arXiv:2410.05504v3 [econ.TH] 24 Sep 2025

Persuasion with Ambiguous Communication™

Xiaoyu Cheng'  Peter Klibanoff* ~ Sujoy Mukerji®  Ludovic Renou!

This Version: September 21, 2025
Click here for the newest version.

Abstract

We explore whether ambiguous communication can be beneficial to the sender in a persua-
sion problem, when the receiver (and possibly the sender) is ambiguity averse. Our analysis
highlights the necessity of using a collection of experiments that form a splitting of an obedi-
ent experiment. Some experiments in the collection must be Pareto-ranked in that both players
agree on their payoff ranking. If an optimal Bayesian persuasion experiment can be split in
this way, then any not-too-ambiguity-averse sender as well as the receiver benefit. There are

no benefits when the receiver has only two actions.
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1 Introduction

“If I seem unduly clear to you, you must have misunderstood what I said.”

Alan Greenspan, Speaking to a Senate Committee in 1987, as quoted in the Guardian
Weekly, November 4, 2005.

This paper considers the problem of a sender who wishes to favorably influence, through strate-
gic communication of information, the action taken by a receiver. As in the large literature on
Bayesian persuasion following Kamenica and Gentzkow (2011) (see also Rayo and Segal (2010)
and surveys by Bergemann and Morris (2019) and Kamenica (2019)), we model the sender as
committing to a communication strategy and the receiver as best responding to that strategy. A
communication strategy for the sender is usually described as a statistical experiment, a func-
tion mapping from payoff-relevant states to probability distributions over messages (or signals).
Our first key departure from most of the literature is that we enlarge the set of the sender’s com-
munication strategies to include ambiguous strategies. These are strategies generating, from the
perspective of both players, subjective uncertainty about which statistical experiment will be used
to generate the message. Our second key departure is that the receiver (and possibly the sender)
treats this uncertainty as ambiguity and is ambiguity averse. Would the sender ever benefit from
intentionally using an ambiguous communication strategy? We show that the answer can be yes,
and provide understanding of the circumstances under which this can occur and the nature of these
beneficial strategies. Thus, our theory suggests that one might want to communicate in a deliber-
ately ambiguous manner even when it is possible to costlessly eliminate any ambiguity.

We illustrate our main results with the help of a simple introductory example. There is a sender
and a receiver, three actions aq, as and ag, and two payoff-relevant states w; and w,, with equal
prior probabilities p = (1/2,1/2).! The sender influences the action the receiver takes with the

release of information. The payoffs are:

(usuur) ai Q2 a3
w | 1,1 =1,—-1| —4,2
we | 0,0] 2,2 | —4,-4

Table 1: Payoff table (first coordinate is the sender’s payoff)

The receiver prefers as in state w;, while the sender prefers a; in that state. This is the conflict
of interest in this example. The receiver prefers a; when their beliefs about wy are intermediate
(i.e.,in [1/5,1/2]), ay when their beliefs are higher than 1/2, and a3 when they are lower than 1/5.

'The example needs at least three actions since we show (Corollary 1) there is no benefit from using ambiguous
communication strategies when the receiver has only two actions.
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An interpretation of this example in the context of stress testing and banking regulation is as
follows: Think of the sender as a banking regulatory authority (“the regulator”’) who must design,
conduct and communicate the results of stress testing of the banking sector (“the bank™). Imagine
the receiver as a representative investor (“the investor’”) choosing among alternative investments,
a;, whose payoff depends on the realization of the state w. Think of the w as investment-relevant in-
formation about the health of the banking sector, with w; and ws associated with “bad” and “good”
health, respectively. Actions a; and as are socially-productive investments (i.e., productive from
the viewpoint of the economy as a whole, a viewpoint that we assume the regulator adopts). Action
ag is a socially-detrimental, purely speculative investment. The regulator’s choice of communica-
tion strategy can be seen as their choice of rules/specifications for the stress tests.” The regulator’s
challenge is to design and communicate stress tests so as to better coordinate investment behav-
ior with the health of the banking sector, without diverting investments to the speculative activity,
which is always socially detrimental but beneficial for the investor when the health of the banking
sector is bad.

We first apply the seminal work of Kamenica and Gentzkow (2011) on Bayesian persuasion
to this example. Kamenica and Gentzkow (2011) study a dynamic game between a sender and a
receiver, where the sender first designs a statistical experiment o : {wy,ws} — A(M), the receiver
observes the chosen experiment o and the realized message m, and then takes an action. In our
language, this information design is unambiguous, that is, the receiver knows the experiment that
generates the message and, therefore, knows the likelihood of each message given each state w.
Kamenica and Gentzkow (2011) show that the highest payoff the sender can achieve is the value
of the concavification of their indirect utility at the prior p. In our example, this value is 5/4 as
illustrated in Figure 1. In the figure, we plot the receiver’s expected payoff associated with each of
the three actions as dotted lines — each line is labelled with its action. We plot the sender’s indirect
utility, i.e., the expected payoff the sender obtains when the receiver best responds, as a thick solid
curve, and its concavification as a thick dashed curve.

It is immediate to verify that the experiment o2 defined in Figure 1 attains this optimal payoff
using the messages “a;” and “ay”. The message “as” reveals that the state is ws. Intuitively, since
the preferences are perfectly aligned when the state is w,, the sender wants the receiver to learn it.
At the same time, the sender does not want the receiver to be too pessimistic about w, when the
state is wy, as the receiver chooses a3 at all beliefs less than 1/5 on w,. The optimal experiment
oBF balances these two forces by making the likelihood of message “a;” in state w, just large
enough to induce action a;. We note that the experiment 02% is canonical, that is, the messages
are action recommendations, and, in the example, it is also obedient, that is, the receiver finds it

optimal to obey the recommendations. In Bayesian persuasion, the restriction to canonical and

2See Bergemann and Morris (2016) for another example of Bayesian persuasion in the context of stress testing.
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Figure 1: Sender’s indirect utility (thick curve) and its concavification (thick dashed curve)

obedient experiments is without loss, and we prove (Proposition 1) that this remains true in our
generalization.

Now, suppose that the sender can design ambiguous experiments. These are communication
strategies that leave some uncertainty about which statistical experiment will generate the mes-
sages, and, in this sense, may not completely pin-down the message likelihoods. We model am-
biguous experiments as generated by (finitely-ranged) mappings from payoft-irrelevant ambiguous
events to statistical experiments. Examples of such ambiguous events include artificially generated
ambiguity like draws from an Ellsberg urn provided by a third-party, or natural-event ambiguity
derived from meteorological or other events. More broadly, the only requirements beyond payoft-
irrelevance are that the sender and receiver share a common view of the subjective uncertainty
about these events, and that the receiver (and possibly the sender as well) is ambiguity averse and
treats the uncertainty about these events as ambiguity. Our theory is agnostic about why there is
a common view of the uncertainty over these events. It could be this common view comes from
shared (but limited) historical data or, as is particularly likely in the case of artificially generated
ambiguity, from symmetry or other logical considerations, or the commonality could be viewed
simply as a convenient baseline modeling assumption.

Formally, we model the source of such ambiguous events as a continuum, A, of payoff-
irrelevant states, «, along with a continuous p € A(A) that represents the common view of

uncertainty over A that an ambiguity neutral player would use to compute their expected util-



ity. Let B be any finite partition of A and define i € A(B) by iu(b) = [ _, p(e)da for each
b € B. By richness of .4 and continuity of p, any finitely-supported distribution over experiments
can be induced by the choice of some finite partition 5B together with some mapping from B to
experiments. Hence, as justified by payoff-irrelevance of .4, we model an ambiguous experiment
as a pair (o, i), where the collection o = (0y)gco is a tuple of experiments that we index using
a finite set © and . = (1p)sco is any element of A(©). The sender may choose any ambiguous
experiment.® The crucial characteristic of ambiguous experiments is that ambiguity averse players
behave as if they value some robustness with respect to perturbations of p.

In the stress-test setting, a specification of the exact model/test the bank must run and report
the results of, would correspond to a statistical experiment (i.e., an unambiguous communication
strategy on the part of the regulator). One channel through which ambiguity could be introduced
into communication in this context is the use of contingent “bottom-up” tests — tests conducted by
individual banks based on their own in-house models and data — as input to the stress tests. By
making which model/test a bank is to run contingent on the range a parameter, « € [0, 1], belongs
to, where, for example, « is something to be calculated based on data private to the bank (and
not directly payoff-relevant for either the regulator or the investor), the regulator may cause the
statistical experiment generating the announced result to vary with these ranges.* As is plausible
for an « for which the sender and receiver have little data, from their perspective the realization
of «v is ambiguous and elements of finite partitions of [0, 1] are ambiguous events. Thus, if the
regulator says that the bank should use one model/test if o« € [0,1/4), another if o € [1/4,3/4),
and a third if o € [3/4, 1], this is an example of an ambiguous experiment. By varying the partition
of [0, 1] used to define the contingencies under which the three models/tests will be run by the bank,
the regulator may vary .

An SEU player treats the ambiguous experiment (o, ;1) as equivalent to the unambiguous ex-
periment ) _, f1909. If the receiver is SEU, the sender cannot do better than using the experiment
0B and thus ambiguity adds no value. We assume instead that the receiver is ambiguity averse
and represent their preference with the smooth ambiguity model of Klibanoff et al. (2005). Specif-
ically, let u,(0y, 7*) be the receiver’s payoff when the (canonical) experiment is o4 and the receiver

is obedient.” The receiver values the ambiguous experiment as ¢, ' (3, po¢r(u, (09, 7*))), Where

3Notice that ambiguous experiments are a generalization of experiments in the sense that any experiment o can be
viewed as an ambiguous experiment with a collection o such that oy = ¢ for all § in the support of .

4The use of bottom-up tests is common (see e.g., Table 1 in Dent et al. (2016)). Making the instructions for
them contingent is something already done in practice. For instance, in recent EU stress tests (see European Banking
Authority (2023), Section 2.4.4.): “Banks with significant foreign currency exposure are required to take into account
the altered creditworthiness of their respective obligors, given the FX development under the baseline and adverse
scenarios. In particular, banks are only required to evaluate this impact if the exposures of certain asset classes in
foreign currencies are above certain thresholds.”

>Obedient in the sense of following the action recommendations. We denote the obedient strategy by 7*.



¢, is some strictly increasing, concave and differentiable function.® The concavity of ¢, captures
ambiguity aversion. Greater concavity corresponds to more ambiguity aversion. At one extreme,
when the receiver is infinitely ambiguity averse, we have an instance of the maxmin expected util-
ity (MEU) model (Gilboa and Schmeidler, 1989). At the other, when ¢,. is affine, we have the SEU
model (implying ambiguity neutrality).

As a preliminary result, we show (Lemma 1) that such an ambiguity-averse receiver faced with

an ambiguous experiment (o, 1) is obedient if, and only if, they are obedient when facing the
10, (ur(09,7"))

. 225 1 (ur(0g,7)) . .

refer to v as the receiver’s effective measure given (o, 11). Assume ¢, is strictly concave. Then

unambiguous experiment ) _, 190y With vy = . We use this result throughout, and
ur (o9, ") < u, (o, ) implies vy /vy > g/ g, that is, the effective measure assigns a higher
(relative) probability than p to lower payoffs. This relative pessimism of the effective measure
reflects the value that an ambiguity-averse receiver places on some robustness with respect to
perturbations of p. The more ambiguity averse the receiver, the stronger the relative pessimism.
Lemma 1 also makes clear that, in addition to depending on the receiver’s ambiguity aversion,
vy is endogenous in the sense that it is a function of the profile (u, (09, 7*), tt¢)ycq- Even local
changes in the ambiguous experiment, say only changing oy to oy, might impact all vy. These
endogenous pessimism properties stemming from ambiguity aversion distinguish our model from
a model with exogenously fixed heterogeneous priors, e.g., Alonso and Camara (2016), Laclau and
Renou (2017) and Galperti (2019).

We now illustrate (see Figure 2) how ambiguous experiments can benefit an SEU sender in
the example.” Consider an ambiguous experiment such that only two experiments oy and o (see
the figure) get positive p-weight. The experiment oy is uninformative, while the experiment oy
is fully informative. In the stress-test context, think of o5 as a more comprehensive test than oy.
Observe that the interpretation of the message as is unambiguous: the receiver learns that the
state is wy. The interpretation of the message a; is, however, ambiguous: either it means that the
state is w; (if o7 generated the message) or it is uninformative (if oy generated the message). The
associated payoft profiles are (us(og, 7°), u, (09, 7%)) = (1/2,1/2) and (us(0g, 7°), ur (07, 7%)) =
(3/2,3/2). Thus, if uz > 3/4, an ambiguity-neutral sender’s expected payoff, pus(og, 7°) +
pgus(og, %), is strictly higher than the Bayesian persuasion payoff of 5/4. We now argue that
we can simultaneously choose ji; > 3/4 and guarantee obedience. First, observe that (1/4)oy +
(3/4)o7 = oBF — we call such a configuration a splitting of 0”7 Since the receiver is obedient

when facing o7, by Lemma 1 the receiver is obedient when the effective weight v equals 3/4.

®We similarly model the sender’s preferences, substituting s and ¢,.

7Similar arguments remain valid as long as the sender is not too ambiguity averse. In particular, the sender contin-
ues to benefit even if they are as ambiguity averse as the receiver (and even a bit more so) assuming the sender is not
infinitely ambiguity averse. This demonstrates that the essential source of the sender’s benefit is not a less ambiguity
averse sender insuring a more ambiguity averse receiver.
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Figure 2: Construction of the ambiguous experiment

In fact, the receiver continues to be obedient for any effective weight weakly below 3/4. Second,
since 1/2 = wu, (09, 7") < u,(0g,7*) = 3/2, vy is strictly lower than 15 (unless the receiver is
ambiguity neutral) — as mentioned above, this is a consequence of ambiguity aversion. Therefore,
since 15 < 3/4 when iy = 3/4, there is room to increase 1 above 3/4 and maintain obedience
until the point where v; equals 3/4.8 In the figure, the thick arrow moving along the sender’s
indirect utility curve indicates the movement of v towards 3/4 from below as jiz increases above
3/4 (along the thick arrow next to zi7). Thus, the ambiguous communication strategy allows the
sender to place more weight on the better experiment o7 while maintaining obedience, than would
be possible with unambiguous communication. This is how ambiguous communication provides
benefits.’

An important observation is that the experiments oy and o are Pareto-ranked — both players

8The effective weight Ij‘g is 3/4 when Mg = %, with ¢! the derivative of ¢,.. Observe, moreover,
that if 3/4 < pz < % then the sender continues to benefit from the ambiguous communication even if

the receiver slightly misperceives the ambiguous experiment and/or the sender slightly misperceives ¢/.. Section 4.2
shows that this robustness holds quite generally.

9Though the particular formula for v is special to the smooth ambiguity model, many models of ambiguity averse
preferences (for example, everything in the very general class of Uncertainty Averse preferences, Cerreia-Vioglio
et al. (2011)) allow one to derive an effective measure that is similarly pessimistic and endogenous. The logic and
explanation of how, when the receiver is more ambiguity averse than an SEU receiver with beliefs (114)g, ambiguous
communication can allow the sender to improve beyond Bayesian persuasion in this example applies to any of these
models.



prefer o assuming action recommendations are followed. If they were not Pareto-ranked, then
ambiguity aversion would push the receiver’s effective measure in a direction that would hurt
rather than help the sender — for example, if the receiver thought oy were better this would cause
vg to exceeed 1z, leading the receiver to defect to the speculative action a3 when the message is
a;. In fact, we prove that the existence of a splitting of some (unambiguous) obedient experiment
into two Pareto-ranked experiments is necessary for ambiguous experiments to benefit the sender
over Bayesian persuasion (Theorem 3). The ambiguity generated using Pareto-ranked experiments
serves to beneficially misalign the (endogenous) effective beliefs of the sender and receiver. Any
ambiguous experiment delivering the sender more than Bayesian persuasion must assign positive
Lg-weight to some pair of experiments that are Pareto-ranked (Theorem 2). If, as here, an optimal
Bayesian persuasion experiment can be split in this way, this is sufficient for an ambiguity-neutral
sender (and the receiver too!) to benefit from ambiguous communication (Theorem 4 and Corollary
3). Furthermore, if an optimal Bayesian persuasion experiment violates a necessary condition for
efficiency from Arieli et al. (2024), then, for generic payoffs, it can be split in this way (implied by
Proposition 4).

