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Abstract

In auction and matching markets, estimating the welfare effects of demand-side treatments
is challenging because of spillovers through the mechanism. We develop a quasi-experimental
approach that avoids parametric assumptions typically imposed by structural methods. For a
class of strategy-proof “cutoff” mechanisms, we propose an estimator that runs a weighted and
perturbed version of the mechanism on data from a single market. The estimator is semi-
parametrically efficient, asymptotically normal, and robust to a wide class of demand-side
specifications. We propose spillover-aware targeting rules with vanishing asymptotic regret.
Empirically, spillovers diminish the effect of information on inequality in Chilean schools.
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1 Introduction

Designed markets, where a centralized mechanism allocates goods, are increasingly common in

practice. Examples include school systems (Abdulkadiroğlu & Sönmez 2003), medical residencies

(Roth 2003), online advertising markets (Varian & Harris 2014), and financial markets (McMillan

2003). Policymakers seeking to improve welfare in a designed market have a variety of tools at their

disposal, including modifying the mechanism, or intervening on the demand or supply side of the

market. In this paper, we study the problem of estimating the effect of demand side interventions

on welfare. A primary counterfactual of interest is the global treatment effect (GTE), which is the

effect on outcomes when all buyers in a market are treated compared to none. Our measure of

welfare is the average match value under a counterfactual treatment rule, where individual match

values are heterogeneous, and can depend on the market equilibrium (e.g. for bidder surplus). This

problem arises in a variety of empirical settings. Allende et al. (2019) provide information about

school quality to families in a randomized experiment in Chile, where the goal is to estimate how

information affects the allocation of low-income families to high-quality schools. In online mar-

kets, technology companies run experiments to evaluate the profitability of new bidding algorithms

that affect advertiser behavior. When there is supply side scarcity, congestion managed through

the market mechanism generates spillover effects, where the treatment of one individual affects

the outcomes of others. To address these interactions, applied economists usually estimate the

primitives of a structural model, and simulate the desired counterfactual using the model and the

mechanism. In the causal inference literature, the solution is to run more complex experiments,

such as cluster-randomized experiments (Baird et al. 2018, Hudgens & Halloran 2008), or those

specifically designed to address market-related spillovers (Munro et al. 2023, Bajari et al. 2023).

In this paper, we take a new approach, which derives a sufficient-statistics representation of the

GTE, and requires only data from a single market where the treatment is quasi-randomized. This is

a step toward extending more “credible” approaches based on quasi-experimental variation (Angrist

& Pischke 2009) to a richer set of counterfactuals beyond the average treatment effect (ATE). A

key assumption is that the mechanism is strategy-proof and submissions to the mechanism (bids)

are observed. Under this assumption, the model primitives, counterfactual distributions of bids,

are identified. Estimation, on the other hand, is more challenging.

The standard approach in the literature estimates model primitives directly and simulates the

desired counterfactual from the model. For this problem, though, estimating the counterfactual

bid distribution non-parametrically often is infeasible; in school choice, the distribution is over all

possible rankings of schools, which is too large even to enumerate. Even in auction settings, model

primitives are bid distributions conditional on pre-treatment covariates, which suffer from the curse

of dimensionality. To address this, researchers often impose parametric assumptions, such as spec-

ifying a utility function that determines each individual ranking over schools. Without limiting the

mechanism’s complexity, there is no alternative, since the GTE may depend on arbitrary features

of the bid distribution. Fortunately, most centralized mechanisms used in practice, including the

uniform price auction, deferred acceptance, and top trading cycles, have what is known as a cutoff
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representation (Azevedo & Leshno 2016, Agarwal & Somaini 2018). A market mediated by such

a mechanism has an equilibrium that is characterized by a finite-dimensional vector of market-

clearing cutoffs. We assume the mechanism has a cutoff structure, which reduces the complexity

of interactions that occur through the mechanism and provides the first step toward a sufficient-

statistics representation for the GTE. However, even with a cutoff mechanism, the observed market

may have multiple equilibria, and the GTE is an average of interdependent terms.

To address this, we introduce a continuum market approximation to the finite-sized market of

interest. We assume that buyers in the observed market are sampled from a population distribution.

The finite market allocates a fraction of the empirical distribution of agents to each item, and the

continuum market allocates the same fraction of the population distribution. As n grows large, but

the fraction of buyers allocated to each item remains constant, Azevedo & Leshno (2016) show that

the finite market converges to the continuum market. Under some additional regularity conditions,

our first result establishes a convergence rate; the finite-market GTE converges at a 1/
√
n rate

to the continuum market GTE. Furthermore, the continuum market GTE has a representation

as the solution to a finite set of moment conditions. This approximation result is the basis for a

sufficient-statistics approach for inference on the finite-market GTE. The reliance on the continuum

market approximation means our results are best applied when each item is allocated to at least a

few dozen buyers, which holds in most relevant empirical settings.

Our estimator solves an empirical version of the moment condition representation of the con-

tinuum market GTE. It relies on doubly-robust scores, and requires a careful adaptation of results

on localization approaches for GMM models with missing data, specifically the work of Kallus

et al. (2024). In the first-step, we use a propensity-score approach to estimate counterfactual

market-clearing cutoffs. Then, in a second-stage, a debiased estimate of counterfactuals is com-

puted by running a re-weighted and perturbed version of the mechanism, where the perturbations

are estimated using a simple set of of machine learning regressions on the first-stage estimates.

Data-splitting is used to control bias, allowing for weak conditions on the convergence rates of the

machine learning estimators.

Using techniques from the theory of empirical processes, we show that the estimator is asymp-

totically normal, and that inference valid for the continuum market counterfactual is conservative

for the finite-market estimand. This means that the estimator is robust to a variety of specifications

of how bids are affected by the treatment – as long as certain statistics of the counterfactual bid

distributions are sufficiently smooth, and the machine learning estimators meet regularity condi-

tions, then we can perform inference on the finite-market GTE. Furthermore, the variance of the

estimator meets the semi-parametric efficiency bound for the continuum market counterfactual,

which suggests that our inference approach has good power compared to alternative approaches.

Another advantage of our semi-parametric approach is that we allow for unrestricted heterogene-

ity in treatment response. When treatment effects are heterogeneous, a policymaker can improve

welfare by assigning treatment to a subset of individuals, depending on their pre-treatment covari-

ates. There is a large literature on policy learning under SUTVA, but the problem is much more
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complex when there are spillover effects, as discussed in the network setting by Viviano (2024). In

this paper, we provide the first asymptotic regret results for policy learning with market spillovers,

employing a two-step, doubly-robust approach for empirical welfare maximization. This yields an

asymptotic regret bound in the finite market that is of the same order as the lower bounds in

the literature on policy learning without spillover effects (Athey & Wager 2021). Constraining

spillovers to occur through the mechanism and knowing the structure of the mechanism is crucial

for this result. A major step in the proof, which is the most challenging technical result of the

paper, is demonstrating uniform convergence of estimated market-clearing cutoffs to the continuum

market-clearing cutoffs.

In simulations of a uniform price auction, we illustrate the robustness properties of our preferred

estimator, in contrast to approaches based on parametric structural modeling. Finally, we apply

our methods in a real-world setting using data from Chile, where a centralized mechanism (based

on deferred acceptance) allocates most children in the country to schools. We compile a dataset

from the Ministry of Education that replicates many of the features of the data in Allende et al.

(2019), except that the treatment is self-reported receipt of government-provided information on

school quality, rather than an explicitly randomized intervention. We estimate the GTE, where the

outcome measures the allocation of low-income families to good-quality schools. We find that if

spillover effects are ignored, then the estimate of the impact of the treatment is large and significant,

raising access of low-income families to good schools by nearly 1.5 percentage points. However, an

estimate of the true impact of the intervention that takes into account the impact on the equilibrium

of the school market is significantly smaller at 0.5 percentage points. The large spillover effect is

because good quality schools are often capacity-constrained, so the access of treated families in the

all-treated counterfactual is significantly lower than in the observed equilibrium, and the opposite

holds for the control families. There is also substantial heterogeneity in treatment effects in the

data. A rule approximating the optimal targeting rule in equilibrium raises access of low-income

families to good schools by 1.8 percentage points, substantially outperforming a uniform rule that

allocates the intervention to all families.

1.1 Related Work

There is a body of existing work that estimates different types of causal effects in designed markets.

Abdulkadiroğlu et al. (2017) estimate causal effects of allocations on future outcomes, such as test

scores or income, using randomness in the matching mechanism for identification. Abdulkadiroğlu

et al. (2022), Chen (2021), and Bertanha et al. (2023) extend this work to settings where individual

scores are non-random but the cutoff structure of the mechanism allows an RDD analysis. Bertanha

et al. (2023) also considers partial identification of preferences from strategic reports when mech-

anisms are not strategy proof. In contrast to this body of work, our paper focuses on an earlier

step in the causal chain of events, which is the effect of a pre-allocation intervention on the value

of allocations in the market.
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Athey & Haile (2007) survey non-parametric identification and estimation methods for prim-

itives in a wide range of auction models. We focus on the estimation of specific counterfactuals,

rather than model primitives. The disadvantage of our approach is that estimating primitives

is useful for estimating a wider range of counterfactuals, and can sometimes be of independent

interest. The advantage is efficiency and robustness, in that we can obtain precise estimates with-

out imposing strong (e.g. parametric or distributional) assumptions, at least with strategy-proof

mechanisms.

Sufficient statistics approaches are popular in a variety of applied economics fields, including

public economics (Chetty 2009) and macroeconomics (McKay & Wolf 2023). The approach in this

paper is unique in that most of the key assumptions that lead to the sufficient statistics repre-

sentation are known properties of the market mechanism, rather than parametric or distributional

assumptions imposed by the researcher on the data generating process. In addition, we provide

theoretical guarantees on inference and robustness of our method, which are not always available in

the related literature. There is a small literature in causal inference that considers settings where

interactions occur through a known algorithm or statistic. Miles et al. (2019) studies a model

where spillovers occur only through the proportion treated. Bright et al. (2022) characterize the

bias of an RCT in a parametric model of a matching market, where a linear program computes the

matching. They propose a simulation-based estimator of the GTE that requires estimating their

model using maximum likelihood estimation. Our paper studies markets with a different class of

matching mechanisms, which are truthful and have a cutoff structure; in this class of mechanisms,

we estimate causal effects without imposing a parametric model of behavior.

Munro et al. (2023) also constrain spillovers to occur through a set of market statistics. Without

the presence of a centralized mechanism, the model primitives are the distribution of demand and

supply functions, rather than counterfactual distributions of bids. This more challenging setting

means the authors are limited to counterfactuals that are local to the current equilibrium, and

require more complex experimental designs with price randomization for identification. In contrast,

the current paper is more directly related to the literature on structural modeling, in that a) we

use data with standard treatment variation and b) we identify global treatment effects, which

extrapolate from the observed market. On the technical side, the proofs must handle nuisance

function estimation and uniform convergence for regret minimization, neither of which appear in

Munro et al. (2023).

To analyze the properties of the estimators in the paper, we use an asymptotic framework

where the allocation mechanism operates on a continuum of agents, rather than a discrete number

of agents. Using large-sample approximations for marketplaces is helpful in characterizing bias and

variance of estimators of treatment effects, see Johari et al. (2022), Bright et al. (2022) and Liao

& Kroer (2023), as well as Munro et al. (2023), for an analysis of A/B testing in various markets

in equilibrium.
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2 Defining Counterfactuals

In the market observed by the researcher, n participants are allocated using a centralized mecha-

nism to some subset of J items, which each have limited capacity. For each market participant, the

researcher observes pre-treatment covariates Xi ∈ X , a binary treatmentWi ∈ {0, 1} and a submis-

sion to the mechanism Bi = Bi(Wi), which may be affected by the treatment. (Xi, Bi(1), Bi(0),Wi)

are drawn i.i.d. from some distribution F . Individual allocations Di = Di(W ) ∈ {0, 1}J depend

on other individuals’ actions through a centralized mechanism1. The mechanism is known and

computable given the n-length vector of submissions to the mechanism, so we can define potential

allocations Di(w) = d(Bi(w), B−i(w)), where d(·) is known.
In this paper, we will estimate and maximize the value of counterfactual treatment rules. A

candidate treatment rule is a function π : X → [0, 1], where π ∈ Π. Treatment allocation under

the counterfactual rule is Wi ∼ Bernoulli(π(Xi)). Defining Eπ[·] = E[·|(Bi(1), Bi(0), Xi)
n
i=1] as the

expectation with respect to random treatment allocation, holding all other sources of randomness

fixed, the finite-market value of a counterfactual treatment rule is

V̄n(π) = Eπ

[
1

n

n∑
i=1

Yi(W )

]
,

where Yi(w) =
J∑

j=1

(
M∗

ij + h(Bi(w), B−i(w))
)
Dij(w). Our outcome of interest is average wel-

fare, where the value of an allocation for an individual is assumed to be the sum of two compo-

nents. The first is an individual match value M∗
ij , which is heterogeneous, but does not depend

on others’ allocations or bids, and follows the assumed structure on welfare in many empirical

papers on matching markets (Abdulkadiroğlu et al. 2025). The second is a known function h(·)
that is heterogeneous only through a buyer’s bid. h(·) allows for part of the match value to de-

pend on an equilibrium statistic; in auctions, when welfare is bidder surplus, for example, then

h(Bi(w), B−i(w)) = (Bi(w)− P ), where the market-clearing price P is a function of all bids. M∗
ij

usually depends on characteristics of individual i and item j. In Section 6, M∗
ij is a measure of

inequality that is a simple transformation of school value-added and income level of the students. In

other settings,M∗
ij is an estimated measure of how much school j is expected to increase student i’s

test scores or future income, as described in Walters (2024). When M∗
ij is estimated, our inference

approach in Section 3 for V̄n(π) is conditional on the estimator.2

Although the theory in Section 3 allows us to estimate the difference in average value between

1Although our primary examples in the paper have binary allocations, the analysis in the paper extends directly
to allocations that are integers or real numbers, as long as they are bounded.

2In many cases, M∗
ij is either known ex-ante, or it is estimated using a different dataset (e.g. using data on

past students), so for inference on V̄n(π), it is most appropriate to hold fixed the estimator for M∗
ij . In other cases,

practitioners may be interested in incorporating uncertainty in M∗
ij in standard errors for V̄n(π). In that case, if a

parametric approach is used, then a delta-method adjustment to the
√
n inference in Section 3 is required. If M∗

ij is
estimated non-parametrically, then the estimators in Section 3 would likely have slower rates. It is possible that with
additional orthogonalization and data-splitting, maintaining

√
n inference is feasible, but that is a subject for future

work.
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any two candidate policies, we pay particular attention to the Global Treatment Effect (τ̄GTE),

which is defined as the difference in welfare when everyone is treated compared to when no one is

treated.

τ̄GTE =
1

n

n∑
i=1

[Yi(1n)− Yi(0n)],

Since our estimand of interest is defined as the value of counterfactual allocations, and allo-

cations are computed by a known mechanism, identification is straightforward, as long as we can

identify the distribution of counterfactual submissions to the mechanism.

