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Abstract

We explore whether ambiguous communication can be beneficial to the sender in a persua-

sion problem, when the receiver (and possibly the sender) is ambiguity averse. Our analysis

highlights the necessity of using a collection of experiments that form a splitting of an obedi-

ent experiment. Some experiments in the collection must be Pareto-ranked in that both players

agree on their payoff ranking. If an optimal Bayesian persuasion experiment can be split in

this way, then any not-too-ambiguity-averse sender as well as the receiver benefit. There are

no benefits when the receiver has only two actions.
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1 Introduction

“If I seem unduly clear to you, you must have misunderstood what I said.”

Alan Greenspan, Speaking to a Senate Committee in 1987, as quoted in the Guardian
Weekly, November 4, 2005.

This paper considers the problem of a sender who wishes to favorably influence, through strate-
gic communication of information, the action taken by a receiver. As in the large literature on
Bayesian persuasion following Kamenica and Gentzkow (2011) (see also Rayo and Segal (2010)
and surveys by Bergemann and Morris (2019) and Kamenica (2019)), we model the sender as
committing to a communication strategy and the receiver as best responding to that strategy. A
communication strategy for the sender is usually described as a statistical experiment, a func-
tion mapping from payoff-relevant states to probability distributions over messages (or signals).
Our first key departure from most of the literature is that we enlarge the set of the sender’s com-
munication strategies to include ambiguous strategies. These are strategies generating, from the
perspective of both players, subjective uncertainty about which statistical experiment will be used
to generate the message. Our second key departure is that the receiver (and possibly the sender)
treats this uncertainty as ambiguity and is ambiguity averse. Would the sender ever benefit from
intentionally using an ambiguous communication strategy? We show that the answer can be yes,
and provide understanding of the circumstances under which this can occur and the nature of these
beneficial strategies. Thus, our theory suggests that one might want to communicate in a deliber-
ately ambiguous manner even when it is possible to costlessly eliminate any ambiguity.

We illustrate our main results with the help of a simple introductory example. There is a sender
and a receiver, three actions a1, a2 and a3, and two payoff-relevant states ω1 and ω2, with equal
prior probabilities p = (1/2, 1/2).1 The sender influences the action the receiver takes with the
release of information. The payoffs are:

(us, ur) a1 a2 a3

ω1 1, 1 −1,−1 −4, 2

ω2 0, 0 2, 2 −4,−4

Table 1: Payoff table (first coordinate is the sender’s payoff)

The receiver prefers a3 in state ω1, while the sender prefers a1 in that state. This is the conflict
of interest in this example. The receiver prefers a1 when their beliefs about ω2 are intermediate
(i.e., in [1/5, 1/2]), a2 when their beliefs are higher than 1/2, and a3 when they are lower than 1/5.

1The example needs at least three actions since we show (Corollary 1) there is no benefit from using ambiguous
communication strategies when the receiver has only two actions.

2



An interpretation of this example in the context of stress testing and banking regulation is as
follows: Think of the sender as a banking regulatory authority (“the regulator”) who must design,
conduct and communicate the results of stress testing of the banking sector (“the bank”). Imagine
the receiver as a representative investor (“the investor”) choosing among alternative investments,
ai, whose payoff depends on the realization of the state ω. Think of the ω as investment-relevant in-
formation about the health of the banking sector, with ω1 and ω2 associated with “bad” and “good”
health, respectively. Actions a1 and a2 are socially-productive investments (i.e., productive from
the viewpoint of the economy as a whole, a viewpoint that we assume the regulator adopts). Action
a3 is a socially-detrimental, purely speculative investment. The regulator’s choice of communica-
tion strategy can be seen as their choice of rules/specifications for the stress tests.2 The regulator’s
challenge is to design and communicate stress tests so as to better coordinate investment behav-
ior with the health of the banking sector, without diverting investments to the speculative activity,
which is always socially detrimental but beneficial for the investor when the health of the banking
sector is bad.

We first apply the seminal work of Kamenica and Gentzkow (2011) on Bayesian persuasion
to this example. Kamenica and Gentzkow (2011) study a dynamic game between a sender and a
receiver, where the sender first designs a statistical experiment σ : {ω1, ω2} → ∆(M), the receiver
observes the chosen experiment σ and the realized message m, and then takes an action. In our
language, this information design is unambiguous, that is, the receiver knows the experiment that
generates the message and, therefore, knows the likelihood of each message given each state ω.
Kamenica and Gentzkow (2011) show that the highest payoff the sender can achieve is the value
of the concavification of their indirect utility at the prior p. In our example, this value is 5/4 as
illustrated in Figure 1. In the figure, we plot the receiver’s expected payoff associated with each of
the three actions as dotted lines – each line is labelled with its action. We plot the sender’s indirect
utility, i.e., the expected payoff the sender obtains when the receiver best responds, as a thick solid
curve, and its concavification as a thick dashed curve.

It is immediate to verify that the experiment σBP defined in Figure 1 attains this optimal payoff
using the messages “a1” and “a2”. The message “a2” reveals that the state is ω2. Intuitively, since
the preferences are perfectly aligned when the state is ω2, the sender wants the receiver to learn it.
At the same time, the sender does not want the receiver to be too pessimistic about ω2 when the
state is ω1, as the receiver chooses a3 at all beliefs less than 1/5 on ω2. The optimal experiment
σBP balances these two forces by making the likelihood of message “a1” in state ω2 just large
enough to induce action a1. We note that the experiment σBP is canonical, that is, the messages
are action recommendations, and, in the example, it is also obedient, that is, the receiver finds it
optimal to obey the recommendations. In Bayesian persuasion, the restriction to canonical and

2See Bergemann and Morris (2016) for another example of Bayesian persuasion in the context of stress testing.
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σBP (a1|ω1) = 1,
σBP (a1|ω2) = 1/4, σBP (a2|ω2) = 3/4.

Figure 1: Sender’s indirect utility (thick curve) and its concavification (thick dashed curve)

obedient experiments is without loss, and we prove (Proposition 1) that this remains true in our
generalization.

Now, suppose that the sender can design ambiguous experiments. These are communication
strategies that leave some uncertainty about which statistical experiment will generate the mes-
sages, and, in this sense, may not completely pin-down the message likelihoods. We model am-
biguous experiments as generated by (finitely-ranged) mappings from payoff-irrelevant ambiguous
events to statistical experiments. Examples of such ambiguous events include artificially generated
ambiguity like draws from an Ellsberg urn provided by a third-party, or natural-event ambiguity
derived from meteorological or other events. More broadly, the only requirements beyond payoff-
irrelevance are that the sender and receiver share a common view of the subjective uncertainty
about these events, and that the receiver (and possibly the sender as well) is ambiguity averse and
treats the uncertainty about these events as ambiguity. Our theory is agnostic about why there is
a common view of the uncertainty over these events. It could be this common view comes from
shared (but limited) historical data or, as is particularly likely in the case of artificially generated
ambiguity, from symmetry or other logical considerations, or the commonality could be viewed
simply as a convenient baseline modeling assumption.

Formally, we model the source of such ambiguous events as a continuum, A, of payoff-
irrelevant states, α, along with a continuous ρ ∈ ∆(A) that represents the common view of
uncertainty over A that an ambiguity neutral player would use to compute their expected util-
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ity. Let B be any finite partition of A and define µ̃ ∈ ∆(B) by µ̃(b) ≡
∫
α∈b ρ(α)dα for each

b ∈ B. By richness of A and continuity of ρ, any finitely-supported distribution over experiments
can be induced by the choice of some finite partition B together with some mapping from B to
experiments. Hence, as justified by payoff-irrelevance of A, we model an ambiguous experiment

as a pair (σ, µ), where the collection σ = (σθ)θ∈Θ is a tuple of experiments that we index using
a finite set Θ and µ = (µθ)θ∈Θ is any element of ∆(Θ). The sender may choose any ambiguous
experiment.3 The crucial characteristic of ambiguous experiments is that ambiguity averse players
behave as if they value some robustness with respect to perturbations of µ.

In the stress-test setting, a specification of the exact model/test the bank must run and report
the results of, would correspond to a statistical experiment (i.e., an unambiguous communication
strategy on the part of the regulator). One channel through which ambiguity could be introduced
into communication in this context is the use of contingent “bottom-up” tests – tests conducted by
individual banks based on their own in-house models and data – as input to the stress tests. By
making which model/test a bank is to run contingent on the range a parameter, α ∈ [0, 1], belongs
to, where, for example, α is something to be calculated based on data private to the bank (and
not directly payoff-relevant for either the regulator or the investor), the regulator may cause the
statistical experiment generating the announced result to vary with these ranges.4 As is plausible
for an α for which the sender and receiver have little data, from their perspective the realization
of α is ambiguous and elements of finite partitions of [0, 1] are ambiguous events. Thus, if the
regulator says that the bank should use one model/test if α ∈ [0, 1/4), another if α ∈ [1/4, 3/4),
and a third if α ∈ [3/4, 1], this is an example of an ambiguous experiment. By varying the partition
of [0, 1] used to define the contingencies under which the three models/tests will be run by the bank,
the regulator may vary µ.

An SEU player treats the ambiguous experiment (σ, µ) as equivalent to the unambiguous ex-
periment

∑
θ µθσθ. If the receiver is SEU, the sender cannot do better than using the experiment

σBP and thus ambiguity adds no value. We assume instead that the receiver is ambiguity averse
and represent their preference with the smooth ambiguity model of Klibanoff et al. (2005). Specif-
ically, let ur(σθ, τ

∗) be the receiver’s payoff when the (canonical) experiment is σθ and the receiver
is obedient.5 The receiver values the ambiguous experiment as ϕ−1

r (
∑

θ µθϕr(ur(σθ, τ
∗))), where

3Notice that ambiguous experiments are a generalization of experiments in the sense that any experiment σ can be
viewed as an ambiguous experiment with a collection σ such that σθ = σ for all θ in the support of µ.

4The use of bottom-up tests is common (see e.g., Table 1 in Dent et al. (2016)). Making the instructions for
them contingent is something already done in practice. For instance, in recent EU stress tests (see European Banking
Authority (2023), Section 2.4.4.): “Banks with significant foreign currency exposure are required to take into account
the altered creditworthiness of their respective obligors, given the FX development under the baseline and adverse
scenarios. In particular, banks are only required to evaluate this impact if the exposures of certain asset classes in
foreign currencies are above certain thresholds.”

5Obedient in the sense of following the action recommendations. We denote the obedient strategy by τ∗.
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ϕr is some strictly increasing, concave and differentiable function.6 The concavity of ϕr captures
ambiguity aversion. Greater concavity corresponds to more ambiguity aversion. At one extreme,
when the receiver is infinitely ambiguity averse, we have an instance of the maxmin expected util-
ity (MEU) model (Gilboa and Schmeidler, 1989). At the other, when ϕr is affine, we have the SEU
model (implying ambiguity neutrality).

As a preliminary result, we show (Lemma 1) that such an ambiguity-averse receiver faced with
an ambiguous experiment (σ, µ) is obedient if, and only if, they are obedient when facing the
unambiguous experiment

∑
θ νθσθ with νθ =

µθϕ
′
r(ur(σθ,τ

∗))∑
θ̃ µθ̃ϕ

′
r(ur(σθ̃,τ

∗))
. We use this result throughout, and

refer to ν as the receiver’s effective measure given (σ, µ). Assume ϕr is strictly concave. Then
ur(σθ, τ

∗) < ur(σθ′ , τ
∗) implies νθ/νθ′ > µθ/µθ′ , that is, the effective measure assigns a higher

(relative) probability than µ to lower payoffs. This relative pessimism of the effective measure
reflects the value that an ambiguity-averse receiver places on some robustness with respect to
perturbations of µ. The more ambiguity averse the receiver, the stronger the relative pessimism.
Lemma 1 also makes clear that, in addition to depending on the receiver’s ambiguity aversion,
νθ is endogenous in the sense that it is a function of the profile (ur(σθ, τ

∗), µθ)θ∈Θ. Even local
changes in the ambiguous experiment, say only changing σθ to σ′

θ, might impact all νθ. These
endogenous pessimism properties stemming from ambiguity aversion distinguish our model from
a model with exogenously fixed heterogeneous priors, e.g., Alonso and Câmara (2016), Laclau and
Renou (2017) and Galperti (2019).

We now illustrate (see Figure 2) how ambiguous experiments can benefit an SEU sender in
the example.7 Consider an ambiguous experiment such that only two experiments σθ and σθ (see
the figure) get positive µ-weight. The experiment σθ is uninformative, while the experiment σθ

is fully informative. In the stress-test context, think of σθ as a more comprehensive test than σθ.
Observe that the interpretation of the message a2 is unambiguous: the receiver learns that the
state is ω2. The interpretation of the message a1 is, however, ambiguous: either it means that the
state is ω1 (if σθ generated the message) or it is uninformative (if σθ generated the message). The
associated payoff profiles are (us(σθ, τ

∗), ur(σθ, τ
∗)) = (1/2, 1/2) and (us(σθ, τ

∗), ur(σθ, τ
∗)) =

(3/2, 3/2). Thus, if µθ > 3/4, an ambiguity-neutral sender’s expected payoff, µθus(σθ, τ
∗) +

µθus(σθ, τ
∗), is strictly higher than the Bayesian persuasion payoff of 5/4. We now argue that

we can simultaneously choose µθ > 3/4 and guarantee obedience. First, observe that (1/4)σθ +

(3/4)σθ = σBP – we call such a configuration a splitting of σBP . Since the receiver is obedient
when facing σBP , by Lemma 1 the receiver is obedient when the effective weight νθ equals 3/4.

6We similarly model the sender’s preferences, substituting us and ϕs.
7Similar arguments remain valid as long as the sender is not too ambiguity averse. In particular, the sender contin-

ues to benefit even if they are as ambiguity averse as the receiver (and even a bit more so) assuming the sender is not
infinitely ambiguity averse. This demonstrates that the essential source of the sender’s benefit is not a less ambiguity
averse sender insuring a more ambiguity averse receiver.
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Figure 2: Construction of the ambiguous experiment

In fact, the receiver continues to be obedient for any effective weight weakly below 3/4. Second,
since 1/2 = ur(σθ, τ

∗) < ur(σθ, τ
∗) = 3/2, νθ is strictly lower than µθ (unless the receiver is

ambiguity neutral) – as mentioned above, this is a consequence of ambiguity aversion. Therefore,
since νθ < 3/4 when µθ = 3/4, there is room to increase µθ above 3/4 and maintain obedience
until the point where νθ equals 3/4.8 In the figure, the thick arrow moving along the sender’s
indirect utility curve indicates the movement of νθ towards 3/4 from below as µθ increases above
3/4 (along the thick arrow next to µθ). Thus, the ambiguous communication strategy allows the
sender to place more weight on the better experiment σθ while maintaining obedience, than would
be possible with unambiguous communication. This is how ambiguous communication provides
benefits.9

An important observation is that the experiments σθ and σθ are Pareto-ranked – both players

8The effective weight νθ is 3/4 when µθ =
3ϕ′

r(1/2)
3ϕ′

r(1/2)+ϕ′
r(3/2)

, with ϕ′
r the derivative of ϕr. Observe, moreover,

that if 3/4 < µθ <
3ϕ′

r(1/2)
3ϕ′

r(1/2)+ϕ′
r(3/2)

then the sender continues to benefit from the ambiguous communication even if
the receiver slightly misperceives the ambiguous experiment and/or the sender slightly misperceives ϕ′

r. Section 4.2
shows that this robustness holds quite generally.

9Though the particular formula for νθ is special to the smooth ambiguity model, many models of ambiguity averse
preferences (for example, everything in the very general class of Uncertainty Averse preferences, Cerreia-Vioglio
et al. (2011)) allow one to derive an effective measure that is similarly pessimistic and endogenous. The logic and
explanation of how, when the receiver is more ambiguity averse than an SEU receiver with beliefs (µθ)θ, ambiguous
communication can allow the sender to improve beyond Bayesian persuasion in this example applies to any of these
models.
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prefer σθ assuming action recommendations are followed. If they were not Pareto-ranked, then
ambiguity aversion would push the receiver’s effective measure in a direction that would hurt

rather than help the sender – for example, if the receiver thought σθ were better this would cause
νθ to exceeed µθ, leading the receiver to defect to the speculative action a3 when the message is
a1. In fact, we prove that the existence of a splitting of some (unambiguous) obedient experiment
into two Pareto-ranked experiments is necessary for ambiguous experiments to benefit the sender
over Bayesian persuasion (Theorem 3). The ambiguity generated using Pareto-ranked experiments
serves to beneficially misalign the (endogenous) effective beliefs of the sender and receiver. Any
ambiguous experiment delivering the sender more than Bayesian persuasion must assign positive
µθ-weight to some pair of experiments that are Pareto-ranked (Theorem 2). If, as here, an optimal
Bayesian persuasion experiment can be split in this way, this is sufficient for an ambiguity-neutral
sender (and the receiver too!) to benefit from ambiguous communication (Theorem 4 and Corollary
3). Furthermore, if an optimal Bayesian persuasion experiment violates a necessary condition for
efficiency from Arieli et al. (2024), then, for generic payoffs, it can be split in this way (implied by
Proposition 4).

We close this section with a brief discussion of a few closely related papers. A more extensive
discussion can be found in Section 7.3. Beauchêne et al. (2019) (BLL henceforth) were first to
study strategic use of ambiguous communication in persuasion (see also Cheng (2022)). The key
difference in assumptions between BLL and our paper is how the receiver best responds given
the sender’s ambiguous experiment. We assume the receiver chooses an ex-ante optimal message-
contingent strategy (see Remark 1 for an equivalent interim implementation). BLL assume the
receiver chooses, for each message, actions maximizing interim preferences formed using a belief
updating rule that leads to dynamic inconsistency with their ex-ante preference. Thus, one contri-
bution of our paper is establishing and analyzing benefits of ambiguous persuasion that do not stem
from receiver’s behavior that is suboptimal with respect to their given ex-ante preferences (see our
further discussion in Section 7.3, including the approach to consistency of Pahlke (2023)). The
bulk of BLL’s analysis imposes the infinitely ambiguity-averse extreme for both the sender and
receiver – a polar case of our model, though they show that their approach extends more broadly.
Cheng (2025) shows that all benefits from ambiguous communication identified by BLL in the
case of such a sender disappear if the receiver is assumed, as in our paper, to maximize their given
ex-ante preference. In light of Cheng (2025)’s result, it is essential that we allow at least the sender
to be less than infinitely ambiguity averse for benefits from ambiguous communications to possibly
exist. Our analysis allows for varying degrees of ambiguity aversion for both the sender and the
receiver.

The remainder of the paper is organized as follows. The next section presents the model and
two key preliminary results – a revelation principle and an incentive-compatibility lemma. Main

8



results are in Sections 3 through 6. Section 7 contains further discussion. The main proofs are
in the Appendix. Additional material and proofs of auxiliary results are in the Online Appendix
(Cheng et al., 2025).

2 The Persuasion Problem with Ambiguous Communication

We consider a persuasion game between a sender and a receiver, where the sender can choose
ambiguous experiments if they wish.

2.1 The Model

There is a finite set Ω of payoff-relevant states ω, with common prior probability distribution
p ∈ ∆(Ω). There is a finite set A of actions the receiver can choose from. If the receiver chooses
a ∈ A, the payoff to the sender (resp., receiver) is us(a, ω) ∈ R (resp., ur(a, ω) ∈ R), when the
state is ω. A statistical experiment is a finite set of messages M and a map σ from Ω to ∆(M),
and we write σ(m|ω) for the probability of m given ω.

We assume that the sender can condition their statistical experiment on the realization of a finite
partition of a source of ambiguity. A source of ambiguity is a continuum, A, of payoff-irrelevant
ambiguous states, α, along with a continuous ρ ∈ ∆(A) that represents the common view of
uncertainty over A that an ambiguity-neutral (SEU) player would use to compute their expected
utility.