We close this section with a brief discussion of a few closely related papers. A more extensive
discussion can be found in Section 7.3. Beauchéne et al. (2019) (BLL henceforth) were first to
study strategic use of ambiguous communication in persuasion (see also Cheng (2022)). The key
difference in assumptions between BLL and our paper is how the receiver best responds given
the sender’s ambiguous experiment. We assume the receiver chooses an ex-ante optimal message-
contingent strategy (see Remark 1 for an equivalent interim implementation). BLL assume the
receiver chooses, for each message, actions maximizing interim preferences formed using a belief
updating rule that leads to dynamic inconsistency with their ex-ante preference. Thus, one contri-
bution of our paper is establishing and analyzing benefits of ambiguous persuasion that do not stem
from receiver’s behavior that is suboptimal with respect to their given ex-ante preferences (see our
further discussion in Section 7.3, including the approach to consistency of Pahlke (2023)). The
bulk of BLL’s analysis imposes the infinitely ambiguity-averse extreme for both the sender and
receiver — a polar case of our model, though they show that their approach extends more broadly.
Cheng (2025) shows that all benefits from ambiguous communication identified by BLL in the
case of such a sender disappear if the receiver is assumed, as in our paper, to maximize their given
ex-ante preference. In light of Cheng (2025)’s result, it is essential that we allow at least the sender
to be less than infinitely ambiguity averse for benefits from ambiguous communications to possibly
exist. Our analysis allows for varying degrees of ambiguity aversion for both the sender and the
receiver.

The remainder of the paper is organized as follows. The next section presents the model and

two key preliminary results — a revelation principle and an incentive-compatibility lemma. Main



results are in Sections 3 through 6. Section 7 contains further discussion. The main proofs are
in the Appendix. Additional material and proofs of auxiliary results are in the Online Appendix
(Cheng et al., 2025).

2 The Persuasion Problem with Ambiguous Communication

We consider a persuasion game between a sender and a receiver, where the sender can choose

ambiguous experiments if they wish.

2.1 The Model

There is a finite set {2 of payoff-relevant states w, with common prior probability distribution
p € A(R2). There is a finite set A of actions the receiver can choose from. If the receiver chooses
a € A, the payoff to the sender (resp., receiver) is us(a,w) € R (resp., u,(a,w) € R), when the
state is w. A statistical experiment is a finite set of messages M and a map o from 2 to A(M),
and we write o(m|w) for the probability of m given w.

We assume that the sender can condition their statistical experiment on the realization of a finite
partition of a source of ambiguity. A source of ambiguity is a continuum, A, of payoff-irrelevant
ambiguous states, «, along with a continuous p € A(A) that represents the common view of
uncertainty over A that an ambiguity-neutral (SEU) player would use to compute their expected
utility.

Let B be any finite partition of A and define i € A(B) by iu(b) = [, _, p(a)da for each
b € B. By richness of .4 and continuity of p, any finitely-supported distribution over experiments
can be induced by the choice of some finite partition 5B together with some mapping from B to
experiments. Hence, as justified by payoff-irrelevance of .4, we model an ambiguous experiment
as a pair (o, ), where o = (0p)gco is a tuple of experiments that we index using a finite set © and
i = (to)geo is any element of A(0).!° The sender may choose any ambiguous experiment — any
finite length tuple of experiments together with any probability distribution over the experiments
in that tuple.11 Henceforth, whenever we use the term “experiment” without a modifier, it refers
to a standard, unambiguous statistical experiment. Our model enlarges the sender’s strategy space

relative to the standard Bayesian persuasion model in the sense that any experiment o can be

107t is without loss to assume that all statistical experiments in the tuple share the same message space.

'"The sender chooses and commits to (o, 1) before o (which determines ) and w are realized. Thus, just as in
standard Bayesian persuasion where the sender chooses and commits to o before w is realized, the sender’s choice
of a communication strategy is influenced by their beliefs about how uncertainty may unfold. Since A (and thus ©)
is viewed as ambiguous, any ambiguity aversion on the part of the sender may influence their choice of (o, it). See
Section 7.1 for a discussion of how things would change under the alternative assumption that it is common knowledge
that the sender privately learns o before committing to an ambiguous experiment.



viewed as an ambiguous experiment with a collection o such that 0y = o for all § € supp(u)
(where supp(2) denotes the support of 11). Of special interest in some of our later constructions are
binary ambiguous experiments, those in which o is a pair of experiments.

We analyze the receiver’s behavior from the perspective of their ex-ante preferences, that is,
we assume that the receiver observes the sender’s choice of (o, ) and then chooses a strategy
7 : M — A(A) to maximize the receiver’s ex-ante preference.'> We further assume that 7 is indeed
carried out after the message is observed. This follows from either assuming that the receiver can
commit to 7, or that the receiver is dynamically consistent.'*> The main motivation for this ex-ante
perspective is that we want to study whether the sender benefits from ambiguous communication
even if the channel of dynamic inconsistency — the channel at work in nearly all previous literature
on mechanism or information design with ambiguity — is shut down. We refer the interested reader
to Section 7.3 for more discussion on this point.

We write u; (o, 7) for the expected payoff of player i € {s,r} when the experiment generating

the message m is o and the receiver’s strategy is 7, that is,

wi(o,7) = Y pw)o(mlw)r(alm)u;(a, w). (1)

w,m,a

Note that the payoft-irrelevance of .4 implies that neither « nor ¢ appears in (1).

To isolate and clarify the role of intentional ambiguous communication, we work in a stylized
environment where ambiguity is not payoff-relevant unless it becomes so by strategic choice of
the sender to condition their communication on the realization of ambiguous events. Thus, while
the payoff-irrelevant events generating # are viewed as ambiguous, the payoff-relevant events w
and any randomization over messages induced by an experiment are viewed as unambiguous.'* It
follows that a message m is viewed as ambiguous by the sender and receiver only if the experi-
ments the sender chooses to associate with distinct possible 6’s generate m with different positive
likelihoods. These different likelihoods may lead the expected payoff u;(cy, 7) to vary with 6 and
thus itself be viewed as ambiguous.

How does such ambiguity enter the sender’s and receiver’s preferences? We assume, as in

the smooth ambiguity model (Klibanoff et al., 2005), that player ¢ evaluates the strategy profile
(o, p),7) as

Ulo, i, 7) = 6" | D modi(ui(ow, 7)) | 4 )
6

where ¢; : R — R is a weakly concave and strictly increasing and differentiable function. An

12For compactness, this notation suppresses the allowed dependence of 7 on (o, 11).
3For a simple receiver’s updating rule that guarantees dynamic consistency, see Remark 1 in Section 2.2.2.
14Section 7.2 discusses extensions to environments with pre-existing ambiguity about w.
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affine ¢;(-) corresponds to ambiguity neutrality, in which case the preferences reduce to SEU with
belief 1. Greater concavity of ¢;(+) corresponds to greater ambiguity aversion. We do not consider
ambiguity loving behavior, as this would build-in a direct preference benefit from ambiguous com-
munication, while with ambiguity aversion, ambiguous communication can only be valuable if it
has a strategic benefit.

When the expected payoff u;(cy, 7) varies with ¢, an ambiguity-averse player ¢ responds to
(o, 1) as if they are ambiguity neutral and using an effective measure over O that is more pes-
simistic than p. As mentioned in the introduction (see footnote 9), while (2) delivers a particularly
tractable formula for this effective measure (Section 2.2.2), the key qualitative properties of com-
parative pessimism and endogeneity would apply to the effective measure under many models of
ambiguity averse preferences.

The following maxmin expected utility (MEU) objective can be viewed as an appropriate limit
of (2) as ambiguity aversion tends to infinity (Klibanoff et al., 2005, Proposition 3):

UMEU(a pu,7) = min  u;(og, 7).

Oesupp ()
Such an MEU receiver together with an ambiguity-neutral sender is considered in Section SA.1 of
the Online Appendix (Cheng et al., 2025).'
Writing BR(o, 11) for the set of best replies of the receiver (i.e., the maximizers of U, (o, i, )

with respect to 7), the sender’s problem is:

maxX (g .- Us(0, 11, T),

P —=
P) subjectto 7 € BR(o, 11).

Observe that the sender’s Bayesian persuasion problem (Kamenica and Gentzkow, 2011) cor-

responds to the special case of our model where the sender is restricted to choosing an experiment:

(PEPY = max(q,r) Us(0, T),
subject to 7 € br(o),

where br(c) denotes the set of best replies to o, i.e., the maximizers of u,. (o, 7) with respect to 7.
Let uB% denote the value of (P5F), i.e., the sender’s payoff at a solution to (PPF).

Our analysis will focus on optimal persuasion with ambiguous communication (the solution

to (P)) and its properties, as well as when and how ambiguous communication may benefit the

5Key differences from our main analysis are that (1) the sender never needs more than binary ambiguous ex-
periments to approach their optimal payoff, and (2) the sender can approach their optimal payoff without providing
the receiver any benefits from communication, and this may lead the receiver’s payoff to drop discontinuously when
passing to the MEU limit.

11



sender compared to the standard, unambiguous case of Bayesian persuasion.

Definition 1. Ambiguous communication benefits the sender if the value of (P) is strictly higher
BP

than uJ".
We next present two preliminary results — a revelation principle and a characterization of in-

centive compatibility for ambiguous experiments — that play a central role in our analysis.

2.2 A Revelation Principle and Incentive Compatibility
2.2.1 A Revelation Principle

Definition 2. An ambiguous experiment (o, 11) is canonical if M = A.

We write 7* : A — A(A) for the receiver’s obedient strategy, that is, 7*(a|a) = 1 for all a. We
will refer to any canonical ambiguous experiment that induces such obedience as itself obedient.

Definition 3. A canonical ambiguous experiment (o, 1) is obedient if T™* € BR(o, ).

We start with a preliminary observation: a revelation principle holds — for payoff purposes, it

is without loss of generality to restrict attention to canonical and obedient ambiguous experiments.

Proposition 1. For any ((o, 1), T) such that T € BR(o, j1), there exists a canonical and obedient

ambiguous experiment (o*, ) such that u;(cq, 7) = u; (0, 7*) for all i € {s,r} and 6.

It is well-known that such a revelation principle holds in the persuasion game setting without
ambiguity. However, one might have thought of at least two reasons why the same might not be
true in our environment. First, an ambiguity averse receiver might strictly prefer a mixed strategy
to any pure strategy for hedging reasons in the face of ambiguity. How can the receiver’s desire to
mix be reconciled with the revelation principle, which states that it is without loss of generality to
have the receiver play the pure strategy 7*? The answer is that any mixing the receiver might desire
to do can always be emulated through the use of experiments that mix over action recommenda-
tions. It is the standard Bayesian persuasion assumption of sender’s commitment that guarantees
that this emulation is always possible. Second, dynamic inconsistency, generated by ambiguity
aversion together with assumptions on updating, is the main channel leading to the failure of such
a revelation principle in existing literature. As previously mentioned, we shut down this channel
by modeling the receiver as choosing a strategy 7 to maximize U, (o, i, 7), their ex-ante payoff
from ((o, 1), 7), which imposes dynamic consistency on the receiver.

From here on, we restrict attention to canonical experiments, and represent incentive compat-
ibility via obedience. Given the prominent role obedient experiments play, understanding when
obedience holds is important. We next present a characterization of such incentive compatibility

for ambiguous experiments.
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2.2.2 Incentive Compatibility and Effective Measure

We present a central result linking the obedience of an ambiguous experiment to the obedience of
an unambiguous experiment that is derived from the ambiguous experiment. We repeatedly use

this result throughout the paper. To state the result, we need the following definition:

Definition 4. Given an ambiguous experiment (o, 1), the receiver’s effective measure em'” ") ¢
A(O) is given by:
o T uT g 77—*
emé H) L fo® (, (o9 )1 7
g g, (ur(0g, 7))
The effective measure em () is a probability measure with the same support as . It is equal

forall § € ©. 3)

to ;1 when the receiver is ambiguity neutral (i.e., ¢, is affine), and is more pessimistic than p for
an ambiguity averse receiver (i.e., ¢, concave). Pessimism here means shifting weight toward 6
yielding lower expected receiver’s payoffs, i.e., if u,. (0, 7°) < u,(0g, 7*), then eméa’“ ) / emg,”“ ) >
o/ 1er. Notice also that the effective measure of a given ¢ depends on the specification of the
ambiguous experiment for all 6 € supp(u).

The next result states that 7* is the receiver’s best response to the ambiguous experiment (o, /1)
if, and only if, it is a best response to the experiment, o*, defined below as the convex combination

of the experiments in the collection o with weights given by the receiver’s effective measure.

Lemma 1. The ambiguous experiment (o, 1) is obedient if, and only if, the (unambiguous) exper-

a— g eméa’“)ag.
0

Lemma 1 follows from the first-order conditions of the receiver’s maximization problem max, U,(o, p1, 7),

iment c* is obedient, where

evaluated at 7*. Some intuition is that obedience will differ from the best response to the ex-
periment ), j190p in that it will be better hedged against uncertainty about the weights on the

experiments. In our introductory example, for instance,

2 =u,(7,br(po + (1 — p)a)) > u.(o,7°) = 3/2
> u,(a, 7)) =1/2

> up (o, br(po + (1 — p)o)) = -1,

showing that the obedience strategy 7* is hedged against the uncertainty about the weight 1 more
than the strategy br(ua + (1 — p)o). Thus the relative pessimism of the effective measure reflects
the fact that an ambiguity averse receiver values such hedging.

Lemma 1 gives rise to the following interpretation of the receiver’s effective measure: It is an
“ambiguity-neutral measure supporting obedience” in the sense that if the receiver were ambiguity

neutral, the ambiguous experiment (o, em(*)) would be obedient.
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Remark 1. These properties of the effective measure also give rise to an updating implementa-
tion of the receiver’s ex-ante optimality — a receiver who updates after observing a message using
Bayes’ rule with the effective measure in place of ;4 and adopts this update as their effective poste-

rior will be dynamically consistent.

Finally, for later reference, observe that, fixing o, we can invert (3) to express x as a function

of the effective measure it generates:

emy™" /6. (u, (09, 7))

T em 6 (un(og 7))

o @)

3 Properties of Optimal Persuasion with Ambiguous Commu-

nication

Two experiments are Pareto-ranked if the sender and receiver agree on their strict ranking under
the assumption of obedience. As we shall see, Pareto-ranking and splittings into Pareto-ranked
experiments play a key role in optimal persuasion and, more generally, in the sender benefiting

from ambiguous communication.

Definition 5. Two experiments & and o are weakly Pareto-ranked if either the two inequalities
us(a,7%) > us(a, 7°) and u, (7, 7) > u,(a, 77), (5)

hold or both reversed inequalities hold. They are Pareto-ranked if the same holds true with strict

inequalities.

A Pareto-ranked splitting of the experiment o is a triple (7,0, \) such that (i) \a + (1 — \)a =
o, (ii) A € (0,1), and (iii) (5) holds with strict inequalities, i.e., & and o are Pareto-ranked.

Our next result shows that these concepts are fundamental in describing properties of optimal
ambiguous communication. Part (i) of the result says that if two experiments in the support of p
bracket the sender’s payoff from an optimal ambiguous experiment, they must be weakly Pareto-
ranked. The proof shows that if they were not, then improvement could be achieved by merging
the two experiments. Part (ii) shows there must not exist any opportunities to introduce additional
ambiguity through Pareto-ranked splittings that bracket the sender’s payoff from the ambiguous
experiment. The proof shows that any such splittings would be beneficial for the sender. Unlike
Part (1), Part (i1) requires the sender to be ambiguity neutral. However, Theorem A.2 in the Ap-
pendix shows that a similar result holds whenever the sender is not too ambiguity averse compared

to the receiver.
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Theorem 1. Suppose (o, 11) is optimal (i.e., is a solution to (P)), and that ¢, is strictly concave.'®

Then

(i) for all 0,0" € supp(p) such that us(cy, 7*) > Us(o, pu, 7°) > us(og, 7%) with at least one

inequality strict, o9 and oy are weakly Pareto-ranked,
and,

(ii) if ¢s is affine, then for all 6 € supp(p), there does not exist a Pareto-ranked splitting of oy,
(,0,\), such that ug(c,7*) > Us(o, u, 7°) > us(a, 7).

