αc), for all αc ∈ (0,1), κ1c must converge to c as αc → 1. This in

turn implies that the limits of κ5c and κ
4
c coincide and equal v⋆c . This implies CS(c, h, p⋆) = 0.

Now suppose that αc → 0. Since κ4c is decreasing as αc → 0 and is bounded from below

by 0, the limit of κ4c exists, and hence the limits of κ1c , κ
2
c , κ

3
c and κ

5
c exist as well. Moreover,

since κ1c − c = αc(κ
5
c − κ

4
c), the limit of κ1c as αc → 0 must be c, which in turn implies that the

limit of κ3c as αc → 0 equals c as well. Since κ2c ∈ [κ
1
c , κ

3
c], it then follows that the limit of κ2c

equals c as well. As a result, CS(c, l;p⋆) = 0. This completes the proof.

Proof of Proposition 5. To prove (i), consider any non-discriminatory pricing rule p that

induces non-discriminatory outcomes. For each c ∈ C, define a matching scheme ρc ∈ ∆(V 2)

as

ρc(Vl × Vh) ∶= E [P[v ∈ Vl ∣ p, c, θ = l, y] × P[v ∈ Vh ∣ p, c, θ = h, y] ∣ c] ,

for all measurable Vl, Vh ⊆ V . Since p induces non-discriminatory outcomes,

ρc([0, z] × V ) = E[P[v ∈ [0, z] ∣ p, θ = l, c, y] ∣ c] = Fc,l(z) ,

and

ρc(V × [0, z]) = E[P[v ∈ [0, z] ∣ p, θ = h, c, y] ∣ c] = Fc,h(z) ,

for all z ≥ 0. Therefore, ρc ∈Rc.

For each c, given such matching scheme ρc, since (p, y) is independent of θ conditional

on c, each matched pair (vl, vh) ∈ supp(ρc) must face the same price under p; and either

both purchase or both do not purchase. Therefore, the seller’s profit under p must be weakly

lower than selling to each matched pair (vl, vh) ∈ supp(ρc) at a price min{vl, vh} whenever

min{vl, vh} ≥ c, and not selling to the pair otherwise. That is,

Π(p) ≤ E [∫
V 2
(min{vl, vh} − c)

+ dρc] .

As a result, for any pricing p that induces non-discriminatory outcomes,

Π(p) ≤ E [max
ρc∈Rc

∫
V 2
(min{vl, vh} − c)

+ dρc] =∶ π .
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Note that the objective (min{vl, vh} − c)+ of the optimal transport problem

max
ρc∈Rc

∫
V 2
(min{vl, vh} − c)

+ dρc

if supermodular for all c ∈ C, the assortative matching must be a solution. Therefore,

max
ρc∈Rc

∫
V 2
(min{vl, vh} − c)

+ dρc = ∫
V
(v − c)+Fc,l(dv) .

Thus, by construction, under the pricing rule pass,

Π(pass) = E [∫
V
(v − c)+Fc,l(dv)] = π .

Since pass also induces non-discriminatory outcomes, pass is optimal. Furthermore, as pass is

also non-discriminatory, Π(p⋆) ≥ Π(pass). Lastly, since the solution of

max
ρc∈Rc

∫
V ×V
(min{vl, vh} − c)

+ρc(dvl,dvh)

must correspond to a pricing rule that is outcome-equivalent to the assortative matching for

all c ∈ C, any profit-maximizing pricing rule that induces non-discriminatory outcomes must

yield the same surplus to consumers.

For (iii), since Fc,h dominates Fc,l in the likelihood ratio order, under pass, each matched

pair of consumers who are purchasing consumers must buy at the value of the consumer

with θ = l, and hence 0 = CS(c, l;pass) ≤ CS(c, h;p⋆); while the price distribution faced

by purchasing consumers with θ = h equals (Fc,l(⋅) − Fc,l(c))+/(1 − Fc,l(c)), which in turn

is dominated by the price distribution faced by purchasing consumers with θ = h in the

sense of first-order-stochastic dominance under p⋆. Therefore, CS(c, h;pass) ≥ CS(c, h;p⋆).

Moreover, note that as established in the proof of (ii) of Proposition 2, p⋆ ≠ pass if and only

if αc(vc−c) > vc−c for a positive measure of c. Thus, CS(c, h;pass) > CS(c, h;p⋆) if and only

if αc(vc − c) > vc − c for a positive measure of c.

For (ii), since pass is non-discriminatory, Theorem 1 implies that Π(p⋆) ≥ Π(pass). More-

over, by (iii), since CS(c, h;pass) > CS(c, h;p⋆) if and only if αc(vc− c)vc− c, and since every

undominated profit-maximizing rule p must yield CS(c, θ;p) = CS(c, θ;p⋆) for all c ∈ C and

for all θ ∈ {l, h} by Theorem 1, it must be that pass is not optimal if and only if αc(vc−c) > vc−c

for a positive measure of c ∈ C. Therefore, Π(p⋆) > Π(pass) if and only if αc(vc − c) > vc − c.
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This completes the proof.

A.2 Proofs of Omitted Auxiliary Lemmas

Proof of Lemma A.1. We show that ϕ⋆c(vl)+ψ⋆c (vh) ≥ πc(vl, vh) for all (vl, vh) by discussing

all cases separately. Suppose first that Fc,l(c) <∆c(v⋆c ) = ∥Fc,l − Fc,h∥.

Case 1: vl ≤ κ3c .

When vh ≤ κ1c , πc(vl, vh) either equals min{vl, vh} − c ≤ vh − c ≤ κ1c − c, or αc(vh − c)
+ ≤ κ1c − c,

or (1 − αc)(vl − c)+ ≤ (1 − αc)(κ3c − c) = κ1c − c. Therefore,

ϕ⋆c(vl) + ψ
⋆
c (vh) = κ

1
c − c ≥ πc(vl, vh) .

When vh ∈ (κ1c , κ
3
c], vh−c > κ

1
c−c = (1−αc)(κ

3
c−c) ≥ (1−αc)(vl−c)

+ and hence min{vh, vl}−c ≥

(1−αc)(vl−c)+. Therefore, πc(vl, vh) either equals min{vl, vh}−c ≤ vh−c or αc(vh−c) ≤ vh−c.

As a result,

ϕ⋆c(vl) + ψ
⋆
c (vh) = vh − c ≥ πc(vl, vh) .

When vh ∈ (κ3c , κ
4
c], vh > vl, and therefore πc(vl, vh) =max{vl − c,αc(vh − c)}. Moreover, since

(1−αc)(κ3c − c) = κ
1
c − c, we have vl − c ≤ κ

3
c − c = αc(κ

3
c − c)+ κ

1
c − c ≤ αc(vh − c)+ κ

1
c − c. Thus,

ϕ⋆c(vl) + ψ
⋆
c (vh) = αc(vh − c) + κ

1
c − c ≥max{vl − c,αc(vh − c)} = πc(vl, vh) .

When vh ∈ (κ4c , κ
5
c], vh > vl, and therefore πc(vl, vh) =max{vl−c,αc(vh−c)}. As argued above,

we have vl − c ≤ κ3c − c = αc(κ
3
c − c) + κ

1
c − c ≤ αc(κ

4
c − c) + (κ

1
c − c). Furthermore, by (7),

αc(κ
4
c − c) + κ

1
c − c = αc(κ

5
c − c) ≥ αc(vh − c) .

Together,

ϕ⋆c(vl) + ψ
⋆
c (vh) = αc(κ

4
c − c) + κ

1
c − c ≥max{vl − c,αc(vh − c)} = πc(vl, vh) .

When vh > κ5c , note that since κ
1
c −c = (1−αc)(κ

3
c −c) ≤ (1−αc)(κ

4
c −c), and since αc(κ5c −κ

4
c) =

κ1c − c, we have that αc(vh − c) ≥ αc(κ5c − c) = αc(κ
4
c − c) + (1 − αc)(κ

3
c − c) ≥ κ

3
c − c ≥ vl − c.
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Therefore, πc(vl, vh) = αc(vh − c), and hence

ϕ⋆c(vl) + ψ
⋆
c (vh) = αc(vh − c) = πc(vl, vh) .

Case 2: vl ∈ (κ3c , κ
4
c].

When vh ≤ κ1c , (1 − αc)(vl − c) > (1 − αc)(κ
3
c − c) = κ

1
c − c ≥ vh − c, and hence πc(vl, vh) =

(1 − αc)(vl − c). Therefore,

ϕ⋆c(vl) + ψ
⋆
c (vh) = (1 − αc)(vl − c) = πc(vl, vh) .

When vh ∈ (κ1c , κ
3
c], vh ≤ κ

3
c < vl and hence min{vl, vh} − c = vh − c. Therefore, πc(vl, vh) =

max{vh − c, (1−αc)(vl − c)}. Since vh −κ1c + (1−αc)(vl − c) > vh −κ
1
c + (1−αc)(κ

3
c − c) = vh − c,

we have

ϕ⋆c(vl) + ψ
⋆
c (vh) = vh − κ

1
c + (1 − αc)(vl − c) ≥max{vh − c, (1 − αc)(vl − c)} .

When vh ∈ (κ3c , κ
4
c],

ϕ⋆c(vl) + ψ
⋆
c (vh) =αc(vh − c) + (1 − αc)(vl − c)

≥max{min{vl, vh} − c, (1 − αc)(vl − c), αc(vh − c)} .

When vh ∈ (κ4c , κ
5
c], since κ

1
c − c = αc(κ

5
c − κ

4
c) and since (1 − αc)(κ3c − c) = κ

1
c − c, we have

αc(vh − c) ≤ αc(κ
5
c − c) =αc(κ

4
c − c) + κ

1
c − c

=αc(κ
4
c − c) + (1 − αc)(κ

3
c − c)

≤αc(κ
4
c − c) + (1 − αc)(vl − c) .

Together,

ϕ⋆c(vl) + ψ
⋆
c (vh) = αc(κ

4
c − c) + (1 − αc)(vl − c) ≥max{vl − c,αc(vh − c)} = πc(vl, vh) .

When vh > κ5c , since κ
1
c − c = αc(κ

5
c − κ

4
c), we have

αc(vh − c) − (κ
1
c − c) ≥ αc(κ

5
c − c) − (κ

1
c − c) = αc(κ

4
c − c) ≥ αc(vl − c) .
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Therefore,

αc(vh − c) − (κ
1
c − c) + (1 − αc)vl ≥ vl − c .

Meanwhile, since (1 − αc)(κ3c − c) = κ
1
c − c,

(1 − αc)(vl − c) ≥ (1 − αc)(κ
3
c − c) = κ

1
c − c ,

and thus

αc(vh − c) − (κ
1
c − c) + (1 − αc)(vl − c) ≥ αc(vh − c) .

Together,

ϕ⋆c(vl) + ψ
⋆
c (vh) =αc(vh − c) − (κ

1
c − c) + (1 − αc)(vl − c)

≥max{vl − c,αc(vh − c)}

=πc(vl, vh) .