Let B be any finite partition of A and define µ̃ ∈ ∆(B) by µ̃(b) ≡
∫
α∈b ρ(α)dα for each

b ∈ B. By richness of A and continuity of ρ, any finitely-supported distribution over experiments
can be induced by the choice of some finite partition B together with some mapping from B to
experiments. Hence, as justified by payoff-irrelevance of A, we model an ambiguous experiment

as a pair (σ, µ), where σ = (σθ)θ∈Θ is a tuple of experiments that we index using a finite set Θ and
µ = (µθ)θ∈Θ is any element of ∆(Θ).10 The sender may choose any ambiguous experiment – any
finite length tuple of experiments together with any probability distribution over the experiments
in that tuple.11 Henceforth, whenever we use the term “experiment” without a modifier, it refers
to a standard, unambiguous statistical experiment. Our model enlarges the sender’s strategy space
relative to the standard Bayesian persuasion model in the sense that any experiment σ can be

10It is without loss to assume that all statistical experiments in the tuple share the same message space.
11The sender chooses and commits to (σ, µ) before α (which determines θ) and ω are realized. Thus, just as in

standard Bayesian persuasion where the sender chooses and commits to σ before ω is realized, the sender’s choice
of a communication strategy is influenced by their beliefs about how uncertainty may unfold. Since A (and thus Θ)
is viewed as ambiguous, any ambiguity aversion on the part of the sender may influence their choice of (σ, µ). See
Section 7.1 for a discussion of how things would change under the alternative assumption that it is common knowledge
that the sender privately learns α before committing to an ambiguous experiment.
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viewed as an ambiguous experiment with a collection σ such that σθ = σ for all θ ∈ supp(µ)
(where supp(µ) denotes the support of µ). Of special interest in some of our later constructions are
binary ambiguous experiments, those in which σ is a pair of experiments.

We analyze the receiver’s behavior from the perspective of their ex-ante preferences, that is,
we assume that the receiver observes the sender’s choice of (σ, µ) and then chooses a strategy
τ : M → ∆(A) to maximize the receiver’s ex-ante preference.12 We further assume that τ is indeed
carried out after the message is observed. This follows from either assuming that the receiver can
commit to τ , or that the receiver is dynamically consistent.13 The main motivation for this ex-ante
perspective is that we want to study whether the sender benefits from ambiguous communication
even if the channel of dynamic inconsistency — the channel at work in nearly all previous literature
on mechanism or information design with ambiguity — is shut down. We refer the interested reader
to Section 7.3 for more discussion on this point.

We write ui(σ, τ) for the expected payoff of player i ∈ {s, r} when the experiment generating
the message m is σ and the receiver’s strategy is τ , that is,

ui(σ, τ) =
∑
ω,m,a

p(ω)σ(m|ω)τ(a|m)ui(a, ω). (1)

Note that the payoff-irrelevance of A implies that neither α nor θ appears in (1).
To isolate and clarify the role of intentional ambiguous communication, we work in a stylized

environment where ambiguity is not payoff-relevant unless it becomes so by strategic choice of
the sender to condition their communication on the realization of ambiguous events. Thus, while
the payoff-irrelevant events generating θ are viewed as ambiguous, the payoff-relevant events ω

and any randomization over messages induced by an experiment are viewed as unambiguous.14 It
follows that a message m is viewed as ambiguous by the sender and receiver only if the experi-
ments the sender chooses to associate with distinct possible θ’s generate m with different positive
likelihoods. These different likelihoods may lead the expected payoff ui(σθ, τ) to vary with θ and
thus itself be viewed as ambiguous.

How does such ambiguity enter the sender’s and receiver’s preferences? We assume, as in
the smooth ambiguity model (Klibanoff et al., 2005), that player i evaluates the strategy profile
((σ, µ), τ) as

Ui(σ, µ, τ) = ϕ−1
i

(∑
θ

µθϕi(ui(σθ, τ))

)
, (2)

where ϕi : R → R is a weakly concave and strictly increasing and differentiable function. An

12For compactness, this notation suppresses the allowed dependence of τ on (σ, µ).
13For a simple receiver’s updating rule that guarantees dynamic consistency, see Remark 1 in Section 2.2.2.
14Section 7.2 discusses extensions to environments with pre-existing ambiguity about ω.

10



affine ϕi(·) corresponds to ambiguity neutrality, in which case the preferences reduce to SEU with
belief µ. Greater concavity of ϕi(·) corresponds to greater ambiguity aversion. We do not consider
ambiguity loving behavior, as this would build-in a direct preference benefit from ambiguous com-
munication, while with ambiguity aversion, ambiguous communication can only be valuable if it
has a strategic benefit.

When the expected payoff ui(σθ, τ) varies with θ, an ambiguity-averse player i responds to
(σ, µ) as if they are ambiguity neutral and using an effective measure over Θ that is more pes-
simistic than µ. As mentioned in the introduction (see footnote 9), while (2) delivers a particularly
tractable formula for this effective measure (Section 2.2.2), the key qualitative properties of com-
parative pessimism and endogeneity would apply to the effective measure under many models of
ambiguity averse preferences.

The following maxmin expected utility (MEU) objective can be viewed as an appropriate limit
of (2) as ambiguity aversion tends to infinity (Klibanoff et al., 2005, Proposition 3):

UMEU
i (σ, µ, τ) = min

θ∈supp(µ)
ui(σθ, τ).

Such an MEU receiver together with an ambiguity-neutral sender is considered in Section SA.1 of
the Online Appendix (Cheng et al., 2025).15

Writing BR(σ, µ) for the set of best replies of the receiver (i.e., the maximizers of Ur(σ, µ, τ)

with respect to τ ), the sender’s problem is:

(P) =

{
max(σ,µ,τ) Us(σ, µ, τ),

subject to τ ∈ BR(σ, µ).

Observe that the sender’s Bayesian persuasion problem (Kamenica and Gentzkow, 2011) cor-
responds to the special case of our model where the sender is restricted to choosing an experiment:

(PBP ) =

{
max(σ,τ) us(σ, τ),

subject to τ ∈ br(σ),

where br(σ) denotes the set of best replies to σ, i.e., the maximizers of ur(σ, τ) with respect to τ .
Let uBP

s denote the value of (PBP ), i.e., the sender’s payoff at a solution to (PBP ).
Our analysis will focus on optimal persuasion with ambiguous communication (the solution

to (P)) and its properties, as well as when and how ambiguous communication may benefit the

15Key differences from our main analysis are that (1) the sender never needs more than binary ambiguous ex-
periments to approach their optimal payoff, and (2) the sender can approach their optimal payoff without providing
the receiver any benefits from communication, and this may lead the receiver’s payoff to drop discontinuously when
passing to the MEU limit.
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sender compared to the standard, unambiguous case of Bayesian persuasion.

Definition 1. Ambiguous communication benefits the sender if the value of (P) is strictly higher

than uBP
s .

We next present two preliminary results – a revelation principle and a characterization of in-
centive compatibility for ambiguous experiments – that play a central role in our analysis.

2.2 A Revelation Principle and Incentive Compatibility

2.2.1 A Revelation Principle

Definition 2. An ambiguous experiment (σ, µ) is canonical if M = A.

We write τ ∗ : A → ∆(A) for the receiver’s obedient strategy, that is, τ ∗(a|a) = 1 for all a. We
will refer to any canonical ambiguous experiment that induces such obedience as itself obedient.

Definition 3. A canonical ambiguous experiment (σ, µ) is obedient if τ ∗ ∈ BR(σ, µ).

We start with a preliminary observation: a revelation principle holds – for payoff purposes, it
is without loss of generality to restrict attention to canonical and obedient ambiguous experiments.

Proposition 1. For any ((σ, µ), τ) such that τ ∈ BR(σ, µ), there exists a canonical and obedient

ambiguous experiment (σ∗, µ) such that ui(σθ, τ) = ui(σ
∗
θ , τ

∗) for all i ∈ {s, r} and θ.

It is well-known that such a revelation principle holds in the persuasion game setting without
ambiguity. However, one might have thought of at least two reasons why the same might not be
true in our environment. First, an ambiguity averse receiver might strictly prefer a mixed strategy
to any pure strategy for hedging reasons in the face of ambiguity. How can the receiver’s desire to
mix be reconciled with the revelation principle, which states that it is without loss of generality to
have the receiver play the pure strategy τ ∗? The answer is that any mixing the receiver might desire
to do can always be emulated through the use of experiments that mix over action recommenda-
tions. It is the standard Bayesian persuasion assumption of sender’s commitment that guarantees
that this emulation is always possible. Second, dynamic inconsistency, generated by ambiguity
aversion together with assumptions on updating, is the main channel leading to the failure of such
a revelation principle in existing literature. As previously mentioned, we shut down this channel
by modeling the receiver as choosing a strategy τ to maximize Ur(σ, µ, τ), their ex-ante payoff
from ((σ, µ), τ), which imposes dynamic consistency on the receiver.

From here on, we restrict attention to canonical experiments, and represent incentive compat-
ibility via obedience. Given the prominent role obedient experiments play, understanding when
obedience holds is important. We next present a characterization of such incentive compatibility
for ambiguous experiments.
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2.2.2 Incentive Compatibility and Effective Measure

We present a central result linking the obedience of an ambiguous experiment to the obedience of
an unambiguous experiment that is derived from the ambiguous experiment. We repeatedly use
this result throughout the paper. To state the result, we need the following definition:

Definition 4. Given an ambiguous experiment (σ, µ), the receiver’s effective measure em(σ,µ) ∈
∆(Θ) is given by:

em
(σ,µ)
θ :=

µθϕ
′
r(ur(σθ, τ

∗))∑
θ̃ µθ̃ϕ

′
r(ur(σθ̃, τ

∗))
, for all θ ∈ Θ. (3)

The effective measure em(σ,µ) is a probability measure with the same support as µ. It is equal
to µ when the receiver is ambiguity neutral (i.e., ϕr is affine), and is more pessimistic than µ for
an ambiguity averse receiver (i.e., ϕr concave). Pessimism here means shifting weight toward θ

yielding lower expected receiver’s payoffs, i.e., if ur(σθ, τ
∗) < ur(σθ′ , τ

∗), then em
(σ,µ)
θ /em

(σ,µ)
θ′ >

µθ/µθ′ . Notice also that the effective measure of a given θ depends on the specification of the
ambiguous experiment for all θ ∈ supp(µ).

The next result states that τ ∗ is the receiver’s best response to the ambiguous experiment (σ, µ)
if, and only if, it is a best response to the experiment, σ∗, defined below as the convex combination
of the experiments in the collection σ with weights given by the receiver’s effective measure.

Lemma 1. The ambiguous experiment (σ, µ) is obedient if, and only if, the (unambiguous) exper-

iment σ∗ is obedient, where

σ∗ =
∑
θ

em
(σ,µ)
θ σθ.

Lemma 1 follows from the first-order conditions of the receiver’s maximization problem maxτ Ur(σ, µ, τ),
evaluated at τ ∗. Some intuition is that obedience will differ from the best response to the ex-
periment

∑
θ µθσθ in that it will be better hedged against uncertainty about the weights on the

experiments. In our introductory example, for instance,

2 = ur(σ, br(µσ + (1− µ)σ)) > ur(σ, τ
∗) = 3/2

> ur(σ, τ
∗) = 1/2

> ur(σ, br(µσ + (1− µ)σ)) = −1,

showing that the obedience strategy τ ∗ is hedged against the uncertainty about the weight µ more
than the strategy br(µσ + (1− µ)σ). Thus the relative pessimism of the effective measure reflects
the fact that an ambiguity averse receiver values such hedging.

Lemma 1 gives rise to the following interpretation of the receiver’s effective measure: It is an
“ambiguity-neutral measure supporting obedience” in the sense that if the receiver were ambiguity
neutral, the ambiguous experiment (σ, em(σ,µ)) would be obedient.
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Remark 1. These properties of the effective measure also give rise to an updating implementa-
tion of the receiver’s ex-ante optimality – a receiver who updates after observing a message using
Bayes’ rule with the effective measure in place of µ and adopts this update as their effective poste-
rior will be dynamically consistent.

Finally, for later reference, observe that, fixing σ, we can invert (3) to express µ as a function
of the effective measure it generates:

µθ =
em

(σ,µ)
θ /ϕ

′
r(ur(σθ, τ

∗))∑
θ̃ em

(σ,µ)

θ̃
/ϕ′

r(ur(σθ̃, τ
∗))

. (4)

3 Properties of Optimal Persuasion with Ambiguous Commu-
nication

Two experiments are Pareto-ranked if the sender and receiver agree on their strict ranking under
the assumption of obedience. As we shall see, Pareto-ranking and splittings into Pareto-ranked
experiments play a key role in optimal persuasion and, more generally, in the sender benefiting
from ambiguous communication.

Definition 5. Two experiments σ and σ are weakly Pareto-ranked if either the two inequalities

us(σ, τ
∗) ≥ us(σ, τ

∗) and ur(σ, τ
∗) ≥ ur(σ, τ

∗), (5)

hold or both reversed inequalities hold. They are Pareto-ranked if the same holds true with strict

inequalities.

A Pareto-ranked splitting of the experiment σ is a triple (σ, σ, λ) such that (i) λσ+(1−λ)σ =

σ, (ii) λ ∈ (0, 1), and (iii) (5) holds with strict inequalities, i.e., σ and σ are Pareto-ranked.

Our next result shows that these concepts are fundamental in describing properties of optimal
ambiguous communication. Part (i) of the result says that if two experiments in the support of µ
bracket the sender’s payoff from an optimal ambiguous experiment, they must be weakly Pareto-
ranked. The proof shows that if they were not, then improvement could be achieved by merging
the two experiments. Part (ii) shows there must not exist any opportunities to introduce additional
ambiguity through Pareto-ranked splittings that bracket the sender’s payoff from the ambiguous
experiment. The proof shows that any such splittings would be beneficial for the sender. Unlike
Part (i), Part (ii) requires the sender to be ambiguity neutral. However, Theorem A.2 in the Ap-
pendix shows that a similar result holds whenever the sender is not too ambiguity averse compared
to the receiver.
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Theorem 1. Suppose (σ, µ) is optimal (i.e., is a solution to (P)), and that ϕr is strictly concave.16

Then

(i) for all θ, θ′ ∈ supp(µ) such that us(σθ, τ
∗) ≥ Us(σ, µ, τ

∗) ≥ us(σθ′ , τ
∗) with at least one

inequality strict, σθ and σθ′ are weakly Pareto-ranked,

and,

(ii) if ϕs is affine, then for all θ ∈ supp(µ), there does not exist a Pareto-ranked splitting of σθ,

(σ, σ, λ), such that us(σ, τ
∗) ≥ Us(σ, µ, τ

∗) ≥ us(σ, τ
∗).

To gain intuition for part (i), first observe that if such σθ and σθ′ are not weakly Pareto-ranked,
then the receiver must get a strictly higher expected payoff from σθ′ than from σθ, while the reverse
is true for the sender. Ambiguity aversion then implies that the receiver’s effective measure places
more weight on σθ relative to σθ′ than the ambiguity neutral weights do, i.e., em(σ,µ)

θ /em
(σ,µ)
θ′ >

µθ/µθ′ . If σθ and σθ′ are the only two experiments in the support of µ, the sender can merge them
into the (unambiguous) experiment em(σ,µ)

θ σθ + em
(σ,µ)
θ′ σθ′ . By construction, the receiver would

continue to be obedient, and the sender would strictly benefit from this merging – a profitable
deviation. When σθ and σθ′ are not the only two experiments in the support of µ, however, this is not
the complete story as this merging may also impact the weighting of the merged experiment relative
to the other experiments. Part of the additional insight of the proof is that when us(σθ, τ

∗) ≥
Us(σ, µ, τ

∗) ≥ us(σθ′ , τ
∗) holds, this impact is at least weakly beneficial to the sender. The

intuition for part (ii) is similar.
In Theorem 1, the conditions refer to pairs of experiments for which the sender’s payoffs

bracket Us(σ, µ, τ
∗). Intuition for why similar conclusions may not apply when the pairs involved

in the Pareto-ranking or the Pareto-ranked splitting lie on the same side of Us(σ, µ, τ
∗) is related to

how the receiver’s ambiguity aversion, as reflected in properties of ϕr, connects µ with the effective
measure em(σ,µ) via (3). In particular, when there are more than two experiments in σ, splitting
or merging experiments on the same side of Us(σ, µ, τ

∗) may shift their combined weights in the
effective measure relative to the other experiments in a manner unfavorable to the sender. In the
Appendix, we show that concavity (resp. convexity) of 1/ϕ′

r is sufficient to extend the conclusions
to pairs of experiments on a particular side of Us(σ, µ, τ

∗), and assuming linearity of 1/ϕ′
r leads

to the following simpler necessary conditions for optimal persuasion:

Proposition 2. Suppose (σ, µ) is a solution to (P), and

ϕr(x) = c ln(ax+ b) + d (6)
16As the proof in the Appendix makes clear, the only role of strict concavity of ϕr is to simplify the statement of

the theorem. Without it, one needs to add conditions checking if ϕ′
r(ur(σθ, τ

∗)) ̸= ϕ′
r(ur(σθ′ , τ∗)) to each part of the

theorem.
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for some a, b, c, d ∈ R where a, c > 0 and ax+b > 0 for all x ∈ [mina,ω ur(a, ω),maxa,ω ur(a, ω)].

Then, all experiments are weakly Pareto-ranked, that is, for all θ, θ′ ∈ supp(µ), σθ and σθ′ are

weakly Pareto-ranked.

If, in addition, the sender is ambiguity neutral, no Pareto-ranked splitting of σθ exists for any

θ ∈ supp(µ).

Note that (6) may be interpreted as constant relative ambiguity aversion (see Klibanoff et al.
(2005)). The result that all experiments used must be weakly Pareto-ranked is reminiscent of a key
Pareto-ranking result (Rayo and Segal, 2010, p. 959, Lemma 2) in an entirely different persuasion
setting (one in which ambiguity plays no role). The more general results of our Theorem 1 have
no obvious analogue in the setting of Rayo and Segal (2010).

We now solve our introductory example for a ϕr satisfying (6):

Example 1 (Introductory Example Continued). Suppose ϕr(x) = ln(x+ 5) and ϕs(x) = x. Then

a sender’s optimal persuasion strategy is the ((σθ, σθ), µ) described in Figure 2 with µθ = 39/50.

The payoffs from this optimal persuasion are as follows:

Us((σθ, σθ), µ, τ
∗) = 39/50× 3/2 + 11/50× 1/2 = 1.28,

Ur((σθ, σθ), µ, τ
∗) = e(39/50 ln(13/2)+11/50 ln(11/2)) − 5 ≈ 1.265.

Thus both the sender and receiver do better than the payoff of 5/4 they would each obtain under

Bayesian persuasion.

So far, the analysis was devoted to properties of optimal communication strategies when am-
biguous experiments are allowed. However, it does not directly tell us whether the sender strictly
benefits from introducing ambiguity into their communication. We now turn to this issue, which
we view as a primary focus of the paper.

4 When Does Ambiguous Communication Benefit The Sender?

4.1 Necessary Conditions for Ambiguity to Benefit The Sender

We show that Pareto-ranked experiments continue to be key in determining whether ambiguous
communication is better for the sender than unambiguous communication. The following theorem
shows having Pareto-ranked experiments in the collection (in particular, better and worse ones
having sender’s expected payoffs bracketing uBP

s ) is necessary for an ambiguous experiment to
benefit the sender.
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Theorem 2. If an obedient ambiguous experiment (σ, µ) benefits the sender, then there exist θ, θ′ ∈
supp(µ) such that σθ and σθ′ are Pareto-ranked, with us(σθ, τ

∗) > uBP
s ≥ us(σθ′ , τ

∗).

Comparing with part (i) of Theorem 1, we see that while optimal persuasion requires weak

Pareto-ranking of experiments that bracket the sender’s payoff from that ambiguous experiment,
Theorem 2 says that any improvement over Bayesian persuasion requires some Pareto-ranked ex-
periments (and thus strictly ranked) bracketing uBP

s for the sender.
We next present two equivalent sets of necessary conditions for ambiguity to benefit the sender,

and show that these conditions imply that ambiguous communication can never benefit the sender
when the receiver has only two available actions – a common assumption in many examples and
applications in the literature. Whereas Theorem 2 described a necessary property of any sender’s
strategy that improves on Bayesian persuasion, these next conditions relate the possibility of am-
biguity benefiting the sender in a given persuasion game to the existence of Pareto-ranked experi-
ments with certain properties.