Assumption 1. Identification

1. SUTVA holds for submissions to the mechanism: Bi(W ) = Bi(W
′) if Wi =W ′

i .

2. Unconfoundedness and overlap hold, so {Bi(1), Bi(0)} ⊥⊥Wi|Xi, and, letting e(x) = P (Wi =

1|Xi = x), for all x ∈ X , 0 < e(x) < 1.

Assumption 1 assumes that SUTVA holds for submissions to the mechanism, which means

that bidding behavior does not depend on other market participants’ treatments. Because of this,

our method is best applied in settings with strategy-proof mechanisms. Furthermore, it rules out

spillovers that occur outside the mechanism, such as sharing information received in a treatment

through a social network. For many treatments, including subsidies and information received

shortly before the mechanism is run, network-type spillovers are likely to be very small. If they

are expected to be large, then further work to combine network and market-spillover approaches is

needed.3

The last part of Assumption 1 identifies the marginal distribution of Bi(1) and Bi(0) by as-

suming that the treatment is randomly assigned conditional on covariates.4 Under these two as-

sumptions, E[V̄n(π)] is identified, and is a known functional of the treatment rule π(·), the marginal

distribution of Bi(1) and Bi(0), and the market size.

Although identification is straightforward, estimation is not. A plug-in estimator first esti-

mates the marginal distributions of Bi(1) and Bi(0), and re-runs the mechanism on samples from

these counterfactual distributions. Under unconfoundedness, this requires first estimating the dis-

tribution of Bi(1) and Bi(0) conditional on Xi. If the space of submissions to the mechanism is

high-dimensional,5 or the space of pre-treatment covariates is high-dimensional, then estimating

these conditional distributions non-parametrically is not feasible.

Rather than pursuing plug-in estimation, which may converge extremely slowly or not at all, we

instead specify a general class of economic mechanisms where a
√
n convergent and computationally

efficient estimator for τ̄GTE is available. This class, formalized in Assumption 2, is made up of

3A partial identification approach is briefly discussed in Section 6.
4It is possible to use an IV-type assumption as an identifying condition instead at the cost of only identifying a

restricted version of τ̄GTE, see Appendix E.2.
5In the school choice setting, the space of possible submissions to the mechanism is equal to all possible rankings

over all schools, which grows exponentially in the number of schools.

7



mechanisms for which an individual’s allocation depends only on their own submission to the

mechanism and a set of market-clearing cutoffs. A variety of commonly-used mechanisms have a

cutoff structure, including the uniform price auction, deferred acceptance (Azevedo & Leshno 2016),

and top trading cycles (Leshno & Lo 2021). In Munro et al. (2023), a similar statistical structure

on spillovers through market prices is useful for identification of local treatment effects in a general

two-sided market. In this paper, where there is the additional structure of a centralized market-

clearing mechanism, identification is possible without Assumption 2. However, the assumption

is helpful for showing 1/
√
n-convergence of estimators of V̄n(π), since it limits the complexity of

interactions that occur through the mechanism.

Assumption 2. Cutoff Mechanism. For each w ∈ {0, 1}n, allocations and outcomes for market

participant i depend only on Bi(wi) and a fixed length vector of cutoffs Pπ = Pn(W ) ∈ S.

Di(w) = d(Bi(wi), Pn(w)), Yi(w) = Yi(Bi(wi), Pn(w)),

The cutoffs approximately clear the market with fractional capacity s∗ ∈ [0, 1]J .6 Specifically,

there exists a sequence an with lim
n→∞

an
√
n = 0 and constant c > 0 such that, for every w ∈ {0, 1}n,

Cw =

{
p ∈ RJ :

∣∣∣∣∣
∣∣∣∣∣

n∑
i=1

1

n
d(Bi(wi), p)− s∗

∣∣∣∣∣
∣∣∣∣∣
2

≤ an

}
(1)

is nonempty with probability at least 1 − e−cn for all n. On the event where it is nonempty, the

market price is in this set, so Pn(w) ∈ Cw.

These cutoffs are computed by the mechanism and need not be unique. Formally, there exists

an algorithm, represented by a function m : Bn × ∆n−1 × [0, 1]J that maps the n-length vector

of bids B(w), an n-length vector of weights for each bid γ, and capacities for each item to a

market-clearing cutoff, so ∣∣∣∣∣
∣∣∣∣∣

n∑
i=1

γid(Bi(wi),m(B(w),γ, s∗))− s∗

∣∣∣∣∣
∣∣∣∣∣
2

≤ an, (2)

and we can write Pn(w) = m(B(w), 1n · 1n, s∗), where ∆k is the k-dimensional simplex. This

concept of market-clearing cutoffs with possibly heterogeneous weights is useful for estimating

counterfactuals in the next section. We first introduce two examples of mechanisms that are

regularly used in practice and have such a cutoff structure.

Example 1. Uniform Price Auction. In a uniform price auction with a single good, unit

demand, a supply of m units, and independent private values, n market participants bid their value

Bi(w) ∼ Fw, and the winning m bidders pay the (m + 1)th highest bid. This auction has a cutoff

6In a finite-sized market with m ∈ RJ
+ items available, then s∗ = m/n. It is convenient to write the capacity

constraint in fractional form for the continuum market approximation, described in Definition 1, where s∗ is fixed as
n grows large.
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structure, in that d(Bi(Wi), p) = 1(Bi(Wi) > p), and 1
n

n∑
i=1

d(Bi(Wi), P (W )) − s∗ = 0, where

s∗ = m/n. The market-clearing function m(·) ranks bids, and allocates the k largest bids so that

the sum of the weights of the winning bids is less than s∗, but the sum of the weights of the k + 1

largest bids is greater than s∗.

Example 2. Deferred Acceptance. In many cities, students are matched to schools using a

version of the deferred acceptance algorithm with lottery scores. This mechanism is another example

of a strategy-proof mechanism with a cutoff structure, as shown in Azevedo & Leshno (2016); p ∈ S
is a vector of score cutoffs for each school. The submission to the mechanism is a ranking over

schools Ri(Wi), where jRi(Wi)j
′ is 1 if school j is ranked above j′, and zero otherwise, and an

independent item-specific lottery number Si ∈ RJ . The index for the outside option is 0. The

allocation function is:

dj(Bi(w), p) = 1{Sij > pj and jRi(Wi)0}
∏
j′ ̸=j

1(jRi(Wi)j
′ or Sij′ < pj′).

On the supply side s∗j = mj/n, where mj is the number of seats available in school j, and n is the

total number of students. For the function m(·), the standard deferred acceptance algorithm can

easily be modified, as in the uniform price example above, to accommodate heterogeneous weights.

Under Assumption 2, holding the n market participants fixed, the expected outcomes for a

policy π ∈ Π are:

V̄n(π) =
1

n

n∑
i=1

Eπ [π(Xi)Yi(Bi(1), Pn(W )) + (1− π(Xi))Yi(Bi(0), Pn(W ))] .

In a finite market, the mechanism allocates a fraction of the empirical distribution of market

participants to each item. The equilibrium may not be unique, and furthermore, counterfactuals are

defined in terms of averages of dependent terms, since Pn(W ) depends on all market participants.

We next introduce the continuum market, which is a useful approximation to the finite market

that allocates an equivalent fraction of the population distribution of market participants to each

item (Azevedo & Leshno 2016). Continuum market counterfactuals are defined in Definition 1 as

a simple set of moment conditions, and have a unique equilibrium under a straightforward set of

conditions in Assumption 4.

Definition 1. Continuum Market. The value of a treatment policy in the continuum market

is V ∗(π) = yπ(p
∗
π), where yπ(p) = E[π(Xi)Yi(Bi(1), p) + (1− π(Xi))Yi(Bi(0), p)]. The large-market

cutoffs are defined by zπ(p
∗
π) = 0, and zπ(p) = E[π(Xi)d(Bi(1), p)+(1−π(Xi))d(Bi(0), p)]−s∗. Sim-

ilarly, we can write τ∗GTE = E[Yi(Bi(1), p
∗
1)]−E[Yi(Bi(0), p

∗
0)], and for w ∈ {0, 1}, E[d(Bi(w), p

∗
w)−

s∗] = 0.

To conclude this section, we show that not only does the continuum market provide a sufficient-

statistics representation of the counterfactual, it is also a good approximation asymptotically to
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the finite market. Our notion of convergence follows the related economic theory literature, as in

Azevedo & Leshno (2016), and takes n → ∞ but keeps J and s∗ fixed. This asymptotic approxi-

mation holds the mechanism fixed, and replaces the empirical distribution of market participants

with the smooth population distribution.

We impose a set of regularity conditions that ensure that the finite and continuum markets are

sufficiently well-behaved. In Assumption 3, the weak continuity assumption and metric entropy

condition allow for individual-level allocation functions that have some discontinuity in market-

clearing cutoffs. However, at the population-level, expected allocations and outcomes must be

smooth.

Assumption 3. Regularity of Outcomes.

1. There are constants hd, hy, C > 0 such that for each j ∈ {1, . . . , J}, and w ∈ {0, 1} the

function classes Fd,j = {B(w) 7→ dj(B(w), p) : p ∈ S} and Fh = {B(w) 7→ h(B(w), p) : p ∈
S} have uniform covering number such that, for every 0 < ϵ < 1, sup

Qd

N(ϵ,Fd,j , L2(Qd)) ≤

C(1/ϵ)hd, and sup
Qy

N(ϵ,Fh, L2(Qy)) ≤ C(1/ϵ)hy .

2. Outcomes are uniformly bounded, and demand and outcomes are weakly continuous in p.

There is a constant L > 0 such that for all pairs of prices p, p′, all w, and all j, we have

E[(dj(Bi(w), p)−dj(Bi(w), p
′))2] ≤ L||p−p′||2 and E[(Yi(Bi(w), p)−Yi(Bi(w), p

′))2] ≤ L||p−
p′||2.

3. For all w ∈ {0, 1} and x ∈ X , µdw(p, x) = E[d(Bi(w), p)|Xi = x] and µyw(p, x) = E[Yi(Bi(w), p)|Xi =

x] are twice continuously differentiable in p with first and second derivatives bounded uniformly

by c′.

4. For each π ∈ Π, the singular values of the J × J Jacobian matrix ∇pzπ(p
∗
π) are bounded

between c3 and c4.

In Assumption 4, we assume that the market-clearing cutoffs in the population are unique

and well-separated. Under regularity conditions on the distribution of values, Assumptions 2 -

4 are satisfied by the uniform price auction in Example 1, when bidder surplus is the outcome of

interest, as shown in Appendix E.1. This result can also be extended to Example 2 under regularity

conditions on the distribution of lottery numbers in deferred acceptance.

Assumption 4. Regularity of Equilibrium. S is a compact set. For all π ∈ Π, S contains a

ball of radius c1 > 0 centered at p∗π, and p
∗
π is unique and well-separated, so for any p ∈ S with

||p− p∗π|| ≥ c3
2Jc′ , there is a c2 > 0 so that 2||zπ(p)|| ≥ c2.

Under these assumptions, our first result strengthens the convergence result in Azevedo &

Leshno (2016) by providing a rate at which counterfactuals in the finite market converge to those

in the continuum market. As the market size grows large, the value of a treatment rule in equilib-

rium converges from an average of dependent terms to a set of moment conditions defined on the

population distribution.
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Theorem 1. Under Assumption 1- 4,
√
n(V̄n(π)−V ∗(π)) = Op(1). τ̄GTE has the following asymp-

totically linear form:

τ̄GTE − τ∗GTE =
1

n

n∑
i=1

(
Q1i(Bi(1), p

∗
1)−Q0i(Bi(0), p

∗
0)
)
− τ∗GTE + op(n

−1/2), (3)

where Qwi(b, p) = Yi(b, p)− ν∗w(d(b, p)− s∗), and ν∗w = ∇⊤
p E[Yi(Bi(w), p

∗
w)](∇pE[d(Bi(w), p

∗
w)])

−1.

We prove Theorem 1 in Appendix A.2 using techniques from empirical process theory (van der

Vaart & Wellner 1997). Using related techniques, Munro (2023) shows convergence of an equi-

librium effect to a large-market approximation, but do not provide a rate. By providing a rate,

Theorem 1 provides a foundation for inferential guarantees for the estimator of V̄n(π) introduced

in the next section.

3 Estimating Counterfactual Values

In this section, we introduce an estimator that is 1/
√
n-consistent for both the finite and contin-

uum market value of counterfactual treatment rules. Unlike existing semi-parametric methods that

rely on complex experimental designs (Munro et al. 2023, Bajari et al. 2023), this estimator relies

only on data from a standard RCT or observational data where selection into treatment is uncon-

founded. Algorithmically, our estimator runs a perturbed and re-weighted version of the allocation

mechanism on the observed data, where the weights and perturbations are estimated using flexible

machine learning methods, and three-way data splitting is used to control bias. This estimator is

closely related to the more general theory in Kallus et al. (2024) for quantile-like treatment effects,

but aspects of its design and analysis are unique to the problem studied in this paper.

Combining the moment representation of V ∗(π) and the overlap and unconfoundedness assump-

tions of Assumption 1, we can identify V ∗(π) using J + 1 moment conditions and doubly-robust

scores:

E[π(Xi)Γ
∗y
1i (p

∗
π) + (1− π(Xi))Γ

∗y
0i (p

∗
π)] = V ∗(π),

E[π(Xi)Γ
∗d
1i (p

∗
π) + (1− π(Xi))Γ

∗d
0i (p

∗
π)] = s∗,

(4)

where doubly-robust scores combine the propensity score e(x) = P (Wi = 1|Xi = x) and conditional

mean functions µdw(x, p) = E[d(Bi(w), p)|Xi = x] and µyw(x, p) = E[Yi(Bi(w), p)|Xi = x] for w ∈
{0, 1}:

Γ∗y
wi(p) = µyw(Xi, p) +

1(Wi = w)

P (Wi = w|Xi = x)
(Yi(Bi(w), p)− µyw(Xi, p)),

Γ∗d
wi(p) = µdw(Xi, p) +

1(Wi = w)

P (Wi = w|Xi = x)
(d(Bi(w), p)− µdw(Xi, p)).

(5)

(4) is not the only set of moment conditions that identify V ∗(π) under unconfoundedness and
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overlap. For example, it is possible to identify and estimate V ∗(π) using the propensity score only.

We prefer the doubly-robust approach since it requires much weaker assumptions on propensity

scores for results on inference and semi-parametric efficiency. For a more detailed discussion of the

benefits and drawbacks of the propensity score approach, we defer to the large related literature;

see, for example, Bang & Robins (2005) and Graham et al. (2012). Another alternative, which is

popular in the applied economics literature and discussed in more detail in Section 5, is to use a

parametric structural model of bidding behavior for identification and estimation. Our approach

avoids specifying a parametric model of bidding behavior.

The simplest doubly-robust estimator would solve for an empirical version of (4), as in Cher-

nozhukov et al. (2018). However, this requires inverting the estimated conditional mean function,

since it is a function of p, which implies estimating the entire bid distribution conditional on co-

variates. When the bid or covariate dimension is high, a flexible estimator of this conditional

distribution will converge too slowly for the theory in Chernozhukov et al. (2018). Instead, we

adapt the localization approach of Kallus et al. (2024), which solves an empirical version of (4)

that fixes a single estimate of the conditional mean functions at a first-step estimator of counterfac-

tual market-clearing cutoffs. An application of this approach that uses the centralized mechanism

m(·) to find a solution to the empirical moment condition is in Definition 2.