Case 3: vl ∈ (κ4c , κ
5
c].

When vh ≤ κ1c , we have

(1 − αc)(vl − c) > (1 − αc)(κ
4
c − c) ≥ (1 − αc)(κ

3
c − c) = κ

1
c − c ≥ (vh − c)

+ .

Therefore, πc(vl, vh) = (1 − αc)(vl − c) and hence

ϕ⋆c(vl) + ψ
⋆
c (vh) = vl − c − αc(κ

4
c − c) =αc(vl − κ

4
c) + (1 − αc)(vl − c)

>(1 − αc)(vl − c)

=πc(vl, vh) .

When vh ∈ (κ1c , κ
3
c],

vl − c − αc(κ
4
c − c) + vh − κ

1
c > vl − c − αc(κ

4
c − c) > (1 − αc)(vl − c) .
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Moreover, since (1 − αc)(κ3c − c) = κ
1
c − c and since κ4c ≥ κ

3
c ,

vl − c − αc(κ
4
c − c) + vh − κ

1
c =vl − c − αc(κ

4
c − c) + vh − c − (κ

1
c − c)

>(1 − αc)(κ
4
c − c) + vh − c − (κ

1
c − c)

≥(1 − αc)(κ
3
c − c) + vh − c − (κ

1
c − c)

=vh − c .

Together,

ϕ⋆c(vl) + ψ
⋆
c (vh) = vl − c − αc(κ

4
c − c) + vh − κ

1
c ≥max{vh − c, (1 − αc)(vl − c)} = πc(vl, vh) .

When vh ∈ (κ3c , κ
4
c], since vl > κ

4
c ≥ vh,

vl − c − αc(κ
4
c − c) + αc(vh − c) > (1 − αc)(κ

4
c − c) + αc(vh − c) ≥ vh − c

In the meantime, since vh > κ3c ≥ κ
1
c ≥ c,

vl − c − αc(κ
4
c − c) + αc(vh − c) ≥ vl − c − αc(κ

4
c − c) > (1 − αc)(vl − c) .

Therefore,

ϕ⋆c(vl) + ψ
⋆
c (vh) = vl − c − αc(κ

4
c − c) + αc(vh − c) ≥max{vh − c, (1 − αc)(vl − c)} = πc(vl, vh) .

When vh ∈ (κ4c , κ
5
c], since κ

1
c − c = αc(κ

5
c − κ

4
c) and since κ4c − c ≥ κ

3
c − c = (κ

1
c−c)/(1−αc), we have

αc(κ
5
c − c) = αc(κ

4
c − c) + κ

1
c − c = αc(κ

4
c − c) + (1 − αc)(κ

3
c − c) ≤ κ

4
c − c .

Therefore,

αc(vh − c) ≤ αc(κ
5
c − c) ≤ κ

4
c − c ≤ vl − c ,

and hence πc(vl, vh) =max{min{vl, vh} − c, (1 − αc)(vl − c)}. Together,

ϕ⋆c(vl) + ψ
⋆
c (vh) = vl − c ≥max{min{vl, vh} − c, (1 − αc)(vl − c)} = πc(vl, vh) .
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When vh > κ5c , since κ
4
c − c ≥ κ

3
c − c = (κ

1
c−c)/(1−αc),

αc(vh − c) + vl − c − αc(κ
4
c − c) − (κ

1
c − c)

≥αc(vh − c) + (1 − αc)(κ
4
c − c) − (κ

1
c − c)

≥αc(vh − c) + (1 − αc)(κ
3
c − c) − (κ

1
c − c)

=αc(vh − c) .

Moreover, since κ1c − c = αc(κ
5
c − κ

4
c),

αc(vh − c) + vl − c − (κ
1
c − c) − αc(κ

4
c − c)

>αc(κ
5
c − c) + vl − c − (κ

1
c − c) − αc(κ

4
c − c)

=αc(κ
5
c − κ

4
c) − (κ

1
c − c) + vl − c

=vl − c .

Together,

ϕ⋆c(vl) + ψ
⋆
c (vh) =αc(vh − c) − (κ

1
c − c) + vl − c − αc(κ

4
c − c)

≥max{vl − c,αc(vh − c)}

=πc(vl, vh) .

Case 4: vl > κ5c .

When vh ≤ κ1c , (vh − c)
+ ≤ κ1c − c = (1 − αc)(κ3c − c) ≤ (1 − αc)(vl − c). Thus, πc(vl, vh) =

(1 − αc)(vl − c), and hence,

ϕ⋆c(vl) + ψ
⋆
c (vh) = (1 − αc)(vl − c) + κ

1
c − c ≥ (1 − αc)(vl − c) = πc(vl, vh) .

When vh ∈ (κ1c , κ
3
c], vh ≤ κ

3
c ≤ κ

4
c < vl. Thus,

ϕ⋆c(vl) + ψ
⋆
c (vh) = vh − c + (1 − αc)(vl − c) ≥max{vh − c, (1 − αc)(vl − c)} = πc(vl, vh) .
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When vh ∈ (κ3c , κ
4
c], since κ

1
c ≥ c,

ϕ⋆c(vl) + ψ
⋆
c (vh) =αc(vh − c) + (1 − αc)(vl − c) + κ

1
c − c

≥αc(vh − c) + (1 − αc)(vl − c)

≥max{min{vl, vh} − c,αc(vh − c), (1 − αc)(vl − c)}

=πc(vl, vh) .

When vh ∈ (κ4c , κ
5
c], since κ

1
c − c = αc(κ

5
c − κ

4
c).

ϕ⋆c(vl) + ψ
⋆
c (vh) =αc(κ

4
c − c) + (1 − αc)(vl − c) + κ

1
c − c

=αc(κ
5
c − c) − (κ

1
c − c) + (1 − αc)(vl − c) + κ

1
c − c

=αc(κ
5
c − c) + (1 − αc)(vl − c)

≥αc(vh − c) + (1 − αc)(vl − c)

≥max{min{vl, vh} − c,αc(vh − c), (1 − αc)(vl − c)}

=πc(vl, vh) .

When vh > κ5c ,

ϕ⋆c(vl) + ψ
⋆
c (vh) =αc(vh − c) + (1 − αc)(vl − c)

≥max{min{vl, vh} − c,αc(vh − c), (1 − αc)(vl − c)}

=πc(vl, vh) .

Together, it follows that

ϕ⋆c(vl) + ψ
⋆
c (vh) ≥ πc(vl, vh) ,

for all vl, vh ≥ 0, as desired.

Now suppose that Fc,l(c) ≥∆c(v⋆c ). Then clearly.

ϕ⋆c(vl) + ψ
⋆
c (vh) =(1 − αc)(vl − c)

+ + αc(vh − c)+

≥max{(1 − αc)(vl − c)
+, αc(vh − c)+,min{vl, vh} − c}

=πc(vl, vh) ,
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for all vl, vh ∈ V . This completes the proof.

Proof of Lemma A.2. We first note that for all c ∈ C, γ⋆c (⋅ ∣ vh) is a probability measure

for all vh ∈ V . Indeed, for all vh ∈ V limx→∞ γ⋆c (vl ≤ x ∣ vh) = 1 and γ⋆c (vl ≤ 0 ∣ vh) = 0;

x ↦ γ⋆(vl ≤ x ∣ vh) is right-continuous. Moreover, for any c ∈ C and for any measurable set

A ⊆ V , γ⋆c (A ∣ ⋅) is a measurable function. Therefore, γ⋆c is a transition probability for all

c ∈ C.

Next, we show that the marginals of ρ⋆c equal Fc,l and Fc,h, respectively. By construction,

ρ⋆c(vl ∈ V, vh ≤ x) = ∫
x

0
1Fc,h(dvh) = Fc,h(x) .

To show that ρ⋆c(vl ≤ x, vh ∈ V ) = Fc,l(x) for all c ∈ C and for all x ∈ V , consider first the case

when Fc,l(c) <∆c(v⋆c ). For all x ≤ κ2c ,

γ⋆c (vl ≤ x ∣ vh) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

0, if vh ≤ κ5c
fc,h(vh)−fc,l(vh)

fc,h(vh) 1{F −1c,l (∆c(κ5c) −∆c(vh)) ≤ x}, if vh > κ5c
.

Note that the derivative of v ↦∆c(κ5c) −∆c(v) equals fc,h − fc,l. Therefore,

∫
∞

0
γ⋆c (vl ≤ x ∣ vh)Fc,h(dvh) =∫

∞

κ5c

fc,h(vh) − f0(vh)

fc,h(vh)
1{F −1c,l (∆c(κ

5
c) −∆c(vh)) ≤ x}Fc,h(dvh)

=∫
∞

κ5c

(fc,h(vh) − fc,l(vh))1{∆c(κ
5
c) −∆c(vh) ≤ Fc,l(x)}dvh

=∫
∆c(κ5c)

0
1{z ≤ Fc,l(x)}dz

=min{∆c(κ
5
c), Fc,l(x)}

=Fc,l(x) ,

where the third equality follows from changing variables of integration, and the last inequality

follows from Fc,l(x) ≤ Fc,l(κ2c) =∆c(κ5c), which in turn follows from (7).

For all x ∈ (κ2c , κ
3
c],

γ⋆c (vl ≤ x ∣ vh) =

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

0, if vh ∈ [0, κ1c] ∪ (κ
3
c , κ

5
c]

1{F −1c,l (Fc,h(vh) +∆c(κ3c)) ≤ x}, if vh ∈ (κ1c , κ
3
c]

fc,h(vh)−fc,l(vh)
fc,h(vh) , if vh > κ5c

.
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Therefore,

∫
∞

0
γ⋆c (vl ≤ x ∣ vh)Fc,h(dvh)

=∫
κ3c

κ1c

1{F −1c,l (Fc,h(vh) +∆c(κ
3
c)) ≤ x}Fc,h(dvh) + ∫

∞

κ5c

fc,h(vh) − fc,l(vh)

fc,h(vh)
Fc,h(dvh)

=∫
κ3c

κ1c

1{Fc,h(vh) ≤ Fc,l(x) −∆c(κ
3
c)}Fc,h(dvh) + Fc,l(κ

5
c) − Fc,h(κ

5
c)

=∫
Fc,h(κ3c)

Fc,h(κ1c)
1{z ≤ Fc,l(x) −∆c(κ

3
c)}dz +∆c(κ

5
c)

=min{Fc,l(x) −∆c(κ
3
c), Fc,h(κ

3
c)} − Fc,h(κ

1
c) +∆c(κ

5
c)

=Fc,l(x) −∆c(κ
3
c) − Fc,h(κ

1
c) +∆c(κ

5
c)

=Fc,l(x) ,

where the third equality follows from changing variables for integration, the fifth equality

follows from Fc,l(x)−∆c(κ3c) ≤ Fc,l(κ
3
c)−∆c(κ3c) = Fc,h(κ

3
c), and the last equality also follows

from (7).