Theorem 3. Ambiguous communication benefits the sender only if ϕr is not affine and there exists

a Pareto-ranked splitting, (σ, σ, λ), of an obedient experiment σ̂ such that us(σ, τ
∗) > uBP

s .

Example 2 (Introductory Example Continued). For the collection σ = (σθ, σθ) constructed in Fig-

ure 2 of the introductory example, (σθ, σθ,
3
4
) is a Pareto-ranked splitting of σBP and us(σθ, τ

∗) >

uBP
s . Thus, for this example, the existence required in Theorem 3 is satisfied for σ̂ = σBP .

Remark 2 (Not necessary for σ̂ to be an optimal Bayesian persuasion experiment). The reader
might wonder if a stronger version of the theorem that requires σ̂ to be an optimal Bayesian per-
suasion experiment holds. This is false. There are examples in which the sender benefits from
ambiguous communication even though no Pareto-ranked splitting of any optimal Bayesian per-
suasion experiment exists (as is true, for instance, whenever all such experiments are efficient). In
such cases, it is splittings of some other obedient experiment that generate the gains over Bayesian
persuasion for the sender.

The conditions in Theorem 3 are deceptively powerful: From these conditions alone, strict
benefit from ambiguity can be ruled out for a simple yet important class of problems – those in
which the receiver has a binary action space.

Corollary 1. If the receiver has only two actions, the sender cannot benefit from ambiguous com-

munication.

An important step in the proofs of Theorem 3 and Corollary 1 is showing that, when ϕr is not
affine, the conditions in Theorem 3 are equivalent to the existence of Pareto-ranked experiments,
σ and σ∗ such that: (i) supp σ(·|ω) = supp σ∗(·|ω) for all ω, (ii) us(σ, τ

∗) > uBP
s , and (iii) τ ∗ ∈
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br(σ∗) \ br(σ). The argument that this formulation of the conditions are necessary is constructive,
and the effective measure plays a key role. Suppose that there exists a solution (σ∗, µ∗) to the
sender’s program (P) that benefits the sender. Construct σ and σ∗ by letting σ =

∑
θ µ

∗
θσ

∗
θ and

σ∗ =
∑

θ em
(σ∗,µ∗)
θ σ∗

θ .
The intuition for Corollary 1 is as follows. From (iii), above, we have that part of a necessary

condition for ambiguity helping the sender is the existence of an experiment σ that strictly improves
the receiver’s expected payoff compared to some other experiment σ∗, with the added property that
obedience of σ is not optimal, i.e., τ ∗ /∈ br(σ). Intuitively, such an improvement is possible only
when σ is more informative for the receiver and the benefit of this extra information outweighs the
cost of not best responding. When there are only two actions, taking advantage of extra information
requires best responding. To see this, note that not best responding implies either taking the same
action always (and thus ignoring any information) or always doing the opposite of what is optimal
for the receiver (which hurts more when there is more information). In contrast, when there are
three or more actions, it becomes possible to have some beneficial responsiveness to information
without going all the way to best responding. As we saw in the introductory example, this indeed
can leave scope for possible improvements.

4.2 Robust Benefits

So far, we have assumed that if the sender designs the ambiguous experiment (σ, µ), the receiver
perceives it correctly. More realistically, the receiver might have a somewhat different perception
of the experiment than the one the sender intends to convey. After all, conveying the exact speci-
fications of an experiment is a complex task, let alone of an ambiguous one. Yet, we show that if
the sender benefits from ambiguous communication, they continue to benefit even if the receiver
somewhat misperceives the intended experiment.

Proposition 3. Suppose ambiguous communication benefits the sender and that the set of obe-

dient experiments has a non-empty interior. Then, there exists a non-empty open set of obedient

ambiguous experiments that benefit the sender.

A sketch of the argument (full details are in Section SA.4 of the Online Appendix (Cheng et al.,
2025)) is to show the persuasion problem is sufficiently continuous to guarantee the existence of
an open set of obedient ambiguous experiments that benefit the sender. In fact, this continues to be
true even under small perturbations of ϕr, so that the existence of benefits does not rest on exact
knowledge of the receiver’s ambiguity aversion.

Corollary 2. Suppose ambiguous communication benefits the sender and that the set of obedient

experiments has a non-empty interior. Then, there exists an ambiguous experiment that benefits

the sender, and continues to do so under small perturbations of ϕr.
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5 Benefits from Binary Ambiguous Communication

This section restricts attention to binary ambiguous experiments. This restriction is not without
loss of generality because there are examples in which the sender benefitting from ambiguous
communication requires ambiguous experiments with σ containing more than two distinct experi-
ments (see Section SA.2 in the Online Appendix (Cheng et al., 2025)). Nonetheless, this restriction
allows us to derive sufficient conditions for the sender to benefit from ambiguous communication
and how these conditions vary with the extent of the sender’s and/or receiver’s ambiguity aversion.
It also allows us to see such ambiguous communication may also improve the receiver’s payoff.

If a binary ambiguous experiment benefits the sender compared to Bayesian persuasion, it
follows from Theorem 2 that the experiments must be Pareto-ranked. We therefore focus on Pareto-
ranked binary ambiguous experiments in what follows.

The next theorem, Theorem 4, provides necessary and sufficient conditions for a binary am-
biguous experiment based on a Pareto-ranked splitting of any obedient experiment σ∗ to strictly
improve the sender’s payoff compared to σ∗. Additionally, it provides necessary and sufficient
conditions for such an experiment to strictly improve the receiver’s payoff compared to σ∗. We
later apply the theorem to the case in which us(σ

∗, τ ∗) = uBP
s , thereby obtaining sufficient con-

ditions for the sender to benefit from ambiguous communication (see Corollary 3). Proposition 4
provides conditions on the primitives sufficient for existence of a Pareto-ranked splitting of a given
experiment and relates them to conditions on inefficiency of Bayesian persuasion.

The theorem uses the following notion of probability premium.

Definition 6. Given ϕ, u, and experiments σ and σ such that u(σ, τ ∗) > u(σ, τ ∗), the ((σ, σ), λ)-
probability premium required to compensate for replacing the unambiguous experiment σ∗ :=

λσ + (1− λ)σ by the ambiguous experiment ((σ, σ), λ), assuming obedience, is:

ρϕ,u((σ, σ), λ) :=
ϕ(u(σ∗, τ ∗))− λϕ(u(σ, τ ∗))− (1− λ)ϕ(u(σ, τ ∗))

ϕ(u(σ, τ ∗))− ϕ(u(σ, τ ∗))
.

The probability premium ρϕ,u((σ, σ), λ) is exactly the ϕ-payoff difference between σ∗ and
the ambiguous experiment ((σ, σ), λ), normalized to lie in [0, 1]. This premium is non-negative
under ambiguity aversion, and is zero under ambiguity neutrality. Similar notions of probability
premium in the context of risk go back to at least Pratt (1964) (see Eeckhoudt and Laeven (2015)
for a graphical representation of Pratt’s concept).

Thus, if we let
µσ = λ+ ρϕ,u((σ, σ), λ) ∈ [0, 1],
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be the probability of σ, then

U((σ, σ), µ, τ ∗) = ϕ−1
(
(λ+ ρϕ,u((σ, σ), λ))ϕ(u(σ, τ ∗)) + (1− λ− ρϕ,u((σ, σ), λ)ϕ(u(σ, τ ∗))

)
= ϕ−1

(
ϕ(u(σ∗, τ ∗))

)
= u(σ∗, τ ∗),

meaning that the premium ρϕ,u((σ, σ), λ) is exactly the increase in µσ above λ needed to make the
player indifferent between the ambiguous experiment ((σ, σ), µ) and σ∗. Thus, assuming obedi-
ence, this premium is the smallest increase in the µ-probability of the higher payoff experiment
required to compensate for exposure to the ambiguous experiment:

Lemma 2. Let σ and σ be experiments such that ui(σ, τ
∗) > ui(σ, τ

∗). For all µσ, λ ∈ [0, 1],

Ui((σ, σ), µ, τ
∗) > ui(λσ+(1−λ)σ, τ ∗) if, and only if, player i’s ((σ, σ), λ)-probability premium

is strictly less than µσ − λ.

As a consequence, we have the following result:

Theorem 4. Let σ∗ be an obedient experiment. Suppose that (σ, σ, λ) is a Pareto-ranked splitting

of σ∗ satisfying us(σ, τ
∗) > us(σ, τ

∗). The binary ambiguous experiment (σ, µ), with σ = (σ, σ)

and

µσ =
λϕ′

r(ur(σ, τ
∗))

λϕ′
r(ur(σ, τ ∗)) + (1− λ)ϕ′

r(ur(σ, τ ∗))
, (7)

satisfies the following properties:

(i) (σ, µ) is obedient,

(ii) Ur(σ, µ, τ
∗) > ur(σ

∗, τ ∗) if, and only if, µσ > λ,

(iii) Us(σ, µ, τ
∗) > us(σ

∗, τ ∗) if, and only if, the sender’s ((σ, σ), λ)-probability premium is

strictly less than µσ − λ.

Furthermore, the sender’s ((σ, σ), λ)-probability premium is increasing in the sender’s ambiguity

aversion, and µσ is increasing in the receiver’s ambiguity aversion.

That a µ satisfying (7) ensures that the obedience of σ∗ extends to the binary ambiguous exper-
iment (σ, µ) as in (i) is a straightforward consequence of Lemma 1. The necessary and sufficient
conditions in (ii) for the receiver to be better off when the sender communicates ambiguously using
(σ, µ) rather than unambiguously using σ∗ require some elaboration. First, the condition µσ > λ

is equivalent to ϕ′
r(ur(σ, τ

∗)) > ϕ′
r(ur(σ, τ

∗)), i.e., the receiver is, within this range of payoffs,
not everywhere ambiguity neutral. In particular, this condition is always satisfied if ϕr is strictly
concave. Second, the condition µσ > λ can be shown to be equivalent to the receiver’s ((σ, σ), λ)-
probability premium being strictly less than µσ − λ, which, by Lemma 2, characterizes when the
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receiver is better off under (σ, µ) than under σ∗. The necessary and sufficient conditions in (iii) for
(σ, µ) to be better for the sender than σ∗ follow directly from Lemma 2. For an ambiguity neutral
sender, the probability premium is zero, and thus the condition in (iii) reduces to µσ > λ, as in (ii).
Thus, for an ambiguity neutral sender facing a strictly ambiguity averse receiver, the ambiguity
introduced in (σ, µ) improves on σ∗ for both sender and receiver.

The source of the economic gain from ambiguous communication, for both sender and receiver,
is the greater use, as measured by µσ − λ, of the Pareto-better experiment σ. This gain has to be
netted-off against the probability premium, which encapsulates the cost due to the player’s own
ambiguity aversion of the exposure to ambiguity from the ambiguous experiment. The fact that µσ

is constructed to respect obedience taking into account the receiver’s ambiguity aversion but not
the sender’s, is what explains why the condition for this net gain to be positive can be simplified
for the receiver, but not the sender. Though our result (and proof) is global in the sense that they
apply to any Pareto-ranked splitting, intuition based on a local, envelope-theorem type argument
may be helpful.17 The idea is that the effects on the receiver of exposure to a small amount of
ambiguity around σ∗ are second-order because they are partially mitigated by the endogeneity of
the receiver’s best response which, because of ambiguity aversion, is partly designed to hedge
against ambiguity and thus reduce its negative effect. In contrast, the positive effects of increasing
µσ are first-order. See Section SA.3 of the Online Appendix (Cheng et al., 2025) for a formal
argument along these lines.

The comparative static about µσ in the final section of the theorem, when combined with (ii)
and (iii), shows that the payoff difference between the ambiguous experiment (σ, µ) and the unam-
biguous σ∗ satisfies single-crossing with respect to the receiver’s ambiguity aversion for both the
sender and receiver. Similarly, the comparative static in the sender’s probability premium, together
with (iii), shows that the negative of this payoff difference for the sender satisfies single-crossing
with respect to the sender’s ambiguity aversion.

Starting from any given obedient experiment, Theorem 4 provides necessary and sufficient
conditions for binary ambiguous communication to strictly improve the sender’s payoff, and thus
sufficient conditions for some ambiguous communication to do so. Thus, if we apply Theorem 4 to
the case where σ∗ is an optimal Bayesian persuasion, we obtain sufficient conditions for ambiguity
to benefit the sender:

Corollary 3. Let σBP be an obedient experiment such that us(σ
BP , τ ∗) = uBP

s . If there exists a

Pareto-ranked splitting of σBP , (σ, σ, λ), for which ρϕs,us((σ, σ), λ) < µσ − λ, with µσ given by

equation (7), then ambiguous communication benefits the sender.

Therefore, whenever a Pareto-ranked splitting of an optimal Bayesian persuasion experiment ex-

17We thank Dilip Abreu for suggesting this line of reasoning.
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ists, an ambiguity-neutral sender benefits from ambiguous communication as long as the receiver
is not completely ambiguity neutral over the payoff range of the splitting.18

Theorem 4 and Corollary 3 require the existence of a Pareto-ranked splitting. This existence is
not guaranteed. For instance, if the obedient experiment σ∗ induces an efficient payoff profile, no
Pareto-ranked splitting of it exists. The next result provides sufficient conditions on the primitives
for the existence of a Pareto-ranked splitting of σ∗.

Proposition 4. Given any experiment σ∗, fix, for each ω ∈ Ω, aω ∈ supp(σ∗(·|ω)) and consider

the following set of vectors,{[
p(ω)(us(a, ω)− us(aω, ω))

p(ω)(ur(a, ω)− ur(aω, ω))

]
: a ∈ supp(σ∗(·|ω)), ω ∈ Ω

}
. (8)

If this set spans R2, then there exists a Pareto-ranked splitting of σ∗.

Arieli et al. (2024) argue that Bayesian persuasion solutions are typically inefficient19 and pro-
vide a necessary condition,

∑
ω∈Ω | supp(σ(·|ω))| ≤ |Ω| + 1, for their efficiency. If a Bayesian

persuasion solution violates this condition, the spanning condition for (8) holds for a generic spec-
ification of the payoffs, ui(a, ω), implying, by Corollary 3, that both the receiver and an ambiguity-
neutral sender benefit from ambiguous communication.

Remark 3 (Non-necessity). That neither the spanning condition nor violation of the Arieli et al.
(2024) condition are necessary for the existence of a Pareto-ranked splitting can be seen from our
introductory example. For σ∗ = σBP , the example satisfies neither condition but there are, as
depicted in Figure 2, Pareto-ranked splittings of σBP .

While the optimal persuasion does depend on ϕr and ϕs, i.e., the ambiguity attitudes, we next
show that the possibility of strict improvement for the sender from using binary ambiguous exper-
iments is robust in several respects. First, the same ambiguous experiment remains beneficial to
any less ambiguity averse sender. Second, it is robust to the sender underestimating the extent of
ambiguity aversion of the receiver. In other words, if an improvement is possible when facing a
given receiver, it is also possible when facing a more ambiguity-averse receiver. While we show
that the same collection σ can be used to generate the improvement for all more ambiguity-averse
receivers, in general, the µ guaranteeing improvement may need to change. Part (iii) of the re-
sult shows that adding the requirement that σ is obedient allows a stronger robustness: the same
µ that generates an improvement for the sender when facing a receiver with ϕr also generates an
improvement when facing any more ambiguity averse receiver (more concave ϕr).

18Recall from Remark 2 that existence of a Pareto-ranked splitting of σBP is not necessary to benefit.
19Though Ichihashi (2019) proves they are always efficient when the receiver has only two actions.

22



Theorem 5. Suppose there exist a σ = (σ, σ) and a non-degenerate µ such that (σ, µ) is obedient

and benefits the sender (compared to uBP
s ). Then:

(i) (σ, µ) also benefits all less ambiguity averse senders, and

(ii) for any more ambiguity averse receiver, there exists some µ̃ such that (σ, µ̃) benefits the

sender (and all less ambiguity averse senders), and

(iii) if σ is obedient, then µ̃ in (ii) can be set equal to µ.

6 A Concavification-like Characterization

In this section, we present a concavification-like characterization of optimal persuasion with am-
biguous communication as well as a characterization of when the sender can strictly benefit from
communicating ambiguously rather than unambiguously. We stress that the concavification-like
characterization is not immediate from the one for Bayesian persuasion of Kamenica and Gentzkow
(2011). A key complication is the non-separability across recommendations in determining obe-
dience (coming from the appearance of the ur(σθ, τ

∗) terms in the effective measure formula (3)),
which is a consequence of ambiguity aversion.

6.1 A Concavification-like Characterization of Optimal Persuasion with Am-
biguous Communication

Let Σ denote the set of all experiments and Σ∗ ⊆ Σ the set of obedient experiments (i.e., Σ∗ :=

{σ ∈ Σ : τ ∗ ∈ br(σ)}). Notice that both Σ and Σ∗ are non-empty convex sets and can be embedded
into an |Ω| × (|A| − 1)-dimensional Euclidean space since an experiment specifies, for each state
ω ∈ Ω, a probability distribution over actions in A.

For each scalar u ∈ R, define the function Φu : Σ → R by

Φu(σ) :=
ϕs(us(σ, τ

∗))− ϕs(u)

ϕ′
r(ur(σ, τ ∗))

,

and consider the following maximization problem:

(Φ∗(u)) :=

 max
(λθ,σθ)θ∈Θ

∑
θ∈Θ λθΦu(σθ),

subject to:
∑

θ∈Θ λθσθ ∈ Σ∗,
∑

θ∈Θ λθ = 1, λθ ≥ 0, σθ ∈ Σ,∀θ ∈ Θ.

Theorem 6 states that the value of the optimal ambiguous persuasion program (P) is the unique
utility level u such that the value of the program (Φ∗(u)) is equal to zero. An optimal ambiguous
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persuasion strategy can be directly constructed from a solution to (Φ∗(u)), and there always exists
such an optimal strategy that makes use of no more than |Ω| × (|A| − 1) + 1 experiments.

Theorem 6. The value of (P) is u if, and only if, the value of (Φ∗(u)) is 0. Moreover, there exists

a solution (σ∗, µ∗) to (P) such that |supp (µ∗)| ≤ |Ω| × (|A| − 1) + 1.

To understand the relationship between the programs (P) and (Φ∗(u)), we first note that the
definition of Us, the fact that ϕ−1

s is strictly increasing, and the characterization of obedience in
Lemma 1, implies that the value of (P) is u if, and only if, the value of the program

(P̂) =

 max
(µθ,σθ)θ∈Θ

∑
θ∈Θ µθϕs(us(σθ, τ

∗)),

subject to:
∑

θ∈Θ em
(σ,µ)
θ σθ ∈ Σ∗, σθ ∈ Σ, ∀θ ∈ Θ,

is ϕs(u). Next, we can do a change of variables to maximize over the choice of effective measures
and experiments. Formally, if we write λθ for em(σ,µ)

θ , we can use (4) to substitute for µθ in terms
of λθ to yield:

(P̂) =

 max
(λθ,σθ)θ∈Θ

(∑
θ̃∈Θ

λθ̃

ϕ′
r(ur(σθ̃,τ

∗))

)−1∑
θ∈Θ

λθ

ϕ′
r(ur(σθ,τ∗))

ϕs(us(σθ, τ
∗)),

subject to:
∑

θ∈Θ λθσθ ∈ Σ∗,
∑

θ λθ = 1, λθ ≥ 0, σθ ∈ Σ,∀θ ∈ Θ.

Finally, observe that the normalization factor
(∑

θ̃∈Θ
λθ̃

ϕ′
r(ur(σθ̃,τ

∗))

)−1

makes the objective func-
tion highly non-linear in the maximizers (λθ, σθ)θ∈Θ. This is the motivation for subtracting off
ϕs(u). Indeed, if the value of (P̂) is ϕs(u), then

∑
θ∈Θ

λθ
ϕs(us(σθ, τ

∗))− ϕs(u)

ϕ′
r(ur(σθ̃, τ

∗))
= 0.