Definition 2. Localized Doubly-Robust Estimator

1. Randomly split the dataset into K = 3 folds. Let k(i) be the fold of observation i, for

i ∈ {1, . . . n}. Let Ik denote the indices of data in fold k, and I−k the data that is not in fold

k. In addition, for each fold, randomly split I−k into two disjoint subsets H−k and G−k. For

each fold k ∈ {1, 2, 3},

• On data in fold H−k, compute a first-step cutoff estimate P̃π = m(B, γ̃π, s
∗), using

estimated weights γ̃π,i = π(Xi)
Wi

|H−k|ẽ(Xi)
+ (1− π(Xi))

1−Wi
|H−k|(1−ẽ(Xi))

. ẽ(Xi) is estimated

using (Wi, Xi) in fold H−k.

• On data in fold G−k, estimate the propensity score êk(Xi) using (Wi, Xi).

• On data in fold G−k, estimate the conditional mean functions using a flexible regression:

– Estimate µ̂y,kw (Xi) for w ∈ {0, 1} by regressing Yi(Bi, P̃π) on (Xi,Wi),

– Estimate µ̂d,kw (Xi) for w ∈ {0, 1} by regressing d(Bi, P̃π) on (Xi,Wi).

2. Using the full sample, compute a second-step estimate of cutoffs P̂π = m(B, γ̂π, ŝπ), where

the weights and perturbed capacities are:

γ̂π,i = π(Xi)
Wi

nêk(i)(Xi)
+ (1− π(Xi))

1−Wi

n(1− êk(i)(Xi))
,

ŝπ = s∗ +
1

n

n∑
i=1

(
Wi

êk(i)(Xi)
− 1

)
π(Xi)µ̂

d,k(i)
1 (Xi) + (1− π(Xi))

(
1−Wi

1− êk(i)(Xi)
− 1

)
µ̂
d,k(i)
0 (Xi).

12



3. Using the full sample, estimate V̂n(π) using doubly-robust scores:

V̂n(π) =
1

n

n∑
i=1

π(Xi)Γ̂
y
1i(P̂π) + (1− π(Xi))Γ̂

y
0i(P̂π),

Γ̂y
1i(p) = µ̂

y,k(i)
1 (Xi) +

Wi

êk(i)(Xi)
(Yi(Bi, p)− µ̂

y,k(i)
1 (Xi)),

Γ̂y
0i(p) = µ̂

y,k(i)
0 (Xi) +

1−Wi

1− êk(i)(Xi)
(Yi(Bi, p)− µ̂

y,k(i)
0 (Xi)).

(6)

Data are split three ways. For each split of data, doubly-robust scores are computed using

nuisance functions estimated on the other two splits of data. One of these is used for a first stage

inverse propensity score estimate of the market-clearing cutoffs under treatment and control. The

other is used for estimates of the propensity score and a single set of conditional mean functions.

These estimated conditional mean functions are constructed via flexible regressions of outcomes

and allocations computed at the first-step cutoff estimates. Then, the treatment effect is estimated

in two steps. First, using conditional mean functions for allocations and the estimated propensity

score, we run a perturbed and re-weighted version of the centralized allocation mechanism to

estimate counterfactual market-clearing cutoffs. Then, the global treatment effect is estimated

using a doubly-robust score evaluated at these counterfactual cutoffs. The key insight of the

algorithm in Definition 2 compared to the more general estimator in Kallus et al. (2024) is the

use of the algorithm m(·) to find the market-clearing cutoffs. In the school choice application in

Section 6, there are thousands of moment conditions, and finding the market-clearing cutoffs using

a general root-finding approach rather than deferred acceptance would be extremely slow.

A structural approach usually imposes a parametric assumption on the distribution of bids

conditional on covariates; once the parameters of that model are estimated, counterfactuals can

be simulated directly from the model. The advantage of the approach in Definition 2 is that it

relies only on weak assumptions on the estimators of the propensity score and a set of conditional

mean functions. Under Assumption 5, the doubly-robust estimator is asymptotically normal and

semi-parametrically efficient.

Assumption 5. Assumptions on Nuisance Estimation. Let µ̂w(x) = µ̂w(x, P̃π) be a (J+1)-

dimensional vector of functions that concatenates µ̂yw(x, P̃π) and µ̂
d
w(x, P̃π), estimated on a training

set of size n/K. ET [·] is an expectation over random test data, conditional on the training data,

where the test data is drawn from the same distribution as the training data.

1. The estimated propensity score satisfies strong overlap: almost surely, ê(Xi) ∈ (κ, 1 − κ) for

κ > 0.

2. The estimated conditional mean functions are uniformly bounded. There is a constantM <∞
such that

sup
w∈{0,1},x∈X ,p∈S

||µ̂w(x, p)||∞ ≤M.
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3. For each π ∈ Π, there is a finite c such that with probability 1− e−cn,(
ET

[
||µ̂w(Xi, P̃π)− µw(Xi, P̃π)||2

])1/2
≤ ρµ,n, (7)(

ET [(ê(Xi)− e(Xi))
2]
)1/2 ≤ ρe,n, (8)(

||P̃π − p∗π||2
)1/2

≤ ρθ,n, (9)

where ρe,n = o(1), ρµ,n + ρθ,n = o(1), ρe,nρµ,n = o(n−1/2), and ρe,nρθ,n = o(n−1/2).

4. The error in the market-clearing condition follows ρg,n = o(n−1/2). Specifically, with proba-

bility at least 1− e−cn, C(p) is non-empty, and P̂n ∈ C(p), where

C(p) =

{
p ∈ S :

∣∣∣∣∣
∣∣∣∣∣ 1n

n∑
i=1

π(Xi)Γ
d
1i(p; η̂) + (1− π(Xi))Γ

d
0i(p; η̂)

∣∣∣∣∣
∣∣∣∣∣ ≤ ρg,n

}
,

Γd
1i(p; η̂) = µ̂

d,k(i)
1 (Xi) +

Wi

êk(i)(Xi)
(d(Bi(w), p) − µ̂

d,k(i)
1 (Xi)), and Γd

0i(p; η̂) = µ̂
d,k(i)
0 (Xi) +

1−Wi

1−êk(i)(Xi)
(d(Bi(w), p)− µ̂

d,k(i)
0 (Xi)) and η̂ collects the estimated nuisances.

Assumption 5 requires that the pairwise product of the rates of mean-square-consistency of

the initial estimator of the counterfactual cutoffs, the propensity score, and the conditional mean

functions are o(n−1/2) and that each nuisance parameter is also consistent. This means that for

a fixed p, the estimator for expected outcomes and allocations conditional on Xi can have a slow

rate. The uniform guarantee on the performance of the estimators over π ∈ Π can be dropped for

the point-wise results on the value function in this section, but is required for the regret guarantee

in the next section. The main result of this section is that the algorithm described leads to an

asymptotically normal estimator of counterfactuals of interest:

Theorem 2. Under Assumptions 1 - 5, V̂n(π) =
1
n

n∑
i=1

Γ∗q
πi(p

∗
π) + op(n

−1/2), where

Γ∗q
πi(p) = π(Xi)Γ

∗y
1i (p) + (1− π(Xi))Γ

∗y
0i (p)− ν∗π

(
π(Xi)Γ

∗d
1i (p) + (1− π(Xi))Γ

∗d
0i (p

∗
0)− s∗

)
,

and ν∗π = ∇⊤
p yπ(p

∗
π)[∇pzπ(p

∗
π)]

−1.

Corollary 3. Under Assumptions 1 - 5,

τ̂GTE − τ∗GTE =
1

n

n∑
i=1

Γ∗q
1i (p

∗
1)− Γ∗q

0i (p
∗
0)− τ∗GTE + op(n

−1/2),

where Γ∗q
wi(p) = Γ∗y

wi(p)− ν∗w(Γ
∗d
wi(p)− s∗). And,

√
n(τ̂GTE − τ∗GTE) →D N(0, σ2),

where σ2 = E[(Γq
1i(p

∗
1)− Γq

0i(p
∗
0)− τ∗GTE)

2].
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With known nuisance functions, standard techniques for method-of-moments estimators can be

used to prove Theorem 2 for a propensity score-based estimator. With an unknown propensity

score and a doubly-robust estimator, the challenge is to show that even when estimated nuisance

functions depend on market-clearing cutoffs, their estimation error does not have a first order

impact on the error of the estimator.7

Corollary 3 follows directly from Theorem 2. Due to the market-clearing cutoffs, the asymptotic

variance of τ̂GTE depends on the variance of a linear combination of treatment effects on outcomes

and treatment effects on allocations. The first component is the standard sampling variation in

direct treatment effects, and the second is due to the variation in the equilibrium that is reached

in the allocation mechanism. In many cases, the variance of τ̂GTE is less than an estimator for the

Average Treatment Effect, making confidence intervals that account for noise in the market-clearing

cutoffs tighter than those that ignore spillovers.8 Furthermore, the variance in Corollary 3 meets

the semi-parametric efficiency bound for τ∗GTE.

Theorem 4. Semi-Parametric Efficiency Under the assumptions of Theorem 2, the semi-

parametric efficiency bound for τ∗GTE is equal to σ2.

If the econometrician is willing to impose a parametric assumption on the bid distribution, then

a structural estimator of τ∗GTE will be efficient. However, in the absence of a parametric assumption

on how the treatment impacts bidding behavior, then the proposed estimator is semi-parametrically

efficient. The proof of this theorem is in Appendix B.1. The proof uses the methodology presented

in Bickel et al. (1993) and Newey (1990), and is closely related to the bound for quantile treatment

effects in Firpo (2007).

By computing a plug-in estimator of σ2, we can perform asymptotically valid inference on the

continuum market counterfactual τ∗GTE. Consistency of a plug-in estimator for σ2 follows from the

existing assumptions, as shown in Theorem 4 of Kallus et al. (2024). Appendix C.1 uses Monte Carlo

simulations to illustrate the finite-sample properties of confidence intervals based on the normal

approximation of Corollary 3. Theorems 2 and 4 focus on the continuum market counterfactual

τ∗GTE. Although it is a convenient approximation, in many settings the true target of interest

is the finite-market counterfactual τ̄GTE. Combining Theorem 1 and Theorem 2, we have that
√
n(τ̂GTE− τ̄GTE) →D N(0, σ̄2), where σ̄2 = E[(Γ∗q

1i (p
∗
1)−Γ∗q

0i (p
∗
0)−Q1i(Bi(1), p

∗
1)+Q0i(Bi(0), p

∗
0))

2].

Proposition 5 shows that inference that is valid for the continuum market estimand is conservative

for the finite-market estimand, which is the primary counterfactual of interest for a policymaker or

market designer.

Proposition 5. Under the Assumptions of Theorem 2, σ2 ≥ σ̄2.
7Under weaker entropy conditions than in Assumption 3, the main result in Kallus et al. (2024) can be used to

prove Theorem 2. However, the stronger conditions that we impose, which are met by economic mechanisms used in
practice, lead to a more concise proof of Theorem 2, and are useful for the regret results in Section 4.

8For example, assume a binary treatment raises the values of bidders in a Uniform Price Auction, and the
outcome is bidder surplus. The variance in individual treatment effects contributes directly to the variance of a
partial equilibrium treatment effect estimator. However, a GTE estimator also estimates the equilibrium price at
treatment and control. To respect the capacity constraint in the auction, a sample with a higher average treatment
effect will also have a higher estimated market price under treatment, which can reduce variance.
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4 Policy Learning

The model in Section 2 allows for heterogeneity in the effect of the treatment on individual wel-

fare. So far, however, the counterfactuals considered treat all market participants the same. In

some settings where there is significant heterogeneity in treatment response, a market designer

or policymaker may consider treatment rules that target some subset of market participants. In

this section, we consider the problem of choosing π ∈ Π to maximize finite market or continuum

market expected outcomes. Because of interactions through the centralized mechanism, the benefit

of treating a group of individuals depends on their direct response to the treatment as well as

indirect effects on others; the magnitude of both can vary depending on the treatment saturation

in the sample. In this paper, because the indirect effect is mediated by a known algorithm, there

is enough structure that learning optimal treatment rules is possible.

We start by characterizing the optimal unrestricted treatment rule in the continuum market;

although this leads to a useful description of the structure of the globally optimal rule, designing an

estimator with good theoretical guarantees requires additional assumptions. We then consider the

problem of estimating a treatment rule that is a member of a restricted class of rules, and maximizes

outcomes in the finite market. We restrict Π to be a VC class, and show that maximizing the

estimated value function within this class using the algorithm in Section 3 has regret that decays

at a 1/
√
n rate. This is a notable result; when interactions are mediated by a cutoff mechanism,

it is possible to learn the optimal policy at an asymptotic rate that matches the lower bound for

policy learning without spillover effects (Athey & Wager 2021).

4.1 Unconstrained Class of Treatment Rules

Theorem 6 provides a score condition that any optimal rule must satisfy when Π is unconstrained.

Theorem 6. Let Π be the class of all functions from X to [0, 1]. Let

ρ(x, π) = E[qπ(Bi(1), p
∗
π)− qπ(Bi(0), p

∗
π)|Xi = x],

where qπ(Bi(w), p) = Yi(Bi(w), p)−ν∗π(d(Bi(w), p)−s∗). For any optimal rule π∗ ∈ argmaxV ∗(π),

for almost all x ∈ X , π∗(x) = 1 when ρ(x, π∗) > 0, π∗(x) = 0 when ρ(x, π∗) < 0, and π∗(x) ∈ [0, 1]

when ρ(x, π∗) = 0.

ρ(x, π) is made up of two components. The first component is the average direct effect of treating

market participants with Xi = x on outcomes; holding market prices fixed. However, raising the

treatment probability for a group of market participants also affects the market-clearing cutoffs.

The second component measures the indirect effect of treating market-participants; treating more

participants affects demand for certain items in the market, and the resulting change in p∗π affects

outcomes. If the sum of these two effects is positive then the treatment probability for the group

is positive. This is in contrast to the globally optimal rule under SUTVA, where only sign of

the conditional average direct effect of the treatment on outcomes matters. While this result is
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useful for understanding the structure of the optimal rule, the ultimate goal in this section is to

characterize the regret of an estimator for the optimal treatment rule. Unfortunately, obtaining

even consistency is challenging for the globally optimal rule; a plug-in estimator may not meet the

condition of Theorem 6, since ρ̂(x, e) estimated at the treatment rule observed in the data may be

very different from ρ(x, π̃), where π̃(x) = 1(ρ̂(x, e) > 0). In the next section, we constrain Π to

be a VC class, which allows for an empirical welfare maximization approach that has asymptotic

regret guarantees, even in the finite market. Furthermore, this constraint is often useful in practice,

where “simple” treatment rules, such as linear threshold rules, are desirable.