For all x ∈ (κ3c , κ
4
c],

γ⋆c (vl ≤ x ∣ vh) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1{∆−1c (Fc,h(vh) +∆c(κ3c)) ≤ x}, if vh ≤ κ1c

1, if vh ∈ (κ1c , κ
3
c]

1{vh ≤ x}, if vh ∈ (κ3c , κ
4
c]

0, if vh ∈ (κ4c , κ
5
c]

fc,h(vh)−fc,l(vh)
fc,h(vh) , if vh > κ5c

.
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Thus,

∫
∞

0
γ⋆c (vl ≤ x ∣ vh)Fc,h(dvh)

=∫
κ1c

0
1{∆−1c (Fc,h(vh) +∆c(κ

3
c)) ≤ x}Fc,h(dvh) + Fc,h(κ

3
c) − Fc,h(κ

1
c)

+ ∫
κ4c

κ3c

1{vh ≤ x}Fc,h(dvh) + ∫
∞

κ5c

fc,h(vh) − fc,l(vh)

fc,h(vh)
Fc,h(dvh)

=∫
κ1c

0
1{Fc,h(vh) +∆c(κ

3
c) ≤∆c(x)}Fc,h(dvh)

+ Fc,h(κ
3
c) − Fc,h(κ

1
c) + Fc,h(x) − Fc,h(κ

3
c) + Fc,l(κ

5
c) − Fc,h(κ

5
c)

=∫
Fc,h(κ1c)

0
1{z ≤∆c(x) −∆c(κ

3
c)}dz + Fc,h(x) − Fc,h(κ

1
c) +∆c(κ

5
c)

=min{∆c(x) −∆c(κ
3
c), Fc,h(κ

1
c)} + Fc,h(x) − Fc,h(κ

1
c) +∆c(κ

5
c)

=∆c(x) −∆c(κ
3
c) + Fc,h(x) − Fc,h(κ

1
c) +∆c(κ

5
c)

=Fc,l(x) − (∆c(κ
3
c) + Fc,h(κ

1
c)) +∆c(κ

5
c) ,

where the third equality follows from changing variables of the integration, the fifth equality

follows from ∆c(x) −∆c(κ3c) ≤ ∆c(κ4c) −∆c(κ3c) = Fc,h(κ
1
c), which in turn follows from (7);

whereas the last equality also follows from (7).

For all x ∈ (κ4c , κ
5
c],

γ⋆c (vl ≤ x ∣ vh) =

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

1, if vh ≤ κ4c

1{F −1c,l (Fc,h(vh) +∆c(κ4c)) ≤ x}, if vh ∈ (κ4c , κ
5
c]

fc,h(vh)−fc,l(vh)
fc,h(vh) , if vh > κ5c

.
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Thus,

∫
∞

0
γ⋆c (vl ≤ x ∣ vh)Fc,h(dvh)

=∫
κ4c

0
1Fc,h(dv) + ∫

κ5c

κ4c

1{F −1c,l (Fc,h(vh) +∆c(κ
4
c)) ≤ x}Fc,h(dvh) + ∫

∞

κ5c

fc,h(vh) − fc,l(vh)

fc,h(vh)
Fc,h(dvh)

=Fc,h(κ
4
c) + ∫

κ5c

κ4c

1{Fc,h(vh) ≤ Fc,l(x) −∆c(κ
4
c)}Fc,h(dvh) + ∫

∞

κ5c

[fc,h(vh) − fc,l(vh)]dvh

=Fc,h(κ
4
c) +min{Fc,l(x) −∆c(κ

4
c), Fc,h(κ

5
c)} − Fc,h(κ

4
c) +∆c(κ

5
c)

=Fc,h(κ
4
c) + Fc,l(x) −∆c(κ

4
c) − Fc,h(κ

4
c) +∆c(κ

5
c)

=Fc,l(x) ,

where the third equality follows from changing variables of the integration, the fourth equality

follows from Fc,l(x)−∆c(κ4c) ≤ Fc,l(κ
5
c)−∆c(κ4c) = Fc,l(κ

5
c)−∆c(κ5c) = Fc,h(κ

5
c), which in turn

follows from (7); and the last equality follows from (7).

For all x > κ5c ,
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1, if vh ≤ κ5c
fc,l(vh)
fc,h(vh)1{vh ≤ x} +

fc,h(vh)−fc,l(vh)
fc,h(vh) , if vh > κ5c

.

Therefore,

∫
∞

0
γ⋆c (vl ≤ x ∣ vh)Fc,h(dvh)

=∫
κ5c

0
1Fc,h(dvh) + ∫

∞

κ5c

(
fc,l(vh)

fc,h(vh)
1{vh ≤ x} +

fc,h(vh) − fc,l(vh)

fc,h(vh)
)Fc,h(dvh)

=Fc,h(κ
5
c) + ∫

x

κ5c

fc,l(vh)dvh + ∫
∞

κ5c

[fc,h(vh) − fc,l(vh)]dvh

=Fc,h(κ
5
c) + Fc,l(x) − Fc,l(κ

5
c) + Fc,l(κ

5
c) − Fc,h(κ

5
c)

=Fc,l(x) .

Together, we have that

ρ⋆c(vl ≤ x, vh ∈ V ) = ∫
∞

0
γ⋆(vl ≤ x ∣ vh)F1(dvh) = Fc,l(x) ,

for all x ∈ V and and hence ρ⋆c ∈Rc for all c ∈ C such that Fl,c(c) < ∥Fc,l − Fc,h∥.
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Now consider the case when Fc,l(c) ≥ ∥Fc,l − Fc,h∥ and c ≤ v⋆c . If x ≤ ηlc, then

γ⋆c (vl ≤ x ∣ vh) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

0, if vh > ηhc

1{F −1c,l (Fc,h(vh)) ≤ x}, if vh ≤ ηhc
.

Thus,

∫
∞

0
γ⋆c (vl ≤ x ∣ vh) =∫

ηhc

0
1{F −1c,l (Fc,h(vh)) ≤ x}Fc,h(dvh)

=∫
η1c

0
1{Fc,h(vh) ≤ Fc,l(x)}Fc,h(dvh)

=∫
Fc,h(ηhc )

0
1{z ≤ Fc,l(x)}dz

=min{Fc,h(η
h
c ), Fc,l(x)}

=Fc,l(x) ,

where the third equality follows from changing variables of the integration, and the last

equality follows from Fc,l(x) ≤ Fc,l(ηlc) = Fc,h(η
h
c ).

If x ∈ (ηlc, c], then

γ⋆c (vl ≤ x ∣ vh) =

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

1, if vh ≤ v̂1c
fc,h(vh)−fc,l(vh)

fc,h(vh) 1{F −1c,l (∆c(v⋆c ) −∆c(vh) + Fc,l(ηlc)) ≤ x}, if vh > v⋆c

0, otherwise

.

59



Thus,

∫
∞

0
γ⋆c (vl ≤ x ∣ vh)Fc,h(dvh)

=Fc,h(η
h
c ) + ∫

∞

v⋆c

fc,h(vh) − fc,l(vh)

fc,h(vh)
1{F −1c,l (∆c(v

⋆
c ) −∆c(vh) + Fc,l(η

l
c) ≤ x}Fc,h(dvh)

=Fc,h(η
h
c ) + ∫

∞

v⋆c

(fc,h(vh) − fc,l(vh))1{∆c(v
⋆
c ) −∆c(vh) ≤ Fc,l(x) − Fc,l(η

l
c)}dvh

=Fc,h(η
h
c ) + ∫

∆c(v⋆c )

0
1{z ≤ Fc,l(x) − Fc,l(η

l
c)}

=Fc,h(η
h
c ) +min{∆c(v

⋆
c ), Fc,l(x) − Fc,l(η

l
c)}

=Fc,h(η
h
c ) + Fc,l(x) − Fc,l(η

l
c)

=Fc,l(x) ,

where the third equality follows from changing variables of the integration, the fifth equality

follows from Fc,l(x) − Fc,l(ηlc) ≤ Fc,l(c) − Fc,l(η
l
c) = ∆c(v⋆c ), which in turn follows from the

definition of ηlc; and the last equality follows from Fc,h(ηhc ) = Fc,l(η
l
c).

If x ∈ (c, v⋆c ], then

γ⋆c (vl ≤ x ∣ vh) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, if vh ≤ v̂1c

1{∆−1c (Fc,h(vh) − Fc,h(ηhc ) +∆c(c)) ≤ x}, if vh ∈ (ηhc , c]

1{vh ≤ x}, if vh ∈ (c, v⋆c ]
fc,h(vh)−fc,l(vh)

fc,h(vh) , if vh > v⋆c

.
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Thus,

∫
∞

0
γ⋆c (vl ≤ x ∣ vh)Fc,h(dvh)

=∫
ηhc

0
1Fc,h(dvh) + ∫

ηhc

1{∆−1c (Fc,h(vh) − Fc,h(η
h
c ) +∆c(c)) ≤ x}Fc,h(dvh)

+ ∫
v⋆c

c
1{vh ≤ x}Fc,h(dvh) + ∫

∞

v⋆c

fc,h(vh) − fc,l(vh)

fc,h(vh)
Fc,h(dvh)

=Fc,h(η
h
c ) + ∫

c

ηhc

1{Fc,h(vh) − Fc,h(η
h
c ) ≤∆c(x) −∆c(c))}Fc,h(dvh) + Fc,h(x) − Fc,h(c) +∆c(v

⋆
c )

=Fc,h(η
h
c ) + ∫

Fc,h(c)−Fc,h(ηhc )

0
1{z ≤∆c(x) −∆c(c)}dz + Fc,h(x) − Fc,h(c) +∆c(v

⋆
c )

=Fc,h(η
h
c ) +min{∆c(x) −∆c(c), Fc,h(c) − Fc,h(η

h
c )} + Fc,h(x) − Fc,h(c) +∆c(v

⋆
c )

=Fc,h(η
h
c ) +∆c(x) −∆c(c) + Fc,h(x) − Fc,h(c) +∆c(v

⋆
c )

=Fc,h(η
h
c ) + Fc,l(x) +∆c(v

⋆
c ) − Fc,l(c)

=Fc,h(η
h
c ) + Fc,l(x) − Fc,l(η

l
c)

=Fc,l(x) ,

where the third equality follows from changing variables of the integration, the fifth equality

follow from ∆c(x) −∆c(c) ≤ ∆c(v⋆c ) −∆c(c) = Fc,h(c) − Fc,h(ηhc ), which in turn follows from

the definition of ηhc ; and the last equality also follows from the definition of ηhc and ηlc.

If x > v⋆c , then

γ⋆c (vl ≤ x ∣ vh) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1, if vh ≤ v⋆c
fc,l(vh)
fc,h(vh)1{vh ≤ x} +

fc,h(vh)−fc,l(vh)
fc,h(vh) , if vh > v⋆c .