Conversely, if the value of (Φ∗(u)) is zero, then the value of (P̂) is ϕs(u). In effect, this reformu-
lation discards the messy (but strictly positive) normalization term without changing the solution.

The constraint
∑

θ∈Θ λθσθ ∈ Σ∗ makes clear that any solution is a splitting of an obedient
experiment, where the (λθ)θ∈Θ are the splitting weights. Importantly, (Φ∗(u)) is linear in these
splitting weights.

An implication of this linearity and Theorem 6 is to provide a concavification-like character-
ization (Aumann and Maschler, 1966, 1995) of the value of optimal persuasion with ambiguous
communication. Notice that concavification can be used to compute the value of program (Φ∗(u)):
For each u ∈ R, the program (Φ∗(u)) maximizes over convex combinations of points on the graph
of Φu, exactly the type of program that concavification characterizes. Specifically, for each u ∈ R,
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let cavΦu : Σ → R denote the concavification of Φu, that is,

cavΦu(σ) =

 max
(λθ,σθ)θ∈Θ

∑
θ∈Θ λθΦu(σθ),

subject to:
∑

θ∈Θ λθσθ = σ,
∑

θ λθ = 1, λθ ≥ 0, σθ ∈ Σ,∀θ ∈ Θ,

and the maximum over σ ∈ Σ∗ of cavΦu(σ) is the value of (Φ∗(u)). Observe that any such
maximum is achieved by a splitting of some obedient experiment, with the splitting weights
given by the effective measure. The following immediate corollary of Theorem 6 thus provides a
concavification-like characterization of the value of (P).

Corollary 4. The value of (P) is u if, and only if, maxσ∈Σ∗ cavΦu(σ) = 0.

Algorithmically, we can start with u0 = uBP
s , the payoff the sender obtains at a solution

to (PBP ), which is a lower bound on what the sender can achieve with ambiguous communi-
cation. If maxσ∈Σ∗ cavΦu0(σ) = 0, then we are done – the sender’s best payoff is uBP

s . If
maxσ∈Σ∗ cavΦu0(σ) > 0, we can increase u0 to u1 = maxa,ω us(a, ω) and check again. If
the solution is zero, we are done. If it is strictly negative, we can then consider the mid-point
u2 = (1/2)u0 + (1/2)u1. If maxσ∈Σ∗ cavΦu2(σ) > 0 (resp., < 0), we can then consider the
midpoint u3 = (1/2)u2 + (1/2)u1 (resp., u3 = (1/2)u0 + (1/2)u2) and repeat the maximization
problem, and so on.

We now relate this concavification-like result with the concavification characterization of Bayesian
persuasion in Kamenica and Gentzkow (2011) and its extension to allow for exogenously het-
erogeneous priors in Alonso and Câmara (2016). Both of these characterizations are formulated
in terms of splittings of priors, rather than, as in our characterization, splittings on the higher-
dimensional space of experiments. Suppose we try to write a program in which the sender max-
imizes with respect to splittings of the prior. Consider the simplest case of an ambiguity neu-
tral sender, i.e., ϕs linear. Any ambiguous experiment (µθ, σθ)θ∈Θ induces a distribution over
the receiver’s effective posteriors, that is, the posteriors that the “effective” experiment

∑
θ λθσθ

induces, where λθ = em
(σ,µ)
θ , the effective measure. Thus, the splitting the “effective” experi-

ment
∑

θ λθσθ induces may differ from the splitting the experiment
∑

θ µθσθ induces. The latter
is the one the ambiguity neutral sender uses to evaluate their payoff. To be amenable to a con-
cavification approach on this space, the sender’s objective function would therefore need to be,
as in Alonso and Câmara (2016), an increasing transformation of a function that is linear in the
distribution over the receiver’s effective posteriors. However, since the relationship between the
em

(σ,µ)
θ and (µθ, σθ)θ∈Θ is highly non-linear, the desired linearity is impossible. Economically,

this non-linearity has its source in the fact that ambiguity aversion causes the effective measure
to be proportional to the product (and thus, essentially, the covariance) of the ambiguity neutral
probability µθ and the marginal utility ϕ′

r(ur(σθ, τ
∗)) and the latter is non-separable across action
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recommendations. This explains how the non-separability across action recommendations in de-
termining obedience is what prevents adopting the strategies of Kamenica and Gentzkow (2011)
and Alonso and Câmara (2016) to establish our characterization.

6.2 When is Ambiguous Communication Better than Unambiguous?

A characterization of when ambiguous communication benefits the sender can be derived from our
characterization of optimal persuasion (Theorem 6 and Corollary 4). More specifically, Lemma
A.2 in the proof of Theorem 6 shows that ambiguous communication gives the sender a strictly
higher payoff than u if, and only if, the value of the program (Φ∗(u)) is strictly positive. By letting
u = uBP

s , we obtain the following.

Corollary 5. Ambiguous communication benefits the sender if, and only if, the value of (Φ∗(uBP
s ))

is strictly positive, or, equivalently, maxσ∈Σ∗ cavΦuBP
s

(σ) > 0.

7 Further Discussion

7.1 What if the sender knows the resolution of ambiguity in advance?

We have assumed that the sender commits to an ambiguous experiment (σ, µ) without knowing
in advance how this ambiguity will resolve. Here we consider the alternative assumption that the
sender privately observes the resolution of the source of ambiguity, α ∈ A, before committing to
(σ, µ) (and this is common knowledge). In this case, the “type α” sender privately knows that
the experiment generating the message will be σθ for the θ corresponding to the partition element
from A containing α. The receiver remains uncertain. We now argue that, in any perfect Bayesian
equilibria of this modified game, the sender does not benefit from ambiguous communication.20

First observe that the payoff of any privately informed sender must be at least uBP
s in any equilib-

rium. To see this, note that a sender can always offer an unambiguous optimal Bayesian persuasion
experiment and, thereby, guarantee a payoff of uBP

s .
One subtlety is that observing the sender’s choice of (σ, µ) may lead the receiver to update their

beliefs about the underlying state α (and thus θ) because senders informed of different α’s might
make different choices in equilibrium. Letting βσ ∈ ∆(Θ) denote this possibly updated belief
over Θ, rather than reacting to the ambiguous experiment (σ, µ), the receiver views the ambiguous

20A (pure) strategy for the sender maps from A to ambiguous experiments, whereas a (pure) strategy for the re-
ceiver is a mapping from ambiguous experiments and messages to actions. Upon observing the sender’s choice of an
ambiguous experiment, the receiver may revise their beliefs about the sender’s private information, as in cheap-talk
games. We assume that whenever the receiver faces an unambiguous experiment, the receiver’s action is optimal given
that experiment and the realized message, regardless of whether it is on or off-path.
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experiment as (σ, βσ). Thus, the receiver best responds to (σ, βσ), which is equivalent to best
responding to an unambiguous experiment that is a particular convex combination of the σθ for
θ ∈ supp(βσ). Denote this unambiguous experiment by

∑
θ ζ

(σ,βσ)
θ σθ. For all senders informed of

α̂ corresponding to some θ̂ ∈ Θ committing to (σ, µ), the sender’s expected payoff is

us

(
σθ̂, br

(∑
θ

ζ
(σ,βσ)
θ σθ

))
≥ uBP

s , (9)

where the inequality follows from the preceding observation that uBP
s is a lower bound on the

informed sender’s equilibrium payoff.
Since supp(ζ(σ,βσ)) ⊆ supp(βσ), we have

uBP
s ≥ us

(∑
θ

ζ
(σ,βσ)
θ σθ, br

(∑
θ

ζ
(σ,βσ)
θ σθ

))
=
∑
θ̂

ζ
(σ,βσ)

θ̂
us

(
σθ̂, br

(∑
θ

ζ
(σ,βσ)
θ σθ

))
≥ uBP

s ,

where the first inequality follows since uBP
s is the sender’s best expected payoff from any unam-

biguous experiment to which the receiver best responds, the equality from linearity of us in its
first argument, and the second inequality from (9). Therefore, to benefit from ambiguous com-
munication, the sender needs to use a source of ambiguity about which they do not have private
information at the time of committing to the ambiguous experiment.

7.2 Robustness to Pre-Existing Ambiguity about Payoff-Relevant States

To isolate the role of ambiguous communication, we have assumed throughout that there is no pre-
existing ambiguity about the payoff-relevant states. A full analysis of persuasion with ambiguous
communication given arbitrary pre-existing ambiguity about payoff-relevant states is beyond the
scope of this paper and is an interesting topic for future research. Nonetheless, many of the results
and concepts emphasized in this paper remain relevant when there is pre-existing ambiguity. Here
we establish (Theorem 7) the continued role of Pareto-ranked splittings of obedient experiments
in generating benefits from ambiguous communication even under pre-existing ambiguity. Addi-
tionally, the conditions under which a sender benefits from ambiguous communication are robust
to the introduction of a small amount of pre-existing ambiguity (Theorem 8).

In the context of our model, pre-existing ambiguity over the payoff-relevant state space Ω

can be represented by a common subjective distribution over priors η ∈ ∆(∆(Ω)). Denote by
ui(p, σ, τ

∗) the obvious extension of ui(σ, τ
∗) to allow for different priors p ∈ supp(η). Theorem

7 establishes the benefit of Pareto-ranked splittings of obedient experiments where both obedience
and Pareto ranking are satisfied for each p ∈ supp(η) rather than simply the unique p as in the rest
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of the paper.

Theorem 7. Let σ∗ be obedient under all p ∈ supp(η). Suppose that ϕr is strictly concave and

(σ, σ, λ) is a Pareto-ranked splitting of σ∗ satisfying us(p, σ, τ
∗) > us(p, σ, τ

∗) for all p ∈ supp(η)

and σ is obedient under all p ∈ supp(η). Then the binary ambiguous experiment (σ, µ) with

σ = (σ, σ) and µσ given by

µσ = min
p∈supp(η)

λϕ′
r(ur(p, σ, τ

∗))

λϕ′
r(ur(p, σ, τ ∗)) + (1− λ)ϕ′

r(ur(p, σ, τ ∗))
> λ, (10)

is obedient and an ambiguity neutral sender does strictly better using (σ, µ) than using σ∗.

Theorem 8. Suppose an ambiguity neutral sender benefits from ambiguous communication when

the prior is p ∈ ∆(Ω) and that the set of distributions over states and actions for which obedi-

ence is a best response for the receiver has a non-empty interior. Then, the sender continues to

benefit from ambiguous communication under any small enough pre-existing ambiguity, η, around

p. Specifically, there exists δ > 0 such that the sender benefits from ambiguous communication

whenever E[η] = p and supp(η) ⊆ {q ∈ ∆(Ω) : ∥q − p∥ < δ}.

For both theorems, similar results continue to hold as long as the sender is not too ambiguity
averse.

7.3 Related Literature

In addition to the papers cited in the introduction, the following are also at the intersection of
Bayesian persuasion (BP) and ambiguity. Kosterina (2022) studies BP when an MEU sender is
ambiguous about the receiver’s prior, while in Dworczak and Pavan (2022) an MEU sender (who
also has a preference for selecting among MEU-optimal strategies those that perform best under
a baseline conjecture) is ambiguous about the exogenous information a receiver might learn.21

Nikzad (2021) studies BP when the receiver is MEU and has ambiguity about the prior over states.
Hedlund et al. (2020) studies BP in problems with two states and two actions, when the receiver has
α-MEU preferences (Ghirardato et al., 2004) and considers an interval of priors and the sender has
state-independent preferences over the action taken by the agent and is ambiguity neutral. In all of
these papers, the sender is limited to standard, unambiguous experiments, and thus any ambiguity
is exogenous. This stands in contrast to the endogeneity of ambiguity in our setting, where it
becomes payoff-relevant only through the intentional communication choices of the sender.

Kellner and Le Quement (2018) study cheap talk communication assuming that the receiver
has MEU preferences and the sender can choose to communicate ambiguously. The key difference

21Dworczak and Pavan (2022)’s model is not restricted to single-receiver persuasion settings.
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between cheap talk and persuasion is the sender’s inability to commit to a communication strategy.
Their receiver uses the same dynamically inconsistent update rule as in BLL. They find that both
sender and receiver may benefit from the sender choosing to communicate ambiguously. Kellner
and Le Quement (2017) studies cheap talk communication with purely exogenous ambiguity.

Papers studying mechanism design with ambiguity include Bose and Renou (2014), Wolitzky
(2016), Di Tillio et al. (2017), Guo (2019) and Tang and Zhang (2021), among others. All but
Wolitzky (2016) consider ambiguity that arises intentionally through design of the mechanism.
Dütting et al. (2024) allow a principal to offer ambiguous contracts to an MEU agent and show how
the principal may benefit and that optimal contracts have a simple form. All gains from ambiguous
contracting disappear in their model if the agent can hedge against ambiguity by randomizing.

We conclude by returning to the discussion of BLL begun in the introduction. Broadly speak-
ing, the gains we identify work through key properties, such as Pareto-ranking of (at least some)
experiments in the collection σ chosen by the sender. Such properties contrast sharply with the
“synonym” constructions emphasized in BLL that lead to collections in which each experiment
yields the same expected payoff to the sender. BLL and our approach also lead to different out-
comes. For example, our Corollary 1 shows that ambiguous communication never benefits the
sender when the receiver has only two actions. In contrast, BLL find gains from ambiguous com-
munication in such cases, including their main example. Conversely, there are examples in which
there is no benefit for the sender according to BLL’s approach (even when extended to include
sender preferences less extremely ambiguity averse than UMEU

s ), in which the sender benefits
from ambiguous communication in our approach.

As previously mentioned, the benefits from ambiguous communication in BLL involve in an
essential way the receiver behaving suboptimally with respect to their ex-ante preferences as spec-
ified by BLL. Pahlke (2023) uses constructions based on rectangularity (Epstein and Schneider,
2003) to construct alternative ex-ante MEU preferences (different from BLL and from UMEU

r ) that
are consistent with the receiver’s interim behavior in BLL. When there are gains in BLL from
ambiguous communication, some of the measures in Pahlke’s construction must reflect correlation
between Ω and which experiment from the ambiguous collection generates the messages. This is
the manifestation of the dynamic inconsistency in BLL within the dynamically consistent refor-
mulation of Pahlke (2023).22

22For discussion and approaches to dynamic consistency issues in decision-making under ambiguity more broadly
see e.g., Hanany and Klibanoff (2007, 2009) and Siniscalchi (2011). See Hanany et al. (2020) on dynamic games of
incomplete information with ambiguity averse players.

29



Appendices

A Proofs of Main Results23

A.1 Proofs for Section 2

Proof of Proposition 1. Fix (σ, µ) and τ ∈ BR(σ, µ). Construct a canonical ambiguous exper-
iment (σ∗, µ) as follows: For each θ, define σ∗

θ(a|ω) =
∑

m τ(a|m)σθ(m|ω), for all (a, ω), and
let σ∗ = (σ∗

θ)θ. For i ∈ {s, r}, ui(σθ, τ) =
∑

ω,a p(ω)ui(a, ω)
∑
m

τ(a|m)σθ(m|ω) = ui(σ
∗
θ , τ

∗).

Therefore Ui(σ
∗, µ, τ ∗) = Ui(σ, µ, τ), for i ∈ {s, r}.

Suppose (σ∗, µ) is not obedient. Then there exists δ : A → ∆(A) such that Ur(σ
∗, µ, τ ∗) <

Ur(σ
∗, µ, δ). Then, define τ ′(a|m) =

∑
a′ δ(a|a′)τ(a′|m) for all (a,m), and note that for all θ,

ur(σθ, τ
′) =

∑
ω,a

p(ω)ur(a, ω)
∑
a′

δ(a|a′)
∑
m

τ(a′|m)σθ(m|ω)

=
∑
ω,a,a′

p(ω)ur(a, ω)δ(a|a′)σ∗
θ(a

′|ω) = ur(σ
∗
θ , δ).

Thus, Ur(σ, µ, τ
′) = Ur(σ

∗, µ, δ) > Ur(σ
∗, µ, τ ∗) = Ur(σ, µ, τ), so τ /∈ BR(σ, µ).

Proof of Lemma 1. IF. Let (σ, µ) be an ambiguous experiment. We show that if τ ∗ ∈ br(σ∗),
where σ∗ =

∑
θ em

(σ,µ)
θ σθ, then τ ∗ ∈ BR(σ, µ). Since τ ∗ ∈ br(σ∗), for all b, a ∈ A,∑

ω

p(ω)σ∗(a|ω)ur(a, ω) ≥
∑
ω

p(ω)σ∗(a|ω)ur(b, ω). (A.1)

For any strategy τ , there exists δ ∈ R|A|×|A| such that τ = τ ∗ + δ, where δ satisfies the following:

∀a ̸= b ∈ A, δ(b|a) ≥ 0, δ(a|a) ≤ 0, and
∑
ã∈A

δ(ã|a) = 0 (A.2)

The concavity of ϕr implies that ϕr(Ur(σ, µ, τ)) is concave in τ . Hence, for all δ,

ϕr(Ur(σ, µ, τ
∗ + δ)) ≤ ϕr(Ur(σ, µ, τ

∗)) +
∑
b,a∈A

∂ϕr(Ur(σ, µ, τ))

∂τ(b|a)

∣∣∣∣
τ=τ∗

δ(b|a).

23Proofs for auxiliary results may be found in Section SA.4 of the Online Appendix (Cheng et al., 2025).
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For τ ∗ to be a solution to the receiver’s program, it suffices that for all δ satisfying (A.2),

∑
b,a∈A

∂ϕr(Ur(σ, µ, τ))

∂τ(b|a)

∣∣∣∣
τ=τ∗

δ(b|a) ≤ 0. (A.3)

To show (A.3) holds, note that ∂ϕr(Ur(σ,µ,τ))
∂τ(b|a)

∣∣∣
τ=τ∗

=
∑

θ̃ µθ̃ϕ
′
r(ur(σθ̃, τ

∗))
∑
ω

p(ω)σ∗(a|ω)ur(b, ω).

Then by (A.2), −δ(a|a) =
∑
b̸=a

δ(b|a), and we have:

∑
b,a∈A

∂ϕr(Ur(σ,µ,τ))
∂τ(b|a)

∣∣∣
τ=τ∗

δ(b|a)∑
θ̃ µθ̃ϕ

′
r(ur(σθ̃, τ

∗))
=
∑
b,a∈A

∑
ω

p(ω)σ∗(a|ω)ur(b, ω)δ(b|a)

=
∑
a∈A

∑
b̸=a

δ(b|a)

(∑
ω

p(ω)σ∗(a|ω)ur(b, ω)−
∑
ω

p(ω)σ∗(a|ω)ur(a, ω)

)
≤ 0,

where the last inequality follows from δ(b|a) ≥ 0 for all b ̸= a and (A.1). This implies (A.3) as∑
θ̃ µθ̃ϕ

′
r(ur(σθ̃, τ

∗)) > 0. Therefore, we have shown that τ ∗ ∈ BR(σ, µ).
ONLY IF. The proof is nearly identical to the if direction and left to the reader.

A.2 Proofs for Sections 3 and 6

The proofs in Section 3 make use of our concavification-like characterization of optimal persuasion
(Theorem 6) from Section 6. We therefore establish Theorem 6 first.

Proof of Theorem 6. First, we show that there is a unique u that solves Φ∗(u) = 0.

Lemma A.1. Φ∗(u) satisfies single-crossing, i.e., for any u > u′, if Φ∗(u) ≥ 0 then Φ∗(u′) > 0.

Thus, there exists a unique u ∈ R such that Φ∗(u) = 0.

Proof of Lemma A.1. Φ∗(u) ≥ 0 and ϕs, ϕr strictly increasing implies the existence of (λθ, σθ)θ∈Θ

such that
∑

θ∈Θ λθ
ϕs(us(σθ,τ

∗))
ϕ′
r(ur(σθ,τ∗))

≥
∑

θ∈Θ λθ
ϕs(u)

ϕ′
r(ur(σθ,τ∗))

>
∑

θ∈Θ λθ
ϕs(u′)

ϕ′
r(ur(σθ,τ∗))

, which implies
Φ∗(u′) > 0 for u′ < u. Therefore, there is at most one solution to Φ∗(u) = 0. Since ϕs is
continuous, Φu is continuous in (σ, u) and, thus, by Berge’s Maximum Theorem, Φ∗(u) is continu-
ous. Since Φ∗(u) < 0 for u > max{us(a, ω)} and Φ∗(u) > 0 for u < min{us(a, ω)}, there exists
u such that Φ∗(u) = 0.