4.2 Constrained Class of Treatment Rules

We now assume that Π is a VC class of functions with dimension v. The estimator of the optimal

value function maximizes the doubly-robust estimator of the value function from Section 3 over Π,

specifically

π̂ ∈ argmax
π∈Π

V̂n(π).

The main contribution of this section is formalizing how well the estimated rule performs com-

pared to the oracle rule that maximizes the unobserved finite-market value V̄n(π) directly. A key

step in this result is to show that both V̄n(π) and V̂n(π) converge uniformly in π ∈ Π as n grows

large to the continuum market value V ∗(π). For this uniform convergence, we require Assumption

6, which is an additional assumption on the nuisance functions.

Assumption 6. With probability at least 1−o(1), the function class Fµ̂ = {X 7→ µ̂y(X, p) : p ∈ S}
and, for each j ∈ {1, . . . J} the class Fµ̂,j = {X 7→ µ̂dj (X, p) : p ∈ S} have uniform covering numbers

obeying, for every 0 < ϵ < 1, sup
Qy

N(ϵ,Fµ̂, L2(Qy)) ≤ C(1/ϵ)hy and sup
Qd

N(ϵ,Fµ̂,j , L2(Qd)) ≤

C(1/ϵ)hd.

Although we allow the estimated conditional mean functions to be complex functions of Xi,

they must be relatively simple functions of p. Since we already impose a metric entropy condition

on individual-level outcome functions in p, in some cases, such as for the K-nearest-neighbors

estimator used in Section 6, this is automatically satisfied by Assumption 3. For more general

machine learning estimators, verifying this type of condition may require additional effort. We can

now prove Theorem 7.

Theorem 7. Under the assumptions of Theorem 2 and Assumption 6, also assume Π is a VC

class of dimension v. Then, regret in both the finite market and the continuum market from the

empirical welfare maximization procedure decays asymptotically at a 1/
√
n rate:

argmax
π∈Π

V ∗(π)− V ∗(π̂) = Op

(
1√
n

)
,

argmax
π∈Π

V̄n(π)− V̄n(π̂) = Op

(
1√
n

)
.
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Characterizing the maximizer of the finite-market value of a treatment rule directly is challeng-

ing, since it is a quantity that depends on possibly non-unique market-clearing cutoffs and non-

smooth allocation functions. By linking both the finite-market value and estimated market-value

to the continuum market value instead, where the equilibrium is unique and aggregate responses

are smooth, then we manage to obtain asymptotic regret results for the finite-sized market. The

constants in the asymptotic regret bound depend on the VC class dimension v, the number of

items J , as well as the parameters hd and hy in the covering number bounds for the allocation

and outcome functions. The dependence on n implies that the estimated maximizer converges

quickly to the oracle maximizer of either the finite or continuum market value. This rate matches

the lower bound for policy learning with SUTVA, and the upper bounds for regret with network

spillovers in Viviano (2024). This strong result is possible in the centralized market setting because

all interactions occur through a finite-vector of market-clearing cutoffs. A key step in the proof

is showing 1/
√
n- uniform convergence of the estimated market-clearing cutoffs to the continuum

market-clearing cutoffs under weak assumptions on the convergence of nuisance functions. The

proof technique used for the market-clearing cutoffs can be extended to any M - or Z-estimator.

This could allow for policy learning results in other semi-parametric models with heterogeneity and

interactions between units that can be described using a set of moment conditions in the population.

5 Simulation

In this section, we illustrate the robustness properties of doubly-robust estimators compared to

structural modeling approaches using a simulation of a uniform price auction where bidders values

are generated from different distributions.

We simulate data generated from a uniform price auction and compare the LDML estimator

of τ̄GTE to alternative approaches. In the simulation, treatment affects bids to the auction. There

is a 20-dimensional set of covariates that is correlated with the bids and affects the probability

of selecting the treatment. The auction has a fractional capacity of 0.5, so that the top 50% of

bidders in the auction receive a single unit of the good. The treatment affects outcomes through

a shift in the distribution of bids submitted to the auction, and through a shift in the equilibrium

market-clearing price. The outcome of interest is the observed average surplus for bidders in the

auction, assuming that the bids submitted to the auction are equal to the values for the bidders.

The data-generating process is explicitly described in Appendix C. For each bidder, we observe the

bid Bi, the treatment Wi, and pre-treatment covariates Xi. We compute RMSE and bias for a

variety of estimators when the target estimand is τ̄GTE by repeatedly sampling a finite-sized market

of size n = 100, n = 1000 and n = 10, 000. These estimators take as input (Yi, Bi,Wi, Xi)
n
i=1.

The estimators are as follows:

1. A doubly-robust estimator of the Average Treatment Effect using generalized random forests

(DR-ATE). This estimator compares observed surplus for treated and control market par-

ticipants at the observed equilibrium. It adjusts for selection-on-observables, but does not
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account for equilibrium effects.

2. A structural model based estimator of τ̄GTE (SM-GTE). The estimator assumes that Bi(w) ∼
LogNormal(µw(Xi), σ). For w ∈ {0, 1}, µ̂w(Xi) and σ̂ are estimated using a linear regression

of log(Bi) on Xi for individuals with Wi = w. Then, τ̂SMGTE is computed by simulating the

difference in average surplus in an n-sized market with bids drawn from F̂1(Xi) and one with

bids drawn from F̂0(Xi).

3. Bias-corrected structural model estimator (SMDR-GTE). We solve an empirical version of (4)

using the DML algorithm of Chernozhukov et al. (2018), where propensity scores are estimated

using a random forest and conditional mean functions are computed as in SM-GTE with the

lognormal assumption.

4. A doubly-robust estimator following the localization approach in Definition 2 (LDML-GTE).

Both propensity scores and conditional mean functions are estimated using random forests.

n=100 n=1,000 n=10,000

Bias RMSE Bias RMSE Bias RMSE

DR-ATE 0.29 0.30 0.26 0.26 0.242 0.243
SM-GTE -0.17 0.39 0.0019 0.021 0.000 0.005
SMDR-GTE -0.17 0.39 -0.0016 0.031 -0.0003 0.008
LDML-GTE 0.034 0.09 0.0017 0.028 -0.0008 0.008

Table 1: Bids follow a lognormal distribution. Metrics averaged over 100 simulations of each sample
size from the data-generating process.

With only 100 datapoints, the noise in the estimation for methods that rely on estimating

the distribution of bids directly is high. As the number of datapoints increases, the model-based

estimator, which makes the correct parametric assumption on the bid distribution, converges the

fastest. The bias-corrected structural model also performs well, although has increased variance

since the bias correction adds noise when the model is correct. The LDML estimator does not make

any parametric assumptions, and instead uses flexible machine learning estimators for nuisance

parameter estimation. It has an asymptotic distribution that does not depend on the estimation

errors of the nuisance functions. The ATE estimator, which ignores the equilibrium effect of the

treatment, has a large bias even as the sample size increases.

In the second set of simulations, we generate bids from a truncated normal distribution rather

than a lognormal distribution. Otherwise, the data-generating process is the same. We compute

the set of estimators, where we continue to use a random forest based approach for the nuisance

functions for the LDML estimators, and a lognormal based approach for the structural modeling

estimators.

This time, the structural modeling approach performs poorly. The parametric assumption is

incorrect, and as a result the outcome model is asymptotically biased. The SMDR estimator

uses the propensity score to successfully remove the bias from the structural model. The LDML
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n=100 n=1,000 n=10,000

Bias RMSE Bias RMSE Bias RMSE

DR-ATE 0.10 0.08 0.094 0.096 0.093 0.093
SM-GTE 0.14 0.29 0.068 0.10 0.078 0.080
SMDR-GTE 0.04 0.22 0.0004 0.018 0.0000 0.0049
LDML-GTE -0.01 0.05 0.0004 0.015 0.0004 0.0047

Table 2: Truncated Normal Distribution for Bids. Metrics averaged over 100 simulations of each
sample size from the data-generating process.

estimator does not make any parametric assumptions on the bid distribution and continues to

perform very well here.

If a parametric model is correctly specified, then a maximum-likelihood estimator of that model

is asymptotically linear and efficient. In addition, once the primitives of the model are specified

and estimated, a variety of counterfactuals can often be evaluated, including those that are more

complex than the estimand considered in this paper. The downside of this approach is if the model

is not correctly specified, then the estimator of τ∗GTE will be asymptotically biased. Unfortunately,

it can be challenging to specify a parametric model that captures the complexity and heterogeneity

of individual choice behavior, especially in settings where possible submissions to the mechanism are

high-dimensional. The localized doubly-robust estimator performs well, without requiring correct

specification of a parametric model of submissions to the mechanism.

6 Impact Evaluation in the Chilean School Market

In 2015, the Chilean government passed the Inclusion Law, which, among many other changes,

eliminated school-specific admissions criteria in favor of a centralized admission system (Correa

et al. 2019). The centralized admission system is based on deferred acceptance, and was intended

partly to reduce socioeconomic segregation in the Chilean school system, by removing discrimina-

tory admissions criteria and reserving some seats for low-income families. Despite these changes,

low-income families attend good-quality schools at a much lower rate than high-income families.

There are variety of reasons why the gap might remain after the broad changes to the school

system beginning in 2015. Lower-income families may live further from higher-quality schools, and

may prefer to attend closer schools due to budget or time constraints. Another reason is that

some families may lack information about school quality, or the returns to schooling. Allende et al.

(2019) explore this hypothesis using an RCT that randomized a video and report card providing

information on nearby school quality. They found that the intervention increases applications of

low-income families to high-quality schools. However, by simulating from a parametric model of

demand for schools, they find that the effect on allocations in equilibrium is substantially less, due

to capacity constraints.

We estimate and perform inference on the effect of information on income inequality by con-

structing a similar observational dataset on Chilean students using data from the Ministry of
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Education in Chile. We also find that information affects choices positively, and that capacity

constraints reduce the effect of the intervention on allocations significantly.

For this application, we combine two datasets from the Ministry of Education for 2018 - 2020.

For the admissions system, we use publicly available data on the centralized admissions process

(SAE) for 2020 for those applying to the 9th grade in Chile. This data includes the rankings each

student submits to the algorithm, their priority, location, and actual assignment. We link this to

another student-level dataset collected as part of the SIMCE9 standardized test system in Chile.

This data includes additional demographic information on parents and students collected through

a survey, and is part of a private dataset that can be requested from the Ministry of Education

in Chile. For school quality for the 9th grade admissions process, we use the average student

math and reading score for the school in 2018 among 10th graders. Students apply to a subset of

approximately 2,500 schools nationwide.

The treatment we analyze is a proxy for the receipt of information on government school quality.

Wi = 1 if a parent responds “Yes” to the following question:

Do you know the following information about your child’s school? Performance category of this

school. 10 53% of the sample of 114,749 applicants to 9th grade have Wi = 1. The observed

pre-treatment covariates are location (available for all applicants), and household size, mother and

father education level, whether or not the mother and father are indigenous and the income of

the family (available for those whose parents filled out the SIMCE survey in 8th grade). Missing

covariates are imputed using a k-nearest neighbors approach. Table 5 in Appendix D includes the

mean and standard deviation for each of the variables.

6.1 Treatment Effect Estimates

We first check that the treatment impacts the rankings that low-income families submit to the

allocation mechanism, before we examine the effect on allocations. Submitted rankings are not

subject to spillover effects through the allocation mechanism, since deferred acceptance is strategy-

proof. So, we use DR-ATE to estimate the average treatment effect on two outcomes for low-income

families, in Table 3. The first outcome is an indicator if the family ranks a top 50% school first,

and second is the length of the application list that a family submits. Note that the length of

the submitted rankings is unrestricted in the Chilean mechanism. The estimated treatment effect

on ranking a high-quality school is 2.3%.11 The effect on list length is positive, but small. So,

there is evidence that the information intervention encourages low-income families to apply to

better-quality schools.

Because of capacity constraints, not all families that rank a high-quality school first are admitted

to that school. Estimating treatment effects on allocations is more challenging due to spillovers

9Sistema de Medición de la Calidad de la Educación
10The survey language (in Spanish) is: ¿Conoce usted la siguiente información del colegio de su hijo(a)? Categoŕıa

de desempeño de este colegio. It is the third question in the thirtieth section of the parent survey in the SIMCE
dataset.

11In the market, 36% of low income families with Wi = 0 rank a top-50% school first.
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Top 50% School Ranked First Length of Application List

DR-ATE 2.3% 0.03
(0.40) (0.01)

Table 3: DR-ATE estimates of the effect of information on applications of low-income families to 9th
grade.

Estimator Treatment Effect Estimate (s.e.)

LDML-GTE 0.54% (0.36)
DR-ATE 1.30% (0.32)

ATE-Bias 0.76% (0.38)

Table 4: Estimates of the treatment effect of informing parents about school quality on allocation
of low-income families to good quality schools.

that occur through the allocation mechanism. Table 4 shows an estimate of treatment effects, when

the outcome is whether a low income family is accepted to an above-average school in Chile. We see

that the DR-ATE estimator, which corrects for selection, but not equilibrium effects, estimates a 1.3

percentage point increase in the allocation of low-income families to good quality schools. However,

the LDML estimate of the GTE is 0.5 percentage points, which is much lower. Figure 1 provides

a breakdown of the bias of the DR-ATE estimator. At the observed equilibrium, the probability of

admission to a good-quality school is higher than at the 100% treated equilibrium, and lower than

that of the 0% treated equilibrium. Estimating τ̄GTE accurately requires estimating the access of

treated families at the all-treated equilibrium, and control families at the all-control equilibrium.

We briefly discuss a possible source of bias in the LDML-GTE estimate. There are two possible

sources of spillovers from an information treatment; the first is through the mechanism due to

capacity constraints, and the second is network-related spillovers. The estimates in Table 4 only

account for the first type of spillover. Even if a family does not report receiving school quality

information, they may make choices that are correlated with their treated neighbors’ choices. If

the network spillovers are positive, so that increasing the number of treated neighbors always

increases the probability that a family raises the rank of a high-quality school, then the effect

estimate in Table 4 is a lower bound on the Global Treatment Effect under both network and

congestion effects. If network spillovers may be positive or negative, then further work is needed

to account for both types of spillovers. Regardless, we expect that congestion-related spillovers

dominate network spillovers in this setting.

By using a potential outcomes framework to analyze counterfactuals in this setting, hetero-

geneity in the effect of the treatment on bids is not restricted. There may be heterogeneity in

whether or not individuals respond positively to the information, as well as heterogeneity in how

these changes affect congestion in the centralized mechanism. As discussed in Section 4 we can

choose and evaluate treatment rules that treat only a subset of the sample defined by pre-treatment

covariates.
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Direct Effect

Bias

Bias

Global Effect

Figure 1: The DR-ATE estimator of the direct effect over-estimates the access of treated families to
good-quality schools and under-estimates the access of control families.

Figure 2: The estimated percentage of low-income families assigned to a good-quality school for
different treatment rules. Error bars are standard errors

Figure 2 estimates the outcomes for a variety of treatment rules. All-Control assigns nobody

to treatment and All-Treated assigns everybody to treatment. The Observed rule is the treatment

pattern observed in the data. The targeting rule approximates a version of the globally optimal

rule in Section 4.1 through plug-in estimation and the value of the rule is estimated on a hold-out

sample of the data.