.
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Thus,

∫
∞

0
γ⋆c (vl ≤ x ∣ vh)Fc,h(dvh)

=∫
v⋆c

0
1Fc,h(dvh) + ∫

∞

v⋆c

(
fc,l(vh)

fc,h(vh)
1{vh ≤ x} +

fc,h(vh) − fc,l(vh)

fc,h(vh)
)Fc,h(dvh)

=Fc,h(v
⋆
c ) + ∫

x

v⋆c

fc,l(vh)dvh + ∫
∞

v⋆c

[fc,h(vh) − fc,l(vh)]dvh

=Fc,h(v
⋆
c ) + Fc,l(x) − Fc,l(v

⋆
c ) + Fc,l(v

⋆
c ) − Fc,h(v

⋆
c )

=Fc,l(x) .

Together, whenever Fc,l(c) ≥ ∥Fc,l − Fc,h∥ and c ≤ v⋆c ,

ρ⋆c(vl ≤ x, vh ∈ V ) = ∫
∞

0
γ⋆c (vl ≤ x ∣ vh)Fc,h(dvh) = Fc,l(x) ,

for all x ∈ V and hence ρ⋆c ∈Rc.

Lastly, consider the case when Fc,l(c) ≥ ∥Fc,l − Fc,h∥ and c > v⋆c . If x ≤ F −1c,l (Fc,h(c)), then

γ⋆c (vl ≤ x ∣ vh) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1{F −1c,l (Fc,h(vh)) ≤ x}, if vh ≤ c

0, if vh > c
.

Thus,

∫
∞

0
γ⋆c (vl ≤ x ∣ vh)Fc,h(dvh) =∫

c

0
1{F −1c,l (Fc,h(vh)) ≤ x}Fc,h(dvh)

=∫
c

0
1{Fc,h(vh) ≤ Fc,l(x)}dz

=∫
Fc,h(c)

0
1{z ≤ Fc,l(x)}dz

=min{Fc,h(c), Fc,l(x)}

=Fc,l(x) ,

where the third equality follows from changing variables of the integration.
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If x > F −1c,l (Fc,h(c)), then

γ⋆c (vl ≤ x ∣ vh) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1, if vh ≤ c

fc,l(vh)
fc,h(vh)1{vh ≤ x} +

fc,h(vh)−fc,l(vh)
fc,h(vh) , if vh > c

.

Thus,

∫
∞

0
γ⋆c (vl ≤ x ∣ vh)Fc,h(dvh)

=∫
c

0
Fc,h(dvh) + ∫

∞

c

fc,l(vh)

fc,h(vh)
1{vh ≤ x}Fc,h(dvh) + ∫

∞

c

fc,l(vh) − fc,h(vh)

fc,h(vh)
Fc,h(dvh)

=Fc,h(c) + ∫
∞

c
1{vh ≤ x}fc,l(vh)dvh + ∫

∞

c
(fc,h(vh) − fc,l(vl))dvh

=Fc,h(c) + Fc,l(x) − Fc,l(c) + Fc,l(c) − Fc,h(c)

=Fc,l(x) .

Together, whenever Fc,l(c) ≥ ∥Fc,l − Fc,h∥ and c > v⋆c ,

ρ⋆c(vl ≤ x, vh ∈ V ) = ∫
∞

0
γ⋆c (vl ≤ x ∣ vh)Fc,h(dvh) = Fc,l(x) ,

for all x ∈ V , and hence ρ⋆c ∈Rc. This completes the proof.

Proof of Lemma A.3. Consider first the case when Fc,l(c) < ∥Fc,l −Fc,h∥. By construction,

supp(ρ⋆c) ⊆[0, κ
2
c] × [κ

5
c ,∞) ∪ [κ

3
c , κ

4
c] × [0, κ

1
c]

∪{(vl, vh) ∶ vl = F
−1
c,l (Fc,h(vh) +∆c(κ

3
c))}

∪{(vl, vh) ∶ vl = vh , vl, vh ∈ [κ
3
c , κ

4
c] ∪ [κ

5
c ,∞)}

∪{(vl, vh) ∶ vl = F
−1
c,l (Fc,h(vh) +∆c(κ

4
c)) , vl, vh ∈ [κ

4
c , κ

5
c]} .

63



For all (vl, vh) ∈ supp(ρ⋆c) ∩ [0, κ2c] × [κ5c ,∞), since

αc(vh − c) ≥ αc(κ
5
c − c) =αc(κ

4
c − c) + κ

1
c − c

=αc(κ
4
c − c) + (1 − αc)(κ

3
c − c)

≥αc(κ
3
c − c) + (1 − αc)(κ

3
c − c)

=κ3c − c

≥κ2c − c

≥vl − c ,

Πc(vl, vh) = αc(vh − c). Thus,

ϕ⋆c(vl) + ψ
⋆
c (vh) = αc(vh − c) = Πc(vl, vh) .

For all (vl, vh) ∈ supp(ρ⋆c)∩ [κ2c , κ3c]× [κ1c , κ3c], it must be that vl = F −1c,l (Fc,h(vh)+∆c(κ3c)).

Moreover, since v ↦∆c(v) is increasing on [0, v⋆c ], ∆c(v) ≤∆c(κ3c). Therefore,

Fc,l(v) ≤ Fc,h(v) +∆c(κ
3
c) ,

for all v ∈ [κ1c , κ
3
c], and hence

v ≤ F −1c,l (Fc,h(v) +∆c(κ
3
c))

for all v ∈ [κ1c , κ
3
c]

Therefore, for all (vl, vh) ∈ supp(ρ⋆c) ∩ [κ2c , κ3c] × [κ1c , κ3c], it must be that

vl = F
−1
c,l (Fc,h(vh) +∆c(κ

3
c)) ≥ vh ,

Together with the fact that

(1 − αc)(vl − c) ≤ (1 − αc)(κ
3
c − c) = κ

1
c − c ≤ vh − c ,

which follows from (7), it must be that

ϕ⋆c(vl) + ψ
⋆
c (vh) = vh − c = Πc(vl, vh) .
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For all (vl, vh) ∈ supp(ρ⋆) ∩ [κ3c , κ4c] × [0, κ1c],

vh − c ≤ κ
1
c − c = (1 − αc)(κ

3
c − c) ≤ (1 − αc)(vl − c) .

Therefore, Πc(vl, vh) = (1 − αc)(vl − c). As a result,

ϕ⋆c(vl) + ψ
⋆
c (vh) = (1 − αc)(vl − c) = Πc(vl, vh) .

For all (vl, vh) ∈ supp(ρ⋆c)∩{(vl, vh) ∶ vl = vh , vl, vh ∈ [κ3c , κ4c]∪[κ5c ,∞)}, we have Πc(vl, vh) =

vl = vh. Therefore,

ϕ⋆(vl) + ψ⋆(vh) = (1 − αc)(vl − c) + αc(vh − c) = vh − c = vl − c = Πc(vl, vh) .

For all (vl, vh) ∈ supp(ρ⋆c)∩{(vl, vh) ∶ vl = F −1c,l (Fc,h(vh)+∆c(κ4c)) , vl, vh ∈ [κ
4
c , κ

5
c]}, it must

be that vl ≤ vh. Indeed, since ∆c is quasi-concave, ∆c(v) ≥∆c(κ4c) =∆c(κ5c) for all v ∈ [κ
4
c , κ

5
c].

As a result,

Fc,h(v) +∆c(κ
4
c) ≤ Fc,l(v) ,

and hence

vl = F
−1
c,l (Fc,h(vh) +∆c(κ

4
c)) ≤ vh .

Therefore, Πc(vl, vh) = vl − c, and hence

ϕ⋆(vl) + ψ⋆(vh) = vl − c = Πc(vl, vh) .

Together, it follows that

ϕ⋆(vl) + ψ⋆(vh) = Π(vl, vh)

for all (vl, vh) ∈ supp(ρ⋆), as desired.

Now consider the case when Fc,l(c) ≥ ∥Fc,l − Fc,h∥. Note that for all (vl, vh) ∈ supp(ρ⋆c),

either vl = vh or min{vl, vh} ≤ c. In both cases, we have

Πc(vl, vh) = αc(vh − c)
+ + (1 − αc)(vl − c)+ = ϕ⋆c(vl) + ψ

⋆
v(vh) ,

a desired.
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A.3 Proofs for the Extensions

Proof of Proposition 6. Since c = 0, we slightly abuse the notation and suppress the sub-

script c. Consider the following pair of functions ϕ̃ and ψ̃:

ϕ̃(vl) ∶=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

κ̃2κ̃1

κ̃2+κ̃1 , if vl ≤ κ̃2

κ̃1κ̃2

κ̃1+κ̃2 + ∫
κ̃3

κ̃2 (
β(z)
z+β(z))

2

dz, if vl ∈ (κ̃2, κ̃3]

vl
4 , if vl ∈ (κ̃3, κ̃4]

κ̃4

4 + ∫
κ̃5

κ̃4 (
β(z)
z+β(z))

2

dz, if vl ∈ (κ̃4, κ̃5]

vl
4 +

κ̃2κ̃1

κ̃2+κ̃1 , if vl > κ̃5

and

ψ̃(vh) ∶=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if vh ≤ κ̃1

β−1(vh)vh
vh+β−1(vh) −

κ̃2κ̃3

κ̃2+κ̃1 − ∫
β−1(vh)
κ̃1

(
β(z)
z+β(z))

2

dz, if vh ∈ (κ̃1, κ̃3]

vh
4 , if vh ∈ (κ̃3, κ̃4]

vhβ
−1(vh)

vh+β−1(vh)
− κ̃4

4 − ∫
β
−1(vh)

κ̃4 ( β
−1(z)

z+β−1(z))
2

dz, if vh ∈ [κ̃4, κ̃5)

vh
4 −

κ̃2κ̃1

κ̃2+κ̃1 , if vh > κ̃5

,

where

β(z) ∶= F −1h (Fl(z) − Fl(κ̃
3) + Fh(κ̃

3))

for all z ∈ [κ̃1, κ̃3], and

β(z) ∶= F −1h (Fl(z) − Fl(κ̃
4) + Fh(κ̃

4))

for all z ∈ [κ̃4, κ̃5]. We now show that

ϕ̃0(vl) + ψ̃(vh) ≥ π̃(vl, vh) (A.11)

for all vl, vh. To this end, we first establish three inequalities that follow from (10). First,

note that the function

v ↦
κ̃1v

κ̃1 + v
+ ∫

κ̃3

v
(

β(z)

z + β(z)
)

2

dz
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is decreasing in v. This implies that

κ̃1κ̃3

κ̃1 + κ̃3
≤

κ̃1κ̃2

κ̃1 + κ̃2
+ ∫

κ̃3

κ̃2
(

β(z)

z + β(z)
)

2

dz =
κ̃3

4
.