To gain intuition for part (i), first observe that if such oy and oy are not weakly Pareto-ranked,
then the receiver must get a strictly higher expected payoff from oy than from oy, while the reverse
is true for the sender. Ambiguity aversion then implies that the receiver’s effective measure places
more weight on oy relative to oy than the ambiguity neutral weights do, i.e., emé"’“ )/ emé’,”“ ) >
g/ g . If o9 and oy are the only two experiments in the support of 4, the sender can merge them
into the (unambiguous) experiment em\’ " oy + em'* 4. By construction, the receiver would
continue to be obedient, and the sender would strictly benefit from this merging — a profitable
deviation. When oy and o are not the only two experiments in the support of 1, however, this is not
the complete story as this merging may also impact the weighting of the merged experiment relative
to the other experiments. Part of the additional insight of the proof is that when wus(og, 7*) >
Us(o, i, 7") > wus(og, ") holds, this impact is at least weakly beneficial to the sender. The
intuition for part (ii) is similar.

In Theorem 1, the conditions refer to pairs of experiments for which the sender’s payoffs
bracket Us(o, pt, 7). Intuition for why similar conclusions may not apply when the pairs involved
in the Pareto-ranking or the Pareto-ranked splitting lie on the same side of Uy (o, 1, 7%) is related to
how the receiver’s ambiguity aversion, as reflected in properties of ¢,., connects p with the effective
measure e via (3). In particular, when there are more than two experiments in o, splitting
or merging experiments on the same side of U,(o, 11, 7*) may shift their combined weights in the
effective measure relative to the other experiments in a manner unfavorable to the sender. In the
Appendix, we show that concavity (resp. convexity) of 1/¢/. is sufficient to extend the conclusions
to pairs of experiments on a particular side of U,(o, i1, 7*), and assuming linearity of 1/¢! leads

to the following simpler necessary conditions for optimal persuasion:

Proposition 2. Suppose (o, 11) is a solution to (P), and

ér(x) = cln(ax +b) +d (6)

16 A5 the proof in the Appendix makes clear, the only role of strict concavity of ¢, is to simplify the statement of
the theorem. Without it, one needs to add conditions checking if ¢!.(u, (g, 7*)) # @..(u, (09, 7)) to each part of the
theorem.

15



for some a,b, c,d € Rwhere a,c > 0and ax+b > 0 for all v € [min,, u,(a,w), max,, u.(a,w)].
Then, all experiments are weakly Pareto-ranked, that is, for all 0,0" € supp(u), oo and oy are
weakly Pareto-ranked.

If, in addition, the sender is ambiguity neutral, no Pareto-ranked splitting of oy exists for any

0 € supp(p).

Note that (6) may be interpreted as constant relative ambiguity aversion (see Klibanoff et al.
(2005)). The result that all experiments used must be weakly Pareto-ranked is reminiscent of a key
Pareto-ranking result (Rayo and Segal, 2010, p. 959, Lemma 2) in an entirely different persuasion
setting (one in which ambiguity plays no role). The more general results of our Theorem 1 have
no obvious analogue in the setting of Rayo and Segal (2010).

We now solve our introductory example for a ¢, satisfying (6):

Example 1 (Introductory Example Continued). Suppose ¢,(x) = In(x + 5) and ¢4(x) = x. Then
a sender’s optimal persuasion strategy is the ((og, o), j) described in Figure 2 with ji; = 39/50.

The payolffs from this optimal persuasion are as follows:

Us((og,00), pb, 7°) = 39/50 x 3/2 4+ 11/50 x 1/2 = 1.28,

Ur((U§7 0-9)7”77_*) _ 6(39/501n(13/2)—f—11/£")()1n(11/2)) — 52 1.265.

Thus both the sender and receiver do better than the payoff of 5/4 they would each obtain under

Bayesian persuasion.

So far, the analysis was devoted to properties of optimal communication strategies when am-
biguous experiments are allowed. However, it does not directly tell us whether the sender strictly
benefits from introducing ambiguity into their communication. We now turn to this issue, which

we view as a primary focus of the paper.

4 When Does Ambiguous Communication Benefit The Sender?

4.1 Necessary Conditions for Ambiguity to Benefit The Sender

We show that Pareto-ranked experiments continue to be key in determining whether ambiguous
communication is better for the sender than unambiguous communication. The following theorem
shows having Pareto-ranked experiments in the collection (in particular, better and worse ones
having sender’s expected payoffs bracketing uZ’) is necessary for an ambiguous experiment to

benefit the sender.
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Theorem 2. [f an obedient ambiguous experiment (o, 1) benefits the sender, then there exist 0,0" €

supp(u) such that og and o are Pareto-ranked, with us(og, 7*) > uBt > u,(og, 7).

Comparing with part (i) of Theorem 1, we see that while optimal persuasion requires weak
Pareto-ranking of experiments that bracket the sender’s payoff from that ambiguous experiment,
Theorem 2 says that any improvement over Bayesian persuasion requires some Pareto-ranked ex-
periments (and thus strictly ranked) bracketing u”” for the sender.

We next present two equivalent sets of necessary conditions for ambiguity to benefit the sender,
and show that these conditions imply that ambiguous communication can never benefit the sender
when the receiver has only two available actions — a common assumption in many examples and
applications in the literature. Whereas Theorem 2 described a necessary property of any sender’s
strategy that improves on Bayesian persuasion, these next conditions relate the possibility of am-
biguity benefiting the sender in a given persuasion game to the existence of Pareto-ranked experi-

ments with certain properties.

Theorem 3. Ambiguous communication benefits the sender only if ¢, is not affine and there exists

a Pareto-ranked splitting, (T, o, \), of an obedient experiment & such that u,(c,7*) > uBr.

Example 2 (Introductory Example Continued). For the collection o = (05, 0g) constructed in Fig-
ure 2 of the introductory example, (0g, 09, %) is a Pareto-ranked splitting of o®" and u,(cg,7%) >

uBP. Thus, for this example, the existence required in Theorem 3 is satisfied for 6 = oBF.

Remark 2 (Not necessary for ¢ to be an optimal Bayesian persuasion experiment). The reader
might wonder if a stronger version of the theorem that requires ¢ to be an optimal Bayesian per-
suasion experiment holds. This is false. There are examples in which the sender benefits from
ambiguous communication even though no Pareto-ranked splitting of any optimal Bayesian per-
suasion experiment exists (as is true, for instance, whenever all such experiments are efficient). In
such cases, it is splittings of some other obedient experiment that generate the gains over Bayesian

persuasion for the sender.

The conditions in Theorem 3 are deceptively powerful: From these conditions alone, strict
benefit from ambiguity can be ruled out for a simple yet important class of problems — those in

which the receiver has a binary action space.

Corollary 1. If the receiver has only two actions, the sender cannot benefit from ambiguous com-

munication.

An important step in the proofs of Theorem 3 and Corollary 1 is showing that, when ¢, is not
affine, the conditions in Theorem 3 are equivalent to the existence of Pareto-ranked experiments,

o and o* such that: (i) supp o(-|w) = supp o*(-|w) for all w, (ii) us(o, 7*) > uBF, and (iii) 7* €
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br(o*) \ br(o). The argument that this formulation of the conditions are necessary is constructive,
and the effective measure plays a key role. Suppose that there exists a solution (o*, 1*) to the
sender’s program (7P) that benefits the sender. Construct o and o* by letting 0 = ), y150, and
ot =3 eméa*’“*)ag.

The intuition for Corollary 1 is as follows. From (iii), above, we have that part of a necessary
condition for ambiguity helping the sender is the existence of an experiment o that strictly improves
the receiver’s expected payoff compared to some other experiment ¢*, with the added property that
obedience of ¢ is not optimal, i.e., 7* ¢ br(o). Intuitively, such an improvement is possible only
when ¢ is more informative for the receiver and the benefit of this extra information outweighs the
cost of not best responding. When there are only two actions, taking advantage of extra information
requires best responding. To see this, note that not best responding implies either taking the same
action always (and thus ignoring any information) or always doing the opposite of what is optimal
for the receiver (which hurts more when there is more information). In contrast, when there are
three or more actions, it becomes possible to have some beneficial responsiveness to information
without going all the way to best responding. As we saw in the introductory example, this indeed

can leave scope for possible improvements.

4.2 Robust Benefits

So far, we have assumed that if the sender designs the ambiguous experiment (o, 1), the receiver
perceives it correctly. More realistically, the receiver might have a somewhat different perception
of the experiment than the one the sender intends to convey. After all, conveying the exact speci-
fications of an experiment is a complex task, let alone of an ambiguous one. Yet, we show that if
the sender benefits from ambiguous communication, they continue to benefit even if the receiver

somewhat misperceives the intended experiment.

Proposition 3. Suppose ambiguous communication benefits the sender and that the set of obe-
dient experiments has a non-empty interior. Then, there exists a non-empty open set of obedient

ambiguous experiments that benefit the sender.

A sketch of the argument (full details are in Section SA.4 of the Online Appendix (Cheng et al.,
2025)) is to show the persuasion problem is sufficiently continuous to guarantee the existence of
an open set of obedient ambiguous experiments that benefit the sender. In fact, this continues to be
true even under small perturbations of ¢,, so that the existence of benefits does not rest on exact

knowledge of the receiver’s ambiguity aversion.

Corollary 2. Suppose ambiguous communication benefits the sender and that the set of obedient
experiments has a non-empty interior. Then, there exists an ambiguous experiment that benefits

the sender, and continues to do so under small perturbations of ¢,.
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S Benefits from Binary Ambiguous Communication

This section restricts attention to binary ambiguous experiments. This restriction is not without
loss of generality because there are examples in which the sender benefitting from ambiguous
communication requires ambiguous experiments with o containing more than two distinct experi-
ments (see Section SA.2 in the Online Appendix (Cheng et al., 2025)). Nonetheless, this restriction
allows us to derive sufficient conditions for the sender to benefit from ambiguous communication
and how these conditions vary with the extent of the sender’s and/or receiver’s ambiguity aversion.
It also allows us to see such ambiguous communication may also improve the receiver’s payoff.

If a binary ambiguous experiment benefits the sender compared to Bayesian persuasion, it
follows from Theorem 2 that the experiments must be Pareto-ranked. We therefore focus on Pareto-
ranked binary ambiguous experiments in what follows.

The next theorem, Theorem 4, provides necessary and sufficient conditions for a binary am-
biguous experiment based on a Pareto-ranked splitting of any obedient experiment ¢* to strictly
improve the sender’s payoff compared to ¢*. Additionally, it provides necessary and sufficient
conditions for such an experiment to strictly improve the receiver’s payoff compared to o*. We
later apply the theorem to the case in which u,(c*, 7*) = uBF, thereby obtaining sufficient con-
ditions for the sender to benefit from ambiguous communication (see Corollary 3). Proposition 4
provides conditions on the primitives sufficient for existence of a Pareto-ranked splitting of a given
experiment and relates them to conditions on inefficiency of Bayesian persuasion.

The theorem uses the following notion of probability premium.

Definition 6. Given ¢, u, and experiments & and g such that u(c,7*) > u(g, 7*), the ((,a), \)-
probability premium required to compensate for replacing the unambiguous experiment o* =

AT + (1 — N)a by the ambiguous experiment ((7, ), \), assuming obedience, is:

o(u(o”,77)) — Ap(u(@, 7)) — (1 = N)(ule, 7))

> (7,0 =
P77, 2),A) o(u(@, 7)) — d(u(a, 7))

The probability premium p®*((7,c), \) is exactly the ¢-payoff difference between o* and
the ambiguous experiment ((7, ¢), ), normalized to lie in [0, 1]. This premium is non-negative
under ambiguity aversion, and is zero under ambiguity neutrality. Similar notions of probability
premium in the context of risk go back to at least Pratt (1964) (see Eeckhoudt and Laeven (2015)
for a graphical representation of Pratt’s concept).

Thus, if we let

pz = A+ p*((@,0),\) € 0,1,
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be the probability of &, then

U(@,0).1,7) = 67 (A +5°((7,2), Mou(@, 7)) + (1= A = p*((7,2), N(ule, 7))
= o7 (#lu(o", 7)) = ulo*,7"),

meaning that the premium p?*((7, o), \) is exactly the increase in yiz above \ needed to make the
player indifferent between the ambiguous experiment ((7,c), 1) and ¢*. Thus, assuming obedi-
ence, this premium is the smallest increase in the p-probability of the higher payoff experiment

required to compensate for exposure to the ambiguous experiment:

Lemma 2. Let G and o be experiments such that w;(c,7) > u;(a, 7). For all piz, A € [0,1],
Ui((G,0), i, %) > u;(Ag + (1 — N)a, 7%) if, and only if, player i’s ((G,c), \)-probability premium
is strictly less than jiz — .

As a consequence, we have the following result:

Theorem 4. Let 0* be an obedient experiment. Suppose that (G, o, \) is a Pareto-ranked splitting
of o* satisfying us(c,7*) > us(a, 7). The binary ambiguous experiment (o, i), with o = (7, 0)
and
P 1o R -
O (ur(a, 7)) + (1 = A) @) (ur (@, 7))

satisfies the following properties:

(i) (o, p) is obedient,
(ii) U.(o, u, 7°) > u.(0*,7%) if, and only if, iz > A,

(iii) Us(o, 1, 7) > us(0o*,7*) if, and only if, the sender’s ((7,c), \)-probability premium is
strictly less than pz — .

Furthermore, the sender’s ((7, ), \)-probability premium is increasing in the sender’s ambiguity

aversion, and iz is increasing in the receiver’s ambiguity aversion.

That a p satisfying (7) ensures that the obedience of o* extends to the binary ambiguous exper-
iment (o, ;1) as in (i) is a straightforward consequence of Lemma 1. The necessary and sufficient
conditions in (ii) for the receiver to be better off when the sender communicates ambiguously using
(o, ) rather than unambiguously using o* require some elaboration. First, the condition piz > A
is equivalent to ¢!.(u,(a,7*)) > ¢! (u.(@,7%)), i.e., the receiver is, within this range of payoffs,
not everywhere ambiguity neutral. In particular, this condition is always satisfied if ¢, is strictly
concave. Second, the condition yiz > A can be shown to be equivalent to the receiver’s ((7, ), A)-

probability premium being strictly less than pz — A, which, by Lemma 2, characterizes when the
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receiver is better off under (o, 1) than under o*. The necessary and sufficient conditions in (iii) for
(o, 1) to be better for the sender than o* follow directly from Lemma 2. For an ambiguity neutral
sender, the probability premium is zero, and thus the condition in (iii) reduces to iz > A, as in (ii).
Thus, for an ambiguity neutral sender facing a strictly ambiguity averse receiver, the ambiguity
introduced in (o, ;1) improves on o* for both sender and receiver.

The source of the economic gain from ambiguous communication, for both sender and receiver,
is the greater use, as measured by pz — A, of the Pareto-better experiment . This gain has to be
netted-off against the probability premium, which encapsulates the cost due to the player’s own
ambiguity aversion of the exposure to ambiguity from the ambiguous experiment. The fact that yi5
is constructed to respect obedience taking into account the receiver’s ambiguity aversion but not
the sender’s, is what explains why the condition for this net gain to be positive can be simplified
for the receiver, but not the sender. Though our result (and proof) is global in the sense that they
apply to any Pareto-ranked splitting, intuition based on a local, envelope-theorem type argument
may be helpful.!” The idea is that the effects on the receiver of exposure to a small amount of
ambiguity around o* are second-order because they are partially mitigated by the endogeneity of
the receiver’s best response which, because of ambiguity aversion, is partly designed to hedge
against ambiguity and thus reduce its negative effect. In contrast, the positive effects of increasing
uz are first-order. See Section SA.3 of the Online Appendix (Cheng et al., 2025) for a formal
argument along these lines.

The comparative static about u in the final section of the theorem, when combined with (i)
and (iii), shows that the payoff difference between the ambiguous experiment (o, i) and the unam-
biguous o™ satisfies single-crossing with respect to the receiver’s ambiguity aversion for both the
sender and receiver. Similarly, the comparative static in the sender’s probability premium, together
with (iii), shows that the negative of this payoff difference for the sender satisfies single-crossing
with respect to the sender’s ambiguity aversion.

Starting from any given obedient experiment, Theorem 4 provides necessary and sufficient
conditions for binary ambiguous communication to strictly improve the sender’s payoff, and thus
sufficient conditions for some ambiguous communication to do so. Thus, if we apply Theorem 4 to
the case where o* is an optimal Bayesian persuasion, we obtain sufficient conditions for ambiguity

to benefit the sender:

Corollary 3. Let 057 be an obedient experiment such that u,(cP? 7)) = uBF. If there exists a
Pareto-ranked splitting of oBF, (G, a, \), for which p®>*((7,a),\) < pz — A\, with iz given by

equation (7), then ambiguous communication benefits the sender.