The gain of the targeting rule over a rule that treats everyone is large, at 1.27% with an estimated
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standard error computed using the bootstrap of 0.46%. It also significantly outperforms a simple

rule that assigns treatment only to low income families. This indicates that there is substantial

heterogeneity in treatment response in the data.

It is not clear that in practice it would be desirable or fair to target the basic information on

school quality considered in this specific example. However, the presence of significant heterogeneity

in treatment response suggests that targeted policies may be of interest in school choice settings.

7 Discussion

Without some structure, estimating causal effects with general spillovers is infeasible. Under a

fully specified and point-identified parametric model of individuals interacting in a market, any

counterfactual can be simulated, but the model must be specified correctly. In this paper, we instead

use the structure implied by the existence of a centralized allocation mechanism, but remain non-

parametric about individual choices, which can be difficult to specify correctly. Using continuum

market approximations to finite-sized markets, we show that global counterfactuals in finite markets

are well-approximated by a set of moment conditions. This leads to a computationally simple and

doubly-robust estimator for the value of counterfactual policies.

With data from the school market in Chile, we show that correcting for congestion effects

substantially reduces the estimated effect of an information intervention on inequality in school

allocations. Furthermore, there is significant heterogeneity in the effect of the information in-

tervention, so a targeting rule performs much better than a policy that provides information to

everybody.

There are a variety of counterfactuals of interest that go beyond the estimands considered in this

paper. These include settings with supply side responses, outcomes that are a non-deterministic

function of allocations, and mechanisms with strategic behavior, where individuals make choices

conditional on their expectations of the market equilibrium. For these problems, exploring whether

it is possible to derive robust estimators that combine general causal models with economic structure

imposed by design will be an interesting avenue for future work.
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A Proofs of Main Results

A.1 Notation

We first introduce notation which will be used throughout the proofs. The norm || · || is the l2-norm.

Similar to how we defined Γd,i(p; η̂) in Assumption 5, we can define doubly-robust scores on

outcomes with estimated nuisances:

Γy
1i(p; η̂) = µ̂

y,k(i)
1 (Xi) +

Wi

êk(i)(Xi)
(Yi(Bi(w), p)− µ̂

y,k(i)
1 (Xi))

Γy
0i(p; η̂) = µ̂

y,k(i)
0 (Xi) +

1−Wi

1− êk(i)(Xi)
(Yi(Bi(w), p)− µ̂

y,k(i)
0 (Xi))

Let Γy
n,π(p; η) = 1

n

n∑
i=1

(
π(Xi)Γ

y
1i(p; η) + (1 − π(Xi))Γ

y
0i(p; η)

)
and yπ(p; η) = ET [Γ

y
n,π(p; η)].

Similarly, Γz
n,π(p; η) =

1
n

n∑
i=1

π(Xi)Γ
d
1i(p; η)+ (1− π(Xi))Γ

d
0i(p; η)− s∗ and zπ(p; η) = ET [Γ

z
n,π(p; η)].

Note that Γ∗y
wi(p) = Γy

wi(p; η
∗) and Γ∗d

wi(p) = Γd
wi(p; η

∗) for w ∈ {0, 1}, where η∗ collects the

true propensity score and conditional mean functions. Similarly, we have yπ(p; η
∗) = yπ(p) and

zπ(p; η
∗) = zπ(p). For empirical averages of actual outcomes and allocations rather than doubly-

robust scores, we also define:

Yn,π(p) =
1

n

n∑
i=1

(
WiYi(Bi(1), p) + (1−Wi)Yi(Bi(0), p)

)
,

Zn,π(p) =
1

n

n∑
i=1

(
Wid(Bi(1), p) + (1−Wi)d(Bi(0), p)

)
− s∗.

A.2 Proof of Theorem 1

The first part of the Theorem holds by Lemma 11. For the asymptotically linear expansion, we

next need to prove that for any π ∈ Π,

Yn,π(Pπ) = Yn,π(p
∗
π)− νπZn,π(p

∗
π) + op(n

−1/2). (10)

Since τ̄GTE = Yn,1(P1) − Yn,0(P0), where the subscript 1 and 0 refers to a treatment rule where

everybody and nobody is treated, respectively, then the following argument completes the proof:

τ̄GTE − τ∗GTE = Yn,1(p
∗
1)− ν1Zn,1(p

∗
1) + ν0Zn,0(p

∗
0)− Yn,0(p

∗
0)− τ∗GTE + op(n

−1/2),

=
1

n

n∑
i=1

Q1i(Bi(1), p
∗
1)−Q0i(Bi(0), p

∗
0)− τ∗GTE + op(n

−1/2),

Since outcomes and net demand are bounded, then the variance of the term in the expansion
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is finite, and the CLT also applies to this expansion. Thus, to finish the proof, we show (10).

Yn,π(Pπ) = Yn,π(p
∗
π) + yπ(Pπ)− yπ(p

∗
π) + op(n

−1/2),

= Yn,π(p
∗
π)− νπZn,π(p

∗
π) + op(n

−1/2).

The first line is by Lemma 14. The second line is by a combination of a first-order taylor expansion

and Lemma 8. As a last step for this proof, we prove Lemma 8.

Lemma 8. Asymptotic Normality of Counterfactual Cutoffs Under the Assumptions of

Theorem 1, then the market-clearing cutoffs under treatment rule π ∈ Π, which we call Pπ, are

asymptotically linear:

√
n(Pπ − p∗π) = −(∇pzπ(p

∗
π))

−1 1√
n

n∑
i=1

(Wid(Bi(1), p
∗
π) + (1−Wi)d(Bi(0), p

∗
π)− s∗)

Proof. First, by Lemma 18, we have that Pπ = p∗π+Op(n
−1/2). To strengthen this to an asymptotic

linearity result, we use Theorem 3.3.1 of van der Vaart & Wellner (1997). By Assumption 2,

we have the required market-clearing condition, Zn,π(Pπ) = op(n
−1/2). By Lemma 14, we have

that Zn,π(Pπ) − zπ(Pπ) − Zn,π(p
∗
π) + zπ(p

∗
π) = op(n

−1/2). By Assumption 3, ∇pzπ(p) is twice

continuously differentiable in p and∇pzπ(p) is positive definite at p
∗
π. Since allocations are bounded,

E[(π(Xi)d(Bi(1), p)+(1−π(Xi))d(Bi(0), p)− s∗)2] is bounded. By Theorem 3.3.1 of van der Vaart

& Wellner (1997), verifying these conditions is enough to prove the theorem:

(Pπ − p∗π) = −[∇pzπ(p
∗
π)]

−1Zn,π(p
∗
π) + op(n

−1/2).

A.3 Proof of Theorem 2 and Corollary 3

The proof of Theorem 2 follows some of the structure and ideas in Kallus et al. (2024). For Theorem

2, we start with the following expansion:

V̂n(π) = Γy
n,π(P̂π; η̂π)

= Γy
n,π(p

∗
π; η

∗
π) + yπ(P̂π; η̂π)− yπ(p

∗
π, η

∗
π) +R1n

= Γy
n,π(p

∗
π; η

∗
π) + yπ(P̂π; η

∗
π)− yπ(p

∗
π; η

∗
π) +R1n +R2n

= Γy
n,π(p

∗
π; η

∗
π)− ν∗πΓ

z
n,π(p

∗
π; η

∗
π) +R1n +R2n +R3n

To finish the proof, we need to show that each of the remainder terms are op(n
−1/2).

R1n = Γy
n,π(P̂π; η̂π)− Γy

n,π(p
∗
π; η

∗
π)− yπ(P̂π; η̂π) + yπ(p

∗
π, η

∗
π)
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By Lemma 15, R1n = op(n
−1/2). R2n = yπ(P̂π; η̂π)− yπ(P̂π; η

∗
π). By Lemma 17, Assumption 5 and

the rate for P̂π in Lemma 9, R2n = op(n
−1/2). For R3n, by a Taylor expansion, we have

yπ(P̂π; η
∗
π)− yπ(p

∗
π; η

∗
π) = ∇⊤

p [yπ(p
∗
π; η

∗
π)](P̂π − p∗π) +O(||P̂π − p∗π||2)

(1)
= −ν∗πΓz

n,π(p
∗
π; η

∗
π) + op(n

−1/2) +O(||P̂π − p∗π||2)
(2)
= −ν∗πΓz

n,π(p
∗
π; η

∗
π) + op(n

−1/2).

(1) and (2) are both by Lemma 9. We have now shown that V̂n(π) = Γy
n,π(p∗π; η

∗
π)−ν∗πΓz

n,π(p
∗
π; η

∗
π)+

op(n
−1/2). We can now apply this expansion to τ̂GTE = V̂n(1n)− V̂n(0n).

τ̂GTE =
1

n

n∑
i=1

Γq
1,i(p

∗
1; η

∗
1)− Γq

0,i(p
∗
0; η

∗
0) + op(n

−1/2).

Centering at τ∗GTE, we have an average of mean-zero and i.i.d. terms with finite variance:

τ̂GTE − τ∗GTE =
1

n

n∑
i=1

Γq
1,i(p

∗
1; η

∗
1)− E[Γq

1,i(p
∗
1; η

∗
1)]− (Γq

0,i(p
∗
0; η

∗
0)− E[Γq

0,i(p
∗
0; η

∗
0)]) + op(n

−1/2).

So, the CLT now applies:

√
n(τ̂GTE − τ∗GTE) →D N(0, σ2),

where σ2 = Var(Γq
1,i(p

∗
1; η

∗
1)− Γq

0,i(p
∗
0; η

∗
0)).

Lemma 9. Central Limit Theorem for P̂π: Under the Assumptions of Theorem 2, for each

in π ∈ Π,

√
n(P̂π − p∗π) = −[∇pzπ(p

∗
π)]

−1 1√
n

n∑
i=1

(
π(Xi)Γ

d
1i(p

∗
π; η

∗
π) + (1− π(Xi))Γ

d
0i(p

∗
π; η

∗
π)
)
+ op(1).

Proof. By Lemma 19, P̂π − p∗π = Op(n
−1/2). We now strengthen this to a central limit theorem

that applies for arbitrary π ∈ Π. By Lemma 15,

Γz
n,π(P̂π; η̂π)− Γz

n,π(p
∗
π; η

∗
π) = zπ(P̂π; η̂π)− zπ(p

∗
π; η

∗
π) + op(n

−1/2).

By Lemma 17,

Γz
n,π(P̂π; η̂π)− Γz

n,π(p
∗
π; η

∗
π) = zπ(P̂π; η

∗
π)− zπ(p

∗
π; η

∗
π) + op(n

−1/2).
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Recalling that by Assumption 5, Γz
n,π(P̂π; η̂π) = op(n

−1/2), we can now use a Taylor expansion:

−Γz
n,π(p

∗
π; η

∗
π) = ∇pzπ(p

∗
π)(P̂π − p∗π) +O(||P̂π − p∗π||2) + op(n

−1/2)

−Γz
n,π(p

∗
π; η

∗
π) = ∇pzπ(p

∗
π)(P̂π − p∗π) + op(n

−1/2),

P̂π − p∗π = −[∇pzπ(p
∗
π)]

−1Γz
n,π(p

∗
π; η

∗
π)

where the second line is by Lemma 19. This now completes the proof, since Γz
n,π(p

∗
π; η

∗
π) =

1
n

n∑
i=1

π(Xi)Γ
d
1i(p

∗
π; η

∗
π) + (1− π(Xi))Γ

d
0i(p

∗
π; η

∗
π).

A.4 Proof of Proposition 5

The two main expansions used here are:

τ̄GTE =
1

n

n∑
i=1

[Q1i(Bi(1), p
∗
1)−Q0i(Bi(0), p

∗
0)] + op(n

−0.5),

τ̂GTE =
1

n

n∑
i=1

[
Γ∗q
1i (p

∗
1)− Γ∗q

0i (p
∗
0)
]
+ op(n

−1/2),

Notice that E[Γ∗q
1i (p

∗
1)−Γ∗q

0i (p
∗
0)|Xi, Bi(1), Bi(0)] = Q1i(Bi(1), p

∗
1)−Q0i(Bi(0), p

∗
0). Combining these,

we have that

τ̂GTE − τ̄GTE =
1

n

n∑
i=1

Γ∗q
1i (p

∗
1)− Γ∗q

0i (p
∗
0)− [Q1i(Bi(1), p

∗
1)−Q0i(Bi(0), p

∗
0)].

Then, using the CLT,

√
n (τ̂GTE − τ̄GTE) →D N(0, σ̄2),

√
n (τ̂GTE − τ∗GTE) →D N(0, σ2),

with σ̄2 = E[(Γ∗q
1i (p

∗
1)−Γ∗q

0i (p
∗
0)−Q1i(Bi(1), p

∗
1)+Q0i(Bi(0), p

∗
0))

2] and σ2 = E[(Γ∗q
1i (p

∗
1)−Γ∗q

0i (p
∗
0)−

τ∗GTE)
2]. Working with σ2:

σ2 = E[(Γ∗q
1i (p

∗
1)− Γ∗q

0i (p
∗
0)− τ∗GTE)

2]

= E[(Γ∗q
1i (p

∗
1)− Γ∗q

0i (p
∗
0)−Q1i(Bi(1), p

∗
1) +Q0i(Bi(0), p

∗
0) +Q1i(Bi(1), p

∗
1)−Q0i(Bi(0), p

∗
0)− τ∗GTE)

2]

= E[(Γ∗q
1i (p

∗
1)− Γ∗q

0i (p
∗
0)−Q1i(Bi(1), p

∗
1) +Q0i(Bi(0), p

∗
0))

2] + E[(Q1i(Bi(1), p
∗
1)−Q0i(Bi(0), p

∗
0)− τ∗GTE)

2]

+ 2E[(Γ∗q
1i (p

∗
1)− Γ∗q

0i (p
∗
0)−Q1i(Bi(1), p

∗
1) +Q0i(Bi(0), p

∗
0))(Q1i(Bi(1), p

∗
1)−Q0i(Bi(0), p

∗
0)− τ∗GTE)]

(1)
= σ̄2 + E[(Q1i(Bi(1), p

∗
1)−Q0i(Bi(0), p

∗
0)− τ∗GTE)

2]
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(1) comes from the law of iterated expectations, with the details shown below:

E[(Γ∗q
1i (p

∗
1)− Γ∗q

0i (p
∗
0)−Q1i(Bi(1), p

∗
1) +Q0i(Bi(0), p

∗
0))(Q1i(Bi(1), p

∗
1)−Q0i(Bi(0), p

∗
0)− τ∗GTE)]

= E[E[(Γ∗q
1i (p

∗
1)− Γ∗q

0i (p
∗
0)−Q1i(Bi(1), p

∗
1) +Q0i(Bi(0), p

∗
0))(Q1i(Bi(1), p

∗
1)

−Q0i(Bi(0), p
∗
0)− τ∗GTE)|Xi, Bi(1), Bi(0)]]

= E[E[(Γ∗q
1i (p

∗
1)− Γ∗q

0i (p
∗
0)−Q1i(Bi(1), p

∗
1) +Q0i(Bi(0), p

∗
0))|Xi, Bi(1), Bi(0)](Q1i(Bi(1), p

∗
1)

−Q0i(Bi(0), p
∗
0)− τ∗GTE)]

= 0.