Next, note that since the function

v ↦
v

4
− ∫

v

κ̃2
(

β(z)

z + β(z)
)

2

dz

is increasing in v, it follows that

κ̃1κ̃2

κ̃1 + κ̃2
=
κ̃3

4
− ∫

κ̃3

κ̃2
(

β(z)

z + β(z)
)

2

dz ≥
κ̃2

4
.

Together, the above two inequalities imply

κ̃2 ≤ 3κ̃1 ≤ κ̃3 . (A.12)

Lastly, note that since

κ̃5

4
= ∫

κ̃5

κ̃4
(

β(z)

z + β(z)
)

2

+
1

4
(κ̃4−κ̃3)+∫

κ̃3

κ̃2
(

β(z)

z + β(z)
)

2

dz ≤ ∫
κ̃5

κ̃2
(

κ̃5

z + κ̃5
)
2

dz = ∫
κ̃5

κ̃4

d

dz
(
κ̃5z

κ̃5 + z
)dz ,

it follows that

κ̃5

4
=
κ̃5

2
−
κ̃5

4
≥
κ̃5

2
− ∫

κ̃5

κ̃4

d

dz
(
κ̃5z

κ̃5 + z
)dz =

κ̃5κ̃2

κ̃5 + κ̃2
⇐⇒ κ̃5 ≥ 3κ̃2 . (A.13)

Then, we discuss all the cases.

Case 1: vl ≤ κ̃2.

When vh ≤ κ̃1,

ϕ̃(vl) + ψ̃(vh) =
κ̃2κ̃1

κ̃2 + κ̃1
≥

vlvh
vl + vh

.

Meanwhile, 3κ̃2 ≥ κ̃2 ≥ κ̃1 implies that

ϕ̃(vl) + ψ̃(vh) =
κ̃2κ̃1

κ̃2 + κ̃1
≥
κ̃1

4
≥
vh
4
.
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Moreover, (A.12) implies that

ϕ̃(vl) + ψ̃(vh) =
κ̃2κ̃1

κ̃2 + κ̃1
≥
κ̃2

4
≥
vl
4
.

Together,

ϕ̃(vl) + ψ̃(vh) ≥max{
vlvh
vl + vh

,
vh
4
,
vl
4
} = π̃(vl, vh) ,

as desired.

When vh ∈ (κ̃1, κ̃3], from (A.12), it follows that

3vh ≥ 3κ̃
1 ≥ κ̃2 ≥ vl ,

and hence

π̃(vl, vh) =max{
vlvh
vl + vh

,
vh
4
} .

Moreover, since

vh ↦ ϕ̃(vl) + ψ̃(vh) −
vh
4

is increasing in vh for all vl ≤ κ̃2,

ϕ̃(vl) + ψ̃(vh) −
vh
4
≥ ϕ̃(vl) + ψ̃(κ̃

1) −
κ̃1

4
=

κ̃2κ̃1

κ̃2 + κ̃1
−
κ̃1

4
≥ 0 ,

where the last inequality follows from (A.12). Meanwhile, since the function

(vl, vh)↦ ϕ̃(vl) + ψ̃(vh) −
vlvh
vl + vh

is decreasing in vl and increasing in vh, it follows that

ϕ̃(vl) + ψ̃(vh) −
vlvh
vl + vh

≥ ϕ̃(κ̃2) + ψ̃(κ̃1) −
κ̃2κ̃1

κ̃2 + κ̃1
= 0 .

Together,

ϕ̃(vl) + ψ̃(vh) ≥ π̃(vl, vh) =max{
vlvh
vl + vh

,
vh
4
} ,

as desired.
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When vh ∈ (κ̃3, κ̃4],

ϕ̃(vl) + ψ̃(vh) =
κ̃3

4
− ∫

κ̃3

κ̃2
(

β(z)

z + β(z)
)

2

dz +
vh
4

=∫
κ̃3

κ̃2

⎡
⎢
⎢
⎢
⎢
⎣

1

4
− (

β(z)

z + β(z)
)

2⎤
⎥
⎥
⎥
⎥
⎦

dz +
vh
4
+
κ̃2

4

≥
vh
4
+
κ̃2

4

≥max{
vlvh
vl + vh

,
vl
4
,
vh
4
} ,

as desired.

When vh ∈ (κ̃4, κ̃5], since vl ≤ vh, we have

π̃(vl, vh) =max{
vlvh
vl + vh

,
vh
4
} .

Note that the function

vh ↦ ϕ̃(vl) + ψ̃(vh) −
vh
4

is decreasing in vh for all vl ≤ κ̃2. Therefore,

ϕ̃(vl) + ψ̃(vh) −
vh
4
≥ ϕ̃(vl) + ψ̃(κ̃

5) −
κ̃5

4
= 0 .

Meanwhile, note that the function

(vl, vh)↦ ϕ̃(vl) + ψ̃(vh) −
vlvh
vl + vh
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is decreasing in vl and increasing in vh. Thus,

ϕ̃(vl) + ψ̃(vh) −
vlvh
vl + vh

≥ ϕ̃(κ̃2) + ψ̃(κ̃4) −
κ̃2κ̃4

κ̃2 + κ̃4
=
κ̃4

4
+
κ̃3

4
−

κ̃2κ̃4

κ̃2 + κ̃4
− ∫

κ̃3

κ̃2
(

β(z)

z + β(z)
)

2

dz

≥
κ̃4

4
+
κ̃3

4
−

κ̃2κ̃4

κ̃2 + κ̃4
− ∫

κ̃3

κ̃2
(

κ̃4

z + κ̃4
)
2

dz

=
κ̃4

4
+
κ̃3

4
−

κ̃2κ̃4

κ̃2 + κ̃4
−

κ̃3κ̃4

κ̃3 + κ̃4
+

κ̃2κ̃4

κ̃2 + κ̃4

=
κ̃4

4
+
κ̃3

4
−

κ̃3κ̃4

κ̃3 + κ̃4

≥0 .

Together,

ϕ̃(vl) + ψ̃(vh) ≥ π̃(vl, vh) ,

as desired.

Lastly, when vh > κ̃5, by (A.13), vh > κ̃5 ≥ κ̃2 ≥ 3vl. Thus, π̃(vl, vh) = vh/4, and hence

ϕ̃(vl) + ψ̃(vh) =
vh
4
= π̃(vl, vh) ,

as desired.

Case 2: vl ∈ (κ̃2, κ̃3].

When vh ≤ κ̃1,

π̃(vl, vh) =max{
vlvh
vl + vh

,
vl
4
} .

Note that

vl ↦ ϕ̃(vl) + ψ̃(vh) −
vlvh
vl + vh

is increasing in vl and

vl ↦ ϕ̃(vl) + ψ̃(vh) −
vl
4

is decreasing in vl. Therefore,

ϕ̃(vl) + ψ̃(vh) −
vlvh
vl + vh

≥ ϕ̃(κ̃2) + ψ̃(vh) −
κ̃2vh
κ̃2 + vh

=
κ̃2κ̃1

κ̃2 + κ̃1
−

κ̃2vh
κ̃2 + vh

≥ 0 ,
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and

ϕ̃(vl) + ψ̃(vh) −
vl
4
≥ ϕ̃(κ̃3) + ψ̃(vh) −

κ̃3

4
= 0 ,

as desired.

When vh ∈ (κ̃1, κ̃3], by (A.12), it follows that

π̃(vl, vh) =
vlvh
vl + vh

.

In particular, π̃ is supermodular on (κ̃2, κ̃3] × (κ̃1, κ̃3]. Therefore, since β is increasing,

ϕ̃(vl) = max
v′
h
∈(κ̃1,κ̃3]

[π̃(vl, v
′
h) − ψ̃(v

′
h)] ≥ π̃(vl, vh) − ψ̃(vh) ,

as desired.

When vh ∈ (κ̃3, κ̃4],

π̃(vl, vh) =max{
vlvh
vl + vh

,
vh
4
} .

Note that

ϕ̃(vl) + ψ̃(vh) =
κ̃1κ̃2

κ̃1 + κ̃2
+ ∫

vl

κ̃2
(

β(z)

z + β(z)
)

2

dz +
vh
4
≥
vh
4
.

Moreover, since

(vl, vh)↦ ϕ̃(vl) + ψ̃(vh) −
vlvh
vl + vh

is increasing in vh and decreasing in vl,

ϕ̃(vl) + ψ̃(vh) −
vlvh
vl + vh

≥ ϕ̃(κ̃3) + ψ̃(κ̃3) −
κ̃3

2
= 0 .

Together, ϕ̃(vl) + ψ̃(vh) ≥ π̃(vl, vh), as desired.

When vh ∈ (κ̃4, κ̃5], note that

(vl, vh)↦ ϕ̃(vl) + ψ̃(vh) −
vh
4

is increasing in both vl and vh. Also,

(vl, vh)↦ ϕ̃(vl) + ψ̃(vh) −
vlvh
vl + vh
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is decreasing in vl and increasing in vh. Therefore,

ϕ̃(vl) + ψ̃(vh) −
vh
4
≥ ϕ̃(κ̃2) + ψ̃(κ̃4) −

κ̃4

4
=

κ̃2κ̃1

κ̃2 + κ̃1
≥ 0 ,

and

ϕ̃(vl) + ψ̃(vh) −
vlvh
vl + vh

≥ ϕ̃(κ̃3) + ψ̃(κ̃4) −
κ̃3κ̃4

κ̃3 + κ̃4
=
κ̃3

4
+
κ̃4

4
−

κ̃3κ̃4

κ̃3 + κ̃4
≥ 0 ,

as desired.

When vh > κ̃5,

π̃(vl, vh) =max{
vlvh
vl + vh

,
vh
4
} .

Moreover,

ϕ̃(vl) + ψ̃(vh) = ∫
vl

κ̃2
(

β(z)

z + β(z)
)

2

dz +
vh
4
≥
vh
4
.

Meanwhile, since

(vl, vh)↦ ϕ̃(vl) + ψ̃(vh) −
vlvh
vl + vh

is decreasing in vl and increasing in vh,

ϕ̃(vl) + ψ̃(vh) −
vlvh
vl + vh

≥ϕ̃(κ̃3) + ψ̃(κ̃5) −
κ̃3κ̃5

κ̃3 + κ̃5

=∫
κ̃3

κ̃2
(

β(z)

z + β(z)
)

2

dz +
κ̃5

4
−

κ̃3κ̃5

κ̃3 + κ̃5

=∫
κ̃5

κ̃4
(

β(z)

z + β(z)
)

2

dz +
κ̃4

4
+
κ̃3

4
−

κ̃3κ̃5

κ̃3 + κ̃5

≥
1

4
(κ̃5 − κ̃4) +

κ̃4

4
+
κ̃3

4
−

κ̃3κ̃5

κ̃3 + κ̃5

=
κ̃5

4
+
κ̃3

4
−

κ̃3κ̃5

κ̃3 + κ̃5

≥0 ,

where the first inequality follows from β(z) ≥ z for all z ∈ [κ̃4, κ̃5], which in turn is because

κ̃4 ≤ v⋆ ≤ κ̃5.