Therefore, whenever a Pareto-ranked splitting of an optimal Bayesian persuasion experiment ex-

7We thank Dilip Abreu for suggesting this line of reasoning.
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ists, an ambiguity-neutral sender benefits from ambiguous communication as long as the receiver
is not completely ambiguity neutral over the payoff range of the splitting.'®

Theorem 4 and Corollary 3 require the existence of a Pareto-ranked splitting. This existence is
not guaranteed. For instance, if the obedient experiment o* induces an efficient payoff profile, no
Pareto-ranked splitting of it exists. The next result provides sufficient conditions on the primitives

for the existence of a Pareto-ranked splitting of o*.

Proposition 4. Given any experiment o*, fix, for each w € Q, a,, € supp(c*(-|w)) and consider

the following set of vectors,

p(w)(us(a,w) = us(ay, w))

() (1 (@) — (10, w ca € supp(o*(jw)),w e N} . ®)

If this set spans R?, then there exists a Pareto-ranked splitting of o*.

Arieli et al. (2024) argue that Bayesian persuasion solutions are typically inefficient'”

and pro-
vide a necessary condition, > _., |supp(o(-|w))| < |Q] + 1, for their efficiency. If a Bayesian
persuasion solution violates this condition, the spanning condition for (8) holds for a generic spec-
ification of the payoffs, u;(a, w), implying, by Corollary 3, that both the receiver and an ambiguity-

neutral sender benefit from ambiguous communication.

Remark 3 (Non-necessity). That neither the spanning condition nor violation of the Arieli et al.
(2024) condition are necessary for the existence of a Pareto-ranked splitting can be seen from our
introductory example. For o* = o8P, the example satisfies neither condition but there are, as

depicted in Figure 2, Pareto-ranked splittings of o5%.

While the optimal persuasion does depend on ¢, and ¢, i.e., the ambiguity attitudes, we next
show that the possibility of strict improvement for the sender from using binary ambiguous exper-
iments is robust in several respects. First, the same ambiguous experiment remains beneficial to
any less ambiguity averse sender. Second, it is robust to the sender underestimating the extent of
ambiguity aversion of the receiver. In other words, if an improvement is possible when facing a
given receiver, it is also possible when facing a more ambiguity-averse receiver. While we show
that the same collection o can be used to generate the improvement for all more ambiguity-averse
receivers, in general, the ;1 guaranteeing improvement may need to change. Part (iii) of the re-
sult shows that adding the requirement that o is obedient allows a stronger robustness: the same
1 that generates an improvement for the sender when facing a receiver with ¢, also generates an

improvement when facing any more ambiguity averse receiver (more concave ¢,.).

18Recall from Remark 2 that existence of a Pareto-ranked splitting of o2” is not necessary to benefit.
Though Ichihashi (2019) proves they are always efficient when the receiver has only two actions.
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Theorem 5. Suppose there exist a o = (7, ) and a non-degenerate |1 such that (o, j1) is obedient

and benefits the sender (compared to uP”). Then:
(i) (o, p) also benefits all less ambiguity averse senders, and

(ii) for any more ambiguity averse receiver, there exists some [i such that (o, [i) benefits the

sender (and all less ambiguity averse senders), and

(iii) if o is obedient, then [i in (ii) can be set equal to ji.

6 A Concavification-like Characterization

In this section, we present a concavification-like characterization of optimal persuasion with am-
biguous communication as well as a characterization of when the sender can strictly benefit from
communicating ambiguously rather than unambiguously. We stress that the concavification-like
characterization is not immediate from the one for Bayesian persuasion of Kamenica and Gentzkow
(2011). A key complication is the non-separability across recommendations in determining obe-
dience (coming from the appearance of the u,(0y, 7*) terms in the effective measure formula (3)),

which is a consequence of ambiguity aversion.

6.1 A Concavification-like Characterization of Optimal Persuasion with Am-

biguous Communication

Let > denote the set of all experiments and >* C ] the set of obedient experiments (i.e., X.* =
{o € ¥ : 7" € br(0)}). Notice that both ¥ and >* are non-empty convex sets and can be embedded
into an |2 x (]A| — 1)-dimensional Euclidean space since an experiment specifies, for each state
w € (2, a probability distribution over actions in A.

For each scalar u € R, define the function ¢, : > — R by

¢s(us(o, 7)) — ¢s(u)
o (up(o, 7))

and consider the following maximization problem:

o, (0) =

max )\ @u o),
(& (u)) = (Ag,oe)ngee 4@ (0y)

subject t0: ), o Agog € X5, peo o = 1,00 > 0,00 € X,V0 € O.

Theorem 6 states that the value of the optimal ambiguous persuasion program () is the unique

utility level u such that the value of the program (®*(u)) is equal to zero. An optimal ambiguous
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persuasion strategy can be directly constructed from a solution to (®*(u)), and there always exists

such an optimal strategy that makes use of no more than |2| x (|A| — 1) 4+ 1 experiments.

Theorem 6. The value of (P) is u if, and only if, the value of (®*(u)) is 0. Moreover, there exists
a solution (o*, u*) to (P) (L] <19 x (JA| = 1) + 1.

To understand the relationship between the programs (P) and (®*(u)), we first note that the
definition of U, the fact that ¢ is strictly increasing, and the characterization of obedience in

Lemma 1, implies that the value of (P) is w if, and only if, the value of the program

(7/5) = (ugrgf)}gee 2969 M9¢5(U5(09, ))’

subject to: Y, ¢ eméa’“)ag EX* opeEX, VHeO,

is ¢s(u). Next, we can do a change of variables to maximize over the choice of effective measures

and experiments. Formally, if we write \y for emé ) , we can use (4) to substitute for 1y in terms

of \y to yield:

-1

N R SV R *
(P) = Ouooies (Zee@ ¢;<ur(ag~,r*)>> 2.0¢0 il (g P5(Us(00, 7)),

subject to: >, g Agog € X5, , Ao =1,1 > 0,09 € ¥,V0 € O.

) -1
Finally, observe that the normalization factor <Z§€9 7 Ag ))) makes the objective func-

(ur(og,m*
tion highly non-linear in the maximizers (\g, 0p)pco. This is the motivation for subtracting off

¢s(u). Indeed, if the value of (P) is ¢, (u), then

bulua(00, 7)) — o)
2N oy

0cO

Conversely, if the value of (®*(u)) is zero, then the value of (P) is ¢,(u). In effect, this reformu-
lation discards the messy (but strictly positive) normalization term without changing the solution.

The constraint ), o \goy € X* makes clear that any solution is a splitting of an obedient
experiment, where the (\g)gco are the splitting weights. Importantly, ($*(u)) is linear in these
splitting weights.

An implication of this linearity and Theorem 6 is to provide a concavification-like character-
ization (Aumann and Maschler, 1966, 1995) of the value of optimal persuasion with ambiguous
communication. Notice that concavification can be used to compute the value of program (®*(u)):
For each u € R, the program (®*(u)) maximizes over convex combinations of points on the graph

of @,, exactly the type of program that concavification characterizes. Specifically, for each u € R,
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let cav®,, : ¥ — R denote the concavification of ®,,, that is,

max 296@ )\Qq)u<0'9),

Cav(I)u(o') = (Mo,09)0co
subject to: Z&e@ A0y = 0, 29 X=1,>0,00 € 3,V0 €O,

and the maximum over 0 € X* of cav®,(o) is the value of (®*(u)). Observe that any such
maximum is achieved by a splitting of some obedient experiment, with the splitting weights
given by the effective measure. The following immediate corollary of Theorem 6 thus provides a

concavification-like characterization of the value of (P).
Corollary 4. The value of (P) is u if, and only if, max,cx~ cav®, (o) = 0.

Algorithmically, we can start with uq = uP”, the payoff the sender obtains at a solution
to (PPF), which is a lower bound on what the sender can achieve with ambiguous communi-
cation. If max,ex+ cav®, (o) = 0, then we are done — the sender’s best payoff is ufp L If
max,ex+ cav®,, (o) > 0, we can increase ugp to u; = maX,,, us(a,w) and check again. If
the solution is zero, we are done. If it is strictly negative, we can then consider the mid-point
us = (1/2)ug + (1/2)uy. If max,ess cav®,, (o) > 0 (resp., < 0), we can then consider the
midpoint uz = (1/2)us + (1/2)uy (resp., uz = (1/2)ug + (1/2)us) and repeat the maximization
problem, and so on.

We now relate this concavification-like result with the concavification characterization of Bayesian
persuasion in Kamenica and Gentzkow (2011) and its extension to allow for exogenously het-
erogeneous priors in Alonso and Camara (2016). Both of these characterizations are formulated
in terms of splittings of priors, rather than, as in our characterization, splittings on the higher-
dimensional space of experiments. Suppose we try to write a program in which the sender max-
imizes with respect to splittings of the prior. Consider the simplest case of an ambiguity neu-
tral sender, i.e., ¢ linear. Any ambiguous experiment (i, 0g)gco induces a distribution over
the receiver’s effective posteriors, that is, the posteriors that the “effective” experiment ), Agoy
induces, where \g = eméa’“ ), the effective measure. Thus, the splitting the “‘effective” experi-
ment » _, \goy induces may differ from the splitting the experiment ) _, 11904 induces. The latter
is the one the ambiguity neutral sender uses to evaluate their payoff. To be amenable to a con-
cavification approach on this space, the sender’s objective function would therefore need to be,
as in Alonso and Camara (2016), an increasing transformation of a function that is linear in the
distribution over the receiver’s effective posteriors. However, since the relationship between the
eméa’“ ) and (119, 09)geco is highly non-linear, the desired linearity is impossible. Economically,
this non-linearity has its source in the fact that ambiguity aversion causes the effective measure
to be proportional to the product (and thus, essentially, the covariance) of the ambiguity neutral

probability 19 and the marginal utility ¢/ (u,(og, 7)) and the latter is non-separable across action
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recommendations. This explains how the non-separability across action recommendations in de-
termining obedience is what prevents adopting the strategies of Kamenica and Gentzkow (2011)

and Alonso and Camara (2016) to establish our characterization.

6.2 When is Ambiguous Communication Better than Unambiguous?

A characterization of when ambiguous communication benefits the sender can be derived from our
characterization of optimal persuasion (Theorem 6 and Corollary 4). More specifically, Lemma
A.2 in the proof of Theorem 6 shows that ambiguous communication gives the sender a strictly
higher payoff than u if, and only if, the value of the program (®*(u)) is strictly positive. By letting

u = uPP, we obtain the following.

Corollary 5. Ambiguous communication benefits the sender if, and only if, the value of (®*(uBr))

is strictly positive, or, equivalently, max,ex- cav®,sr (o) > 0.

7 Further Discussion

7.1 What if the sender knows the resolution of ambiguity in advance?

We have assumed that the sender commits to an ambiguous experiment (o, ;1) without knowing
in advance how this ambiguity will resolve. Here we consider the alternative assumption that the
sender privately observes the resolution of the source of ambiguity, o € A, before committing to
(o, 1) (and this is common knowledge). In this case, the “type o sender privately knows that
the experiment generating the message will be o, for the 6 corresponding to the partition element
from A containing .. The receiver remains uncertain. We now argue that, in any perfect Bayesian
equilibria of this modified game, the sender does not benefit from ambiguous communication.?’
First observe that the payoff of any privately informed sender must be at least u”” in any equilib-
rium. To see this, note that a sender can always offer an unambiguous optimal Bayesian persuasion
experiment and, thereby, guarantee a payoff of u>”.

One subtlety is that observing the sender’s choice of (o, ;1) may lead the receiver to update their
beliefs about the underlying state « (and thus ¢) because senders informed of different o’s might
make different choices in equilibrium. Letting 57 € A(O) denote this possibly updated belief
over O, rather than reacting to the ambiguous experiment (o, 1), the receiver views the ambiguous

20A (pure) strategy for the sender maps from A to ambiguous experiments, whereas a (pure) strategy for the re-
ceiver is a mapping from ambiguous experiments and messages to actions. Upon observing the sender’s choice of an
ambiguous experiment, the receiver may revise their beliefs about the sender’s private information, as in cheap-talk
games. We assume that whenever the receiver faces an unambiguous experiment, the receiver’s action is optimal given
that experiment and the realized message, regardless of whether it is on or off-path.
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experiment as (o, 7). Thus, the receiver best responds to (o, 57), which is equivalent to best
responding to an unambiguous experiment that is a particular convex combination of the oy for
6 € supp(5”). Denote this unambiguous experiment by » _, C(f’ﬁ “) 4. For all senders informed of

& corresponding to some feco committing to (o, i), the sender’s expected payoff is

s (a;;, br (Z cé"’ﬂ”’oe» > uP?, )
0

where the inequality follows from the preceding observation that u?¥ is a lower bound on the
informed sender’s equilibrium payoff.

Since supp(¢(P7)) C supp(B7), we have

s, (z o b (z <;ﬂ”>ae)> _ S e, ( . (z cg“vﬁ%e)) -
0 0 A 0

where the first inequality follows since u2” is the sender’s best expected payoff from any unam-
biguous experiment to which the receiver best responds, the equality from linearity of u, in its
first argument, and the second inequality from (9). Therefore, to benefit from ambiguous com-
munication, the sender needs to use a source of ambiguity about which they do not have private

information at the time of committing to the ambiguous experiment.

7.2 Robustness to Pre-Existing Ambiguity about Payoff-Relevant States

To isolate the role of ambiguous communication, we have assumed throughout that there is no pre-
existing ambiguity about the payoff-relevant states. A full analysis of persuasion with ambiguous
communication given arbitrary pre-existing ambiguity about payoff-relevant states is beyond the
scope of this paper and is an interesting topic for future research. Nonetheless, many of the results
and concepts emphasized in this paper remain relevant when there is pre-existing ambiguity. Here
we establish (Theorem 7) the continued role of Pareto-ranked splittings of obedient experiments
in generating benefits from ambiguous communication even under pre-existing ambiguity. Addi-
tionally, the conditions under which a sender benefits from ambiguous communication are robust
to the introduction of a small amount of pre-existing ambiguity (Theorem 8).

In the context of our model, pre-existing ambiguity over the payoff-relevant state space €2
can be represented by a common subjective distribution over priors n € A(A(S2)). Denote by
u;(p, o, 7*) the obvious extension of u; (o, 7*) to allow for different priors p € supp(n). Theorem
7 establishes the benefit of Pareto-ranked splittings of obedient experiments where both obedience

and Pareto ranking are satisfied for each p € supp(n) rather than simply the unique p as in the rest

27



of the paper.

Theorem 7. Let o* be obedient under all p € supp(n). Suppose that ¢, is strictly concave and
(7,0, \) is a Pareto-ranked splitting of o* satisfying us(p, o, 7*) > us(p, o, 7*) for all p € supp(n)
and o is obedient under all p € supp(n). Then the binary ambiguous experiment (o, j1) with
o = (7,0) and i given by

s = min MG, (ur(p, 0, 7))

vbummin AL (ur (pr 2, 7)) + (L= N (s (7, 7)) (10)

is obedient and an ambiguity neutral sender does strictly better using (o, i) than using o*.

Theorem 8. Suppose an ambiguity neutral sender benefits from ambiguous communication when
the prior is p € A(Q)) and that the set of distributions over states and actions for which obedi-
ence is a best response for the receiver has a non-empty interior. Then, the sender continues to
benefit from ambiguous communication under any small enough pre-existing ambiguity, n, around
p. Specifically, there exists O > 0 such that the sender benefits from ambiguous communication

whenever E[n] = p and supp(n) C {q € A(Q) : ||¢ —p| <}

For both theorems, similar results continue to hold as long as the sender is not too ambiguity

averse.

7.3 Related Literature

In addition to the papers cited in the introduction, the following are also at the intersection of
Bayesian persuasion (BP) and ambiguity. Kosterina (2022) studies BP when an MEU sender is
ambiguous about the receiver’s prior, while in Dworczak and Pavan (2022) an MEU sender (who
also has a preference for selecting among MEU-optimal strategies those that perform best under
a baseline conjecture) is ambiguous about the exogenous information a receiver might learn.?!
Nikzad (2021) studies BP when the receiver is MEU and has ambiguity about the prior over states.
Hedlund et al. (2020) studies BP in problems with two states and two actions, when the receiver has
a-MEU preferences (Ghirardato et al., 2004) and considers an interval of priors and the sender has
state-independent preferences over the action taken by the agent and is ambiguity neutral. In all of
these papers, the sender is limited to standard, unambiguous experiments, and thus any ambiguity
is exogenous. This stands in contrast to the endogeneity of ambiguity in our setting, where it
becomes payoft-relevant only through the intentional communication choices of the sender.
Kellner and Le Quement (2018) study cheap talk communication assuming that the receiver

has MEU preferences and the sender can choose to communicate ambiguously. The key difference

2'Dworczak and Pavan (2022)’s model is not restricted to single-receiver persuasion settings.
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between cheap talk and persuasion is the sender’s inability to commit to a communication strategy.
Their receiver uses the same dynamically inconsistent update rule as in BLL. They find that both
sender and receiver may benefit from the sender choosing to communicate ambiguously. Kellner
and Le Quement (2017) studies cheap talk communication with purely exogenous ambiguity.