This implies that σ̄2 = σ2 − E[(Q1i(Bi(1), p
∗
1)−Q0i(Bi(0), p

∗
0)− τ∗GTE)

2]. Since the second term in

the right hand side is weakly positive, σ̄2 ≤ σ2, which proves the corollary.

A.5 Theorem 6

The first step is to show that the Fréchet derivative of V ∗(π) at π is the linear functional defined

by

∂V ∗(π)h =

∫
h(x)E[Q1i(Bi(1), p

∗
π)−Q0i(Bi(0), p

∗
π)|Xi = x]dFx(x).

where h : X → [0, 1] and Fx(·) is the distribution of Xi ∈ X . First, we write V ∗(π) as an integral

over x:

V ∗(π) = E[π(Xi)Yi(Bi(1), p
∗
π) + (1− π(Xi))Yi(Bi(0), p

∗
π))],

=

∫ (
y1(x, π) · π(x) + y0(x, π) · (1− π(x))

)
dF (x),

where yw(x, π) = E[Yi(Bi(w), p
∗
π)|Xi = x]. We next derive the Fréchet derivative of V ∗(π) using

the product rule, where τy(x, π) = y1(x, π)− y0(x, π).

∂V ∗(π)h =

∫
τy(x, π) · h(x)dF (x) +

∫
∂y1(x, π)h · π(x) + ∂y0(x, π)h · (1− π(x))

(1)
=

∫
τy(x, π) · h(x)dF (x)− ν∗π ·

∫
h(x) · τd(x, π)dF (x)

=

∫
h(x) · (τy(x, π)− ν∗πτ

d(x, π))dF (x)

Step (1) is from the chain rule, since∫
π(x) · ∂y1(x, π)h+ ∂y0(x, π)h · (1− π(x))dF (x) = ∇⊤

p yπ(p
∗
π)∂p

∗(π)h

and, by the implicit function theorem,

∂p∗(π)h = −∇pzπ(p
∗
π)

−1 ·
∫
h(x)(d1(x, π)− d0(x, π))dF (x),
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where we can swap derivatives and expectation since the derivatives of conditional expectations

are bounded. Since all functions from X to [0, 1] is a convex subset of a vector space, Theorem 2

of Chapter 7 of Luenberger (1969) indicates that a necessary condition for a local maximum π∗ is

that for all π ∈ Π,

∂V ∗(π)(π − π∗) ≤ 0

Let ρ(π, x) = (τy(x, π)− ν∗πτd(x, π)). We can prove by contradiction that the optimal targeting

policy must meet the conditions in the theorem. If there is some π̄ that is optimal but does not

meet the conditions in the theorem, then, one of the following must be true:

1. For x in some set Q that occur with non-zero probability, ρ(π̄, x) < 0 but π̄(x) > 0. But then

choose π such that π(x) = π̄(x) for x /∈ Q and π(x) = 0 for x ∈ Q. We have that

∂V ∗(π)(π − π∗) =

∫
x∈Q

ρ(π̄, x)(0− π̄(x))dF (x) > 0,

which contradicts the optimality of π̄.

2. Or, for x in some set Q that occurs with non-zero probability, ρ(π̄, x) > 0 but π̄(x) < 1.

Choose π such that π(x) = π̄(x) for x /∈ Q and π(x) = 1 for x ∈ Q. We have that

∂V ∗(π)(π − π∗) =

∫
x∈Q

ρ(π̄, x)(1− π̄(x))dF (x) > 0,

which contradicts the optimality of π̄.

A.6 Proof of Theorem 7

First, we review some notation. Let π ∈ Π. We have estimated, oracle, finite-market and population

versions of the value function.

V̂n(π) =
1

n

n∑
i=1

π(Xi)Γ
y
1i(P̂π; η̂π) + (1− π(Xi))Γ

y
0i(P̂π; η̂π)

Vn(π) =
1

n

n∑
i=1

π(Xi)Γ
y
1i(p

∗
π; η

∗
π) + (1− π(Xi))Γ

y
0i(p

∗
π; η

∗
π),

V̄n(π) =
1

n

n∑
i=1

Eπ [Yi(Bi(Wi), Pπ)]

V ∗(π) = yπ(p
∗
π).
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Then, we follow the argument in Kitagawa & Tetenov (2018). For any π̃ ∈ Π,

V ∗(π̃)− V ∗(π̂) = V ∗(π̃)− V̂n(π̂) + V̂n(π̂)− V ∗(π̂)

≤ V ∗(π̃)− V̂n(π̃) + V̂n(π̂)− V ∗(π̂)

≤ 2 sup
π∈Π

|V ∗(π)− V̂n(π)|

For the finite-market regret bound, we have a similar argument. For any π̃ ∈ Π, we have that

V̄n(π̃)− V̄n(π̂) = V̄n(π̃)− V̂n(π̂) + V̂n(π̂)− V̄n(π̂)

≤ V̄n(π̃)− V̂n(π̃) + V̂n(π̂)− V̄n(π̂)

≤ 2 sup
π∈Π

|V̂n(π)− V̄n(π)|

≤ 2 sup
π∈Π

|V̂n(π)− V ∗(π)|+ 2 sup
π∈Π

|V̄n(π)− V ∗(π)| (11)

In addition, we have that

sup
π∈Π

|V ∗(π)− V̂n(π)| ≤ sup
π∈Π

|V ∗(π)− Vn(π)|+ sup
π∈Π

|V̂n(π)− Vn(π)| (12)

Using notation from Section A.1, for the first term in (12),

sup
π∈Π

|Vn(π)− V ∗(π)| = sup
π∈Π

|Γy
n(p

∗
π; η

∗
π)− yπ(p

∗
π; η

∗
π)|

≤ sup
π∈Π,p∈S

|Γy
n(p; η

∗
π)− yπ(p; η

∗
π)|

= Op(n
−1/2)

where the conclusion that the term is Op(n
−1/2) comes from Lemma 13. For the second term in

(12), we use Lemma 12, so we can now conclude that

sup
π∈Π

√
n|V ∗(π)− V̂n(π)| = Op(1).

This takes care of the regret bound for the continuum market and the first part of (11). For

the second part of (11), to complete the regret bound for the finite-sized market, we use Lemma

11.
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Online Appendix

B Additional Proofs

B.1 Proof of Theorem 4

The proof follows the methodology presented in Bickel et al. (1993) and Newey (1990). The

organization and notation of the proof is similar to other papers that apply this methodology to

related estimands, including Hahn (1998) and Hirano et al. (2003) for average treatment effects,

Firpo (2007) for quantile treatment effects, and Chen & Ritzwoller (2021) for long-run treatment

effects. The presentation and notation is closest to that of Firpo (2007).

Deriving the Score Function

Let bi(w) collect Bi(w) and {Mij}Jj=1, and bi = bi(Wi). Under Assumption 1, the density of the

data (bi(1), bi(0),Wi, Xi) can be factorized as:

ϕ(b(1), b(0), w, x) = f(b(1), b(0)|x)e(x)w(1− e(x))1−wf(x)

Under Assumption 1, the density of the observed data (b,W,X) can be factorized as:

ϕ(b, w, x) = [f1(b|x)e(x)]w[f0(b|x)(1− e(x))]1−wf(x).

where f1(b|x) =
∫
f(b, b0|x)db0 and f0(b|x) =

∫
f(b1, b|x)db1. We define a regular parametric

submodel of the observed data density indexed by θ:

ϕ(b, w, x; θ) = [f1(b|x; θ)e(x; θ)]w[f0(b|x; θ)(1− e(x; θ))]1−wf(x; θ)

We can now derive the score of the parametric submodel:

s(b, w, x; θ) = w · s1(b|x; θ) + (1− w) · s0(b|x; θ) +
w − e(x)

e(x)(1− e(x))
e′(x) + sx(x; θ)

where

s1(b|x; θ) =
∂

∂θ
log f1(b|x; θ), s0(b|x; θ) =

∂

∂θ
log f0(b|x; θ), e′(x; θ) =

∂

∂θ
e(x; θ),

sx(x; θ) =
∂

∂θ
log f(x; θ).

The tangent space of this model is defined as the set of functions

g(b, w, x) = wg1(b|x) + (1− w)g0(b|x) + (w − e(x))g2(x) + g3(x)
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such that g1 through g3 range through all square integrable functions satisfying

E[g1(bi|Xi)|Xi = x,Wi = 1] = 0

E[g0(bi|Xi)|Xi = x,Wi = 0] = 0

E[g3(Xi)] = 0

Pathwise Differentiability

We derive a Fréchet derivative of τ∗GTE = τ∗1−τ∗0 , where τ∗1 = E[Yi(Bi(1), p
∗
1)] and τ

∗
0 = E[Yi(Bi(0), p

∗
0)].

We go through the details for τ∗1 , and then state the result for τ∗0 , since the derivation follows the

same steps. Let y(bi, p) = Yi(Bi, p).

τ ′1 = ∇pE[Yi(Bi(1), p
∗
1)]

⊤p′1 +
∂

∂θ

∫ ∫
y(b, p∗1)f1(b|x; θ)f(x; θ)dbdx (13)

The next step is to derive p′1. By the uniqueness of Assumption 4, p∗1 is defined implicitly by

E[d(Bi(1), p
∗
1)− s∗] = 0. By the implicit function theorem, we can write

p′1 = −∇pE[d(Bi(1), p
∗
1)− s∗]−1 ∂

∂θ

∫ ∫
(d(b, p∗1)− s∗)f1(b|x; θ)f(x; θ)dbdx.

The derivative of the moment conditions, evaluated at θ0, are as follows, where we write

f(x; θ0) = f(x) and f1(b|x; θ0) = f1(b|x).

∂

∂θ

∫ ∫
y(b, p∗1)f1(b|x; θ)f(x; θ)dbdx =

∫ ∫
y(b, p∗1)s1(b|x)f1(b|x)f(x)dbdx

+

∫ ∫
Yi(b, p

∗
1)f1(b|x)sx(x)f(x)dbdx

∂

∂θ

∫ ∫
(d(b, p∗1)− s∗)f1(b|x; θ)f(x; θ)dbdx =

∫ ∫
(d(b, p∗1)− s∗)s1(b|x)f1(b|x)f(x)dbdx

+

∫ ∫
(d(b, p∗1)− s∗)f1(b|x)sx(x)f(x)dbdx

Plugging these into the Equation 13,

τ ′1 =

∫ ∫
q∗1(b)s1(b|x)f1(b|x)f(x)dbdx+

∫ ∫
q∗1(b)f1(b|x)sx(x)f(x)dbdx,

where q∗1(bi) = Yi(Bi, p
∗
1)− ν∗1(d(Bi, p

∗
1)− s∗). Let q∗0(bi) = Yi(Bi, p

∗
0)− ν∗0(d(Bi, p

∗
0)− s∗). After
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the same procedure for τ ′0, we can write

τ ′GTE =

∫ ∫
q∗1(b)s1(b|x)f1(b|x)f(x)dbdx+

∫ ∫
q∗1(b)f1(b|x)sx(x)f(x)dbdx

−
∫ ∫

q∗0(b)s0(b|x)f0(b|x)f(x)dbdx−
∫ ∫

q∗0(b)f0(b|x)sx(x)f(x)dbdx.

=E[q∗1(bi(1))s1(Bi(1)|Xi)] + E[µq1(Xi)sx(Xi)],

where µqw(Xi) = E[q∗w(bi)|Xi,Wi = w] for w ∈ {0, 1}.

Conjectured Efficient Influence Function

A function that is in the tangent space is:

ψ(Bi,Wi, Xi) =E[q∗1(bi)|Xi,Wi = 1]− E[q∗0(bi)|Xi,Wi = 0]− τ

+
Wi(q

∗
1(bi)− E[q∗1(bi)|Xi,Wi = 1])

e(x)
− (1−Wi)(q

∗
0(bi)− E[q∗0(bi)|Xi,Wi = 0])

1− e(x)
.

We can verify it is in the tangent space.

1. g1(b|x) =
q∗1(bi)−E[q∗1(bi)|Xi=x,Wi=1]

e(x) . For any x,

E[g1(bi|Xi)|Xi = x,Wi = 1)] =
E[q∗1(bi)|Xi = x,Wi = 1]− E[q∗1(Bi)|Xi = x,Wi = 1]

e(x)
= 0.

2. g0(b|x) =
q∗0(b)−E[q∗0(Bi)|Xi=x,Wi=0]

1−e(x) . For any x,

E[g0(bi|Xi)|Xi = x,Wi = 0] =
E[q∗0(bi)|Xi = x,Wi = 0]− E[q∗0(bi)|Xi = x,Wi = 0]

1− e(x)
= 0.

3. g2(x) = 0

4. g3(x) = E[q∗1(bi)|Xi,Wi = 1]− E[q∗0(bi)|Xi,Wi = 0]− τ

E[g3(Xi)] = E[µq1(Xi)]− E[µq0(Xi)]− E[µq1(Xi)] + E[µq0(Xi)] = 0.

Given it is an element of the tangent space, if it is an influence function it is efficient. To verify

that is an influence function, we must show that E[ψ(bi,Wi, Xi)s(bi,Wi, Xi)] = τ ′. We can divide

ψ(bi,Wi, Xi) = ψ1(bi,Wi, Xi)− ψ0(bi,Wi, Xi), where

ψ1(bi,Wi, Xi) = E[q∗1(bi)|Xi,Wi = 1]− E[q∗1(bi)|Wi = 1] +
Wi(q

∗
1(bi)− E[q∗1(bi)|Xi,Wi = 1])

e(x)

ψ0(bi,Wi, Xi) = E[q∗0(bi)|Xi,Wi = 0]− E[q∗0(bi)|Wi = 0]

+
(1−Wi)(q

∗
0(bi)− E[q∗0(bi)|Xi,Wi = 0])

1− e(x)
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We work through the details for ψ1(·), since the process is the same for ψ0(·).

E[ψ1(bi,Wi, Xi)s(bi,Wi, Xi)]

= E [(q∗1(bi(1))− µq1(Xi))s1(bi(1)|Xi) + sx(Xi)(q
∗
1(bi(1))− µq1(Xi))]

+ E[Wis1(bi(1)|Xi) · µq1(Xi) + (1−Wi)s0(bi(0)|Xi) · µq1(Xi) + sx(Xi)µ
q
1(Xi)]

= E[q∗1(bi(1))s1(Bi(1)|Xi)] + E[sx(Xi)µ
q
1(Xi)]

+ E[(1− e(Xi))E[s1(bi(1)|Xi)− s0(bi(0)|Xi)]µ
q
1(Xi)]

(1)
= E[q∗1(bi(1))s1(bi(1)|Xi)] + E[sx(Xi)µ

q
1(Xi)]

= τ ′1

(1) is because E[sw(bi(w)|Xi)|Xi = x] = 0 for each x ∈ X and w ∈ {0, 1}.
Similarly, we can show that E[ψ0(bi,Wi, Xi)s(Bi,Wi, Xi)] = τ ′0. We have shown that the func-

tion ψ(bi,Wi, Xi) is an efficient influence function. The semi-parametric efficiency bound is thus:

V ∗ = E[ψ(bi,Wi, Xi)
2],

= E[(Γ∗q
1i (p

∗
1)− Γ∗q

0i (p
∗
0)− τ∗GTE)

2].