By Proposition 1, we can rewrite (P) as

(P) =

{
max(σ,µ) Us(σ, µ, τ

∗),

subject to τ ∗ ∈ BR(σ, µ).
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We then show the conclusion using the following lemma.

Lemma A.2. For each u ∈ R, (P) > u if, and only if, Φ∗(u) > 0.

Proof of Lemma A.2. IF. Suppose there exists a solution (λθ, σθ)θ∈Θ such that Φ∗(u) > 0. Let
σ = (σθ)θ∈Θ and µ be defined by µθ :=

λθ/ϕ
′
r(ur(σθ,τ

∗))∑
j λj/ϕ′

r(ur(σθ′ ,τ
∗))

for each θ ∈ Θ. By construction, (σ, µ)

satisfies em(σ,µ)
θ = λθ and

∑
θ∈Θ λθσθ ∈ Σ∗. Lemma 1 implies τ ∗ ∈ BR(σ, µ). Thus, (P) > u

since Us(σ, µ, τ
∗) > u as

ϕs(Us(σ, µ, τ
∗))− ϕs(u) =

1∑
j∈I λj/ϕ′

r(ur(σθ′ , τ ∗))

∑
θ∈Θ

λθ
ϕs(us(σθ, τ

∗))− ϕs(u)

ϕ′
r(ur(σθ, τ ∗))

> 0,

ONLY IF. (P) > u implies there exists an obedient (σ, µ) such that Us(σ, µ, τ
∗) > u. Let

λθ = em
(σ,µ)
θ . Lemma 1 implies that

∑
θ λθσθ ∈ Σ∗. Thus, Φ∗(u) > 0 as

∑
θ λθΦu(σθ) =

(ϕs(Us(σ, µ, τ
∗))− ϕs(u))

∑
θ λθ/ϕ

′
r(ur(σθ, τ

∗)) > 0 since Us(σ, µ, τ
∗) > u.

We now complete the proof by showing that (P) = u if, and only if, Φ∗(u) = 0. Suppose
(P) = u. Then for all u′ < u, (P) > u′ and thus Φ∗(u′) > 0 by Lemma A.2. By Lemma A.1,
there exists a unique û such that Φ∗(û) = 0. If û > u, then Φ∗(u) > 0 by Lemma A.1, and thus
(P) > u by Lemma A.2, a contradiction. Thus, Φ∗(u) = 0.

For the other direction, suppose Φ∗(u) = 0. If (P) > u, then Lemma A.2 implies Φ∗(u) > 0,
a contradiction. If (P) < u, then there exists u′ < u such that (P) = u′. Then by the previous
direction, Φ∗(u′) = 0, contradicting Lemma A.1. Thus, (P) = u.

Recall that Σ is a convex subset of R|Ω|×(|A|−1). As a result, the graph of Φu is a subset
of R(|Ω|×(|A|−1)+1). Suppose that (P) = u. Then Φ∗(u) = 0. Let (λθ, σθ)θ∈Θ be such that∑

θ∈Θ λθΦu(σθ) = 0 and
∑

θ∈Θ λθσθ = σ∗ ∈ Σ∗. Thus, (σ∗, 0) is on the boundary of, and
thus an element of a supporting hyperplane of, the convex hull of the graph of Φu. The intersection
of this hyperplane and the set forms a face and thus has dimension at most |Ω|×(|A|−1). Extreme
points of the face are also extreme points of the convex hull of the graph of Φu. Any such extreme
point has the form (σ,Φu(σ)) for some σ ∈ Σ. By Caratheodory’s theorem applied to the face,
(σ∗, 0) can be written as a convex combination of at most (|Ω|×(|A|−1)+1) such extreme points.
Denote the coefficients in the convex combination and the experiments corresponding to these ex-
treme points by (λ̂θ̂, σ̂θ̂)θ̂∈Θ̂ with |Θ̂| ≤ (|Ω| × (|A| − 1) + 1). Thus, there exists a solution to (P)

with σ∗ = (σ̂θ̂)θ̂∈Θ̂ and µ∗ with supp(µ∗) ⊆ Θ̂ so that |supp(µ∗)| ≤ (|Ω| × (|A| − 1) + 1).

Proof of Theorem 1. Suppose (σ, µ) is obedient and ϕr is strictly concave. Let û := Us(σ, µ, τ
∗)

and λθ = em
(σ,µ)
θ for all θ. Then

∑
i λθ

ϕs(us(σθ,τ
∗))−ϕs(û)

ϕ′
r(ur(σθ,τ∗))

= 0. If there exists (λ̂θ, σ̂θ) such that∑
θ λ̂θ

ϕs(us(σ̂θ,τ
∗))−ϕs(û)

ϕ′
r(ur(σ̂θ,τ∗))

> 0, then the ambiguous experiment (σ̂, µ̂) with em
(σ̂,µ̂)
θ := λ̂θ will
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strictly improve upon (σ, µ). The existence of such (λ̂θ, σ̂θ) under the conditions in (i) and (ii)
of Theorem 1 follows from (i) and (ii) of the following Lemma (and its swapped version), respec-
tively. To state the lemma, we need the following definition.

Definition A.1. For any u ∈ R, let Σ+(u) = {σ ∈ Σ : us(σ, τ
∗) > u} and Σ−(u) = {σ ∈ Σ :

us(σ, τ
∗) ≤ u}.

Lemma A.3. Let (λθ, σθ)θ∈Θ be a solution to (Φ∗(u)). Then the following hold:

(i) For all θ and θ′ such that (σθ, σθ′) ∈ Σ+(u) × Σ−(u), if ϕ′
r(ur(σθ, τ

∗)) ̸= ϕ′
r(ur(σθ′ , τ

∗)),

then they are Pareto-ranked,

(ii) If ϕs is affine, then for all σθ, there does not exist a Pareto-ranked splitting, (σ, σ, λ) with

(σ, σ) ∈ Σ+(u)× Σ−(u) and ϕ′
r(ur(σ, τ

∗)) < ϕ′
r(ur(σ, τ

∗)).

A swapped version of Lemma A.3 with Σ+(u) and Σ−(u) defined by swapping the strict and
weak inequalities in Definition A.1 also holds, and the proof is identical.

Proof of Lemma A.3. Fix u ∈ R. Let (σθ, λθ)θ∈Θ be feasible for the maximization problem Φ∗(u).
To prove (i), suppose that there exists a pair (σθ, σθ′) with λθ > 0 and λθ′ > 0 and such

that there exists a λ ∈ (0, 1) for which, Φu(λσθ + (1 − λ)σθ′) > λΦu(σθ) + (1 − λ)Φu(σθ′).
Then, (σθ, λθ)θ∈Θ cannot be a solution to the maximization problem Φ∗(u). This can be seen from
the following construction of a strict improvement: If λθ

λ
≤ λθ′

1−λ
, then replacing σθ by the merged

experiment λσθ+(1−λ)σθ′ and replacing λθ by λ̂θ =
λθ

λ
and λθ′ by λ̂θ′ = λθ′−(1−λ)λθ

λ
yield such

an improvement. If instead λθ

λ
>

λθ′
1−λ

, then replacing σθ′ by the merged experiment λσθ+(1−λ)σθ′

and replacing λθ′ by λ̂θ′ =
λθ′
1−λ

and λθ by λ̂θ = λθ − λ
λθ′
1−λ

is such an improvement.
Towards a contradiction, suppose in the solution there exists (σθ, σθ′) ∈ Σ+(u) × Σ−(u) with

ϕ′
r(ur(σθ, τ

∗)) ̸= ϕ′
r(ur(σθ′ , τ

∗)) and they are not Pareto-ranked, i.e., us(σθ, τ
∗) > u ≥ us(σθ′ , τ

∗),
and ur(σθ, τ

∗) < ur(σθ′ , τ
∗). Then there exists λ ∈ (0, 1) such that ϕ′

r(ur(σθ, τ
∗)) > ϕ′

r(ur(λσθ +

(1−λ)σθ′), τ
∗)) (by differentiability of ϕr), and Φu(λσθ+(1−λ)σθ′) > λΦu(σθ)+(1−λ)Φu(σθ′).

To see the last point, notice that

Φu(λσθ + (1− λ)σθ′) =
ϕs(us(λσθ + (1− λ)σθ′ , τ

∗))− ϕs(u)

ϕ′
r(ur(λσθ + (1− λ)σθ′ , τ ∗))

≥ λ[ϕs(us(σθ, τ
∗))− ϕs(u)] + (1− λ)[ϕs(us(σθ′ , τ

∗))− ϕs(u)]

ϕ′
r(ur(λσθ + (1− λ)σθ′ , τ ∗))

=
λϕ′

r(ur(σθ, τ
∗))

ϕ′
r(ur(λσθ + (1− λ)σθ′ , τ ∗))

Φu(σθ) +
(1− λ)ϕ′

r(ur(σθ′ , τ
∗))

ϕ′
r(ur(λσθ + (1− λ)σθ′ , τ ∗))

Φu(σθ′)

> λΦu(σθ) + (1− λ)Φu(σθ′),
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where the first inequality follows from concavity of ϕs, and the second inequality follows from
concavity of ϕr and Φu(σθ) > 0 and Φu(σθ′) ≤ 0, and ϕ′

r(ur(σθ, τ
∗)) > ϕ′

r(ur(λσθ + (1 −
λ)σθ′ , τ

∗)).
To prove (ii), if there exist σθ satisfying λθ > 0 and two experiments σ and σ′ such that

σθ = λσ + (1 − λ)σ′ for some λ ∈ (0, 1) and Φu(λσ + (1 − λ)σ′) < λΦu(σ) + (1 − λ)Φu(σ
′),

then (σθ, λθ)θ∈Θ cannot be a solution to (Φ∗(u)). This follows by noting that splitting σθ into σ

with probability λλθ and σ′ with probability (1− λ)λθ′ induces a strict improvement.
Towards a contradiction, suppose there exists such a Pareto-ranked splitting (σ, σ, λ) with λσ+

(1− λ)σ ∈ Σ+(u) (the other case is symmetric), then we have

λΦu(σ) + (1− λ)Φu(σ)− Φu(λσ + (1− λ)σ)

=λ

(
ϕs(us(σ, τ

∗))− ϕs(u)

ϕ′
r(ur(σ, τ ∗))

− ϕs(us(λσ + (1− λ)σ, τ ∗))− ϕs(u)

ϕ′
r(ur(λσ + (1− λ)σ, τ ∗))

)
+ (1− λ)

(
ϕs(us(σ, τ

∗))− ϕs(u)

ϕ′
r(ur(σ, τ ∗))

− ϕs(us(λσ + (1− λ)σ, τ ∗))− ϕs(u)

ϕ′
r(ur(λσ + (1− λ)σ, τ ∗))

)
≥ λ

ϕ′
r(ur(σ, τ ∗))

(ϕs(us(σ, τ
∗))− ϕs(us(λσ + (1− λ)σ, τ ∗)))

+
1− λ

ϕ′
r(ur(λσ + (1− λ)σ, τ ∗))

(ϕs(us(σ, τ
∗))− ϕs(us(λσ + (1− λ)σ, τ ∗)))

≥ λ

ϕ′
r(ur(σ, τ ∗))

ϕ′
s(us(σ, τ

∗)) (us(σ, τ
∗)− λus(σ, τ

∗)− (1− λ)us(σ, τ
∗))

+
1− λ

ϕ′
r(ur(λσ + (1− λ)σ, τ ∗))

ϕ′
s(us(σ, τ

∗)) (us(σ, τ
∗)− λus(σ, τ

∗)− (1− λ)us(σ, τ
∗))

=λ(1− λ)(us(σ, τ
∗)− us(σ, τ

∗))

(
ϕ′
s(us(σ, τ

∗))

ϕ′
r(ur(σ, τ ∗))

− ϕ′
s(us(σ, τ

∗))

ϕ′
r(ur(λσ + (1− λ)σ, τ ∗))

)
> 0,

where the first inequality follows from us(λσ + (1 − λ)σ) > u ≥ us(σ, τ
∗), ϕ′

r(ur(σ, τ
∗)) ≤

ϕ′
r(ur(λσ + (1 − λ)σ, τ ∗)) ≤ ϕ′

r(ur(σ, τ
∗)), the second inequality follows from concavity of ϕs,

and the last inequality follows from linearity of ϕs.

Remark 4. From the proof of Lemma A.3 (ii), observe that linearity of ϕs can be relaxed to
ϕ′
s(us(σ,τ∗))

ϕ′
s(us(σ,τ∗))

> ϕ′
r(ur(σ,τ∗))

ϕ′
r(ur(σθ,τ∗))

, if σθ ∈ Σ+(u), and ϕ′
s(us(σ,τ∗))

ϕ′
s(us(σ,τ∗))

> ϕ′
r(ur(σθ,τ

∗))
ϕ′
r(ur(σ,τ∗))

, if σθ ∈ Σ−(u).

Proof of Proposition 2. Proposition 2 is implied by the following two auxiliary theorems that ex-
tend Lemma A.3. The proofs of these theorems are similar to that of Lemma A.3 and may be found
in the Online Appendix (Cheng et al., 2025).

Theorem A.1. Let (λθ, σθ)θ∈Θ be a solution to (Φ∗(u)). Then:
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(i) If 1/ϕ′
r is concave, then for all θ, θ′ such that (σθ, σθ′) ∈ Σ+(u) × Σ+(u), if us(σθ, τ

∗) ̸=
us(σθ′ , τ

∗) and ϕ′
r(ur(σθ, τ

∗)) ̸= ϕ′
r(ur(σθ′ , τ

∗)), they are Pareto-ranked.

(ii) If 1/ϕ′
r is convex, then for all θ, θ′ such that (σθ, σθ′) ∈ Σ−(u) × Σ−(u), if us(σθ, τ

∗) ̸=
us(σθ′ , τ

∗) and ϕ′
r(ur(σθ, τ

∗)) ̸= ϕ′
r(ur(σθ′ , τ

∗)), they are Pareto-ranked.

Theorem A.2. Let (λθ, σθ)θ∈Θ be a solution to (Φ∗(u)). Then:

(i) If 1/ϕ′
r is concave, then for all σθ, there does not exist a Pareto-ranked splitting, (σ, σ, λ)

with (σ, σ) ∈ Σ−(u)× Σ−(u), ϕ′
r(ur(σ, τ

∗)) < ϕ′
r(ur(σ, τ

∗)), and ϕ′
s(us(σ,τ∗))

ϕ′
s(us(σ,τ∗))

> ϕ′
r(ur(σ,τ∗))

ϕ′
r(ur(σ,τ∗))

.

(ii) If 1/ϕ′
r is convex, then for all σθ, there does not exist a Pareto-ranked splitting, (σ, σ, λ) with

(σ, σ) ∈ Σ+(u)× Σ+(u), ϕ′
r(ur(σ, τ

∗)) < ϕ′
r(ur(σ, τ

∗)), and ϕ′
s(us(σ,τ∗))

ϕ′
s(us(σ,τ∗))

> ϕ′
r(ur(σ,τ∗))

ϕ′
r(ur(σ,τ∗))

.

To prove Proposition 2, observe that when both ϕs and 1/ϕ′
r are linear all the conditions in

Theorem A.1 and Theorem A.2 (and their swapped versions) are satisfied.

A.3 Proofs for Section 4

Proof of Theorem 2. Suppose that Us(σ, µ, τ
∗) > uBP

s . Observe that Σ+(u
BP
s ) and Σ−(u

BP
s )

have non-empty intersections with the support of µ since, if Σ+(u
BP
s ) did not, then (σ, µ) could

not benefit the sender, while if Σ−(u
BP
s ) did not, then τ ∗ /∈ BR(σ, µ), contradicting obedi-

ence. Thus, there exists θ, θ′ ∈ supp(µ) such that σθ ∈ Σ+(u
BP
s ) and σθ′ ∈ Σ−(u

BP
s ). Define

σ∗ :=
∑

θ̂ em
(σ,µ)

θ̂
σθ̂. Then,

σ∗ =
∑

θ̂:σθ̂∈Σ+(uBP
s )

µθ̂ϕ
′
r(ur(σθ̂, τ

∗))∑
θ̃ µθ̃ϕ

′
r(ur(σθ̃, τ

∗))
σθ̂ +

∑
θ̂:σθ̂∈Σ−(uBP

s )

µθ̂ϕ
′
r(ur(σθ̂, τ

∗))∑
θ̃ µθ̃ϕ

′
r(ur(σθ̃, τ

∗))
σθ̂.

By Lemma 1, we have σ∗ is obedient. By definition of uBP
s , this implies

ϕs(us(σ
∗, τ ∗)) ≤ ϕs(u

BP
s ). (A.4)

Suppose that for all θ, θ′ ∈ supp(µ) such that σθ ∈ Σ+(u
BP
s ) and σθ′ ∈ Σ−(u

BP
s ), σθ and σθ′ are

not Pareto-ranked. This is equivalent to

ur(σθ, τ
∗) ≤ ur(σθ′ , τ

∗). (A.5)
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The remainder of the proof shows that this contradicts (A.4). From (A.5) and concavity of ϕr,
ϕ′
r(ur(σθ, τ

∗)) ≥ ϕ′
r(ur(σθ′ , τ

∗)). Observe that,

(ϕs(us(σ
∗, τ ∗))− ϕs(u

BP
s ))

∑
θ̃

µθ̃ϕ
′

r(ur(σθ̃, τ
∗))

≥
( ∑

θ̂:σθ̂∈Σ+(uBP
s )

µθ̂ϕ
′
r(ur(σθ̂, τ

∗))∑
θ̃ µθ̃ϕ

′
r(ur(σθ̃, τ

∗))
(ϕs(us(σθ̂))− ϕs(u

BP
s ))

+
∑

θ̂:σθ̂∈Σ−(uBP
s )

µθ̂ϕ
′
r(ur(σθ̂, τ

∗))∑
θ̃ µθ̃ϕ

′
r(ur(σθ̃, τ

∗))
(ϕs(us(σθ̂))− ϕs(u

BP
s )
)∑

θ̃

µθ̃ϕ
′

r(ur(σθ̃, τ
∗))

=
∑

θ̂:σθ̂∈Σ+(uBP
s )

µθ̂ϕ
′

r(ur(σθ, τ
∗))(ϕs(us(σθ̂, τ

∗))− ϕs(u
BP
s ))

+
∑

θ̂:σθ̂∈Σ−(uBP
s )

µθ̂ϕ
′

r(ur(σθ̂, τ
∗))(ϕs(us(σθ̂, τ

∗))− ϕs(u
BP
s ))

≥ϕ
′

r( max
θ̂∈Σ+(uBP

s )
ur(σθ̂, τ

∗))
∑

θ̂:σθ̂∈Σ+(uBP
s )

µθ̂(ϕs(us(σθ̂, τ
∗))− ϕs(u

BP
s ))

+ ϕ
′

r( min
θ̂∈Σ−(uBP

s )
ur(σθ̂, τ

∗))
∑

θ̂:σθ̂∈Σ−(uBP
s )

µθ̂(ϕs(us(σθ̂, τ
∗))− ϕs(u

BP
s ))

≥ϕ
′

r( min
θ̂∈Σ−(uBP

s )
ur(σθ̂, τ

∗))

∑
θ̂

µθ̂ϕs(us(σθ̂, τ
∗))

− ϕs(u
BP
s )

 > 0,

implying ϕs(us(σ
∗, τ ∗)) > ϕs(u

BP
s ), contradicting (A.4). The first inequality follows from substi-

tuting for σ∗ and concavity of ϕs, the second from the definitions of Σ+(u
BP
s ) and Σ−(u

BP
s ) and

concavity of ϕr, the third since (A.5) implies maxθ̂∈Σ+(uBP
s ) ur(σθ̂, τ

∗) ≤ minθ̂∈Σ−(uBP
s ) ur(σθ̂, τ

∗),
and the final one since (σ, µ) benefits the sender.