Case 3: vl ∈ (κ̃3, κ̃4].
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When vh ≤ κ̃1, by (A.12), vl ≥ κ̃4 ≥ κ̃3 ≥ 3κ̃1 ≥ 3vh. Thus, π̃(vl, vh) = vl/4. Moreover,

ϕ̃(vl) + ψ̃(vl) =
κ̃4

4
+ ∫

vl

κ̃4
(

β(z)

z + β(z)
)

2

dz ≥
κ̃4

4
+
1

4
(vl − κ̃

4) ≥
vl
4
,

where the inequality follows from β(z) ≥ z for all z ∈ [κ̃4, κ̃5], which in turn is because

κ̃4 ≤ v⋆ ≤ κ̃5.

When vh ∈ (κ̃1, κ̃3],

π̃(vl, vh) =max{
vlvh
vl + vh

,
vl
4
} .

Note that

ϕ̃(vl) + ψ̃(vh) =
vl
4
+ ψ̃(vh) ≥

vl
4
.

Moreover, since

(vl, vh)↦ ϕ̃(vl) + ψ̃(vh) −
vlvh
vl + vh

is increasing in vl and decreasing in vh,

ϕ̃(vl) + ψ̃(vh) −
vlvh
vl + vh

≥ ϕ̃(κ̃3) + ψ̃(κ̃3) −
κ̃3

2
= 0 .

Thus, ϕ̃(vl) + ψ̃(vh) ≥ π̃(vl, vh).

When vh ∈ (κ̃3, κ̃4],

ϕ̃(vl) + ψ̃(vh) =
vl
4
+
vh
4
≥max{

vlvh
vl + vh

,
vl
4
,
vh
4
} = π̃(vl, vh) .

When vh ∈ (κ̃4, κ̃5],

π̃(vl, vh) =max{
vlvh
vl + vh

,
vh
4
} .

First note that the function

(vl, vh)↦ ϕ̃(vl) + ψ̃(vh) −
vh
4
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is increasing in vl and decreasing in vh. Thus,

ϕ̃(vl) + ψ̃(vh) −
vh
4
≥ϕ̃(κ̃3) + ψ̃(κ̃5) −

κ̃5

4

=
κ̃3

4
+
κ̃5

4
−

κ̃2κ̃1

κ̃2 + κ̃1
−
κ̃5

4

=
κ̃3

4
−
κ̃3

4
+ ∫

κ̃3

κ̃2
(

β(z)

z + β(z)
)

2

dz

≥0 .

Moreover,

(vl, vh)↦ ϕ̃(vl) + ψ̃(vh) −
vlvh
vl + vh

is decreasing in vl and increasing in vh. Therefore,

ϕ̃(vl) + ψ̃(vh) −
vlvh
vl + vh

≥ ϕ̃(κ̃4) + ψ̃(κ̃4) −
κ̃4

2
= 0 ,

as desired.

When vh > κ̃5,

π̃(vl, vh) =max{
vlvh
vl + vh

,
vh
4
} .

First note that

ϕ̃(vl) + ψ̃(vh) =
1

4
(vl + vh) −

κ̃2κ̃1

κ̃2 + κ̃1
≥
κ̃3

4
−

κ̃2κ̃1

κ̃2 + κ̃1
+
vh
4
= ∫

κ̃3

κ̃2
(

β(z)

z + β(z)
)

2

dz +
vh
4
≥
vh
4
.

Moreover, since

(vl, vh)↦ ϕ̃(vl) + ψ̃(vh) −
vlvh
vl + vh
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is decreasing in vl and increasing in vh,

ϕ̃(vl) + ψ̃(vh) −
vlvh
vl + vh

≥ϕ̃(κ̃4) + ψ̃(κ̃5) −
κ̃4κ̃5

κ̃4 + κ̃5

=
1

4
(κ̃4 + κ̃5) −

κ̃2κ̃1

κ̃2 + κ̃1
−

κ̃4κ̃5

κ̃4 + κ̃5

=
1

4
(κ̃4 + κ̃5) +

1

4
(κ̃5 − κ̃4) − ∫

κ̃5

κ̃4
(

β(z)

z + β(z)
)

2

dz −
κ̃4κ̃5

κ̃4 + κ̃5

=
κ̃5

2
−

κ̃4κ̃5

κ̃4 + κ̃5
− ∫

κ̃5

κ̃4
(

β(z)

z + β(z)
)

2

dz

=∫
κ̃5

κ̃4

⎡
⎢
⎢
⎢
⎢
⎣

(
κ̃5

z + κ̃5
)
2

− (
β(z)

z + β(z)
)

2⎤
⎥
⎥
⎥
⎥
⎦

dz

≥0 ,

where the last inequality follows from the fact that β(z) ≤ κ̃5 for all z ∈ [κ̃4, κ̃5]. Together,

ϕ̃(vl) + ψ̃(vh) ≥ π̃(vl, vh), as desired.

Case 4: vl ∈ (κ̃4, κ̃5].

When vh ≤ κ̃1, by (A.12), vl ≥ κ̃4 ≥ κ̃3 ≥ 3κ̃1 ≥ 3vh, and hence π̃(vl, vh) = vl/4. Thus,

ϕ̃(vl) + ψ̃(vh) =
κ̃4

4
+ ∫

vl

κ̃4
(

β(z)

z + β(z)
)

2

dz ≥
κ̃4

4
+
1

4
(vl − κ̃

4) =
vl
4
= π̃(vl, vh) ,

where the inequality follows from the fact that β(z) ≥ z for all z ∈ [κ̃4, κ̃5], which in turn

follows from κ̃4 ≤ v⋆ ≤ κ̃5.

When vh ∈ (κ̃1, κ̃3],

π̃(vl, vh) =max{
vlvh
vl + vh

,
vl
4
} .

Note that, as argued above,

ϕ̃(vl) + ψ̃(vh) ≥ ϕ̃(vl) =
κ̃4

4
+ ∫

vl

κ̃4
(

β(z)

z + β(z)
)

2

dz ≥
vl
4
.
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Moreover, since

(vl, vh)↦ ϕ̃(vl) + ψ̃(vh) −
vlvh
vl + vh

is increasing in vl and decreasing in vh,

ϕ̃(vl) + ψ̃(vh) −
vlvh
vl + vh

≥ ϕ̃(κ̃4) + ψ̃(κ̃3) −
κ̃4κ̃3

κ̃4 + κ̃3
=
1

4
(κ̃4 + κ̃3) −

κ̃4κ̃3

κ̃4 + κ̃3
≥ 0 ,

as desired.

When vh ∈ (κ̃3, κ̃4],

π̃(vl, vh) =max{
vlvh
vl + vh

,
vl
4
} .

Again, as argued above,

ϕ̃(vl) + ψ̃(vh) ≥ ϕ̃(vl) =
κ̃4

4
+ ∫

vl

κ̃4
(

β(z)

z + β(z)
)

2

dz ≥
vl
4
.

Meanwhile, note that the function

(vl, vh)↦ ϕ̃(vl) + ψ̃(vh) −
vlvh
vl + vh

is increasing in vl and decreasing in vh. Thus,

ϕ̃(vl) + ψ̃(vh) −
vlvh
vl + vh

≥ ϕ̃(κ̃4) + ψ̃(κ̃4) −
κ̃4

2
= 0 .

Together, ϕ̃(vl) + ψ̃(vh) ≥ π̃(vl, vh), as desired.

When vh ∈ (κ̃4, κ̃5], first note that, since

(vl, vh)↦
vlvh
vl + vh

is supermodular and since β is increasing, by construction,

ϕ̃(vl) = max
v′
h
∈[κ̃4,κ̃5]

[
vlv′h
vl + v′h

− ψ(v′h)] ≥
vlvh
vl + vh

− ψ̃(vh) ,

and thus

ϕ̃(vl) + ψ̃(vh) ≥ π̃(vl, vh) .
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Next, note that since the function

(vl, vh)↦ ϕ̃(vl) + ψ̃(vh) −
vh
4

is increasing in vl and decreasing in vh,

ϕ̃(vl) + ψ̃(vh) −
vh
4
≥ ϕ̃(κ̃4) + ψ̃(κ̃5) −

κ̃5

4
=
κ̃4

4
−

κ̃2κ̃1

κ̃2 + κ̃1
=
κ̃4

4
−
κ̃3

4
+ ∫

κ̃3

κ̃2
(

β(z)

z + β(z)
)

2

dz ≥ 0 .

Lastly, note that since the function

(vl, vh)↦ ϕ̃(vl) + ψ̃(vh) −
vl
4

(A.14)

is increasing in both vl and vh,

ϕ̃(vl) + ψ̃(vh) −
vl
4
≥ ϕ̃(κ̃4) + ψ̃(κ̃4) −

κ̃4

4
=
κ̃4

4
≥ 0 . (A.15)

Together, we have that

ϕ̃(vl) + ψ̃(vh) ≥ π̃(vl, vh) ,

as desired.

When vh > κ̃5,

π̃(vl, vh) =max{
vlvh
vl + vh

,
vh
4
} .

Note that

ϕ̃(vl) + ψ̃(vh) ≥
κ̃4

4
+
vh
4
−

κ̃2κ̃1

κ̃2 + κ̃1
≥
κ̃3

4
+
vh
4
−

κ̃2κ̃1

κ̃2 + κ̃1
= ∫

κ̃3

κ̃2
(

β(z)

z + β(z)
)

2

dz +
vh
4
≥
vh
4
.

Moreover, since the function

(vl, vh)↦ ϕ̃(vl) + ψ̃(vh) −
vlvh
vl + vh

is decreasing in vl and is increasing in vh,

ϕ̃(vl) + ψ̃(vh) −
vlvh
vl + vh

≥ ϕ̃(κ̃5) + ψ̃(κ̃5) −
κ̃5

2
= 0 .
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Together, ψ̃(vl) + ψ̃(vh) ≥ π̃(vl, vh), as desired.

Case 5: vl > κ̃5.

When vh ≤ κ̃1, by (A.12), vl ≥ κ̃5κ̃3 ≥ 3κ̃1 ≥ 3vh, and hence π̃(vl, vh) = vl/4. Thus,

ϕ̃(vl) + ψ̃(vl) =
vl
4
+

κ̃2κ̃1

κ̃2 + κ̃1
≥
vl
4
= π̃(vl, vh) ,

as desired.

When vh ∈ (κ̃1, κ̃3],

π̃(vl, vh) =max{
vlvh
vl + vh

,
vl
4
} .