C Simulation Details

The data-generating process for Section 5 is as follows, where Φ(·) is the standard normal CDF:

Bi(1) ∼ FB
1 (Xi), Bi(0) ∼ FB

0 (Xi), Xi ∼ Uniform(0, 1)20,

Wi ∼ Bernoulli(Φ(X1i − 0.5X2i + 0.5X3i)), Di(Wi, p) = 1(Bi(Wi) ≥ p),

Yi(W ) = (Bi(Wi)− P (W ))1(Bi(Wi) > P (W )),
1

n

n∑
i=1

1(Bi(W ) > P (W )) =
1

2
.

FB
1 (x) and FB

0 (x) are varied. In the simulation for Table 1, Bi(0) ∼ LogNormal(0.8X1i −
0.3X2i − 0.2X3i, 0.3) and Bi(1) = 1.5Bi(0).

C.1 Analysis of Coverage and Confidence Interval Width

To evaluate finite-sample properties of confidence intervals, we construct a simulation of a schools

market, where individuals rank schools according to a random utility model, and the treatment

affects a subgroup of students’ preferences for a high quality school. There are three schools, with

fractional capacity of 25%, 25% and 100%, respectively. Only the first two are high quality. The

outcome is average match-value, where the planner has a higher value for a certain subgroup of

students attending a high quality school. Schools 1 and 2 are high-quality, with Qj = 1, and

capacity constrained, but school 3, which is low quality, with Qj = 0, is not. The subgroup of

interest for the planner is denoted by Ci ∈ {0, 1}. The match value Vij = 2 if Ci = 1 and Qj = 1,
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and Vij = 1 if Ci = 0 and Qj = 1, otherwise it is 0. The covariates Xi that are observed for each

individual are 5 standard normal variables, which are Xj,i from j = 1 . . . 5, and the indicator Ci.

Let Φ(·) be the standard Normal CDF. The subgroup indicator is

Ci ∼ Bernoulli(Φ(1 +X3,i))

Those with Ci = 1 have a lower mean utility for quality in the absence of treatment. µL =[
0 0.5 0.5

]⊤
and µH =

[
1.0 0.5 0.0

]⊤
. The vector of utilities of individual i for the schools

j ∈ {1, 2, 3} is:

Ui = CiµL + (1− Ci)µH + CiWi

10
0

+X2,i

 0

0

0.3

+ ϵi

where ϵi is a three-dimensional vector of standard normal variables. The treatment raises the

probability that an individual with Ci = 1 applies to a high-quality school. The students each

submit a ranking Ri(Wi) over the three schools to the mechanism based on the order of their

utilities Ui. The score for each individual and each school is Sij ∼ Uniform(0, 1), so in the notation

of the general setup, Bi(Wi) = {Ri(Wi), Si)}. Finally, the treatment allocation and outcome

generation, which obeys selection-on-observables, follows Wi ∼ Bernoulli(Φ(0.5X3,i − 0.5X2,i + vi))

and Yi(W ) =
3∑

j=1
dj(Bi(Wi), P (W ))Vij . The noise term vi is standard normal.

The distribution of the ground truth for two estimands defined on a sample of n individuals is

plotted in Figure 3a. Theorem 1 indicates that distribution of
√
n(τ̄GTE − τ∗GTE) is asymptotically

normal, and we see in the plot that the density for τ̄GTE roughly corresponds to a normal density.

We also plot the distribution of the estimand τ̄DTE in repeated samples from the data-generating

process. τ̄DTE is the average direct treatment effect, which is defined in Hu et al. (2022) as

τ̄DTE =
1

n

n∑
i=1

Eπ[Yi(Wi = 1;W−i)]− Eπ[Yi(Wi = 0;W−i)].

This estimand is relevant, because estimators for the average treatment effect are consistent for

τ̄DTE when used in settings with spillovers (Sävje et al. 2021). With samples of data drawn from the

data-generating process, we construct estimates and conservative confidence intervals for τ̄DTE by

using methods for the averaged treatment effect based on generalized random forests, as described

in Athey et al. (2019), and implemented in the R package grf. The results in Munro et al. (2023)

suggest that for this simulation, using confidence intervals for the average treatment effect will be

slightly conservative for τ̄DTE. For the confidence intervals for τ̄GTE, we use the LDML estimator

and confidence intervals for τ∗GTE that are described in Section 3. These are conservative for the

finite market estimand τ̄GTE.

We see in Figure 3c that both the ATE and GTE confidence intervals are near the nominal

coverage level for their respective estimands, with the GRF-derived confidence intervals slightly
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over-covering. However, since the partial equilibrium effect τ̄DTE varies more than the general

equilibrium effect, the confidence interval width for the estimate of τ̄GTE is substantially more

narrow than the width for the estimate of the τ̄DTE .

(a) The distribution of τ̄GTE and τ̄DTE for a repeated
sample of n = 1000 agents over S = 1000 samples

(b) Confidence interval width for treatment effect es-
timators, averaged over S = 100 samples

(c) Coverage for treatment effect estimators, averaged
over S = 100 samples

Figure 3: Monte Carlo Simulation Results

D Empirical Details
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Variable Treated Control

income 4.22 4.77
(3.32) (3.82)

ma educ 11.01 11.46
(3.14) (3.14)

pa educ 10.99 11.45
(3.45) (3.45)

ma indig 0.18 0.17
(0.38) (0.37)

pa indig 0.15 0.14
(0.35) (0.35)

hhsize 2.45 2.46
(1.29) (1.27)

latitude -34.36 -34.15
(4.90) (5.04)

longitude -71.47 -71.37
(1.02) (1.03)

Table 5: Summary Statistics for n = 114, 749 applicants to 9th grade in 2020. Wi = 1 indicates a
parent reported they were aware of the performance category of the 8th grade school of their child.
Income is in $100,000 pesos, and education is in years.

E Extensions

E.1 Verifying Regularity Conditions

Proposition 10. Assume that 0 < s∗ < 1 and that market participants are bidding in a uniform

price auction. We impose the following assumptions on the distribution of bids.

• Bi(Wi) ∈ [V −, V +] ⊂ R where V − and V + are finite and strictly positive.

• For all x ∈ X , the conditional CDF of the bid distribution, Fw,x(b|x), is twice continuously

differentiable in b for w ∈ {0, 1}, with the absolute value of the first and second derivatives

uniformly bounded by finite constant b1. In addition, the first derivative is bounded below by

finite constant b2.

Then, Assumption 2 - 4 hold when outcomes are a surplus measure, so Yi(Bi(w), p) = (Bi(w) −
p)d(Bi(w), p).

The argument in Proposition 10 can also be extended to deferred acceptance; see Agarwal &

Somaini (2018) for verification of many of the required conditions.

Proof. We start by verifying Assumption 4. It holds because we can choose some c1 > 0 and then

define S as [V −− c1, V
++ c1]. This is a compact set and the market clearing price V − < p∗π < V +

(since capacity is strictly between 0 and 1) must always contain a ball of radius at least c1. The

41



unconditional distribution of Bi(Wi) is

Fπ(b) =

∫
π(x)F1|x(b) + (1− π(x))F0|x(b)dFx(x).

Since the first derivative of Fπ(b) is bounded below by b2, then for any s∗ ∈ (0, 1), p∗π is the

unique solution defined as p∗π = F−1
π (1 − s∗). Furthermore, we have that zπ(p) = 1 − Fπ(p) − s∗.

By the mean-value theorem, for some c ∈ S, zπ(p) − zπ(p
′) = z′π(c)(p − p′). Since the magnitude

of z′π(c) is lower bounded by b2, and zπ(p
∗
π) = 0, we can write |zπ(p)| ≥ b2|p − p′|. This means

if |p − p∗π| ≥ c3/2c
′, then |zπ(p)| is always greater than b2c3/2c

′, which is a strictly positive lower

bound.

For Part 1 of Assumption 3, the class of d(Bi(w), p) indexed by p ∈ S is a VC class of functions

(the class of indicator functions is a VC class), so the covering number has the polynomial bound

required. The class of linear functions (Bi(w) − p) indexed by p ∈ S also has a polynomial

bound, since the covering number of that class equals the covering number of S, which is compact.

Then, Yi(Bi(w), p) is a Lipschitz combination of functions each with covering numbers that have a

polynomial bound, so by Lemma 21, Part 1 holds.

For Part 2 of Assumption 3, outcomes are bounded because Bi(w) is bounded by V +. For the

weak continuity assumption, we have the following argument, where Fw(·) is the CDF of Bi(w).

E[(d(Bi(w), p)− d(Bi(w), p
′))2] = E[(1(Bi(w) > p)− 1(Bi(w) > p′))2]

= (Fw(p
′)− Fw(p))1(p

′ > p) + (Fw(p)− Fw(p
′))1(p′ ≤ p)

≤ b1||p− p′||

where the last step is because the CDF of Bi(1) and Bi(0) is differentiable with bounded first

derivatives. For outcomes,

E[(Yi(Bi(w), p)− Yi(Bi(w), p
′))2] = E[(Bi(w)− p)(d(Bi(w), p)− d(Bi(w), p

′) + (p− p′)d(Bi(w), p
′))2]

≤ 4V +E[(d(Bi(w), p)− d(Bi(w), p
′))2] + 2||p− p′||22

(4V +b1 + 2JV +)||p− p′||2

where we use the result for d(·) in the last step.

For Part 3, ∇pµ
d
w(x, p) = ∇pP (Bi(w) ≥ p|Xi = x) = 1 − Fw|x(p|x). The conditional CDF

is twice continuously differentiable in p, with first and second derivatives bounded by b1. For

outcomes, ∇pµ
y
w(p, x) = ∇pE[(Bi(w)−p)d(Bi(w) > p)|Xi = x] = ∇p

∫ V+
p (b)dFw|x(b|x)−∇pp · (1−

Fw|x(p|x)). By Leibniz’s rule, and that p is bounded, this is also twice continuously differentiable

in p, with bounded first and second derivatives, by the properties of the conditional distribution of

Bi(w).
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For the last part, we have that

∇pE[π(Xi)µ
d
1(Xi, p

∗
π) + (1− π(Xi))µ

d
0(Xi, p

∗
π)] = −E[π(Xi)f1|x(p

∗
π|Xi) + (1− π(Xi))f0|x(p

∗
π|Xi)].

We can exchange the derivative and expectation by the dominated convergence theorem. To

evaluate the derivative, notice that µd1(x, p) = P (Bi(1) ≥ p|Xi = x) = 1 − F1|x(p|x). The RHS

is bounded between b2 and b1, since fw|x(p|x) is uniformly bounded between b2 and b1 and 0 ≤
π(Xi) ≤ 1.

We can finish by verifying the finite-market-clearing assumption in Assumption 2. Since 0 <

s∗ < 1, then Zn(V
−) < 0 and Zn(V

+) > 0. So, with probability 1, Zn(p) crosses 0. Since d(Bi(w), p)

is bounded by 1, and the probability that any two bidders have the same value is 0, the magnitude

of any jump in Zn(p) is bounded by 1/n. This means with probability 1, Zn(Pπ) ≤ 1/n.

E.2 Using IV for Identification and Estimation

This section provides a brief discussion of how a restricted version of the Global Treatment Effect

can be estimated when unconfoundedness does not hold, but there is a binary instrumental variable

that affects take-up of a binary treatment. In an IV setting, we have potential treatmentsWi(1) and

Wi(0) that depend on an instrument Zi ∈ {0, 1}. Under a monotonicity assumption,Wi(1) ≥Wi(0).

With spillover effects, there are a variety of counterfactuals that can be defined. One relevant

counterfactual when there may be control over the instrument, but not the treatment directly, is

the intent-to-treat effect. This is the effect on average outcomes in the sample when all individuals

receive the instrument, compared to a setting where no agents receive the instrument. It can be

written in this setting as:

τ̄GITT =
1

n

n∑
i=1

1(Wi(1) > Wi(0))[Yi(Bi(1), Q1)− Yi(Bi(0), Q0)]

+
1

n

n∑
i=1

1(Wi(1) =Wi(0))[Yi(Bi(0), Q1)− Yi(Bi(0), Q0)]

where Q1 and Q0 are defined as

0 =
1

n

n∑
i=1

[1(Wi(1) > Wi(0))d(Bi(1), Q1) + 1(Wi(1) =Wi(0))d(Bi(0), Q1)− s∗]

0 =
1

n

n∑
i=1

[d(Bi(0), Q0)− s∗]

When the market-clearing cutoffs are determined by the aggregate behavior of everyone, then

outcomes of compliers are affected directly by the treatment and indirectly by the change in the

equilibrium. The outcomes of those who do not take up the treatment, however, are also affected

by the changes in preferences of the compliers, due to the equilibrium effect. Using the techniques

43



in the proof of Theorem 1, we can show that this corresponds to the following moment condition

problem with missing data. Let Ci = 1(Wi(1) > Wi(0)).

0 = τ∗GITT − P (Ci = 1)E[Yi(Bi(1), q
∗
1)− Yi(Bi(0), q

∗
0)|Ci = 1]−

P (Ci = 0)E[Yi(Bi(0), q
∗
1)− Yi(Bi(0), q

∗
0)|Ci = 0]

0 = P (Ci = 1)E[d(Bi(1), q
∗
1)− s∗|Ci = 1] + P (Ci = 0)E[d(Bi(0), q

∗
1)− s∗|Ci = 0]

0 = E[d(Bi(0), q
∗
0)− s∗]

The Local Average Treatment Effect (Imbens & Angrist 1994) -type quantities in this moment

equation can be identified and estimated using standard IV assumptions: overlap, instrumental rel-

evance, and exogeneity. For example, E[y(Bi(1), q
∗
1)|Wi(1) > Wi(0)] is a moment that matches the

form of Equation 19 in Appendix A of Kallus et al. (2024). Under the IV identifying assumptions,

including monotonicity, then a Neyman orthogonal estimation equation for this moment is given

by Equation 22 of Appendix A of the paper.

F Concentration Results

Lemma 11. Under the assumptions of Theorem 1,
√
n|V̄n(π)−V ∗(π)| = Op(1).Under the assump-

tions of Theorem 7, sup
π∈Π

√
n|V̄n(π)− V ∗(π)| = Op(1).

Proof. First, we make the following expansion:

V̄n(π)− V ∗(π) = Eπ[Yn,π(Pπ)− Yn,π(p
∗
π) + Yn,π(p

∗
π)]− yπ(p

∗
π).

Then, we work with expected outcome functions instead:

sup
π∈Π

|V̄n(π)− V ∗(π)| ≤ sup
π∈Π

|Eπ[yπ(Pπ)]− yπ(p
∗
π)|+ 3 sup

π∈Π,p∈S
|Eπ[Yn,π(p)]− yπ(p)|.