Papers studying mechanism design with ambiguity include Bose and Renou (2014), Wolitzky
(2016), Di Tillio et al. (2017), Guo (2019) and Tang and Zhang (2021), among others. All but
Wolitzky (2016) consider ambiguity that arises intentionally through design of the mechanism.
Diitting et al. (2024) allow a principal to offer ambiguous contracts to an MEU agent and show how
the principal may benefit and that optimal contracts have a simple form. All gains from ambiguous
contracting disappear in their model if the agent can hedge against ambiguity by randomizing.

We conclude by returning to the discussion of BLL begun in the introduction. Broadly speak-
ing, the gains we identify work through key properties, such as Pareto-ranking of (at least some)
experiments in the collection o chosen by the sender. Such properties contrast sharply with the
“synonym” constructions emphasized in BLL that lead to collections in which each experiment
yields the same expected payoff to the sender. BLL and our approach also lead to different out-
comes. For example, our Corollary 1 shows that ambiguous communication never benefits the
sender when the receiver has only two actions. In contrast, BLL find gains from ambiguous com-
munication in such cases, including their main example. Conversely, there are examples in which
there is no benefit for the sender according to BLL’s approach (even when extended to include
sender preferences less extremely ambiguity averse than UMEV) in which the sender benefits
from ambiguous communication in our approach.

As previously mentioned, the benefits from ambiguous communication in BLL involve in an
essential way the receiver behaving suboptimally with respect to their ex-ante preferences as spec-
ified by BLL. Pahlke (2023) uses constructions based on rectangularity (Epstein and Schneider,
2003) to construct alternative ex-ante MEU preferences (different from BLL and from UMEV) that
are consistent with the receiver’s interim behavior in BLL. When there are gains in BLL from
ambiguous communication, some of the measures in Pahlke’s construction must reflect correlation
between () and which experiment from the ambiguous collection generates the messages. This is
the manifestation of the dynamic inconsistency in BLL within the dynamically consistent refor-
mulation of Pahlke (2023).%?

22For discussion and approaches to dynamic consistency issues in decision-making under ambiguity more broadly
see e.g., Hanany and Klibanoff (2007, 2009) and Siniscalchi (2011). See Hanany et al. (2020) on dynamic games of
incomplete information with ambiguity averse players.
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Appendices

A Proofs of Main Results®>

A.1 Proofs for Section 2

Proof of Proposition 1. Fix (o, ) and 7 € BR(o, ). Construct a canonical ambiguous exper-
iment (o, ;1) as follows: For each 6, define oj(alw) = > 7(a|m)og(m|w), for all (a,w), and
let o* = (0;). Fori € {s,r}, ui(og,7) = Zw’ap(w)ui(a, w) > 7(alm)og(mlw) = w;(og, 7).
Therefore U;(o*, u, 7*) = Ui(o, 1, 7), for i € {s,r}. "

Suppose (o*, 1) is not obedient. Then there exists § : A — A(A) such that U,.(o*, u, 7%) <
U,(*, i1, 6). Then, define 7/(a|m) = >, 6(ala’)7(a’'|m) for all (a, m), and note that for all §,

(09,7 Zp Jup(a,w) Y d(ala’) Y r(d|m)ag(mlw)
= Z p(w)u,(a,w)d(ala’)og(a'|w) = u, (07, 0).

w,a,a’

Thus, U, (o, pt, 7') = U (%, 1, 0) > U, (6", u, 7*) = U(o, 1, 7), 80 T ¢ BR(0o, 1n). O

Proof of Lemma 1. TF. Let (o, ;1) be an ambiguous experiment. We show that if 7 € br(o*),
where o* = 3, em{"* g, then 7* € BR(c, ). Since 7* € br(c*), for all b, a € A,

Zp o*(alw)u.(a,w) > Zp o*(a|lw)u,(b,w). (A.1)

For any strategy 7, there exists § € RI4/*I4l such that 7 = 7% + 4, where § satisfies the following:

Va#be A, 4(bla) >0, 6(ala) <0, and Y d(ala) =0 (A.2)

acA

The concavity of ¢, implies that ¢, (U, (o, i1, 7)) is concave in 7. Hence, for all d,

U@, +0) < (U (o) + 3 2T
b,acA

d(bla).

T=T7*

23Proofs for auxiliary results may be found in Section SA.4 of the Online Appendix (Cheng et al., 2025).
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For 7* to be a solution to the receiver’s program, it suffices that for all § satisfying (A.2),

00, (U, (o, pu, T
3 ¢r(Up(o, 11, 7))

§(bla) < 0. (A3)
= or(bla)

*

T=T

To show (A.3) holds, note that 22-Ur(o:w.7))

LT S5 10 (ur(0g, 7)) Y p(w)o*(alw)u, (b, w).

o (bla)
Then by (A.2), —d(ala) = > d(b|a), and we have:
b#a
0¢r(Ur(o,p,7))
A S 3 ()0 (ale)u (b, )5 (b]a)
- = p(w)o™(a|w)u,(b,w)d(bla
>4 H® (ur(og, 7)) o
= ZZ&(b[ (Zp *(a|lw)u, (b, w) Zp o*(a|lw)u,(a, w)) <0,
a€A b#a

where the last inequality follows from §(bja) > 0 for all b # a and (A.1). This implies (A.3) as
> 5 kb, (u(0g, 7)) > 0. Therefore, we have shown that 7* € BR(a, 1).
ONLY IF. The proof is nearly identical to the if direction and left to the reader. [

A.2 Proofs for Sections 3 and 6

The proofs in Section 3 make use of our concavification-like characterization of optimal persuasion
(Theorem 6) from Section 6. We therefore establish Theorem 6 first.

Proof of Theorem 6. First, we show that there is a unique « that solves ®*(u) = 0.

Lemma A.1. ®*(u) satisfies single-crossing, i.e., for any u > v/, if ®*(u) > 0 then ®*(u') > 0.
Thus, there exists a unique u € R such that *(u) = 0.

Proof of Lemma A.1. ®*(u) > 0 and ¢, ¢, strictly increasing implies the existence of (Ag, 09)gco
¢s(us(og,™ ¢s(u) ¢s(u’) : : :
such that ZGE@ )\QW Z ZGG@ )\gm > 2969 AQW, which lmplles
®*(u') > 0 for v < w. Therefore, there is at most one solution to ®*(u) = 0. Since ¢ is
continuous, ®,, is continuous in (o, u) and, thus, by Berge’s Maximum Theorem, ®*(u) is continu-
ous. Since ®*(u) < 0 for u > max{us(a,w)} and ®*(u) > 0 for u < min{us(a,w)}, there exists

u such that ®*(u) = 0. O

By Proposition 1, we can rewrite (P) as

(,P) . maXq,u) US(O', 1y T*>7
subject to 7* € BR(o, 11).
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We then show the conclusion using the following lemma.

Lemma A.2. For eachu € R, (P) > w if, and only if, ®*(u) > 0.

Proof of Lemma A.2. TF. Suppose there exists a solution (\g, 0g)geco such that ®*(u) > 0. Let

Ao/ ¢7 (ur(00,7"))
225 Aj /9 (ur(ogr,7*))

satisfies em{”™ = XAy and > o Nog € Y. Lemma 1 implies 7* € BR(o, 1). Thus, (P) > u

o = (09)pco and p be defined by 1y == for each § € ©. By construction, (o, )

since Ug(or, p1, 7°) > u as

ZA Gs(us(o9, 7)) — ¢s(u)

¢5(US<U>M7T*)) - ¢5(U) = Z )\ /¢ ( O' gb/ u ))
jel 0" 06@ " 0-0’

>0,

ONLY IF. (P) > w implies there exists an obedient (o, i) such that Us(o, pi, 7*) > u. Let
P em((f’“). Lemma 1 implies that Y, A\goy € X*. Thus, ®*(u) > 0 as >, AgPy(0g) =
(0s(Us(a, 11, 77)) = ¢s(u)) 22 Ao/ &1 (ur (09, 77)) > O since Us(o, 1, 7°) > . O

We now complete the proof by showing that (P) = w if, and only if, ®*(u) = 0. Suppose
(P) = u. Then for all v’ < u, (P) > « and thus ®*(v’) > 0 by Lemma A.2. By Lemma A.1,
there exists a unique @ such that ®*(a) = 0. If & > u, then ®*(u) > 0 by Lemma A.1, and thus
(P) > u by Lemma A.2, a contradiction. Thus, ®*(u) = 0.

For the other direction, suppose ®*(u) = 0. If (P) > u, then Lemma A.2 implies ®*(u) > 0,
a contradiction. If (P) < w, then there exists v’ < w such that (P) = «'. Then by the previous
direction, ®*(u’) = 0, contradicting Lemma A.1. Thus, (P) = .

Recall that ¥ is a convex subset of RI®*(41=1 " Ag a result, the graph of ®, is a subset
of RUSXIAI=D+Y — Suppose that (P) = u. Then ®*(u) = 0. Let (Mg, 09)sco be such that
Y oco MPu(os) = 0and Y .o Moy = o € ¥*. Thus, (¢*,0) is on the boundary of, and
thus an element of a supporting hyperplane of, the convex hull of the graph of ®,,. The intersection
of this hyperplane and the set forms a face and thus has dimension at most |2| x (] 4| —1). Extreme
points of the face are also extreme points of the convex hull of the graph of ®,,. Any such extreme
point has the form (o, ®,(0)) for some o € . By Caratheodory’s theorem applied to the face,
(c*,0) can be written as a convex combination of at most (|2 x (|A| — 1)+ 1) such extreme points.
Denote the coefficients in the convex combination and the experiments corresponding to these ex-
treme points by (g, 04)jeo With 16| < (|Q| x (JA] — 1) + 1). Thus, there exists a solution to (P)
with 0* = (65)4c0 and p* with supp(p*) C O so that [supp(p*)| < (|Q| x (JA] — 1) + 1). O

Proof of Theorem 1. Suppose (o, 11) is obedient and ¢, is strictly concave. Let @ := Ug(o, i, 7%)

and \yg = eme ) for all §. Then PPV s Zj; ((;i(ng))T*()ﬁj(A) — 0. If there exists (\g, 65) such that
Sy Ag e (Zf, (:Li(q—og))‘r*?) :() (), then the ambiguous experiment (&, 1) with em" = X, will
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strictly improve upon (o, ;). The existence of such (5\9, ) under the conditions in (i) and (ii)
of Theorem 1 follows from (i) and (ii) of the following Lemma (and its swapped version), respec-

tively. To state the lemma, we need the following definition.

Definition A.1. Forany u € R, let ¥, (u) = {0 € ¥ : us(0,7*) > u} and ¥_(u) = {0 € ¥ :
us(o, %) < u}.

Lemma A.3. Let (\g, 09)gco be a solution to (P*(u)). Then the following hold:

(i) For all 0 and 0" such that (og,09) € Xy (u) X X_(u), if . (u.(09, 7)) # &.(u (09, T")),

then they are Pareto-ranked,

(ii) If ¢s is affine, then for all oy, there does not exist a Pareto-ranked splitting, (G, o, \) with
(7.0) € £4(u) x T_(u) and (1, (3, 7)) < ¢} (ur(e, 7).

A swapped version of Lemma A.3 with ¥, (u) and ¥_(u) defined by swapping the strict and

weak inequalities in Definition A.1 also holds, and the proof is identical.

Proof of Lemma A.3. Fix u € R. Let (0g, Ag)gco be feasible for the maximization problem ®*(u).
To prove (i), suppose that there exists a pair (og,0e) With Ay > 0 and Ay > 0 and such
that there exists a A € (0, 1) for which, ®,(Agy + (1 — N)ag) > AP, (0y) + (1 — N)D,(09).

Then, (0y, A\g)gco cannot be a solution to the maximization problem ®*(u). This can be seen from

Ayt
~ 1EA ’ ~

experiment A\oy+(1—\)oy and replacing Ag by Ay = A—A" and \gs by Ay = Mg —(1 —)\)’\—A" yield such

the following construction of a strict improvement: If % < then replacing oy by the merged

22 then replacing o by the merged experiment Agg+(1— )0y
Ao/

and replacing Ay by Ao = % and )y by Ao = Ao — A% is such an improvement.

Towards a contradiction, suppose in the solution there exists (og, 0p) € Xy (u) X X_(u) with

an improvement. If instead A—f >

O (up (09, 7)) # ¢.(u, (0, 7)) and they are not Pareto-ranked, i.e., us(cg, 7°) > u > us(og, 7%),
and u, (0, 7*) < u,(0g, 7). Then there exists A € (0, 1) such that ¢/ (u,(og, 7%)) > ¢! (u,( Aoy +
(1—MN)og), 7)) (by differentiability of ¢,.), and ®,,(Agg+ (1 —N)og) > AP, (09)+ (1 =)D, (09 ).
To see the last point, notice that

ds(us(Aog + (1 — N)og, 7)) — ¢s(u)
O (ur(Aog + (1 = XN)og, 7))
o Alos(us(an, 7)) = @5 (W] + (1= N)[@s(us(0, 7)) — ds(u)]
- & (ur(Nog + (1 — N)og, 7))
_ Ag) (ur (09, 7)) (1 = Ao (ur(og, 7))
@ (ur(Aog + (1 = A)ogr, 7)) ¢ (ur(Aog + (1 = Aoy, 7))
> )\(I)u(Og) + (1 — )\)(I)U(UQ/),

(bu()\dg + (1 - )\)09/) B

(I)u(O'g) +
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where the first inequality follows from concavity of ¢, and the second inequality follows from
concavity of ¢, and ®,(0y) > 0 and D,(0y) < 0, and ¢).(u,.(0g, 7)) > @ (u,( Aoy + (1 —
Aoy, 7).

To prove (ii), if there exist oy satisfying Ay > 0 and two experiments ¢ and ¢’ such that
g9 = Ao + (1 — N)o’ for some X € (0,1) and ®,(Ao + (1 — N\)o’) < A®,(0) + (1 — N\)D, (o),
then (0g, \g)geco cannot be a solution to (®*(u)). This follows by noting that splitting oy into o
with probability Ay and ¢ with probability (1 — \) Ay induces a strict improvement.

Towards a contradiction, suppose there exists such a Pareto-ranked splitting (7, o, \) with A\ +

(1 —X)a € ¥4 (u) (the other case is symmetric), then we have

AD,(7) + (1 = N)Pu(g) — Pu(AT + (1 — N)o)
)\ <¢S(u8(67 T*)) - (bS(u) _ ¢S(US()‘E+ (1 - /\)Qa T*>> - ¢S(u)>
o (ur(a, 7)) ¢ (ur (Ao + (1 = N)a, 7))
oy [(Os(us(a, ) = ds(uw)  ds(us(AT + (1 = N)a, 7)) — s(u)
s (M e )
A 7,7%)) — ¢s(us(\T — Ao, 7"
qu;(uT(E, =7 (05 (us(@, 7)) — ds(us (AT + (1 — A)a, 7))
. 1—\
o (u (AT + (1 = N)a, 7))

4 ¢ (us(7, 7)) (us(7, 7°) = Aus(7,77) — (1 = Nus(a, 77))

1—A , . . . *
+ ¢ (u,(\T + (1 — N)a, T*>)¢S(US(Q,T ) (us(a, 7%) = Aus(@,77) — (1 = MNus(a, 77))
¢y (us(T, 7)) ¢ (us(a, 7))

=AL = Mus(@, ) ~ usle, ) (ezs;(uT(a, ) (A + (1 - N, r*>>> -0

(gbs(us(ga T*)) - d)s(us()‘a + (1 - /\)Qa 7—*)))

where the first inequality follows from us(Ao + (1 — N)a) > u > us(a, 7), ¢L(u. (7, 7)) <
& (u (AT + (1 — N)a, 7)) < ¢.(u-(a, ")), the second inequality follows from concavity of ¢;,

and the last inequality follows from linearity of ¢,. [

Remark 4. From the proof of Lemma A.3 (ii), observe that linearity of ¢, can be relaxed to

S (us(@,) - Dh(ur(@r) S (us(@,r))  Sh(ur(on,))
Sl ” Hntoery I 00 € Dy (u), and Gy > Gty if o € B (u).