Proof of Theorem 3. We prove the theorem by first showing the following lemma and then estab-
lish that the conditions in Theorem 3 are equivalent to the conditions in the lemma.

Lemma A.4. Ambiguous communication benefits the sender only if ϕr is not affine and there

exists Pareto-ranked experiments, σ and σ∗ such that: (i) supp σ(·|ω) = suppσ∗(·|ω) for all ω,

(ii) us(σ, τ
∗) > uBP

s , and (iii) τ ∗ ∈ br(σ∗) \ br(σ).

Proof of Lemma A.4. Suppose that there exists a solution (σ∗, µ∗, τ ∗) to the maximization prob-
lem (P) that benefits the sender. Let σ :=

∑
θ µ

∗
θσ

∗
θ and σ∗ :=

∑
θ em

(σ∗,µ∗)
θ σ∗

θ . These ex-
periments satisfy the conditions in Lemma A.4. Since em(σ∗,µ∗) and µ∗ have the same sup-
port on Θ, supp σ(·|ω) = supp σ∗(·|ω) for all ω. From Lemma 1, since τ ∗ ∈ BR(σ∗, µ∗),
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τ ∗ ∈ br(σ∗). Since the sender benefits from ambiguous communication, we have that uBP
s <

ϕ−1
s (
∑

θ µ
∗
θϕs (us(σ

∗
θ , τ

∗))) ≤
∑

θ µ
∗
θus(σ

∗
θ , τ

∗) = us(σ, τ
∗). This further implies that τ ∗ /∈ br(σ),

and thus em(σ∗,µ∗) ̸= µ∗, implying that ϕr is not affine. Since τ ∗ ∈ br(σ∗), we have that
uBP
s ≥ us(σ

∗, τ ∗) and, thus, us(σ, τ
∗) > uBP

s ≥ us(σ
∗, τ ∗).

Since em(σ∗,µ∗) ̸= µ∗, there must exist a pair (θ, θ′) in the support of µ∗ such that ur(σθ, τ
∗) >

ur(σθ′ , τ
∗) and ϕ′

r(ur(σθ, τ
∗)) < ϕ′

r(ur(σθ′ , τ
∗)). We next use the following lemma and concavity

of ϕr to show ur(σ, τ
∗) > ur(σ

∗, τ ∗).

Lemma A.5. Fix any two monotonic sequences x1 ≥ x2 ≥ · · · ≥ xn, 0 < y1 ≤ y2 · · · ≤ yn, and

a probability µ ∈ ∆({1, 2, . . . , n}). Assume that there exist indices i∗ < j∗ such that µi∗ > 0,

µj∗ > 0, xi∗ > xj∗ and yi∗ < yj∗ . Then
∑n

i=1 xi
µiyi∑n

j=1 µjyj
<
∑n

i=1 xiµi.

(Lemma A.5 seems like it should be a known result, but we could not locate a reference and so
include a proof in the Online Appendix (Cheng et al., 2025) for completeness.)

To prove ur(σ, τ
∗) > ur(σ

∗, τ ∗), we apply the lemma to the decreasing rearrangement of the
sequence (ur(σ

∗
θ , τ

∗))θ (the xi’s) and the increasing rearrangement of (ϕ′
r(ur(σ

∗
θ , τ

∗)))θ) (the yi’s).
Since ϕr is strictly increasing and concave, we have that ϕ′

r(ur(σ
∗
θ , τ

∗)) > 0, and ur(σ
∗
θ , τ

∗) ≥
ur(σ

∗
θ̃
, τ ∗) implies that ϕ′

r(ur(σ
∗
θ , τ

∗)) ≤ ϕ
′
r(ur(σ

∗
θ̃
, τ ∗)). There exists i∗ < j∗ such that µi∗ >

0, µj∗ > 0, xi∗ > xj∗ and yi∗ < yj∗ since there exists a pair (θ, θ′) in the support of µ such
that ur(σθ, τ

∗) > ur(σθ′ , τ
∗) and ϕ′

r(ur(σθ, τ
∗)) < ϕ′

r(ur(σθ′ , τ
∗)). Applying the lemma and the

definition of σ and σ∗ yields ur(σ, τ
∗) > ur(σ

∗, τ ∗). This establishes that the conditions in Lemma
A.4 are necessary for ambiguous communication to benefit the sender.

To establish that these conditions imply the conditions in Theorem 3, we rely on the following
sufficient condition for the existence of a Pareto-ranked splitting of an experiment σ:

Lemma A.6. Let σ be an experiment. If there exists σ̂ such that us(σ̂, τ
∗) > us(σ, τ

∗), ur(σ̂, τ
∗) >

ur(σ, τ
∗) and for all ω ∈ Ω, supp(σ̂(·|ω)) ⊆ supp(σ(·|ω)), then there exists a Pareto-ranked

splitting of σ, (σ, σ, λ) with σ = σ̂.

(A proof of Lemma A.6 is in the Online Appendix (Cheng et al., 2025).)
Observe that the conditions in Lemma A.4 imply the conditions in Lemma A.6. Therefore a

Pareto-ranked splitting of σ∗, (σ, σ, λ) exists with σ = σ. Then by condition (ii), us(σ, τ
∗) > uBP

s .
This shows that the conditions in Lemma A.4 imply those in Theorem 3.

Finally, we show the conditions in Theorem 3 imply those in Lemma A.4. Suppose there exists
an obedient experiment σ̂ satisfying the conditions in Theorem 3. Since us(σ, τ

∗) > uBP
s , there

exists a γ ∈ (λ, 1) such that for all γ ∈ (γ, 1), γus(σ, τ
∗) + (1 − γ)us(σ, τ

∗) > uBP
s , and thus

τ ∗ /∈ br(γσ + (1 − γ)σ). Fix any such γ and let σ = γσ + (1 − γ)σ. Let σ∗ = σ̂. It follows
that τ ∗ ∈ br(σ∗) since σ̂ is obedient, and uBP

s ≥ us(σ
∗, τ ∗), hence γ > λ. Since both σ and σ∗
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are strict mixtures of σ and σ, they satisfy the common support condition (i). By the definition of
Pareto-ranked splitting and γ > λ, ur(σ, τ

∗) > ur(σ
∗, τ ∗).

Proof of Corollary 1. Suppose that there exist experiments, σ and σ∗, satisfying the conditions in
Lemma A.4. Since condition (iii) implies τ ∗ /∈ br(σ), either∑

ω

ur(a1, ω)σ(a1|ω)p(ω) <
∑
ω

ur(a2, ω)σ(a1|ω)p(ω), or (A.6)∑
ω

ur(a2, ω)σ(a2|ω)p(ω) <
∑
ω

ur(a1, ω)σ(a2|ω)p(ω). (A.7)

Assume (A.6). From (iii), τ ∗ ∈ br(σ∗), implying
∑

ω ur(a1, ω)σ
∗(a1|ω)p(ω) ≥

∑
ω ur(a2, ω)σ

∗(a1|ω)p(ω).
It follows that:

∑
ω ur(a1, ω)[σ(a1|ω)−σ∗(a1|ω)]p(ω) <

∑
ω ur(a2, ω)[σ(a1|ω)−σ∗(a1|ω)]p(ω) =∑

ω ur(a2, ω)[σ
∗(a2|ω) − σ(a2|ω)]p(ω). Therefore,

∑
ω ur(a2, ω)[σ

∗(a2|ω) − σ(a2|ω)]p(ω) +∑
ω ur(a1, ω)[σ

∗(a1|ω)− σ(a1|ω)]p(ω) > 0, contradicting (ii). Assuming (A.7) is analogous.

A.4 Proofs for Section 5

Proof of Lemma 2.

ϕi(ui(λσ + (1− λ)σ, τ ∗))− (λϕi(us(σ, τ
∗)) + (1− λ)ϕi(us(σ, τ

∗)))

ϕi(ui(σ, τ ∗))− ϕi(ui(σ, τ ∗))
< µ− λ

⇔ϕi(ui(λσ + (1− λ)σ, τ ∗)) < µϕi(ui(σ, τ
∗)) + (1− µ)ϕi(ui(σ, τ

∗))

Thus, equivalently, ui(λσ + (1− λ)σ, τ ∗) < Ui(σ, µ, τ
∗).

Proof of Theorem 4. Fix an obedient σ∗ and let (σ, σ, λ) be a Pareto-ranked splitting of σ∗ satisfy-
ing ui(σ, τ

∗) > ui(σ, τ
∗) for i ∈ {s, r}.

Observe that Ui(σ, µ, τ
∗) = ϕ−1

i (µϕi(ui(σ, τ
∗)) + (1− µ)ϕi(ui(σ, τ

∗))), and ui(σ
∗, τ ∗) =

λui(σ, τ
∗) + (1− λ)ui(σ, τ

∗). (7) implies that em(σ,µ)
θ1

= λ, and em
(σ,µ)
θ2

= 1− λ. Lemma 1 then
implies that (σ, µ) is obedient since σ∗ is. This proves part (i).

By Lemma 2, Ur(σ, µ, τ
∗) > ur(σ

∗, τ ∗) if and only if the receiver’s ({σ, σ}, λ)-probability
premium is strictly less than µ− λ. The latter is equivalent to:

ϕr(ur(σ
∗, τ ∗))− λϕr(ur(σ, τ

∗))− (1− λ)ϕr(ur(σ, τ
∗))

ϕr(ur(σ, τ ∗))− ϕr(ur(σ, τ ∗))
+ λ <

λϕ′
r(ur(σ, τ

∗))

λϕ′
r(ur(σ, τ ∗)) + (1− λ)ϕ′

r(ur(σ, τ ∗))

⇔ ϕr(ur(σ
∗, τ ∗))− ϕr(ur(σ, τ

∗))

ϕr(ur(σ∗, τ ∗))− ϕr(ur(σ, τ ∗)) + ϕr(ur(σ, τ ∗))− ϕr(ur(σ∗, τ ∗))
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<
ϕ′
r(ur(σ, τ

∗))(ur(σ
∗, τ ∗)− ur(σ, τ

∗))

ϕ′
r(ur(σ, τ ∗))(ur(σ∗, τ ∗)− ur(σ, τ ∗)) + ϕ′

r(ur(σ, τ ∗))(ur(σ, τ ∗)− ur(σ∗, τ ∗))

⇔ 1

1 + ϕr(ur(σ,τ∗))−ϕr(ur(σ∗,τ∗))
ϕr(ur(σ∗,τ∗))−ϕr(ur(σ,τ∗))

<
1

1 + ϕ′
r(ur(σ,τ∗))(ur(σ,τ∗)−ur(σ∗,τ∗))

ϕ′
r(ur(σ,τ∗))(ur(σ∗,τ∗)−ur(σ,τ∗))

⇔ϕ′
r(ur(σ, τ

∗)) < ϕ′
r(ur(σ, τ

∗)) ⇔ λ <
λϕ′

r(ur(σ, τ
∗))

λϕ′
r(ur(σ, τ ∗)) + (1− λ)ϕ′

r(ur(σ, τ ∗))
= µ.

where the first equivalence uses the fact that λ = ur(σ∗,τ∗)−ur(σ,τ∗)
ur(σ,τ∗)−ur(σ,τ∗)

, the second is algebra, the third
follows from concavity and differentiability of ϕr, and the fourth from the strict positivity of ϕ′

r.
24

This proves part (ii). Part (iii) follows directly from Lemma 2.
Within the smooth ambiguity model, an increase in ambiguity aversion corresponds to ϕ be-

coming more concave (Klibanoff et al., 2005). Given differentiability, ϕ̃ more concave than
ϕ means that ϕ̃ := φ ◦ ϕ for some strictly increasing, concave, and differentiable φ. To see
that the sender’s probability premium increases in the sender’s ambiguity aversion, observe that
ρϕ̃,us((σ, σ), λ) + λ is equal to

φ(ϕ(u(σ∗, τ ∗)))− φ(ϕ(u(σ, τ ∗)))

φ(ϕ(u(σ, τ ∗)))− φ(ϕ(u(σ∗, τ ∗))) + φ(ϕ(u(σ∗, τ ∗)))− φ(ϕ(u(σ, τ ∗)))

≥ φ′(ϕ(u(σ∗, τ ∗)))(ϕ(u(σ∗, τ ∗))− ϕ(u(σ, τ ∗)))

φ′(ϕ(u(σ∗, τ ∗)))(ϕ(u(σ, τ ∗))− ϕ(u(σ∗, τ ∗))) + φ′(ϕ(u(σ∗, τ ∗)))(ϕ(u(σ∗, τ ∗))− ϕ(u(σ, τ ∗)))

=
ϕ(u(σ∗, τ ∗))− ϕ(u(σ, τ ∗))

ϕ(u(σ, τ ∗))− ϕ(u(σ, τ ∗))
= ρϕ,us({σ, σ}, λ) + λ,

where the inequality follows from the concavity of φ. The inequality is strict if and only if
φ′(ϕ(u(σ, τ ∗))) < φ′(ϕ(u(σ, τ ∗))), as the strict inequality on φ′ implies that either φ′(ϕ(u(σ, τ ∗))) <

φ′(ϕ(u(σ∗, τ ∗))) or φ′(ϕ(u(σ∗, τ ∗))) < φ′(ϕ(u(σ, τ ∗))) or both.
It remains to show that the r.h.s. of (7) is increasing in the receiver’s ambiguity aversion. This

follows since it is increasing in ϕ′
r(ur(σ,τ∗))

ϕ′
r(ur(σ,τ∗))

, and

ϕ̃′(ur(σ, τ
∗))

ϕ̃′(ur(σ, τ ∗))
=

φ′(ϕ(u(σ, τ ∗)))ϕ′(ur(σ, τ
∗))

φ′(ϕ(u(σ, τ ∗)))ϕ′(ur(σ, τ ∗))
≥ ϕ′(ur(σ, τ

∗))

ϕ′(ur(σ, τ ∗))
,

by concavity of φ, and strict if and only if φ′(ϕ(u(σ, τ ∗))) < φ′(ϕ(u(σ, τ ∗))).

Proof of Proposition 4. Let Σσ∗ ⊆ Σ denote the set of experiments that, for all ω ∈ Ω, have the
same support as σ∗. For each ω ∈ Ω, fix any aω ∈ supp(σ∗(·|ω)). For any σ ∈ Σσ∗ , by substituting

24If ϕr were concave, but not differentiable at ur(σ
∗, τ∗), the third equivalence would fail in one direction since we

could then have a linear piece from ur(σ, τ
∗) to ur(σ

∗, τ∗) with slope ϕ′
r(ur(σ, τ

∗)) and another one from ur(σ
∗, τ∗)

to ur(σ, τ
∗) with slope ϕ′

r(ur(σ, τ
∗)).
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σ(aω|ω) = 1−
∑

a̸=aω
σ(a|ω), we have, for i ∈ {s, r},

ui(σ, τ
∗) =

∑
ω,a

σ(a|ω)ui(a, ω) =
∑

ω∈Ωσ∗ ,a

p(ω)σ(a|ω)(ui(a, ω)− ui(aω, ω)) +
∑
ω

p(ω)ui(aω, ω),

where Ωσ∗ ⊆ Ω denotes the set of ω such that | supp(σ∗(·|ω))| > 1.
Given any σ ∈ Σσ∗ , we use σ̃ ∈ R

∑
ω∈Ωσ∗ | supp(σ∗(·|ω))−1|

=: Rσ∗ to denote the vector of those
components of σ(a|ω) with ω ∈ Ωσ∗ and a ∈ supp(σ∗(·|ω)) \ {aω}. Thus, we can write[

us(σ, τ
∗)

ur(σ, τ
∗)

]
=

[
p(ω)(us(a, ω)− us(aω, ω)) · · ·
p(ω)(ur(a, ω)− ur(aω, ω)) · · ·

]
σ̃ +

[∑
ω p(ω)us(aω, ω)∑
ω p(ω)us(aω, ω)

]

Notice that any non-zero vectors in (8) are exactly the non-zero columns of the first matrix on the
right hand side above. When the former set spans R2, the latter matrix has full rank and thus the
linear mapping from Rσ∗ to R2 defined from the right hand side above is surjective. Since {σ̃ :

σ ∈ Σσ∗} ∋ σ̃∗ is open in Rσ∗ , by the open mapping theorem, {(us(σ, τ
∗), ur(σ, τ

∗)) : σ ∈ Σσ∗}
is open. Thus, there exists σ̂ ∈ Σσ∗ such that ui(σ̂, τ

∗) > ui(σ
∗, τ ∗) for i ∈ {s, r}. By Lemma

A.6, there exists a Pareto-ranked splitting of σ∗ with σ = σ̂.

Proof of Theorem 5. That (σ, µ) benefits the sender means that

ϕ−1
s (µϕs(us(σ, τ

∗)) + (1− µ)ϕs(us(σ, τ
∗))) > uBP

s . (A.8)

Any less ambiguity averse sender will have ϕ̃s weakly less concave than ϕs, weakly increasing the
left-hand side of (A.8), while leaving the right-hand side unchanged. This proves (i).

Let σ∗ = em
(σ,µ)
θ1

σ+(1−em
(σ,µ)
θ1

)σ. By Lemma 1, τ ∗ ∈ br(σ∗). In light of (A.8) and Theorem
2, σ and σ must be Pareto-ranked. Without loss of generality, assume that σ is the better one. A
weakly more ambiguity averse receiver will have a ϕ̃r = φ ◦ ϕr for some increasing, differentiable
and concave φ, resulting in an effective measure ˜em(σ,µ) such that ˜em

(σ,µ)
θ1

≤ em
(σ,µ)
θ1

.
If, as in (iii), τ ∗ ∈ br(σ), then since τ ∗ ∈ br(σ∗) = br(em

(σ,µ)
θ1

σ + (1 − em
(σ,µ)
θ1

)σ), τ ∗ ∈
br( ˜em

(σ,µ)
θ1

σ + (1− ˜em
(σ,µ)
θ1

)σ). By Lemma 1, this implies τ ∗ ∈ BR(σ, µ) for a receiver with any
such ϕ̃r, proving that σ together with µ continues to benefit the sender (and, by the same argument
as for (i), any less ambiguity averse senders as well). This proves (iii).

Finally, if τ ∗ /∈ br(σ), define µ̃ by

µ̃(θ1) =
em

(σ,µ)
θ1

ϕ̃′
r(ur(σ, τ

∗))

em
(σ,µ)
θ1

ϕ̃′
r(ur(σ, τ ∗)) + (1− em

(σ,µ)
θ1

)ϕ̃′
r(ur(σ, τ ∗))

, and µ̃θ2 = 1− µ̃θ1 ,
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so that ˜em(σ,µ̃) = em(σ,µ). Lemma 1 and τ ∗ ∈ br(σ∗) then implies τ ∗ ∈ BR(σ, µ̃) for a re-
ceiver with ϕ̃r. Since (us(σ, τ

∗) > us(σ, τ
∗), to show that (σ, µ̃) benefits the sender (and all less

ambiguity averse senders) it suffices to show that µ̃θ1 ≥ µ. Indeed,

µ̃θ1 =
em

(σ,µ)
θ1

ϕ′
r(ur(σ, τ

∗))

em
(σ,µ)
θ1

ϕ′
r(ur(σ, τ ∗)) + (1− em

(σ,µ)
θ1

)φ
′(ϕr(ur(σ,τ∗)))

φ′(ϕr(ur(σ,τ∗)))
ϕ′
r(ur(σ, τ ∗))

≥
em

(σ,µ)
θ1

ϕ′
r(ur(σ, τ

∗))

em
(σ,µ)
θ1

ϕ′
r(ur(σ, τ ∗)) + (1− em

(σ,µ)
θ1

)ϕ′
r(ur(σ, τ ∗))

= µ,

where the inequality follows from φ′(ϕr(ur(σ, τ
∗))) ≥ φ′(ϕr(ur(σ, τ

∗))).