Note that
˜ϕ(vl) + ψ̃(vh) ≥ ˜ϕ(vl) ≥

vl
4
,

as argued above. Moreover, since

(vl, vh)↦ ϕ̃(vl) + ψ̃(vh) −
vlvh
vl + vh

is increasing in vl and decreasing in vh,

ϕ̃(vl) + ψ̃(vh) −
vlvh
vl + vh

≥ ϕ̃(κ̃5) + ψ̃(κ̃3) −
κ̃5κ̃3

κ̃5 + κ̃3
=
κ̃5

4
+
κ̃3

4
−

κ̃5κ̃3

κ̃5 + κ̃3
+

κ̃2κ̃1

κ̃2 + κ̃5
≥ 0 .

Together, ϕ̃(vl) + ψ̃(vh) ≥ π̃(vl, vh), as desired.

When vh ∈ (κ̃3, κ̃4],

ϕ̃(vl) + ψ̃(vh) =
vl
4
+
vh
4
+

κ̃2κ̃1

κ̃2 + κ̃1
≥max{

vlvh
vl + vh

,
vl
4
,
vh
4
} = π̃(vl, vh) ,

as desired.

When vh ∈ (κ̃4, κ̃5],

π̃(vl, vh) =max{
vlvh
vl + vh

,
vl
4
} .

Note that

ϕ̃(vl) + ψ̃(vh) ≥ ϕ̃(vl) =
vl
4
+

κ̃2κ̃1

κ̃2 + κ̃1
≥
vl
4
.
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Moreover, since the function

(vl, vh)↦ ϕ̃(vl) + ψ̃(vh) −
vlvh
vl + vh

is increasing in vl and is decreasing in vh,

ϕ̃(vl) + ψ̃(vh) −
vlvh
vl + vh

≥ ϕ̃(κ̃5) + ψ̃(κ̃5) −
κ̃5

2
= 0 .

Together, ϕ̃(vl) + ψ̃(vh) ≥ π̃(vl, vh), as desired.

When vh > κ̃5,

ϕ̃(vl) + ψ̃(vh) =
1

4
(vl + vh) ≥max{

vlvh
vl + vh

,
vl
4
,
vh
4
} ,

as desired.

Next, let

γ̃⋆c (vl ≤ x ∣ vh) ∶=
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1{∆−1c (Fc,h(vh +∆c(˜̃κ3c)) ≤ x}, if vh ≤ ˜̃κ1c

1{F −1c,l (Fc,h(vh) +∆c(˜̃κ3c)) ≤ x}, if vh ∈ (˜̃κ1c , ˜̃κ
3
c]

1{vh ≤ x}, if vh ∈ (˜̃κ3c , ˜̃κ
4
c]

1{F −1c,l (Fc,h(vh) +∆c(˜̃κ4c)) ≤ x}, if vh ∈ (˜̃κ4c , ˜̃κ
5
c]

fc,l(vh)
fc,h(vh) ⋅ 1{vh ≤ x} +

fc,h(vh)−fc,l(vh)
fc,h(vh) ⋅ 1{F −1c,l (∆c(˜̃κ5c) −∆c(vh)) ≤ x}, if vh > ˜̃κ5c ,

,

for all x ∈ V and for all vh ∈ V .

Then, let ρ̃⋆c ∈∆(V × V ) be defined as

ρ̃⋆c(vl ∈ A,vh ∈ B) ∶= ∫
B
γ⋆c (A ∣ vh)Fc,h(dvh) , (A.16)

for all measurable sets A,B ⊆ V . By construction, the marginals of ρ⋆c are exactly Fc,l and

Fc,h. That is, ρ̃⋆c ∈Rc.

It remains to show that for any (vl, vh) ∈ supp(ρ̃), ϕ̃(vl) + ψ̃(vh) = π̃(vl, vh). To see this,

consider any (vl, vh) ∈ supp(ρ̃). If vl ≤ κ̃2, it must be that vh ≥ κ̃5. By (A.13), π̃(vl, vh) = vh/4.
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Therefore,

ϕ̃(vl) + ψ̃(vh) =
vh
4
= π̃(vl, vh) ,

as desired. If vl ∈ (κ̃2, κ̃3], then it must be that vh = β(vl). By (A.12), it follows that

π̃(vl, vh) =
vlvh
vl + vh

.

Therefore,

ϕ̃(vl) + ψ̃(vh) = ϕ̃(vl) + ψ̃(β(vl)) =
vlβ(vl)

vl + β(vl)
= π̃(vl, β(vl)) = π̃(vl, vh) ,

as desired. If vl ∈ (κ̃3, κ̃4], then it must be that vh = vl. Therefore,

ϕ̃(vl) + ψ̃(vh) =
vl
2
= π̃(vl, vl) = π̃(vl, vh) ,

as desired. If vl ∈ [κ̃4, κ̃5], it must be that vh = β(vl), and thus

ϕ̃(vl) + ψ̃(vh) = ϕ̃(vl) + ψ̃(β(vl)) =
vlβ(vl)

vl + β(vl)
.

Moreover, by (A.14),

vlβ(vl)

vl + β(vl)
= ϕ̃(vl) + ψ̃(β(vl)) ≥

β(vl)

4
.

Likewise, by (A.15),

vlβ(vl)

vl + β(vl)
= ϕ̃(vl) + ψ̃(β(vl)) ≥

vl
4
.

Together, for any vl ∈ [κ̃4, κ̃5],

vlβ(vl)

vl + β(vl)
≥max{

vl
4
,
β(vl)

4
}

and thus

π̃(vl, β(vl)) =
vlβ(vl)

vl + β(vl)

80



for all vl ∈ [κ̃4, κ̃5]. As a result,

ϕ̃(vl) + ψ̃(vh) =ϕ̃(vl) + ψ̃(β(vl))

=
vlβ(vl)

vl + β(vl)

=π̃(vl, β(vl))

=π̃(vl, vh) ,

as desired. Lastly, for any vl > κ̃5, it must be that vh = vl. Therefore,

ϕ̃(vl) + ψ̃(vh) =
vl
2
= π̃(vl, vl) = π̃(vl, vh) ,

as desired. Together, this completes the proof.

Proof of Proposition 7. By Proposition 1, any optimal non-discriminatory pricing rule p

can be identified by a family {ρc}c∈C of matching schemes, where ρc ∈Rc is a solution of

max
ρ∈Rc
∫
V 2
πc(vl, vh)dρ, .

Thus, it suffices to consider the solutions of the optimal transport problem (11) for each c.

When Fc,l(c) ≥ ∥Fc,l − Fc,h∥, since π⋆(c) = E[(v − c)+], it must be that CS(c, h;p) =

CS(c, l;p) = 0. Now suppose that Fc,l(c) < ∥Fc,l − Fc,h∥. Fix any such c ∈ C, consider any

solution ρc of the optimal transport problem (11). By Lemma 3, for any solution ρc of (11),

it must be that

ϕ⋆c(vl) + ψ
⋆
c (vh) = πc(vl, vh) ,

for all (vl, vh) ∈ supp(ρc). Therefore, we have

supp(ρc) ⊆ [0, κ
3
c] × [κ

5
c ,∞)∪{(vl, vh) ∈ [κ

1
c , κ

3
c] × [κ

1
c , κ

3
c] ∶ vl ≥ vh}

∪[κ3c , κ
4
c] × [0, κ

1
c]

∪{(vl, vh) ∈ [κ
3
c , κ

4
c] × [κ

3
c , κ

4
c] ∶ vl = vh} (A.17)

∪{(vl, vh) ∈ [κ
4
c , κ

5
c] × [κ

4
c , κ

5
c] ∶ vl ≤ vh}

∪{(vl, vh) ∈ [κ
5
c ,∞) × [κ

5
c ,∞) ∶ vl = vh}
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Now consider any optimal non-discriminatory pricing rule p. By Proposition 1, there

exists {ρc}c∈C such that ρc is a solution of (11) for all c ∈ C and that for almost all c ∈ C and

for almost all matched pair (vl, vh) ∈ supp(ρc), these consumers face a price that equals

argmax
x∈{vl,vh}

(x − c)[αc1{vh ≥ x} + (1 − αc)1{vl ≥ x}] .

Let {ρc}c∈C be the family of matching schemes associated with the non-discriminatory

pricing rule p. Note that for any (vl, vh) ∈ [κ3c , κ
4
c]× [0, κ

1
c], (1−αc)(vl − c) ≥ (1−αc)(κ

3
c − c) =

κ1c − c ≥ vh − c. Therefore, the optimal price for these matched pairs equals vh, and hence

h-consumers purchase at a price equals their values, whereas l-consumers do not purchase. In

particular, these consumers retain zero surplus, just as under p⋆. Likewise, for any (vl, vh) ∈

[0, κ3c]×[κ
5
c ,∞), αc(vh−c) ≥ αc(κ

5
c−c) = αc(κ

4
c−c)+(1−αc)(κ

3
c−c) ≥ αcκ

3
c−c+(1−αc)(κ

3
c−c) =

κ3c − c ≥ vl − c. Thus, the optimal price for these matched pairs (vl, vh) must equal vh, and

thus h-consumers purchase by paying their values, whereas l-consumers do not purchase, just

as under p⋆. Furthermore, for any (vl, vh) ∈ [κ4c , κ
5
c] × [κ

4
c , κ

5
c] such that vl ≤ vh, αc(vh − c) ≤

αc((κ5c−c) = αc(κ
4
c−c)+(1−αc)(κ

3
c−c) = αc(κ

4
c−c)+(1−αc)(κ

3
c−c) ≤ κ

4
c−c ≤ vl−c. The optimal

price for these matched pairs (vl, vh) must equals vl, and hence both θl and θh consumers

purchase by paying the value of l-consumers, just as under p⋆. Together, the pricing rule p

must lead to the same outcomes as p⋆ for matched pairs (vl, vh) in [0, κ1c]×[κ
5
c ,∞), {(vl, vh) ∈

[κ3c , κ
4
c] × [0, κ

1
c] ∶ vl ≥ vh}, and {(vl, vh) ∈ [κ

4
c , κ

5
c] × [κ

4
c , κ

5
c] ∶ vl ≤ vh}.

In the meantime, for any matched pair (vl, vh) ∈ [κ1c , κ
3
c]× [κ

1
c , κ

3
c], since (1−αc)(vl − c) ≤

(1 − αc)(κ3c − c) = κ
1
c − c ≤ vh − c, the optimal price for these matched pairs must be vh.