O

Proof of Proposition 2. Proposition 2 is implied by the following two auxiliary theorems that ex-
tend Lemma A.3. The proofs of these theorems are similar to that of Lemma A.3 and may be found
in the Online Appendix (Cheng et al., 2025).

Theorem A.1. Let (g, 0¢)geco be a solution to (*(u)). Then:
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(i) If 1/¢.. is concave, then for all 0,6 such that (0¢,09) € Xy(u) X X4 (u), if us(op, 7*) #
us(og, %) and ¢l (u (09, 7)) # ¢ (u. (09, 7)), they are Pareto-ranked.

(ii) If 1/¢.. is convex, then for all 6,0 such that (cg,09) € X_(u) X X_(u), if us(cy, 7*) #
us(og, %) and ¢l (u (09, 7)) # ¢ (u. (09, 7)), they are Pareto-ranked.

Theorem A.2. Let (N\g, 09)gco be a solution to (P*(u)). Then:

(i) If 1/¢.. is concave, then for all oy, there does not exist a Pareto-ranked splitting, (7,0, \)

with (77,0) € S_(u) x B_(u), ¢,(u,(7,7)) < &, (uy(c, 7)), and LN > Ll y,

(7,
(a7
(ii) If 1/¢.. is convex, then for all oy, there does not exist a Pareto-ranked splitting, (G, o, \) with

7.0) € Bu(w) x B (w), 6,0, (7, 7)) < ¢(ur (@, 7)), and HelzT)) 5 Slunlzr)

To prove Proposition 2, observe that when both ¢, and 1/¢/. are linear all the conditions in

Theorem A.1 and Theorem A.2 (and their swapped versions) are satisfied. [

A.3 Proofs for Section 4

Proof of Theorem 2. Suppose that U,(o, i, 7*) > uBF. Observe that ¥, (uZF) and ¥_(uBF)
have non-empty intersections with the support of y since, if ¥, (uZ?) did not, then (o, 1) could
not benefit the sender, while if ¥_(u?”) did not, then 7* ¢ BR(o,p), contradicting obedi-
ence. Thus, there exists 0,0’ € supp(u) such that oy € ¥, (uP?) and 05 € T_(uB?). Define
oF =35 emga’”)aé. Then,

“ Z P, (ur (05, 7)) Z Py (ur (05, 7))

! * O’A—i_ 7 " 5.
ooy 2 M0 (o )T L S g6 (0, 7))

By Lemma 1, we have o* is obedient. By definition of uZ”, this implies

ds(us(0*, 7)) < s (ul”). (A.4)

Suppose that for all 6, 6" € supp(yu) such that oy € ¥, (uB) and oy € X_(uBF), 0y and oy are

not Pareto-ranked. This is equivalent to

ur(og, 7°) < up(og, 7). (A.5)
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The remainder of the proof shows that this contradicts (A.4). From (A.5) and concavity of ¢,,
O (up (09, 7)) > & (u (g, 7)). Observe that,

(s (us(o™, 7)) = 65 (ulF)) Y g, (un(og, 7))
0

Mé¢;(ur(aé77*)) Us(0p5)) — UBP
2<é;aAE§u§p) Zéum;(ur(aé,f*))(gbs( s(09)) — bs(ug "))

.\ Z 10 (tr(9: 7)) (¢S(us(aé))—¢s(ufp))ZU@¢;(ur(aé7T*))

ey Eé pdr(ur(0g, 7))

= uéaﬁ;(ur(omT*>><¢s<us<aé,T*>>—¢s<uf“°>>

é:o'é62+ (uBP)

Y (o T (@ (sl ) — 6,(uE))

é:ogEE_ (uBP)

>¢,( max w0 7)) D p(ds(u(og 7)) = 6y (ul")

bexy (uBP -
+(us") 0:05€34 (uBF)

+6,( min up(op, 7)) D pp(e(us(og, 7)) = ds(ul))

7] BP
be-(ud") é:aéez,(ug?P)

>¢,( min (05, 7)) | [ D ngoi(us(og, 7)) | = du(u) | >0,
fex_(uBP) P

implying ¢, (us(o*, 7)) > ¢5(uf"), contradicting (A.4). The first inequality follows from substi-

tuting for o* and concavity of ¢,, the second from the definitions of X, (uZF) and ¥_ (uZ"") and

concavity of ¢,, the third since (A.5) implies max;cy;, (,pr) Ur(05, 7°) < mingey, (50 Ur (05, 7°),

and the final one since (o, 1) benefits the sender. O

Proof of Theorem 3. We prove the theorem by first showing the following lemma and then estab-

lish that the conditions in Theorem 3 are equivalent to the conditions in the lemma.

Lemma A.4. Ambiguous communication benefits the sender only if ¢, is not affine and there
exists Pareto-ranked experiments, o and o* such that: (i) supp o(-|w) = supp o*(-|w) for all w,

(ii) us(o, 7*) > uB?, and (iii) T € br(c*) \ br(o).

Proof of Lemma A.4. Suppose that there exists a solution (o*, u*, 7*) to the maXimization prob-
lem (P) that benefits the sender. Let o0 := ) ,pj0; and 0" = ), eme 09. These ex-
periments satisfy the conditions in Lemma A.4. Since em(°"*") and u* have the same sup-

port on O, supp o(-|w) = supp o*(-|w) for all w. From Lemma 1, since 7" € BR(o*, "),
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7* € br(o*). Since the sender benefits from ambiguous communication, we have that u?" <
O O s (us(og, 7)) < S, ppus(og, 7) = us(o, 7). This further implies that 7* ¢ br (o),
and thus em(®"#) £ p*, implying that ¢, is not affine. Since 7" € br(c*), we have that
uB?P > u,(o*, 7%) and, thus, uy(o, 7%) > uBf > u,(o*, 7).

Since em @"#") £ 11, there must exist a pair (6, 6’) in the support of z* such that u,(og, 7*) >
ur(ogr, ) and @ (u (09, 7)) < @l (u.(0g, 7*)). We next use the following lemma and concavity

of ¢, to show u,. (o, 7*) > u,.(c*, 7).

Lemma A.5. Fix any two monotonic sequences xq1 > o > -+ > X, 0 < y1 < 4o+ < yp, and
a probability i € A({1,2,...,n}). Assume that there exist indices i* < j* such that p; > 0,

n HilYi n
= >0, 2+ > xj» and y;» < yj+. Then ), Tig <D iy Tl

(Lemma A.5 seems like it should be a known result, but we could not locate a reference and so
include a proof in the Online Appendix (Cheng et al., 2025) for completeness.)

To prove u, (o, 7") > u,.(c*,7"), we apply the lemma to the decreasing rearrangement of the
sequence (u, (o}, 7*))s (the z;’s) and the increasing rearrangement of (¢, (u,.(c5, 7*)))g) (the y;’s).
Since ¢, is strictly increasing and concave, we have that ¢, (u,.(o}, 7)) > 0, and u, (o}, 7*) >
u,(0%,7") implies that o, (up(0h, 7)) < gb;(ur(og,r*)). There exists i* < j* such that p;» >
0, pj« > 0, zj» > z;+ and y;» < y,- since there exists a pair (6, 6’) in the support of ;1 such
that u, (o9, 7*) > u,(0g, 7") and ¢ (u, (09, 7)) < ¢l (ur(0g,7*)). Applying the lemma and the
definition of ¢ and o* yields u, (o, 7*) > u,(c*, 7*). This establishes that the conditions in Lemma

A.4 are necessary for ambiguous communication to benefit the sender. 0

To establish that these conditions imply the conditions in Theorem 3, we rely on the following

sufficient condition for the existence of a Pareto-ranked splitting of an experiment o

Lemma A.6. Let o be an experiment. If there exists ¢ such that us(6,7*) > us(o, 7%), u. (6, 7%) >
u,(o,7") and for all w € ), supp(¢(-|w)) C supp(o(-|w)), then there exists a Pareto-ranked
splitting of o, (G,0,\) witha = 6.

(A proof of Lemma A.6 is in the Online Appendix (Cheng et al., 2025).)

Observe that the conditions in Lemma A.4 imply the conditions in Lemma A.6. Therefore a
Pareto-ranked splitting of *, (7, o, \) exists with @ = o. Then by condition (ii), us (7, 7*) > u?".
This shows that the conditions in Lemma A.4 imply those in Theorem 3.

Finally, we show the conditions in Theorem 3 imply those in Lemma A.4. Suppose there exists
an obedient experiment ¢ satisfying the conditions in Theorem 3. Since u4 (7, 7*) > uP”, there
exists a 7 € (X, 1) such that for all v € (7, 1), yus(7,7%) + (1 — 7)us(c, 7) > ul”, and thus
7 ¢ br(vg + (1 — v)o). Fix any such v and let 0 = 45 + (1 — )o. Let o* = 4. It follows

that 7* € br(c*) since & is obedient, and u?" > u,(c*,7*), hence v > \. Since both ¢ and o*
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are strict mixtures of ¢ and ¢, they satisfy the common support condition (i). By the definition of

Pareto-ranked splitting and v > A, u, (o, 7%) > u,(c*, 7%). O

Proof of Corollary 1. Suppose that there exist experiments, o and ¢*, satisfying the conditions in

Lemma A 4. Since condition (iii) implies 7* ¢ br(c), either

Zur ay,w)o(a|w)p Zur az, w)o(ar|w)p(w), or (A.6)

Zur az, w)o(as|w)p Zur ay,w)o(as|w)p(w). (A.7)
Assume (A.6). From (iii), 7* € br(c™*), implying ) u,(a1,w)o* (a1|w)p(w) > " ur(az, w)o*(ar|w)p(w).
It follows that: > u,(a1,w)[o(a1|w)—0c*(a1|w)]p(w) < > ur(az, w)o(ar|w)—c*(a1|w)]p(w) =

>, Ur(ag, w)[o*(azlw) — o(agjw)]p(w). Therefore, > u,(az,w)[o*(azlw) — o(az|w)]p(w) +
Yo (a1, w)[o*(ar|w) — o(ar|w)]p(w) > 0, contradicting (ii). Assuming (A.7) is analogous. [

A.4 Proofs for Section 5

Proof of Lemma 2.

¢i(ui(Aa + (1 = Na, 7)) = (Ai(us(@,7%)) + (1 = A)¢i(us(a, 7%)))

6:(w(7.7)) — or{ualo, 7)) A
& ¢i(ui(AT + (1 = N)a, 7)) < pugi(ui(7, 7)) + (1 — p)gi(ui(a, 7))
Thus, equivalently, u;(Ag + (1 — X\)a, 7*) < U;(o, p, 7). O

Proof of Theorem 4. Fix an obedient o* and let (7, o, \) be a Pareto-ranked splitting of o* satisfy-
ing u; (o, 7*) > w;(g, 7") fori € {s,r}.

Observe that Us(a, i1, 7*) = ¢; ' (uei(wi(7, 7)) + (1 — ) ¢i(us(a, 7)), and ui(o*, 7*) =
i (7, 7%) + (1 — Nu;(o, 7). (7) implies that emé‘:’“) =\, and emé‘:’“) =1— \. Lemma 1 then
implies that (o, 1) is obedient since o* is. This proves part (i).

By Lemma 2, U, (o, p, 7*) > u,.(c*,7*) if and only if the receiver’s ({7, a}, A)-probability

premium is strictly less than ;o — A. The latter is equivalent to:

or(up (0", 7)) = A (u, (@, 7)) — (1 = N (ur(a, 7)) < A, (ur(a, 7))

600, (@.7)) = 00w (2, 7)) 3 (g, 7)) + (L= N6 (0, (@, 7)
" 60y (07, 7)) = 61y, 7)
6.0 70) — (e, 70) T 6,7 7)) — (i, 7)

38



¢, (ur(a, 7)) (ur (0", 7°) = ur(g, 7))

< = =
r (ur(a, 7)) (ur (0%, 7) = ur(a, 7)) + @ (ur (T, 7)) (ur (@, 7%) = up (0%, 7))
1 1
= —
T ) T ) S A P O o )
Lt e -atun@r) LT e e e )

VACRERS) L
AL (7)) + (- Nop(u, @)

€0, (u(7,77)) < G (ur(a, 7)) & A <

ur(077)~ur(07) the second is algebra, the third

ur (G, 7%)—ur(o,7*)

where the first equivalence uses the fact that A\ =
follows from concavity and differentiability of ¢,, and the fourth from the strict positivity of ¢/.>*
This proves part (i1). Part (iii) follows directly from Lemma 2.

Within the smooth ambiguity model, an increase in ambiguity aversion corresponds to ¢ be-
coming more concave (Klibanoff et al., 2005). Given differentiability, 95 more concave than
¢ means that ¢ := @ o ¢ for some strictly increasing, concave, and differentiable ¢. To see
that the sender’s probability premium increases in the sender’s ambiguity aversion, observe that
pPus((7,0), A) + A is equal to

P(6ulo”, 7)) = plolule. 7))

Az 7]~ plolu(e™, ) + (0lulo" 7)) — (e, 7)
. H(o(ulo” 7)) (6ulo", ) ~ olulo, 7))
= oo NG 7)) — oulo", ) + @l TN Do, 7) — (e, 7))
Sl T) e,

o ) olutg, ) N (TebA A

where the inequality follows from the concavity of . The inequality is strict if and only if

)

O(o(u(@, 7)) < ¢'(d(ula, 7%))), as the strict inequality on ¢’ implies that either ¢’ (p(u(a, 7%))) <
¢ (¢(u(o™, 7)) or ¢ (p(u(o,77))) < ¢'(¢(ul(g, 77))) or both.

It remains to show that the r.h.s. of (7) is increasing in the receiver’s ambiguity aversion. This

oy (ur(a, 7))

o (ur (o)) and

follows since it is increasing in

o (o, 7)) _ ' (dulg, )¢ (ur(a, 7)) S Plu(g, 1))
& (u(7, 7)) ¢ (O(u(@, 7)) (ur(T,7%)) ~ ¢

by concavity of ¢, and strict if and only if ¢’ (¢(u(7, 7)) < ¢'(d(u(a, 7))). O

Proof of Proposition 4. Let ¥, C ¥ denote the set of experiments that, for all w € €2, have the
same support as o*. For each w € €, fix any a,, € supp(c*(-|w)). For any o € ¥+, by substituting

21f ¢, were concave, but not differentiable at w,.(c*, 7*), the third equivalence would fail in one direction since we
could then have a linear piece from u,.(o, 7*) to u,.(¢*, 7*) with slope ¢/.(u, (o, 7*)) and another one from w,.(c*, 7%)
to u, (@, 7*) with slope @/ (u, (7, 7*)).
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o(aylw) =1-3",, o(alw), we have, fori € {s, 7},

ui(o, ) = Za(a!w)ui(a,w) = Z p(w)o(alw)(u;(a,w) — ui(a,,w)) + Zp w)ui(ay, w

w,a wWEN *,a

where €2,+ C Q) denotes the set of w such that | supp(c™(-|w))| > 1.

| supp(o™ (+|w))—1|

Given any o € X,«, we use 0 € REwen,- —=: R?" to denote the vector of those

components of o(alw) withw € Q,- and a € supp(c*(-|w)) \ {a,}. Thus, we can write

u (o, 7" p(w)(ur(a, w) — ur(ay,w)) Z p(w)us(agy, w)

rMmﬂ]:FWWM&M—%MMW)

L[ Zep@a 1

Notice that any non-zero vectors in (8) are exactly the non-zero columns of the first matrix on the
right hand side above. When the former set spans R?, the latter matrix has full rank and thus the
linear mapping from R°" to R? defined from the right hand side above is surjective. Since {5 :
o € ¥,+} > o* is open in R", by the open mapping theorem, {(us(c, 7*), u,(0,7%)) : 0 € Lo}
is open. Thus, there exists 6 € ,« such that u;(6,7*) > u;(c*,7*) fori € {s,r}. By Lemma

A.6, there exists a Pareto-ranked splitting of o* with o = 5. [

Proof of Theorem 5. That (o, 1) benefits the sender means that

0, (ns(us(@, 7)) + (1 — p)os(us(a, 7)) > ul”. (A.8)

Any less ambiguity averse sender will have ¢, weakly less concave than ¢, weakly increasing the
left-hand side of (A.8), while leaving the right-hand side unchanged. This proves (i).