A.5 Proofs for Section 7

Before proving Theorems 7 and 8, we first characterize the receiver’s obedience condition under
pre-existing ambiguity about the payoff-relevant states. For any joint distribution π ∈ ∆(Ω× A),
τ ∗ is the receiver’s best response if

τ ∗ ∈ argmax
τ

∑
ω,a,a′

π(ω, a)τ(a′|a)ur(a
′, ω).

Let Π∗ ⊆ ∆(Ω × A) denote the set of all such distributions. Note that Π∗ is convex and closed.
Thus, an experiment σ is obedient under prior p if the induced joint distribution π(p,σ) = p×σ ∈ Π∗.
An argument similar to that in the proof of Lemma 1 can be used to show that when there is pre-
existing ambiguity η and the sender chooses an ambiguous experiment (σ, µ), τ ∗ is a best response
of the receiver if and only if

π(η,(σ,µ)) :=
∑
p,θ

ηpµθϕ
′
r(ur(p, σθ, τ

∗))∑
p̃,θ̃ ηp̃µθ̃ϕ

′
r(ur(p̃, σθ̃, τ

∗))
p× σ ∈ Π∗,

where we explicitly include p as an argument of the receiver’s expected utility ur(p, σθ, τ
∗). In this

case, we say the ambiguous experiment (σ, µ) is obedient under η.

Proof of Theorem 7. Because ϕr is strictly concave, and (σ, σ, λ) is a Pareto-ranked splitting of
σ∗ for all p ∈ supp(η), it holds that µθ > λ. Thus, if the binary ambiguous experiment (σ, µ) is
obedient under η, then an ambiguity neutral sender does strictly better using it than using σ∗.

We next establish its obedience. For each p ∈ supp(η), let em
(p,(σ,µ))
σ denote the effec-

tive measure on σ under prior p. With µ given by (10), it implies that for the minimizing p∗,
em

(p∗,(σ,µ))
σ = λ; and for any other p ∈ supp(η), em(p,(σ,µ))

σ < λ. It further implies that, for each
p ∈ supp(η), the experiment em(p,(σ,µ))

σ σ+(1−em
(p,(σ,µ))
σ )σ is a convex combination of σ∗ and σ,
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and thus, by the obedience of σ∗ and σ under p, is also obedient under p. The obedience of (σ, µ)
under η is implied by the following lemma:

Lemma A.7. If an ambiguous experiment (σ, µ) is obedient under p for every p ∈ supp(η), then

it is obedient under η.

Proof of Lemma A.7. Given p ∈ ∆(Ω) and (σ, µ), let

σ(σ,µ)
p :=

∑
θ

µθϕ
′
r(ur(p, σθ, τ

∗))∑
θ̃ µθ̃ϕ

′
r(ur(p̃, σθ̃, τ

∗))
σθ.

If (σ, µ) is obedient under prior p, then it holds that π(p,(σ,µ)) = p × σ
(σ,µ)
p ∈ Π∗. Consider an

ambiguous experiment (σ, µ) under η, the induced joint distribution satisfies

π(η,(σ,µ)) =
∑
p,θ

ηpµθϕ
′
r(ur(p, σθ, τ

∗))∑
p̃,θ̃ ηp̃µθ̃ϕ

′
r(ur(p̃, σθ̃, τ

∗))
p× σθ

=
∑
p

ηp
∑

θ̃ µθ̃ϕ
′
r(ur(p̃, σθ̃, τ

∗))∑
p̃,θ̃ ηp̃µθ̃ϕ

′
r(ur(p̃, σθ̃, τ

∗))
p×

∑
θ

µθϕ
′
r(ur(p, σθ, τ

∗))∑
θ̃ µθ̃ϕ

′
r(ur(p̃, σθ̃, τ

∗))
σθ

=
∑
p

ηp
∑

θ̃ µθ̃ϕ
′
r(ur(p̃, σθ̃, τ

∗))∑
p̃,θ̃ ηp̃µθ̃ϕ

′
r(ur(p̃, σθ̃, τ

∗))
π(p,(σ,µ)).

In other words, π(η,(σ,µ)) is a convex combination of π(p,(σ,µ)) for p ∈ supp(η). Thus, if (σ, µ) is
obedient under p for every p ∈ supp(η), by the convexity of Π∗, it is obedient as well.

Proof of Theorem 8. By the supposition, there exists an ambiguous experiment (σ, µ) such that
(we explicitly write the dependence on the prior p):

Us(p,σ, µ, τ
∗) > uBP

s (p).

Let σ∗ denote the effective experiment induced by (σ, µ) and let π∗ = p × σ∗. By continuity
and the fact that int(Π∗) ̸= ∅, we can perturb σ and µ slightly to σ̃ and µ̃ such that

Us(p, σ̃, µ̃, τ
∗) > uBP

s (p),

and the joint distribution π(p,(σ̃,µ̃)) ∈ int(Π∗).
Notice for any η that reduces to p, because the sender is ambiguity neutral, the sender’s payoff

remains the same under η as under p provided the receiver is obedient. Because π(p,(σ̃,µ̃)) ∈ int(Π∗),
there exists δ > 0 such that for all q ∈ ∆(Ω) with ∥q−p∥ < δ, the distribution π(q,(σ̃,µ̃)) remains in
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the interior of Π∗. Thus, by Lemma A.7, the ambiguous experiment (σ̃, µ̃) will continue to benefit
the sender under any η that reduces to p and has support within this δ-neighborhood of p.
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Online Supplemental Appendix to “Persuasion with
Ambiguous Communication”

Xiaoyu Cheng Peter Klibanoff Sujoy Mukerji Ludovic Renou

SA.1 A Polar Case: A Maxmin Receiver and Ambiguity Neu-
tral Sender

This section analyzes the case of an ambiguity-neutral sender and an infinitely ambiguity averse
receiver, represented by the maxmin preferences UMEU

r . As the comparative statics statements
in Theorem 4 suggest, this is the most favorable case for the sender to benefit from ambiguous
communication.

More precisely, we show that in this case (a) binary ambiguous experiments are sufficient to
exhaust all gains from persuasion, and (b) the sender can attain a payoff arbitrarily close to their
best feasible payoff subject to the receiver getting at least the payoff they would obtain if no
information were disclosed. A conclusion we draw is that assuming an infinitely ambiguity averse
receiver is very powerful and, in our view, unrealistically so, further motivating the analysis in the
rest of the paper which allows for more moderate levels of aversion.

Before turning to the analysis, we remark that the opposite cases, of either an infinitely am-
biguity averse sender with payoffs UMEU

s or an ambiguity neutral receiver, preclude any benefit
from ambiguous persuasion. The latter case follows from Theorem 3, while Cheng (2025) shows
that in the former case the sender never benefits from ambiguous communication.

The following lemma relates obedience for an ambiguous experiment to obedience for an ex-
periment. It is thus the analogue of Lemma 1 for a receiver with preferences UMEU

r :

Lemma SA.1.1. (σ, µ) is obedient if, and only if, the experiment σ∗ is obedient, where

σ∗ :=

∑
θ∈ argmin

θ∈supp(µ)
ur(σθ,τ∗)

µθσθ

∑
θ∈ argmin

θ∈supp(µ)
ur(σθ,τ∗)

µθ

.

Proof of Lemma SA.1.1. Fix (σ, µ). Obedience requires that minθ∈Θ ur(σθ, τ
∗) ≥ minθ∈Θ ur(σθ, τ).

From the minmax theorem, this is equivalent to the existence of µ∗ ∈ ∆(Θ) such that
∑

θ∈Θ µθur(σθ, τ
∗) ≥∑

θ∈Θ µ∗
θur(σθ, τ

∗) ≥
∑

θ∈Θ µ∗
θur(σθ, τ), for all (µ, τ). The result follows since µ∗ is a minimizer

of
∑

θ∈Θ µθur(σθ, τ
∗).

1



Observe that when the argmin in Lemma SA.1.1 is a singleton, σ∗ equals the receiver’s payoff-
minimizing experiment from σ. More generally, it is a convex combination of the possibly multiple
minimizing experiments in σ with relative weights inherited from µ. Thus the analogue of the
effective measure here may have a smaller support than µ (something that never happens for a
smooth ambiguity receiver). Lemma SA.1.1 says that only those payoff-minimizing experiments
affect obedience of (σ, µ). Thus, the sender is free to include in σ and arbitrarily weight any other

experiments as long as they don’t disrupt the receiver’s minimum.
Since the receiver can always ignore any recommendations made, they can guarantee them-

selves the payoff
u∗
r := max

a∈A

∑
ω

p(ω)ur(a, ω),

which is the payoff they would obtain if no information were disclosed. The consequence of the
great flexibility available to the sender given Lemma SA.1.1 is the next theorem, which states that
the sender’s optimal payoff approaches their highest feasible payoff subject to the receiver getting
at least u∗

r .
25 The corresponding communication strategy uses a binary ambiguous experiment with

the µ-weight on the better experiment approaching 1, and the worse experiment an obedient one
holding the receiver to u∗

r .

Theorem SA.1.1. Suppose there exists σ̂ such that ur(σ̂, τ
∗) > u∗

r . The value of the following

program is the supremum of the payoff that an ambiguity neutral sender can obtain when the

receiver has maxmin preferences UMEU
r :

max
σ

us(σ, τ
∗),

s.t. ur(σ, τ
∗) ≥ u∗

r.

Proof of Theorem SA.1.1. Let σ attain the value of the program in the theorem for the sender and
σ be an obedient experiment with ur(σ, τ

∗) = u∗
r . Assume ur(σ, τ

∗) > ur(σ, τ
∗). If the sender

chooses ((σ, σ), (µ, 1 − µ)), the receiver is obedient since the worst payoff is ur(σ, τ
∗). As µ

approaches 1, the sender’s payoff approaches us(σ, τ
∗). The sender cannot do better than this,

since the receiver’s payoff is at least u∗
r . If ur(σ, τ

∗) = ur(σ, τ
∗), mix σ with σ̂. For any ε > 0,

ur((1−ε)σ+εσ̂, τ ∗) > ur(σ, τ
∗). As ε approaches 0 and µ approaches 1, the payoff for the sender

approaches us(σ, τ
∗).

Remark 5 (MEU receiver’s payoff). Theorem SA.1.1 does not imply that an MEU receiver is
held to (or even close to) u∗

r by all sender-optimal strategies. As receiver ambiguity aversion
25This “efficiency subject to an outside option” approach to identifying the sender’s optimal payoff is reminiscent

of one developed in Smolin (2021) that can be applied to any Bayesian persuasion problem where the receiver has
only two actions. In our case, it is the extremity of the receiver’s MEU preference that creates the almost complete
separation between the experiment providing the sender’s payoff and the one providing the receiver’s payoff.
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passes to the MEU limit, while the value of the sender’s program is continuous in this limit, the
payoff to the receiver may drop discontinuously. In our introductory example, for instance, as ϕr

becomes more and more concave, the receiver’s payoff under optimal ambiguous communication
approaches their payoff under σθ of 3/2, while in the MEU limit, their payoff is no higher than the
Bayesian persuasion payoff of 5/4.

There is a sense in which Theorem SA.1.1 could be argued to overstate what the sender can
achieve. For MEU, the “effective” experiment σ∗ could have a smaller support than (σ, µ). Lemma
SA.1.1 treats action recommendations that could occur under (σ, µ) but not under σ∗ as zero
probability events. However, observing such action recommendations would reveal to the receiver
that θ /∈ argminθ∈supp(µ) ur(σθ, τ

∗). In this case, the receiver may no longer be indifferent between
obeying or not. Therefore, Theorem SA.1.1 could be seen as forcing the receiver to be obedient in
such situations.

This issue can be addressed by strengthening obedience to further require that σ∗ always has the
same support as (σ, µ) (which was always true for smooth ambiguity receivers). This strengthening
does not substantially change the conclusions of Theorem SA.1.1, as it only replaces the program
in Theorem SA.1.1 by:

sup
σ

us(σ, τ
∗),

s.t. ur(σ, τ
∗) > u∗

r and supp(σ) ⊆ A0,

where A0 is the set of all actions which can be best responses for the receiver to some probability
distribution over the states in the support of the prior p. The corresponding communication strate-
gies would involve two experiments with µ-weight on the better one approaching 1 as before, but
with the worse experiment now adjusted to have full support on A0 by mixing it with an arbitrarily
small amount of an obedient experiment with full support on A0 that yields the receiver more than
u∗
r (such an experiment exists under the assumptions of Theorem SA.1.1).

Formally, a stronger notion of obedience that does not allow positive µ weight on experiments
that recommend actions outside the support of the effective measure weighted experiment of a
maxmin receiver is the following:

Lemma SA.1.2. (σ, µ) is (strongly) obedient if, and only if, the experiment σ∗ is obedient, where

σ∗ :=

∑
θ∈ argmin

θ∈supp(µ)
ur(σθ,τ∗)

µθσθ

∑
θ∈ argmin

θ∈supp(µ)
ur(σθ,τ∗)

µθ

,
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and supp(σθ) ⊆ supp(σ∗) for all θ ∈ supp(µ).

Define u∗
r as before

u∗
r := max

a∈A

∑
ω

p(ω)ur(a, ω).

Further define A0 as the set of all actions which can be best responses for the receiver:

A0 := {a ∈ A : ∃q ∈ ∆(Ω) s.t. a ∈ argmax
a′∈A

∑
ω

q(ω)ur(a
′, ω)}.

The following is the version of Theorem SA.1.1 using the stronger obedience notion:

Theorem SA.1.2. Suppose there exists σ̂ such that ur(σ̂, τ
∗) > u∗

r . The value of the following

program is the supremum of the payoff that an ambiguity neutral sender can obtain when the

receiver has maxmin preferences UMEU
r and the version of obedience in Lemma SA.1.2 is used:

sup
σ

us(σ, τ
∗),

s.t. ur(σ, τ
∗) > u∗

r and, supp(σ) ⊆ A0,

Proof of Theorem SA.1.2. Let σ attain the value for the sender of the following program

max
σ

us(σ, τ
∗),

s.t. ur(σ, τ
∗) ≥ u∗

r and, supp(σ) ⊆ A0.

Let σ be an obedient uninformative experiment, so that ur(σ, τ
∗) = u∗

r . Observe that supp(σ) ⊆
A0. Assume that ur(σ, τ

∗) > ur(σ, τ
∗). There exists an obedient experiment σ̃ such that supp(σ̃) =

A0 and ur(σ̃, τ
∗) > u∗

r .
26 Define a sequence of experiments σn = (1−ϵn)σ+ϵnσ̃ where ϵn > 0 with

ϵn → 0 as n goes to infinity. If the sender offers the ambiguous experiment ((σ, σn), (µ, 1−µ)) for
small enough ϵn, the receiver is strongly obedient since the worst payoff is ur(σn, τ

∗), obedience is
preserved under convex combinations of experiments, and supp(σ) ⊆ A0 = supp(σn). As we can
choose µ arbitrarily close to 1 and ϵn arbitrarily close to 0, we approach the value of the program
in Theorem SA.1.2. Furthermore, it is not possible for the sender to do better than this (i.e., have
a higher supremum), since the receiver’s payoff from any obedient experiment (and thus from any

26For any a ∈ A0, fix some qa ∈ ∆(supp(p)) under which a is optimal for the receiver. There exists a βa ∈ (0, 1)
and a q ∈ ∆(supp(p)) such that p = βaqa + (1 − βa)q

′
a. Let a′a ∈ A0 denote an action that is optimal for the

receiver under q′a. Applying this argument to all a ∈ A0 to construct a set ∪a∈A0{qa, q′a} whose convex hull contains
p in its interior. Since each probability distribution in the set can be thought of as a Bayesian posterior, this interior
convex combination is a Bayes plausible distribution over the posteriors and thus, by Kamenica and Gentzkow (2011),
corresponds to an obedient σ̃ with supp(σ̃) = A0. Finally, since ur(σ̂, τ

∗) > u∗
r , there exists an a ∈ A0 such that∑

ω qa(ω)ur(a, ω) > u∗
r . Thus, ur(σ̃, τ

∗) > u∗
r .
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obedient ambiguous experiment) is at least u∗
r and the strong version of obedience requires that all

experiments in the support of µ recommend actions in A0.
If ur(σ, τ

∗) = ur(σ, τ
∗), we need to slightly modify the construction to guarantee obedience.

The idea is to mix σ with a bit of σ̃ to guarantee a unique worst payoff, i.e., ur((1 − 2ϵn)σ +

2ϵnσ̃, τ
∗) > ur(σn, τ

∗) for all ϵn > 0. As εn approaches 0 and µ approaches 1, the payoff for the
sender approaches the value of the program in the theorem.

SA.2 The insufficiency of binary ambiguous experiments

Proposition SA.2.1. It is not always sufficient to consider only binary ambiguous experiments in

searching for either a strict benefit from ambiguity or optimal ambiguous persuasion.

We provide a detailed sketch of the proof. The full proof is available in Cheng et al. (2024).

Sketch of Proof of Proposition SA.2.1. The proof is by construction. We first show an example in
which the only optimal ambiguous experiments are more than binary. A modification of this ex-
ample is then used to provide an example in which the sender may strictly benefit from ambiguous
communication even when no binary ambiguous experiment benefits the sender.

Example in which all optimal ambiguous experiments are more than binary.
Suppose ϕs(x) = x and ϕr(x) = ln(x + 5). Let Ω = {ω1, ω2}, with equal prior probabilities

p = (1/2, 1/2). There are five actions {a1, a2, b1, b2, b3} and the payoff matrix is

(us, ur) ω1 ω2

a1 3, 3 0, 0

a2 −1,−1 3, 3

b1 0, 4 −1,−2

b2 0, 2 1, 2

b3 −2,−4 1, 4

The optimal Bayesian persuasion experiment is

σa(a1|ω1) = 4/5, σa(a2|ω1) = 1/5;

σa(a1|ω2) = 2/5, σa(a2|ω2) = 3/5.

Notice that

us(σa, τ
∗) = ur(σa, τ

∗) = 2.
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Let σ11, σ12, σ21 and σ22 denote the extreme experiments where σij recommends ai and aj

deterministically in states ω1 and ω2, respectively. Notice that these extreme experiments are all
Pareto-ranked:

us(σ11, τ
∗) = ur(σ11, τ

∗) = 3/2;

us(σ12, τ
∗) = ur(σ12, τ

∗) = 3;

us(σ21, τ
∗) = ur(σ21, τ

∗) = −1/2;

us(σ22, τ
∗) = ur(σ22, τ

∗) = 1.

Consider the following splitting of σa,

σa =
1

5
σ11 +

3

5
σ12 +

1

5
σ21.

It can be verified that for σ̂ = (σ11, σ12, σ21) and µ̂ such that
∑

θ em
(σ̂,µ̂)
θ σθ = σa, (σ̂, µ̂) is an

obedient ambiguous experiment yielding the sender a payoff of 159/70 = 2.27143, strictly higher
than the 2 under Bayesian persuasion. Therefore, any optimal ambiguous experiment must involve
ambiguity and thus be at least binary.

As ϕs(x) = x and ϕr(x) = ln(x+5), by Proposition 2, in any optimal ambiguous experiment,
there cannot exist any further Pareto-ranked splitting of any experiment in the collection.

Observe that σa is the only incentive-compatible experiment that never recommends any of the
b actions. Furthermore, σa cannot be split into a convex combination of two extreme experiments.
Thus, any binary splitting of σa must involve at least one non-extreme experiment. However,
since all these extreme experiments are Pareto-ranked, there must exist a Pareto-ranked splitting of
any such non-extreme experiment (into extreme experiments). Therefore, any binary ambiguous
experiment constructed from splittings of σa cannot be optimal.

The proof goes on to show that an optimal ambiguous experiment in this example also can-
not be a binary ambiguous experiment that is constructed from a splitting of any other incentive-
compatible experiment (in particular, any recommending a b action with a positive probability).