Together, we have

CS(c, h;p) = CS(c, h;p⋆) = ∫
Fc,h(κ5c)

Fc,h(κ4c)
(F −1c,h(q) − F

−1
c,l (q + Fc,h(κ

4
c) − Fc,l(κ

4
c)))dq ;

WL(c, h;p) =WL(c, h;p⋆) = ∫
κ1c

0
vFc,h(dv) ;

CS(c, l;p) = ∫[κ1c ,κ3c]2
(vl − vh)ρ(dvl,dvh) ;

and

WL(c, l;p) = ∫
κ1c

0
vFc,l(dv) + ∫[κ1c ,κ3c]×[κ5c ,∞)

vlρ(dvl,dvh)

By (A.17), ρc(vl ∉ [κ1c , κ
3
c], vh ∈ [κ

1
c , x]) = 0 and ρc(vl ∈ [κ1c , κ

3
c], vh ∉ [κ

1
c , κ

3
c]) = ρc(vl ∈
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[κ1c , x], vh > κ
5
c), for all x ∈ [κ

1
c , κ

3
c]. Thus,

ρc(vl ∈ [κ
1
c , κ

3
c], vh ∈ [κ

1
c , x]) =ρ(vl ∈ V, vh ∈ [κ

1
c , x]) − ρc(vl ∉ [κ

1
c , κ

3
c], vh ∈ [κ

1
c , x])

=Fc,h(x) − Fc,h(κ
1
c) ,

and

ρc(vl ∈ [κ
1
c , x], vh ∈ [κ

1
c , κ

3
c]) =ρc(vl ∈ [κ

1
c , x], vh ∈ V ) − ρc(vl ∈ [κ

1
c , x], vh ∉ [κ

1
c , κ

3
c])

=Fc,l(x) − Fc,l(κ
1
c) − ρ(vl ∈ [κ

1
c , x], vh > κ

5
c) ,

for all x ∈ [κ1c , κ
3
c]. Moreover, by (A.17), since ρc ∈Rc, it must be that

ρ(vl ∈ [0, κ
3
c], vh > κ

5
c) =∆c(κ

5
c) .

Together with the fact that Fc,l(κ2c) =∆c(κ5c), it follows that

min{Fc,l(x), Fc,l(κ
2
c)} ≥ ρc(vl ∈ [κ

1
c , x], vh > κ

5
c) . (A.18)

As a result,

CS(c, l;p) =∫[κ1c ,κ3c]2
(vl − vh)ρc(dvl,dvh)

=∫
κ3c

κ1c

vlFc,l(dvl) − ∫
κ3c

κ1c

vlρc(dvl, vh > κ
5
c) − ∫

κ3c

κ1c

vhFc,h(dvh)

≤∫
κ3c

κ1c

vFc,l(dv) − ∫
κ2c

κ1c

vFc,l(dv) − ∫
κ3c

κ1c

vFc,h(dv)

=∫
κ3c

κ2c

vFc,l(dv) − ∫
κ3c

κ1c

vFc,h(dv)

=∫
Fc,l(κ3c)

Fc,l(κ2c)
F −1c,l (q)dq − ∫

F1(κ3c)

Fc,h(κ1c)
F −1c,h(q)dq

=∫
Fc,l(κ3c)

Fc,l(κ2c)
(F −1c,l (q) − F

−1
c,h(q + Fc,h(κ

3
c) − Fc,l(κ

3
c)))dq

=CS(c, l;p⋆) ,
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where the inequality follows from (A.18) and the last equality follows from (7). Likewise,

WL(c, l;p) =∫
κ1c

0
vFc,l(dv) + ∫[κ1c ,κ3c]×[κ5c ,∞)

vlρc(dvl,dvh)

≥∫
κ1c

0
vFc,l(dv) + ∫

κ2c

κ1c

vFc,l(dv)

=∫
κ2c

0
vFc,l(dv) ,

where the inequality follows from (A.18). Together, we have that

CS(c, h;p) = CS(c, h;p⋆) ; and WL(c, h;p) =WL(c, h;p⋆) ,

while

0 ≤ CS(c, l;p) ≤ CS(c, l;p⋆)

for all c ∈ C. Since

π⋆(c) + ∑
θ∈{l,h}

[CS(c, θ;p) +WL(c, θ;p)] ,

it then follows that

WL(c, l;p⋆) ≤WL(c, l;p) ≤ ∫
κ1c

0
vlFc,l(dvl) + ∫

κ3c

κ1c

v(fc,l(v) − fc,h(v))dv .

It now remains to show that for any c and for any σc,l

0 ≤ σc,l ≤ CS(c, l;p
⋆)

there exists ρc ∈Rc that solves (11) such that

∫[κ1c ,κ3c]
(vl − vh)ρc(dvl,dvh) = σc,l
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To this end, for each c ∈ C, let

γ̃c(vl ≤ x ∣ vh) ∶=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1{∆−1c (Fc,h(vh) +∆c(κ3c)) ≤ x}, if vh ≤ κ1c

1{vh ≤ x}, if vh ∈ (κ1c , κ
4
c]

1{F −1c,l (Fc,h(vh) +∆c(κ4c)) ≤ x}, if vh ∈ (κ4c , κ
5
c]

fc,l(vh)
fc,h(vh) ⋅ 1{vh ≤ x} +

fc,h(vh)−fc,l(vh)
fc,h(vh) ⋅ 1{J−1c (∆c(κ5c) −∆c(vh)) ≤ x}, if vh > κ5c ,

,

where

Jc(v) ∶=

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

min{Fc,l(v),∆c(v) + Fc,h(κ1c)}, if v ≤ κ3c

∆c(κ3c) + Fc,h(κ
3
c), if v > κ3c

for all v ∈ V . By the same argument as the proof of Lemma A.2, γ̃c is indeed a transition

probability. Then, let

ρ̃c(vl ∈ A,vh ∈ B) ∶= ∫
B
γ̃c(A ∣ vh)Fc,h(dvh) .

Since ρ⋆c ∈ Rc and since Fc,l(κ2c) = ∆c(κ5c), it follows that ρ̃c ∈ Rc as well. Moreover, for all

(vl, vh) ∈ supp(ρ̃c), ϕ⋆c(vl) + ψ⋆c (vh) = πc(vl, vh). Thus, by Lemma 3, ρ̃c solves (11). In the

meantime, by construction, vl = vh for all (vl, vh) ∈ supp(ρ̃c) ∩ [κ1c , κ
3
c] × [κ

1
c , κ

3
c]. Therefore,

∫[κ1c ,κ3c]2
(vl − vh)dρ̃c = 0 .

Therefore, for any c and for any σc, l ∈ [0,CS(c, l;p⋆)],

ρc ∶=
σc,l

CS(c, l;p⋆)
ρ⋆c + (1 −

σc,l
CS(c, l;p⋆)

) ρ̃c .

Since Rc is convex and since both ρ⋆c and ρ̃c are solutions of (11), ρc is in Rc solves (11) as

well. Moreover,

∫[κ1c ,κ3c]2
(vl − vh)dρc =

σc,l
CS(c, l;p⋆) ∫[κ1c ,κ3c]2

(vl − vh)dρ
⋆
c + (1 −

σc,l
CS(c, l;p⋆)

)∫[κ1c ,κ3c]2
(vl − vh)ρ̃c

=CS(c, l;p⋆) ⋅
σc,l

CS(c, l;p⋆)
+ 0 ⋅ (1 −

σc,l
CS(c, l;p⋆)

)

=σc,l ,
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as desired. This completes the proof.

A.4 More on the Partly Anti-Assortative Pricing Rule

Consider any partly anti-assortative pricing rule panti with quantiles {qc}c∈C . Note that all

consumers with θ = h and v ≥ c would purchase and pay their values. For l-consumers, if

v < F −1c,l (qc), then since

Fc,l(x) ≥ Fc,h(x) > Fc,h(x) − (1 − qc)

for all x,

panti(v, c, l) = F −1c,h(Fc,l(v) + (1 − qc)) > v ,

and thus they would not purchase. In the meantime, if v ≥ F −1c,l (qc), note that

panti(v, c, l) = F −1c,h(Fc,l(v) − qc) ≤ v

if and only if

Fc,l(v) − Fc,h(v) =∆c(v) ≤ qc .

Therefore, such a consumer would purchase if and only if ∆c(v) ≤ qc, and will purchase at

a price F −1c,h(Fc,l(v) − qc). As a result, for any c ∈ C, the smallest qc such that all consumers

with θ = l and v ≥ F −1c,l (qc) would purchase is qc = ∆c(v⋆c ). In this case, the seller’s profit is

given by

E [(panti − c)1{v ≥ panti}] = αc∫
V
(v − c)+Fc,h(dv) + (1 − αc) [∫

F−1c,h(1−qc)

0
(v − c)+Fc,h(dv)] .
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A.5 Assumption 1 under a Scaled Family

Suppose that there exists Fh, Fl such that Fc,h(x) = Fh(x/c) and Fc,l(x) = Fl(x/c) for all c and

for all x. Then

∥Fc,l − Fc,h∥ =max
v

∆c(v) =max
v
[Fc,l(v) − Fc,h(v)]

=max
v
[Fl (

v

c
) − Fh (

v

c
)]

=max
ṽ
[Fl(ṽ) − Fh(ṽ)] (ṽ = v

c )

=∥Fl − Fh∥ .

Therefore, Assumption 1 is equivalent to

Fc,l(c) = Fl(1) < ∥Fl − Fh∥ = ∥Fc,l − Fc,h∥ .

Furthermore, suppose that αc = α for all c ∈ C. Let κ1 be the solution to (7) when c = 1,

and let κc ∶= c ⋅ κ1. Then, for all c ∈ C, Fc,l(κ
j
c) = F1,l(κ

j
1) and Fc,h(κ

j
c) = F1,h(κ

j
1) for all

j ∈ {1,2,3,4,5}, and

κ1c − c = c(κ
1
c − 1) = cα(κ

3
1 − 1) = (1 − α)(κ

3
c − c)

while

(1 − α)(κ3c − c) = c(1 − α)(κ
3
1 − 1) = cα(κ

5
1 − κ

4
1) = α(κ

5
c − κ

4
c) .

Therefore, κc = c ⋅ κ1 must solve (7).

Now suppose that Fc,l(v) = 1 − e−v/λlc and Fc,h(v) = 1 − e−v/λhc for all v ≥ 0 and for some

0 < λl < λh. Let γ ∶= λh/λl. Then, ∆c(v) = e−v/λhc − e−v/λlc for all v ≥ 0. Moreover, since v⋆c
is the unique maximize of ∆c, by the first order condition, ∆′c(v⋆c ) = fc,l(v⋆c ) − fc,h(v⋆c ) = 0.

Therefore,

γ =
λh
λl
= exp(

−v⋆c
λhc
+
v⋆c
λlc
) = exp(−

v⋆c
λhc
(1 − γ)) .

Therefore,

exp(−
v⋆c
λhc
) = γ−

1
γ−1
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and

exp(−
v⋆c
λlc
) = (exp(−

v⋆c
λhc
))

λh
λl
= γ−

γ
γ−1 .

As a result,

∆c(v
⋆
c ) = exp(−

v⋆c
λhc
) − exp(−

v⋆c
λlc
) = γ−

1
γ−1 − γ−

γ
γ−1 = γ−

γ
γ−1 (γ − 1) ,

and hence Assumption 1 simplifies to

Fc,l(c) = 1 − e
−1
λl < γ−

γ
γ−1 (γ − 1) =∆c(v

⋆
c ) .
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