Leto* = emé‘:’”)EnL (1— emé‘f’“))g. By Lemma 1, 7* € br(o*). In light of (A.8) and Theorem
2, o and ¢ must be Pareto-ranked. Without loss of generality, assume that & is the better one. A
weakly more ambiguity averse receiver will have a br = © o ¢, for some increasing, differentiable
and concave ¢, resulting in an effective measure ein(“*) such that emé" ) < em(a “,

If, as in (iii), 7* € br(g), then since 7 € br(c*) = br(eme Mo + (1— emé1 ’“))g), " €

br(emg’“)ﬁ +(1— emg’“))g). By Lemma 1, this implies 7* € BR(o, 1) for a receiver with any
such ¢,, proving that o together with p continues to benefit the sender (and, by the same argument
as for (1), any less ambiguity averse senders as well). This proves (iii).

Finally, if 7* ¢ br(c), define i by

I | G

5 ’andﬁ@:l_ﬁ97
em{TM @ (up (o, 7)) + (1 — em{TH)) @ (u, (7, 7 ’ :
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so that ein®® = em @), Lemma 1 and 7* € br(c*) then implies 7* € BR(o, fi) for a re-
ceiver with ¢,.. Since (us(@, 7*) > u,(c, 7*), to show that (o, fi) benefits the sender (and all less

ambiguity averse senders) it suffices to show that fig, > p. Indeed,

eme ¢’ (ur(a, 7))

/101 - g r(ur(0,7* —
emly ™, (u, (2, 7)) + (1 — emly ) S@leGrN oy (4, (7, 7))
emy " (ur(0, 7)) _,
emg 9 (ur (@, 7)) + (1= em? M)l (s @, 70))
where the inequality follows from ¢'(¢,(u,(c, 7)) > ¢ (¢ (u, (T, 7%))). =

A.5 Proofs for Section 7

Before proving Theorems 7 and 8, we first characterize the receiver’s obedience condition under
pre-existing ambiguity about the payoff-relevant states. For any joint distribution 7 € A(Q2 x A),

7* 1s the receiver’s best response if

" € arg max Z a)7(d' |a)u,(a',w).
w,a,a’
Let IT* C A(Q2 x A) denote the set of all such distributions. Note that IT* is convex and closed.
Thus, an experiment o is obedient under prior p if the induced joint distribution 7(»?) = pxo € II*.
An argument similar to that in the proof of Lemma 1 can be used to show that when there is pre-
existing ambiguity 7 and the sender chooses an ambiguous experiment (o, i), 7* is a best response

of the receiver if and only if

77 (or,)) 77;0,“9925 Uy p7 09, T )) *
E p x o e Il
25,0 Mottg® (ur (B, 04, 7))

where we explicitly include p as an argument of the receiver’s expected utility u,.(p, op, 7*). In this

case, we say the ambiguous experiment (o, 1) is obedient under 7.

Proof of Theorem 7. Because ¢, is strictly concave, and (7,0, ) is a Pareto-ranked splitting of
o* for all p € supp(n), it holds that 13 > A. Thus, if the binary ambiguous experiment (o, 1) is

obedient under 7, then an ambiguity neutral sender does strictly better using it than using o*.

(p,(o;1))

We next establish its obedience. For each p € supp(n), let emg denote the effec-

tive measure on o under prior p. With p given by (10), it implies that for the minimizing p*,

emT (") — X and for any other p € supp(n), em® ") < X It further implies that, for each

p € supp(n), the experiment em "5 4 (1 — em“"))5 is a convex combination of o* and o,
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and thus, by the obedience of o* and ¢ under p, is also obedient under p. The obedience of (o, 1)

under 7 is implied by the following lemma:

Lemma A.7. If an ambiguous experiment (o, 1) is obedient under p for every p € supp(n), then

it is obedient under 7.

Proof of Lemma A.7. Given p € A(Q2) and (o, 1), let

olom =3 Ho®y (ur (P 00, 7))
? ) > Ha?r(u (P, 05, 7))

If (o, 1) is obedient under prior p, then it holds that 7(P(=#) = p x o—l(,"’” ) ¢ TI*. Consider an

ambiguous experiment (o, 1) under 7, the induced joint distribution satisfies

P X 09

gb Uy p, 09, T ))
Z Tp o
>

7,0 npl@?b (UT<pa 04, T ))

WpZeNgﬁb UT(p7097 )) [Leqb;(ur(p,(fe,T*))
Z > o0 (s (B0 7)) Z 5 130 ur Bz, 7))

Z Mp 225 1Py (ur (D, 09, 7)) (o)
> 5.6 Mtg®) (ur (P, 04, 7%))

In other words, 7("(@#) is a convex combination of 7"(=») for p € supp(n). Thus, if (o, 1) is

obedient under p for every p € supp(n), by the convexity of IT*, it is obedient as well. L]
]

Proof of Theorem 8. By the supposition, there exists an ambiguous experiment (o, 1) such that

(we explicitly write the dependence on the prior p):

Us(p, o, 1, %) > ulF(p).

Let o* denote the effective experiment induced by (o, ;1) and let 7 = p x o*. By continuity

and the fact that int(IT*) # (), we can perturb o and p slightly to & and / such that

and the joint distribution 7% ¢ int(IT*).

Notice for any 7 that reduces to p, because the sender is ambiguity neutral, the sender’s payoff
remains the same under 7 as under p provided the receiver is obedient. Because 7("(@) ¢ int(IT*),
there exists § > 0 such that for all ¢ € A(Q) with ||¢—pl|| < 9, the distribution 7(4(%-%) remains in
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the interior of IT*. Thus, by Lemma A.7, the ambiguous experiment (&, i) will continue to benefit

the sender under any 7 that reduces to p and has support within this d-neighborhood of p. [
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Online Supplemental Appendix to ‘“Persuasion with
Ambiguous Communication”

Xiaoyu Cheng Peter Klibanoff Sujoy Mukerji Ludovic Renou

SA.1 A Polar Case: A Maxmin Receiver and Ambiguity Neu-

tral Sender

This section analyzes the case of an ambiguity-neutral sender and an infinitely ambiguity averse
receiver, represented by the maxmin preferences UMEU. As the comparative statics statements
in Theorem 4 suggest, this is the most favorable case for the sender to benefit from ambiguous
communication.

More precisely, we show that in this case (a) binary ambiguous experiments are sufficient to
exhaust all gains from persuasion, and (b) the sender can attain a payoff arbitrarily close to their
best feasible payoff subject to the receiver getting at least the payoff they would obtain if no
information were disclosed. A conclusion we draw is that assuming an infinitely ambiguity averse
receiver is very powerful and, in our view, unrealistically so, further motivating the analysis in the
rest of the paper which allows for more moderate levels of aversion.

Before turning to the analysis, we remark that the opposite cases, of either an infinitely am-
biguity averse sender with payoffs UMEU or an ambiguity neutral receiver, preclude any benefit
from ambiguous persuasion. The latter case follows from Theorem 3, while Cheng (2025) shows
that in the former case the sender never benefits from ambiguous communication.

The following lemma relates obedience for an ambiguous experiment to obedience for an ex-

periment. It is thus the analogue of Lemma 1 for a receiver with preferences UMEU:

Lemma SA.1.1. (o, i) is obedient if, and only if, the experiment o* is obedient, where

Z Ho0g

0c argmin ur(og,7*)
¥ 0csupp(p)

Z Me'

fc argmin u,(op,7*)
O€supp(p)

Proof of Lemma SA.1.1. Fix (o, ). Obedience requires that mingeg u, (09, 7°) > mingee u,(og, 7).
From the minmax theorem, this is equivalent to the existence of 1* € A(©) suchthat ), o pou, (o9, 7) >

Y oco Motr(00,T%) > > ycq tyur(og, ), for all (u1, 7). The result follows since p* is a minimizer
of Zee@ poty (09, TF). u



Observe that when the argmin in Lemma SA.1.1 is a singleton, o* equals the receiver’s payoft-
minimizing experiment from o. More generally, it is a convex combination of the possibly multiple
minimizing experiments in o with relative weights inherited from p. Thus the analogue of the
effective measure here may have a smaller support than p (something that never happens for a
smooth ambiguity receiver). Lemma SA.1.1 says that only those payoff-minimizing experiments
affect obedience of (o, 11). Thus, the sender is free to include in o and arbitrarily weight any other
experiments as long as they don’t disrupt the receiver’s minimum.

Since the receiver can always ignore any recommendations made, they can guarantee them-

selves the payoff

u; = max > pw)un(a,w),

which is the payoff they would obtain if no information were disclosed. The consequence of the
great flexibility available to the sender given Lemma SA.1.1 is the next theorem, which states that
the sender’s optimal payoff approaches their highest feasible payoft subject to the receiver getting
at least u*.” The corresponding communication strategy uses a binary ambiguous experiment with
the p-weight on the better experiment approaching 1, and the worse experiment an obedient one

holding the receiver to u;.

Theorem SA.1.1. Suppose there exists ¢ such that u,.(6,7*) > u’. The value of the following
program is the supremum of the payoff that an ambiguity neutral sender can obtain when the

receiver has maxmin preferences UTM EU.

max us(o, 7%),
g

s.t. up(o, ") > .

Proof of Theorem SA.1.1. Let 7 attain the value of the program in the theorem for the sender and
o be an obedient experiment with u,. (o, 7*) = u’. Assume u,(7,7*) > u,.(c, 7). If the sender
chooses ((7,0), (1,1 — 1)), the receiver is obedient since the worst payoff is u,.(o,7*). As u
approaches 1, the sender’s payoff approaches us(a,7*). The sender cannot do better than this,
since the receiver’s payoff is at least v*. If u,.(7,7*) = u,(o,7*), mix & with 6. For any ¢ > 0,
u.((1—¢e)ag+e6,7*) > u,.(o, 7). As € approaches 0 and i approaches 1, the payoff for the sender

approaches u, (@, 7). O

Remark 5 (MEU receiver’s payoff). Theorem SA.1.1 does not imply that an MEU receiver is

held to (or even close to) w; by all sender-optimal strategies. As receiver ambiguity aversion

23This “efficiency subject to an outside option” approach to identifying the sender’s optimal payoff is reminiscent
of one developed in Smolin (2021) that can be applied to any Bayesian persuasion problem where the receiver has
only two actions. In our case, it is the extremity of the receiver’s MEU preference that creates the almost complete
separation between the experiment providing the sender’s payoff and the one providing the receiver’s payoff.
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passes to the MEU limit, while the value of the sender’s program is continuous in this limit, the
payoff to the receiver may drop discontinuously. In our introductory example, for instance, as ¢,
becomes more and more concave, the receiver’s payoff under optimal ambiguous communication
approaches their payoff under o5 of 3/2, while in the MEU limit, their payoff is no higher than the
Bayesian persuasion payoff of 5/4.

There is a sense in which Theorem SA.1.1 could be argued to overstate what the sender can
achieve. For MEU, the “effective” experiment o* could have a smaller support than (o, 11). Lemma
SA.1.1 treats action recommendations that could occur under (o, ;1) but not under o* as zero
probability events. However, observing such action recommendations would reveal to the receiver
that 0 ¢ arg minge,,,, () (06, 7*). In this case, the receiver may no longer be indifferent between
obeying or not. Therefore, Theorem SA.1.1 could be seen as forcing the receiver to be obedient in
such situations.

This issue can be addressed by strengthening obedience to further require that o* always has the
same support as (o, 1) (which was always true for smooth ambiguity receivers). This strengthening
does not substantially change the conclusions of Theorem SA.1.1, as it only replaces the program
in Theorem SA.1.1 by:

sup us(o, ),
o

s.t. u, (0, 7") > wy and supp(o) C Ay,

where Aj is the set of all actions which can be best responses for the receiver to some probability
distribution over the states in the support of the prior p. The corresponding communication strate-
gies would involve two experiments with p-weight on the better one approaching 1 as before, but
with the worse experiment now adjusted to have full support on A, by mixing it with an arbitrarily
small amount of an obedient experiment with full support on A that yields the receiver more than
- (such an experiment exists under the assumptions of Theorem SA.1.1).

Formally, a stronger notion of obedience that does not allow positive ;. weight on experiments
that recommend actions outside the support of the effective measure weighted experiment of a

maxmin receiver is the following:

Lemma SA.1.2. (o, p) is (strongly) obedient if, and only if, the experiment o™ is obedient, where

Z HeTg

0c argmin ur(og,7*)
_ Oesupp(p)

> fo

0 argmin u,(op,7*)
O€supp(p)




and supp(og) C supp(c™) for all 6 € supp(p).

Define w as before

wr = maXZp(w)uT(a, w).

w

Further define Ay as the set of all actions which can be best responses for the receiver:

Ay ={a€ A:3qge A(Q) s.t. a € arg maqu(w)ur(a’,w)}.

a’€A
The following is the version of Theorem SA.1.1 using the stronger obedience notion:

Theorem SA.1.2. Suppose there exists 6 such that u,.(6,7*) > u’. The value of the following
program is the supremum of the payoff that an ambiguity neutral sender can obtain when the

receiver has maxmin preferences UMEV and the version of obedience in Lemma SA.1.2 is used:

sup us(o, %),

g

s.t. u(0,7%) > w and, supp(c) C Ay,
Proof of Theorem SA.1.2. Let & attain the value for the sender of the following program

max us(o, 7)
[ea

s.t. u. (0, 7°) > w; and, supp(o) C Ay.

Let o be an obedient uninformative experiment, so that u, (o, 7*) = w*. Observe that supp(c) C
Ap. Assume that u,. (7, 7*) > wu,. (g, 7*). There exists an obedient experiment & such that supp(5) =
Agand u,. (6, 7*) > u;.?® Define a sequence of experiments o, = (1—¢,,)o+¢,5 where €, > 0 with
e, — 0 as n goes to infinity. If the sender offers the ambiguous experiment ((7,0,,), (1, 1 — 1)) for
small enough ¢, the receiver is strongly obedient since the worst payoff is u,.(c,,, 7*), obedience is
preserved under convex combinations of experiments, and supp(a) C Ay = supp(c,,). As we can
choose p arbitrarily close to 1 and ¢, arbitrarily close to 0, we approach the value of the program
in Theorem SA.1.2. Furthermore, it is not possible for the sender to do better than this (i.e., have

a higher supremum), since the receiver’s payoff from any obedient experiment (and thus from any

2For any a € Ay, fix some q, € A(supp(p)) under which a is optimal for the receiver. There exists a 3, € (0, 1)
and a ¢ € A(supp(p)) such that p = Baoqs + (1 — Ba)q,- Let a), € Ag denote an action that is optimal for the
receiver under ¢/,. Applying this argument to all a € Ay to construct a set Uge 4, {4q, ¢, } Whose convex hull contains
p in its interior. Since each probability distribution in the set can be thought of as a Bayesian posterior, this interior
convex combination is a Bayes plausible distribution over the posteriors and thus, by Kamenica and Gentzkow (2011),
corresponds to an obedient & with supp(&) = Ag. Finally, since u,.(6,7*) > u}, there exists an a € Ay such that
> a(W)up(a,w) > wh. Thus, u,(6,7%) > ur.



obedient ambiguous experiment) is at least v and the strong version of obedience requires that all
experiments in the support of © recommend actions in Ag.

If u. (G, 7*) = u,(c, "), we need to slightly modify the construction to guarantee obedience.
The idea is to mix & with a bit of & to guarantee a unique worst payoff, i.e., u,.((1 — 2¢,)7 +
2¢,0,7%) > u,(g,,7") for all ¢, > 0. As &, approaches 0 and . approaches 1, the payoff for the
sender approaches the value of the program in the theorem. [

SA.2 The insufficiency of binary ambiguous experiments

Proposition SA.2.1. It is not always sufficient to consider only binary ambiguous experiments in

searching for either a strict benefit from ambiguity or optimal ambiguous persuasion.
We provide a detailed sketch of the proof. The full proof is available in Cheng et al. (2024).

Sketch of Proof of Proposition SA.2.1. The proof is by construction. We first show an example in
which the only optimal ambiguous experiments are more than binary. A modification of this ex-
ample is then used to provide an example in which the sender may strictly benefit from ambiguous

communication even when no binary ambiguous experiment benefits the sender.

Example in which all optimal ambiguous experiments are more than binary.
Suppose ¢s(z) = = and ¢,(x) = In(x + 5). Let Q = {wy,w>}, with equal prior probabilities
p = (1/2,1/2). There are five actions {a1, as, by, b2, b3} and the payoff matrix is

(us, ur) | w1 W
ay 3,3 0,0
a | —1,-1 3,3
by 0,4 —1,-2
by 0,2 1,2
by —2,—4 1,4

The optimal Bayesian persuasion experiment is

oq(ar|lwy) =4/5, o4(az|wr) = 1/5;
oq(ar|lwy) =2/5, o4(az|ws) = 3/5.