Example in which ambiguous communication benefits the sender, but does not do so when
restricted to binary ambiguous experiments

Suppose ϕs(x) = x and ϕr(x) = ln(x + 5). Let Ω = {ω1, ω2} and the prior p be uniform.
There are seven actions {a1, a2, b1, b+2 , b−2 , b3, c}. Let the payoff matrix be, for some x > 2,
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(us, ur) ω1 ω2

a1 3, 3 0, 0

a2 −1,−1 3, 3

b1 0, 4 0,−2

b−2 0, 5/2 0, 1

b+2 0, 5/4 0, 9/4

b3 0,−4 0, 4

c x, 7/4 x, 7/4

The only differences from the previous example are the addition of c and the replacement of
b2 by b−2 and b+2 . Let σc denote the experiment that recommends action c deterministically in both
states. Because x > 2, the optimal Bayesian persuasion experiment is σc, yielding the sender a
payoff of x. The proof then shows the existence of x > 2 such that the sender’s payoff from (σ̂, µ̂)

is strictly higher than x but the sender’s payoff from any binary ambiguous experiment is lower
than x. The replacement of b2 by b−2 and b+2 serves to make σc obedient only at the prior p, which
helps simplify the calculations in the proof.

SA.3 A Local Argument for the Receiver’s Gain from Pareto-
Ranked Splittings of Obedient Experiments

Let σ∗ be obedient and such that a pareto-ranked splitting of it exists. Then for small enough ϵ > 0,
one can always find σ and σ such that (σ, σ, 1/2) is a Pareto-ranked splitting of σ∗ satisfying

ur(σ, τ
∗) = ur(σ

∗, τ ∗) + ϵ, ur(σ, τ
∗) = ur(σ

∗, τ ∗)− ϵ.

Let σ = (σ, σ) and let

µσ =
ϕ′
r(ur(σ, τ

∗))

ϕ′
r(ur(σ, τ ∗)) + ϕ′

r(ur(σ, τ ∗))
.

Then by Lemma 1, (σ, µ) is an obedient ambiguous experiment. To show that the receiver’s payoff
is higher under σ than under σ∗, we split the receiver’s payoff change into two parts.

First, the receiver’s payoff change from replacing σ∗ by µσσ + (1− µσ)σ is

ϕ′
r(ur(σ, τ

∗))

ϕ′
r(ur(σ, τ ∗)) + ϕ′

r(ur(σ, τ ∗))
(ur(σ

∗, τ ∗) + ϵ) +
ϕ′
r(ur(σ, τ

∗))

ϕ′
r(ur(σ, τ ∗)) + ϕ′

r(ur(σ, τ ∗))
(ur(σ

∗, τ ∗)− ϵ)− ur(σ
∗)

=
ϕ′
r(ur(σ, τ

∗))− ϕ′
r(ur(σ, τ

∗))

ϕ′
r(ur(σ, τ ∗)) + ϕ′

r(ur(σ, τ ∗))
ϵ ≥ 0.
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Notice the change is non-negative and first-order in ϵ.
Second, the receiver’s payoff change when facing the ambiguous experiment (σ, (µσ, 1− µσ))

when moving from ambiguity neutrality to ambiguity aversion ϕr is

ϕ−1
r

(
ϕ′
r(ur(σ), τ

∗)

ϕ′
r(ur(σ, τ ∗)) + ϕ′

r(ur(σ, τ ∗))
ϕr(ur(σ

∗, τ ∗) + ϵ) +
ϕ′
r(ur(σ, τ

∗))

ϕ′
r(ur(σ, τ ∗)) + ϕ′

r(ur(σ, τ ∗))
ϕr(ur(σ

∗, τ ∗)− ϵ)

)
− ϕ′

r(ur(σ, τ
∗))

ϕ′
r(ur(σ, τ ∗)) + ϕ′

r(ur(σ, τ ∗))
(ur(σ

∗) + ϵ) +
ϕ′
r(ur(σ, τ

∗))

ϕ′
r(ur(σ, τ ∗)) + ϕ′

r(ur(σ, τ ∗))
(ur(σ

∗, τ ∗)− ϵ).

Next, we take the first-order Taylor expansion of the first term so that any residual is of order
ϵ2. Observe that (ignoring the term of order ϵ2)

ϕ′
r(ur(σ, τ

∗))

ϕ′
r(ur(σ, τ ∗)) + ϕ′

r(ur(σ, τ ∗))
ϕr(ur(σ

∗, τ ∗) + ϵ) +
ϕ′
r(ur(σ, τ

∗))

ϕ′
r(ur(σ, τ ∗)) + ϕ′

r(ur(σ, τ ∗))
ϕr(ur(σ

∗, τ ∗)− ϵ)

=
ϕ′
r(ur(σ, τ

∗))

ϕ′
r(ur(σ, τ ∗)) + ϕ′

r(ur(σ, τ ∗))
(ϕr(ur(σ

∗, τ ∗)) + ϕ′
r(ur(σ

∗, τ ∗)ϵ))

+
ϕ′
r(ur(σ, τ

∗))

ϕ′
r(ur(σ, τ ∗)) + ϕ′

r(ur(σ, τ ∗))
(ϕr(ur(σ

∗, τ ∗))− ϕ′
r(ur(σ

∗, τ ∗)ϵ))

=ϕr(ur(σ
∗, τ ∗)) + ϕ′

r(ur(σ
∗, τ ∗))

ϕ′
r(ur(σ, τ

∗))− ϕ′
r(ur(σ, τ

∗))

ϕ′
r(ur(σ, τ ∗)) + ϕ′

r(ur(σ, τ ∗))
ϵ

Applying ϕ−1
r to the above term and again taking the first-order Taylor expansion and ignoring

the term of order ϵ2 yields

ϕ−1
r

(
ϕr(ur(σ

∗, τ ∗)) + ϕ′
r(ur(σ

∗, τ ∗))
ϕ′
r(ur(σ, τ

∗))− ϕ′
r(ur(σ, τ

∗))

ϕ′
r(ur(σ, τ ∗)) + ϕ′

r(ur(σ, τ ∗))
ϵ

)
=ϕ−1

r (ϕr(ur(σ
∗, τ ∗))) +

(
ϕ−1
r

)′
(ϕr(ur(σ

∗, τ ∗)))ϕ′
r(ur(σ

∗, τ ∗))
ϕ′
r(ur(σ))− ϕ′

r(ur(σ, τ
∗))

ϕ′
r(ur(σ, τ ∗)) + ϕ′

r(ur(σ, τ ∗))
ϵ

=ur(σ
∗) +

ϕ′
r(ur(σ, τ

∗))− ϕ′
r(ur(σ, τ

∗))

ϕ′
r(ur(σ, τ ∗)) + ϕ′

r(ur(σ, τ ∗))
ϵ,

where the last equality follows from

(
ϕ−1
r

)′
(ϕr(ur(σ

∗, τ ∗))) =
1

ϕ′
r(ϕ

−1
r (ϕr(ur(σ∗, τ ∗))))

=
1

ϕ′
r(ur(σ∗, τ ∗))

.

Thus, after ignoring the terms of order ϵ2, the receiver’s payoff change when moving from ambi-
guity neutrality to ambiguity aversion is

ur(σ
∗, τ ∗) +

ϕ′
r(ur(σ, τ

∗))− ϕ′
r(ur(σ, τ

∗))

ϕ′
r(ur(σ, τ ∗)) + ϕ′

r(ur(σ, τ ∗))
ϵ− ur(σ

∗, τ ∗)− ϕ′
r(ur(σ, τ

∗))− ϕ′
r(ur(σ, τ

∗))

ϕ′
r(ur(σ, τ ∗)) + ϕ′

r(ur(σ, τ ∗))
ϵ = 0.
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In other words, the additional cost to the receiver of this ϵ-ambiguous experiment because the
receiver is ambiguity averse is of order ϵ2.

Therefore, for a small enough splitting of σ∗, the receiver’s payoff increase from the increase,
µσ − 1/2, in weight on the better experiment σ is first-order while their payoff decrease due to
bearing the resulting ambiguity is at most second-order.

SA.4 Proofs of auxiliary results from “Persuasion with Am-
biguous Communication”

SA.4.1 Proofs of Proposition 3 and Corollary 2

Proof of Proposition 3. Throughout, we view a splitting (λθ, σθ)θ∈Θ of some σ ∈ Σ∗ as a finitely
supported distribution in ∆(Σ). With a slight abuse of notation, we write λ for the distribution,
∆simple(Σ) for the set of finitely supported distributions on Σ, and Eλ for the expectation operator
with respect to λ. Since ambiguous communication benefits the sender, {λ ∈ ∆simple(Σ) : Eλ[σ] ∈
Σ∗,Eλ[ΦuBP

s
(σ)] ∈ (0,∞)} ̸= ∅ by Corollary 5. Since Σ∗ is a convex set and has a non-empty

interior, any point in Σ∗ can be approached by points in the interior of Σ∗. As the expectations in the
above set are continuous in λ, this implies that {λ ∈ ∆simple(Σ) : Eλ[σ] ∈ int Σ∗,Eλ[ΦuBP

s
(σ)] ∈

(0,∞)} ̸= ∅. Furthermore, since int Σ∗ × (0,∞) is open in the natural product topology, this set
is open.

Proof of Corollary 2. By Proposition 3, there exists a non-empty open set of ambiguous experi-
ments that benefit the sender. Fix one. Since Eλ[ΦuBP

s
(σ)] is continuous in ϕ′

r, this experiment
continues to benefit the sender under small perturbations of ϕ′

r. Finally, since ϕr is concave, small
perturbations of ϕr imply small perturbations of ϕ′

r (Rockafellar, 1970, Theorem 25.7, p. 248).

SA.4.2 Proof of Theorem A.1

Proof of Theorem A.1. Fix any u ∈ R. Let (σθ, λθ)θ∈Θ be feasible for the maximization problem
Φ∗(u) . Suppose that there exists a pair (σθ, σθ′) with λθ > 0 and λθ′ > 0 and such that there exists
a λ ∈ (0, 1) for which, Φu(λσθ + (1− λ)σθ′) > λΦu(σθ) + (1− λ)Φu(σθ′).

Then, (σθ, λθ)θ∈Θ cannot be a solution to the maximization problem Φ∗(u). This can be seen
from the following construction of a strict improvement satisfying the constraints in that problem:
If λθ

λ
≤ λθ′

1−λ
, then replacing σθ by the merged experiment λσθ + (1 − λ)σθ′ and replacing λθ by

λ̂θ =
λθ

λ
and λθ′ by λ̂θ′ = λθ′ − (1− λ)λθ

λ
yields such an improvement. If instead λθ

λ
>

λθ′
1−λ

, then
replacing σθ′ by the merged experiment λσθ + (1 − λ)σθ′ and replacing λθ′ by λ̂θ′ =

λθ′
1−λ

and λθ

by λ̂θ = λθ − λ
λθ′
1−λ

is such an improvement.
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To prove (i), towards a contradiction, suppose in the solution there exists (σθ, σθ′) ∈ Σ+(u)×
Σ+(u) with us(σθ, τ

∗) ̸= us(σθ′ , τ
∗) and ϕ′

r(ur(σθ, τ
∗)) ̸= ϕ′

r(ur(σθ′ , τ
∗)), but they are not Pareto-

ranked, i.e., us(σθ, τ
∗) > us(σθ′ , τ

∗) > u, and ur(σθ, τ
∗) < ur(σθ′ , τ

∗). Then for any λ ∈ (0, 1),
we can show Φu(λσθ + (1− λ)σθ′) > λΦu(σθ) + (1− λ)Φu(σθ′). To see this, observe that

Φu(λσθ + (1− λ)σθ′) =
ϕs(us(λσθ + (1− λ)σθ′ , τ

∗))− ϕs(u)

ϕ′
r(ur(λσθ + (1− λ)σθ′ , τ ∗))

≥λ
ϕs(us(λσθ + (1− λ)σθ′ , τ

∗))− ϕs(u)

ϕ′
r(ur(σθ, τ ∗))

+ (1− λ)
ϕs(us(λσθ + (1− λ)σθ′ , τ

∗))− ϕs(u)

ϕ′
r(ur(σθ′ , τ ∗))

≥λ
λϕs(us(σθ, τ

∗)) + (1− λ)ϕs(us(σθ′ , τ
∗))− ϕs(u)

ϕ′
r(ur(σθ, τ ∗))

+ (1− λ)
λϕs(us(σθ, τ

∗)) + (1− λ)ϕs(us(σθ′ , τ
∗))− ϕs(u)

ϕ′
r(ur(σθ′ , τ ∗))

(SA.4.1)

=λΦu(σθ) + λ(1− λ)
ϕs(us(σθ′ , τ

∗))− ϕs(us(σθ, τ
∗))

ϕ′
r(ur(σθ, τ ∗))

+ (1− λ)Φu(σθ′) + (1− λ)λ
ϕs(us(σθ, τ

∗))− ϕs(us(σθ′ , τ
∗))

ϕ′
r(ur(σθ′ , τ ∗))

>λΦu(σθ) + (1− λ)Φu(σθ′),

where the first inequality follows from concavity of 1/ϕ′
r and positivity of ϕs(us(λσθ + (1 −

λ)σθ′ , τ
∗))−ϕs(u), the second inequality follows from concavity of ϕs, and the last strict inequality

follows from ur(σθ, τ
∗) < ur(σθ′ , τ

∗) and ϕ′
r(ur(σθ, τ

∗)) ̸= ϕ′
r(ur(σθ′ , τ

∗)).
The proof of (ii) is the same as the proof of (i), except that the first inequality in the chain

(SA.4.1) now follows from convexity of 1/ϕ′
r and ϕs(us(λσθ + (1− λ)σθ′ , τ

∗))− ϕs(u) < 0.

SA.4.3 Proof of Theorem A.2

Proof of Theorem A.2. Fix any u ∈ R. Let (σθ, λθ)θ∈Θ be feasible for (Φ∗(u)). Suppose that there
exist σθ satisfying λθ > 0 and two experiments σ and σ′ such that σθ = λσ + (1 − λ)σ′ for some
λ ∈ (0, 1) and Φu(λσ + (1 − λ)σ′) < λΦu(σ) + (1 − λ)Φu(σ

′), then (σθ, λθ)θ∈Θ cannot be a
solution to (Φ∗(u)). This follows by noting that splitting σθ into σ with probability λλθ and σ′

with probability (1− λ)λθ′ induces a strict improvement.
To show (i), if 1/ϕ′

r(·) is concave, towards a contradiction, we have

Φu(λσ + (1− λ)σ) =
ϕs(us(λσ + (1− λ)σ, τ ∗))− ϕs(u)

ϕ′
r(ur(λσ + (1− λ)σ, τ ∗))

≤λ
ϕs(us(λσ + (1− λ)σ, τ ∗))− ϕs(u)

ϕ′
r(ur(σ, τ ∗))

+ (1− λ)
ϕs(us(λσ + (1− λ)σ, τ ∗))− ϕs(u)

ϕ′
r(ur(σ, τ ∗))
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=λΦu(σ) + λ
ϕs(us(λσ + (1− λ)σ, τ ∗))− ϕs(us(σ, τ

∗))

ϕ′
r(ur(σ, τ ∗))

+ (1− λ)Φu(σ) + (1− λ)
ϕs(us(λσ + (1− λ)σ, τ ∗))− ϕs(us(σ, τ

∗))

ϕ′
r(ur(σ, τ ∗))

≤λΦu(σ) + λ(1− λ)
ϕ′
s(us(σ, τ

∗))

ϕ′
r(ur(σ, τ ∗))

(us(σ, τ
∗)− us(σ, τ

∗))

+ (1− λ)Φu(σ) + λ(1− λ)
ϕ′
s(us(σ, τ

∗))

ϕ′
r(ur(σ, τ ∗))

(us(σ, τ
∗)− us(σ, τ

∗))

<λΦu(σ) + (1− λ)Φu(σ),

where the first inequality follows from concavity of 1/ϕ′
r and ϕs(us(λσ+ (1− λ)σ, τ ∗)) ≤ ϕs(u),

the second inequality from concavity of ϕs and the third inequality from the supposition.
The proof of (ii) is the same as the proof of (i), except that the first inequality now follows from

convexity of 1/ϕ′
r and ϕs(us(λσ + (1− λ)σ, τ ∗)) > ϕs(u).

SA.4.4 Proof of Lemma A.5

Proof of Lemma A.5. Define, for all integers k ∈ [1, n],

Sk =
k∑

i=1

xiµi

[
k∑

j ̸=i:j=1

µj(yi − yj)

]
.

Notice that when k = n, we have

Sn =
n∑

i=1

xiµi

[
n∑

j=1;j ̸=i

µj(yi − yj)

]

=
n∑

i=1

xiµi

[
(1− µi)yi −

n∑
j=1;j ̸=i

µjyj

]

=
n∑

i=1

xiµi

[
yi −

n∑
j=1

µjyj

]

=

(
n∑

j=1

µjyj

)(
n∑

i=1

xi
µiyi∑n
j=1 µjyj

−
n∑

i=1

xiµi

)
.

Since
(∑n

j=1 µjyj

)
> 0, it suffices to show Sn < 0. We prove this by induction. Observe that
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S1 = 0. For k ≥ 1,

Sk+1 =
k+1∑
i=1

xiµi

[
k+1∑

j=1;j ̸=i

µj(yi − yj)

]

=
k∑

i=1

xiµi

[
k∑

j ̸=i:j=1

µj(yi − yj)

]
+

k∑
i=1

xiµi[µk+1(yi − yk+1)]+

xk+1µk+1

k∑
j=1

[µj(yk+1 − yj)]

=
k∑

i=1

xiµi

[
k∑

j ̸=i:j=1

µj(yi − yj)

]
+

k∑
i=1

µiµk+1(xi − xk+1)(yi − yk+1)

=Sk +
k∑

i=1

µiµk+1(xi − xk+1)(yi − yk+1)︸ ︷︷ ︸
≤0

.

For k = j∗ − 1,

j∗−1∑
i=1

µiµj∗(xi − xj∗)(yi − yj∗) ≤ µi∗µj∗(xi∗ − xj∗)(yi∗ − yj∗) < 0.

Therefore, 0 = S1 > Sj∗ ≥ Sn.

SA.4.5 Proof of Lemma A.6

Proof of Lemma A.6. Define

σλ =
1

1− λ
σ − λ

1− λ
σ̂ (SA.4.2)

where λ ∈ (0, 1). Observe that if σλ is a well-defined experiment, then λσ̂ + (1− λ)σλ = σ, and
us(σ

λ, τ ∗) < us(σ, τ
∗), ur(σ

λ, τ ∗) < ur(σ, τ
∗), so that (σ̂, σλ, λ) is a Pareto-ranked splitting of σ.

It remains to show that there exists λ ∈ (0, 1) such that σλ is indeed an experiment. In other
words, for each ω, σλ(·|ω) must be a probability distribution over actions.

If |supp(σ(·|ω))| = 1, then supp(σ̂(·|ω)) ⊆ supp(σ(·|ω)) implies supp(σ̂(·|ω)) = supp(σ(·|ω)).
It follows that σλ(·|ω) = σ(·|ω) for all λ ∈ (0, 1), and is thus a distribution over actions.

If |supp(σ(·|ω))| > 1, embed σ(·|ω) into the Euclidean space R|supp(σ(·|ω))| and notice that
σ(·|ω) is in the relative interior of the probability simplex ∆(supp(σ(·|ω))). Thus there exists
ϵω > 0 such that for all x ∈ R|supp(σ(·|ω))| with

∑
i xi = 1, if ∥x − σ(·|ω)∥ < ϵω, then x ∈

∆(supp(σ(·|ω))). Since supp(σ̂(·|ω)) ⊆ supp(σ(·|ω)), one has σ̂(·|ω) ∈ ∆(supp(σ(·|ω))) as
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well. Then, for all λ ∈ (0, 1), σλ(·|ω) ∈ R|supp(σ(·|ω))| and
∑

a σ
λ(a|ω) = 1. Moreover, there exists

λω > 0 such that for all λ ∈ (0, λω), ∥σλ(·|ω)−σ(·|ω)∥ < ϵω, and thus σλ(·|ω) ∈ ∆(supp(σ(·|ω))),
making it a distribution over actions.

Because Ω is finite, λ(σ̂, σ) ≡ minω:|supp(σ(·|ω))|>1 λω > 0. Therefore, for all λ ∈ (0, λ(σ̂, σ)),
σλ is a well-defined experiment.
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