Notice that

Us(0a, T°) = up(0q, 7%) = 2.



Let 011,012,091 and 09, denote the extreme experiments where o;; recommends a; and a;
deterministically in states w; and ws, respectively. Notice that these extreme experiments are all

Pareto-ranked:

US(O'H,T*) = ur(alla T*) = 3/2’
u5(0127 T*) = UT(UIQa 7—*) = 3’
us(021, 7°) = up (091, 77) = —1/2;
US(JQQ,T*) = ur(0_2277—*) =1.
Consider the following splitting of o,
B 1 n 3 . 1
Oq = 5011 5012 5021-

It can be verified that for 6 = (011, 012,021) and /i such that ), emé&’ﬂ)ag = 0,4, (6,/1) is an
obedient ambiguous experiment yielding the sender a payoff of 159/70 = 2.27143, strictly higher
than the 2 under Bayesian persuasion. Therefore, any optimal ambiguous experiment must involve
ambiguity and thus be at least binary.

As ¢s(z) = x and ¢,.(x) = In(x + 5), by Proposition 2, in any optimal ambiguous experiment,
there cannot exist any further Pareto-ranked splitting of any experiment in the collection.

Observe that o, is the only incentive-compatible experiment that never recommends any of the
b actions. Furthermore, o, cannot be split into a convex combination of two extreme experiments.
Thus, any binary splitting of o, must involve at least one non-extreme experiment. However,
since all these extreme experiments are Pareto-ranked, there must exist a Pareto-ranked splitting of
any such non-extreme experiment (into extreme experiments). Therefore, any binary ambiguous
experiment constructed from splittings of o, cannot be optimal.

The proof goes on to show that an optimal ambiguous experiment in this example also can-
not be a binary ambiguous experiment that is constructed from a splitting of any other incentive-

compatible experiment (in particular, any recommending a b action with a positive probability).

Example in which ambiguous communication benefits the sender, but does not do so when
restricted to binary ambiguous experiments
Suppose ¢s(z) = x and ¢,(x) = In(x + 5). Let 2 = {w;,ws} and the prior p be uniform.

There are seven actions {a1, as, by, by, by , bs, c}. Let the payoff matrix be, for some z > 2,



(us, uy) w1 Wo

ay 3,3 0,0
as | —1,—-1 3,3
by 0,4 0,—2

by | 0,5/2 0,1
by 0,5/4 0,9/4
bs 0,—4 0,4
c x,7/4  x,7/4

The only differences from the previous example are the addition of ¢ and the replacement of

by by b, and by . Let 0. denote the experiment that recommends action ¢ deterministically in both
states. Because x > 2, the optimal Bayesian persuasion experiment is o, yielding the sender a
payoff of . The proof then shows the existence of x > 2 such that the sender’s payoff from (&, 1)
is strictly higher than = but the sender’s payoff from any binary ambiguous experiment is lower
than z. The replacement of by by b, and b] serves to make o, obedient only at the prior p, which

helps simplify the calculations in the proof. [

SA.3 A Local Argument for the Receiver’s Gain from Pareto-

Ranked Splittings of Obedient Experiments

Let o* be obedient and such that a pareto-ranked splitting of it exists. Then for small enough € > 0,

one can always find & and ¢ such that (7, o, 1/2) is a Pareto-ranked splitting of o* satisfying
u.(a,7°) = u (", 7)) + €, u(o,7") =u.(0",7") — €.

Let o0 = (7,0) and let

o ACHCRN)
7 Gua ) + (@)

Then by Lemma 1, (o, ;1) is an obedient ambiguous experiment. To show that the receiver’s payoff
is higher under o than under o*, we split the receiver’s payoff change into two parts.

First, the receiver’s payoff change from replacing o* by 0 + (1 — pz)o is

¢, (ur (T, 7))
¢ (ur(a, 7)) + ¢7.(ur (@, 7))

¢ (un(o, 7))
(e, ™)) + G (ur (@ 7)
 lun(0.7) ~ (7.7

= o) T o) =

(up (0", 7) =€) —up(07)

(u (o, 7%) +€) +




Notice the change is non-negative and first-order in e.
Second, the receiver’s payoff change when facing the ambiguous experiment (o, (17, 1 — 1i7))

when moving from ambiguity neutrality to ambiguity aversion ¢, is

L Br(ur(@). 7)
g (¢;<ur<g7 ™)) + Orur (@.7))
e
Filur (. 7)) + Opus (7, 7))

o0, (7, 7)) e

ar(@ ) + Bilu o,y o) ))
6. (0, (7, 7)) o

(7)) + oG,y T )

Or(up (0™, 7°) +€) +

(ur(0*) +¢€) +

Next, we take the first-order Taylor expansion of the first term so that any residual is of order

2. Observe that (ignoring the term of order €?)

6L (ur(o, 7))
o (e, ™)) + 6w (7, 7))
_ lule)
(@, 7)) + Gy (ur (5, 7))

QS;H(UT(E’T*)) * Y — A (u(oF. 7He
QS;,(UT(Q,T*))—|—¢/T(UT(E’T*))(¢T(UT(O- 7)) = ¢y (un(o™, 7))

_ w.(c*. 7* "ua®. T* ¢;(ur(g,7'*)) _(b:"(uT(E’T*))e
—¢r( r( ) ))+¢r( r( ) ))¢;(ur(g,7*))+¢;(ur(5,7'*))

¢, (ur(T, 7))
¢ (ur(a, 7)) + & (ur (@, 7))

(@r(ur(0™,77)) + (ur(0", 7)€))

Or(up (o™, 7°) + €) + Or(up (0, 77) — €)

_|_

Applying ¢! to the above term and again taking the first-order Taylor expansion and ignoring
the term of order € yields

1 T U 8 (A o) Bl

o7t (0eun(o", 7)) + o, ) ST O )
_ -1 w(o* —1\/ o™ u (%, 7 ¢/ Ur Q QS;(UT(EW*)) c
_¢r (¢r( 7"( ) )))+ (¢r ) (gbr( r( ) )))gb( 7“( ))qb’(ur( T ))+¢;(ur(6,7*))
(o) + ¢ (ur(a, 7)) — ¢ (u,(7,77))

' or(un(a, 7)) + 1. (ur (@, 7))

where the last equality follows from
1 1

(61 (6 (up (0, 7)) =

oL (07 (0 (ur (0, 7)) D(un(or, 7))

Thus, after ignoring the terms of order €2, the receiver’s payoff change when moving from ambi-
guity neutrality to ambiguity aversion is

¢ (ur(a, 7)) — ¢ (ur(@, 7))
¢ (ur(a, 7)) + ¢7.(ur (@, 7))

¢ (ur(a, 7)) — ¢ (ur(@, 7))
¢y (ur(a, 7)) + @1 (ur (@, 7))

*

u (0", 7°) +

€ —u.(o*,7") —



In other words, the additional cost to the receiver of this e-ambiguous experiment because the
receiver is ambiguity averse is of order €.

Therefore, for a small enough splitting of ¢*, the receiver’s payoff increase from the increase,
Uz — 1/2, in weight on the better experiment & is first-order while their payoff decrease due to

bearing the resulting ambiguity is at most second-order.

SA.4 Proofs of auxiliary results from ‘“Persuasion with Am-

biguous Communication”

SA.4.1 Proofs of Proposition 3 and Corollary 2

Proof of Proposition 3. Throughout, we view a splitting (\g, 09)gco of some o € X* as a finitely
supported distribution in A(3). With a slight abuse of notation, we write \ for the distribution,
Agimpie(X) for the set of finitely supported distributions on ¥, and E, for the expectation operator
with respect to \. Since ambiguous communication benefits the sender, {\ € Agppe(X) @ En[o] €
3 Ex[®y5r(0)] € (0,00)} # () by Corollary 5. Since ¥* is a convex set and has a non-empty
interior, any point in >2* can be approached by points in the interior of 2*. As the expectations in the
above set are continuous in A, this implies that {\ € Agimpie(X) : Ex[o] € int X%, Ey[®,5r(0)] €
(0,00)} # 0. Furthermore, since int 3* x (0, c0) is open in the natural product topology, this set

is open. 0

Proof of Corollary 2. By Proposition 3, there exists a non-empty open set of ambiguous experi-
ments that benefit the sender. Fix one. Since E,[®,5r(0)] is continuous in ¢/, this experiment
continues to benefit the sender under small perturbations of ¢/.. Finally, since ¢, is concave, small
perturbations of ¢,. imply small perturbations of ¢/. (Rockafellar, 1970, Theorem 25.7, p. 248). [

SA.4.2 Proof of Theorem A.1

Proof of Theorem A.1. Fix any u € R. Let (0g, A\g)sco be feasible for the maximization problem
®*(u) . Suppose that there exists a pair (og, op) with Ay > 0 and A\y» > 0 and such that there exists
a A€ (0,1) for which, ®,(Agg + (1 — N)og) > AP, (0g) + (1 — X) P, (09 ).

Then, (04, Ag)gco cannot be a solution to the maximization problem ®*(u). This can be seen
from the following construction of a strict improvement satisfying the constraints in that problem:
It ’\79 < 2 then replacing oy by the merged experiment Aoy + (1 — \)oy and replacing Ay by

T—x°
then

Ao = % and Ay by Ay = \g — (1 — /\)’\79 yields such an improvement. If instead % > Qo

—x
replacing oy by the merged experiment Aoy + (1 — \)oy and replacing Ay by Ao = f_—"’A and \g

A~ )\ . .
by Ao = Ag — A7 is such an improvement.



To prove (i), towards a contradiction, suppose in the solution there exists (og, 0g/) € 34 (u) X
Yy (u) with ug(og, 7°) # us(og, 7°) and ¢! (u,. (09, 7)) # ¢.(u,(0g, 7)), but they are not Pareto-
ranked, i.e., us(0y, 7°) > us(og, %) > u, and u, (09, 7*) < u,(og, 7*). Then for any A € (0, 1),
we can show @, (Agg + (1 — A)og) > AP, (0g) + (1 — X) P, (0¢ ). To see this, observe that

Qbs(us()‘o-e + (1 - )‘)09’7 T*)) - Qbs(u)
B0 L= Now) = (v + (1 Aoy 7)
bu(t1a(Agy + (1 = N, 7)) — 64(u) bult1a(Agg + (1 — N, 7)) — 64(u)
9 (ur (09, 7)) A=A (s (70.7))
o\ A(us(0n, 7)) + (1= Nuns(ow, 7)) = 6 (u)
- o1 (09, 7))
As(ta(00, 7)) + (1= \)ba(ta(0p, 7)) = 64(1)
o (op 1)
¢S(u5(09’7 T*)) - ¢S(u8(09>7—*))
(o0, 7))

B oo B Ps(us(og, 7)) — ¢s(us(op, 7))
FOE A = A o)

>\

+(1—=X)

(SA4.1)

AP, (09) + A(1 — A)

>)\(I)u<0'9) + (1 — )\)(I)U(O'g/),

where the first inequality follows from concavity of 1/¢!. and positivity of ¢4(us(Aog + (1 —
Aoy, T%)) — ds(u), the second inequality follows from concavity of ¢, and the last strict inequality
follows from w, (o9, 7*) < u,(og, 7*) and ¢ (u, (o9, 7)) # &.(u, (o0, TF)).

The proof of (ii) is the same as the proof of (i), except that the first inequality in the chain
(SA.4.1) now follows from convexity of 1/¢/ and ¢s(us(Aog + (1 — N)og, 7%)) — ¢s(u) < 0. O

SA.4.3 Proof of Theorem A.2

Proof of Theorem A.2. Fix any u € R. Let (0p, Ag)sco be feasible for (®*(u)). Suppose that there
exist oy satisfying \g > 0 and two experiments o and ¢’ such that 0y = Ao + (1 — A\)o’ for some
A€ (0,1) and &, (Ao + (1 — N)o') < AD,(0) + (1 — N\)P,(0’), then (0p, \g)geco cannot be a
solution to (®*(u)). This follows by noting that splitting oy into o with probability A\, and o’
with probability (1 — X\)\g induces a strict improvement.

To show (i), if 1/¢).(+) is concave, towards a contradiction, we have

i L G0 + (1= N ) — 6(w)

BT =) = T O + (L= Ve, )

¢8(u8()‘6 + (1 - /\)Qa T*)) - ¢S(U) o CbS(US(/\E + (1 - )‘)Q> T*)) - ¢8(U)
PR CED) Fa=A (ur (e, ™)

<A
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¢s(us(AT + (1 = N)g, 7)) — ¢s(us(a,77))

¢ (ur (7, 7))

s (us(AT + (1 = N)g, 7)) — ds(us(a, 7))
¢ (ur(a, 7))

=\, (7) + A

+ (1 - )‘)q)u<g) =+ (1 —A

~—

EPWACHC) us(o, %) —us(, 7
AR AN G ey ) e T
_ o _ ¢;(U5(O, *)) ulT 7_* —ulo 7_*
=2+ AL - VLT 0, 5,77) — 7))

<AP,(T) + (1 = N)Py(a),

where the first inequality follows from concavity of 1/¢! and ¢s(us(A\G + (1 — AN)a, 7)) < ¢s(u),
the second inequality from concavity of ¢, and the third inequality from the supposition.

The proof of (ii) is the same as the proof of (i), except that the first inequality now follows from
convexity of 1/¢/ and ¢s(us(Aa + (1 — X)a, 7%)) > ¢s(u). O

SA.4.4 Proof of Lemma A.5
Proof of Lemma A.5. Define, for all integers k € [1, n],

k

Sk—zxz,uz LZ (yi_yj)] :

#i:j=1

Notice that when k = n, we have
Sn = Z%’Mi Z 15 (yi — yy)]
Py . .
= wi |(L= )y — Y ujyj]
i=1 L j ;
= Z Tilki |Yi — Z ijj]
MY
(Z 122 y]) <Z Ticsn ZJ Y Z xzﬂz) .

i=1 i=1

Since (Z?Zl ,ujyj> > 0, it suffices to show S,, < 0. We prove this by induction. Observe that
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S =0.Fork > 1,

k+1 [ k+1
Sk+1 = Z Lifbi Z 13 (Yi — yj)
i=1 Lj=1;j#i i
k [k 1 k
= i | Y milyi— ) |+ Y wiptalpe (U — yrer)]+
i=1 | j#ij=1 ] i=1
k
Th+1Hk+1 Z[Mj(yk—i—l — ;)]
j=1
k k k
= Z Ll [ Z i (Wi — y5) | + Z tipk1 (T = Trr1) (Ys — Yr1)
i=1 JAij=1 i=1
k
=Sk + Y Hittkr (T — Ti1) (Ui — Y1) -
i=1
<0
For k = 5* — 1,
J* -1

> i (s — 25 ) (i — yge) < prieppge (e — 250) (i — y3) < 0.
i=1
Therefore, 0 = §; > S;« > S,. O

SA.4.5 Proof of Lemma A.6

Proof of Lemma A.6. Define
L ! o— A
R N
where A € (0, 1). Observe that if ¢* is a well-defined experiment, then A\ + (1 — \)g* = o, and

us(o?, ) < ug(o, 7), up (o, 7) < u,(0,7), so that (6,0, \) is a Pareto-ranked splitting of o.

o (SA4.2)

It remains to show that there exists A € (0, 1) such that o* is indeed an experiment. In other
words, for each w, o*(-|w) must be a probability distribution over actions.

If [supp(o(+|w))| = 1. then supp(6(+|w)) < supp(c(+|w)) implies supp(&(-|w)) = supp(a(-|w)).
It follows that o*(+|w) = o(+|w) for all X € (0, 1), and is thus a distribution over actions.

If [supp(c(-|w))| > 1, embed o(-|w) into the Euclidean space RI*P(eC1“)l and notice that
o(+|w) is in the relative interior of the probability simplex A(supp(o(:|w))). Thus there exists
€, > 0 such that for all z € RIWPPECIl with S 2, = 1, if ||z — o(-|w)|| < €., then z €
A(supp((-w))). Since supp(6(-w)) € supp(c(-w)), one has &(-lw) € A(supp(r(-w))) as
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well. Then, for all A € (0,1), o*(+|w) € Rl and 3™ o*(alw) = 1. Moreover, there exists
A\ > Osuchthatforall A € (0,)\,), ||c*(-|w)—0c(:|w)|| < €, and thus o*(-|w) € A(supp(a(-|w))),
making it a distribution over actions.

Because (2 is finite, A(6,0) = ming,:jsupp(o(-w))|>1 Aw > 0. Therefore, for all A € (0, A(d,0)),

o is a well-defined experiment. [
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