For the first term, sup
π∈Π

|Eπ[yπ(Pπ)] − yπ(p
∗
π)| ≤ M sup

π∈Π
Eπ[||Pπ − p∗π||] = Op(n

−1/2), where the

uniform bound on Eπ[||Pπ − p∗π||] comes from Lemma 18, under the assumptions of Theorem 7.

For the second term, Assumption 3 indicates that F = {(B(1), B(0), X) 7→ π(X)Yi(B(1), p) +

(1 − π(X))Yi(B(0), p) : p ∈ S} has uniform ε-covering number that is bounded by a polynomial

of (1/ε), and Π is a VC class of finite dimension, so by the composition rules of Lemma 21, and

the tail bound of Lemma 20, we have that sup
π∈Π,p∈S

|Eπ[Yn,π(p)] − yπ(p)| = Op(n
−1/2). Under the

Assumptions of Theorem 1, the same argument can be used to show the bound pointwise in π,

using the pointwise result in Lemma 18 rather than the uniform result.

Lemma 12. Under the assumptions of Theorem 7,
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sup
π∈Π

√
n|V̂n(π)− Vn(π)| = Op(1).

Proof. First, we make the following expansion.

V̂n(π)− Vn(π) = Γy
n,π(P̂π; η̂π)− Γy

n,π(p
∗
π; η

∗
π)

= Γy
n,π(P̂π; η̂π)− Γy

n,π(P̂π; η
∗
π) + Γy

n,π(P̂π; η
∗
π)− Γy

n,π(p
∗
π; η

∗
π)

Then, we work with expected outcome functions instead:

sup
π∈Π

|V̂n(π)− Vn(π)| ≤ sup
π∈Π

|yπ(P̂π; η̂π)− yπ(P̂π; η
∗
π)|+ sup

π∈Π
|yπ(P̂π; η

∗
π)− yπ(p

∗
π; η

∗
π)|

+ sup
p∈S,π∈Π

2|Γy
n,π(p; η̂π)− yπ(p; η̂π)|+ sup

p∈S,π∈Π
2|Γy

n,π(p; η
∗
π)− yπ(p; η

∗
π)|

= Op(n
−1/2)

The first term is Op(n
−1/2) by Lemma 17. The rate of the second term comes from a Taylor

expansion and the uniform convergence rate for P̂π in Lemma 19. The rate of the third term comes

from Lemma 16 and the fourth term comes from Lemma 13.

Lemma 13. Under the assumptions of Theorem 2,

sup
p∈S

|Γy
n,π(p; η

∗
π)− yπ(p; η

∗
π)| = Op

(
n−1/2

)
,

sup
p∈S

||Γz
n,π(p; η

∗
π)− zπ(p; η

∗
π)|| = Op

(
n−1/2

)
.

Under the assumptions of Theorem 7,

sup
π∈Π,p∈S

|Γy
n,π(p; η

∗
π)− yπ(p; η

∗
π)| = Op

(
n−1/2

)
,

sup
π∈Π,p∈S

||Γz
n,π(p; η

∗
π)− zπ(p; η

∗
π)|| = Op

(
n−1/2

)
.

Proof.

Γy
n,π(p; η

∗
π)− yπ(p; η

∗
π) =

1

n

n∑
i=1

π(Xi)Γ
y
1i(p; η

∗
π)− E[π(Xi)µ

y
1(Xi, p)]

+

n∑
i=1

(1− π(Xi))Γ
y
0i(p; η

∗
π)− E[(1− π(Xi))µ

y
0(Xi, p)]

To bound sup
p∈S,π∈Π

|Γy
n,π(p; η∗π)− yπ(p; η

∗
π)|, we will just bound the treated terms, since the argu-

ment for the control terms is the same. First, we expand the treated terms:
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sup
π∈Π,p∈S

∣∣∣∣∣ 1n
n∑

i=1

π(Xi)Γ
y
1i(p; η

∗
π)− E[π(Xi)µ

y
1(Xi, p)]

∣∣∣∣∣
≤ sup

π∈Π,p∈S

∣∣∣∣∣ 1n
n∑

i=1

π(Xi)
Wi

e(Xi)
Yi(Bi(1), p)− E[π(Xi)Yi(Bi(1), p)]

∣∣∣∣∣
+ sup

π∈Π,p∈S

∣∣∣∣∣ 1n
n∑

i=1

π(Xi)µ
y
1(Xi, p)

(
1− Wi

e(Xi)

)∣∣∣∣∣
≤ sup

π∈Π,p∈S

∣∣∣∣∣ 1n
n∑

i=1

π(Xi)
Wi

e(Xi)
Yi(Bi(1), p)− E[π(Xi)Yi(Bi(1), p)]

∣∣∣∣∣
+ sup

π∈Π,p∈S

∣∣∣∣∣ 1n
n∑

i=1

π(Xi)µ
y
1(Xi, p)

(
1− Wi

e(Xi)

)∣∣∣∣∣
Since Π is a VC class of dimension v, by Theorem 2.6.7 of van der Vaart & Wellner (1997), it has

uniform covering numbers that are bounded by C(1/ϵ)2v for some constant C. Assumption 3 implies

that the function class Fy = {B(w) 7→ Yi(B(w), p) : p ∈ S} has covering numbers that are bounded

by C(1/ϵ)hy . Then, by Lemma 21, the function class G = {(W,X,B(1)) 7→ π(X) W
e(X)Yi(B(1), p) :

p ∈ S} has covering numbers that are bounded by C(1/ε)V for finite V that is of order v+ hy. By

Lemma 20, we can now conclude that

sup
π∈Π,p∈S

∣∣∣∣∣ 1n
n∑

i=1

π(Xi)Γ
y
1i(p; η

∗
π)− E[π(Xi)µ

y
1(Xi, p)]

∣∣∣∣∣ = Op

(
n−1/2

)
. (14)

µy1(Xi, p) is c′-Lipschitz in p. Since p ∈ S, and S is a compact subset of RJ , we can show the

function class Fµ = {X 7→ µy1(X, p) : p ∈ S} has uniform covering number that is bounded by

C
(
1
ε

)J
for some constant C > 0. Theorem 2.7.11 of van der Vaart & Wellner (1997) shows that the

2ϵc′ bracketing number of Fµ is bounded by the covering number of S, which in turn is bounded

by C(1/ϵ)J for some constant C (see, for example, Lemma 2.7 of Sen (2018)). Since the ε-uniform

covering number of Fµ is bounded by the 2ε-bracketing number (see Definition 2.1.6 of van der

Vaart & Wellner (1997)), this is enough to bound the uniform covering number of Fµ. Again using

the composition result of Lemma 21 and Lemma 20 (as above), we can now conclude that

sup
π∈Π,p∈S

∣∣∣∣∣ 1n
n∑

i=1

π(Xi)µ
y
1(Xi, p)

(
1− Wi

e(Xi)

)∣∣∣∣∣ = Op

(
n−1/2

)
. (15)

With the same argument for the control terms, we have now concluded that:

sup
p∈S,π∈Π

|Γy
n,π(p; η

∗
π)− yπ(p; η

∗
π)| = Op

(
n−1/2

)
.

Using the same argument, we can also bound each of sup
p∈S,π∈Π

|Γz
j,n,π(p; η

∗
π) − zj,π(p; η

∗
π)| for j ∈
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{1, . . . , J} and, using a union bound also conclude that:

sup
p∈S,π∈Π

||Γz
n,π(p; η

∗
π)− zπ(p; η

∗
π)|| = Op

(
n−1/2

)
.

For the first part of the Lemma, we can follow the same argument as above without taking the

supremum over Π.

Lemma 14. Asymptotic Equicontinuity

Under the assumptions of Theorem 1,

Yn,π(Pπ)− Yn,π(p
∗
π)− yπ(Pπ) + yπ(p

∗
π) = op(n

−1/2),

Zn,π(Pπ)− Zn,π(p
∗
π)− zπ(Pπ) + zπ(p

∗
π) = op(n

−1/2),

Proof. We prove this for Yn,π(·) and the proof is the same for each element of the J-length vector

Zn,π(·). Let F = {(Xi, Bi(Wi),Wi) 7→WiYi(Bi(1), p) + (1−Wi)Yi(Bi(0), p) : p ∈ S}.
Notice that E[Yn,π(p)] = yπ(p). By Assumption 3, for some finite C, the ε covering number of F

is bounded by C(1/ε)2hy , for all 0 < ε < 1. So, F is a Donsker-class of functions. Since we also have

weak continuity of WiYi(Bi(1), p) + (1−Wi)Yi(Bi(0), p) in the sense of Assumption 3, by Lemma

19.24 of van der Vaart (1998), we have that Yn,π(Pπ)− Yn,π(p
∗
π)− yπ(Pπ) + yπ(p

∗
π) = op(n

−1/2).

Lemma 15. Asymptotic Equicontinuity with Estimated Nuisances

Under the assumptions of Theorem 2, we have the following asymptotic equicontinuity result:

Γy
n,π(P̂π; η̂π)− Γy

n,π(p
∗
π; η

∗
π)− yπ(P̂π; η̂π) + yπ(p

∗
π; η

∗
π) = op(n

−1/2),

Γz
n,π(P̂π; η̂π)− Γz

n,π(p
∗
π; η

∗
π)− zπ(P̂π; η̂π) + zπ(p

∗
π; η

∗
π) = op(n

−1/2).

Proof. We prove this for Γy
n,π(·) and the proof is the same for Γz

n,π(·). We can decompose the

empirical average by data-splitting, so we can treat the estimated nuisances as fixed:

Γy
n,π(P̂π; η̂π)− Γy

n,π(p
∗
π; η

∗
π)− yπ(P̂π; η̂π) + yπ(p

∗
π, η

∗
π)

=
K∑
k=1

nk
n

1

nk

∑
i∈Ik

[π(Xi)(Γ
y
1i(P̂π; η̂

k
π)− Γy

1i(p
∗
π; η

∗
π)) + (1− π(Xi))(Γ

y
0i(P̂π; η̂

k
π)− Γy

0i(p
∗
π; η

∗
π))]

+
K∑
k=1

yπ(p
∗
π, η

∗
π)− yπ(P̂π; η̂

k
π)

=

K∑
k=1

nk
n
Rk

n,

where Rk
n = 1

nk

∑
i∈Ik

[π(Xi)(Γ
y
1i(P̂π; η̂

k
π) − Γy

1i(p
∗
π; η

∗
π)) + (1 − π(Xi))(Γ

y
0i(P̂π; η̂

k
π) − Γy

0i(p
∗
π; η

∗
π))] +
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yπ(p
∗
π, η

∗
π) − yπ(P̂π; η̂

k
π). For the average within a single split, since the nuisance functions are

estimated on a different split of data, we can treat them as fixed.

Fη̂k = {(Xi, Bi(Wi),Wi) 7→ π(Xi)Γ
y
1i(p; η̂

k
π) + (1− π(Xi))Γ

y
0i(p; η̂

k
π) : p ∈ S}

By Assumption 3 for some finite C, the ε covering number of Fη̂k is bounded by C(1/ε)2hy ,

for all 0 < ε < 1. This means that Fη̂k is a Donsker class of functions. Since we also have weak

continuity of Yi(Bi(w), p) in the sense of Assumption 3, by Lemma 19.24 of van der Vaart (1998),

for all t > 0, we have lim
n→∞

P (
√
nRk

n > t|η̂k) → 0. Conditional convergence in probability implies

unconditional convergence in probability, since P (
√
nRk

n > t) = E[P (
√
nRk

n > t|η̂k)], and the

probability is bounded so we can swap the limit and the expectation. This means Rk
n = op(n

−1/2).

Since this argument applies to each split of the data, and there is a finite number of splits, we

have now shown that

Γy
n,π(P̂π; η̂π)− Γy

n,π(p
∗
π; η

∗
π)− yπ(P̂π; η̂π) + yπ(p

∗
π, η

∗
π) = op(n

−1/2).

The proof follows the same argument for Γz
n,π(·).

Lemma 16. Under the assumptions of Theorem 2,

sup
p∈S

|Γy
n,π(p; η̂π)− yπ(p, η̂π)| = Op

(
n−1/2

)
,

sup
p∈S

||Γz
n,π(p; η̂π)− zπ(p, η̂π)|| = Op

(
n−1/2

)
,

Under the assumptions of Theorem 7,

sup
π∈Π,p∈S

|Γy
n,π(p; η̂π)− yπ(p, η̂π)| = Op

(
n−1/2

)
,

sup
π∈Π,p∈S

||Γz
n,π(p; η̂π)− zπ(p, η̂π)|| = Op

(
n−1/2

)
,

Proof. We start with the second part of the Lemma. We can write these terms as a weighted sum

of averages across each of the splits. Let Ik be the indexes of observations in split k and η̂kπ the
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nuisance functions estimated on observations outside the split.

Γy
n,π(p; η̂π)− yπ(p; η̂π) =

1

n

n∑
i=1

π(Xi)Γ
y
1i(p; η̂π)− ET [π(Xi)Γ

y
1i(p; η̂π)]

+
n∑

i=1

(1− π(Xi))Γ
y
0i(p; η̂π)− ET [(1− π(Xi))Γ

y
0i(p; η̂π)]

=
K∑
k=1

nk
n

1

nk

∑
i∈Ik

π(Xi)Γ
y
1i(p; η̂

k
π)− ET [π(Xi)Γ

y
1i(p; η̂

k
π)]

+
K∑
k=1

nk
n

1

nk

∑
i∈Ik

(1− π(Xi))Γ
y
0i(p; η̂

k
π)− ET [(1− π(Xi))Γ

y
0i(p; η̂

k
π)]

(16)

We show the details for the treated terms only since the argument for the control terms is the

same. Note to keep the notation manageable, we drop the data-splitting notation for the estimated

nuisance functions, but recall that there is three-way data-splitting, so we can treat the data in

split k, P̃π and ê(·), µ̂(·) as all mutually independent. For the average within a single split, we have

the below expansion.

sup
π∈Π,p∈S

∣∣∣∣∣∣ 1nk
∑
i∈Ik

π(Xi)Γ
y
1i(p; η̂π)− ET [π(Xi)Γ

y
1i(p; η̂

k
π)]

∣∣∣∣∣∣
≤ sup

π∈Π,p∈S

∣∣∣∣∣∣ 1nk
∑
i∈Ik

π(Xi)
Wi

ê(Xi)
Yi(Bi(1), p)− ET

[
Wi

ê(Xi)
π(Xi)Yi(Bi(1), p)

]∣∣∣∣∣∣
+ sup

π∈Π

∣∣∣∣∣∣ 1nk
∑
i∈Ik

π(Xi)µ̂
y
1(Xi, P̃π)

(
1− Wi

ê(Xi)

)
− ET

[
π(Xi)µ̂

y
1(Xi, P̃π)

(
1− Wi

ê(Xi)

)]∣∣∣∣∣∣
(1)

≤ Op(n
−1/2) + sup

π∈Π,p∈S

∣∣∣∣∣∣ 1nk
∑
i∈nk

π(Xi)µ̂
y
1(Xi, p)

(
1− Wi

ê(Xi)

)
− ET

[
π(Xi)µ̂

y
1(Xi, p)

(
1− Wi

ê(Xi)

)]∣∣∣∣∣∣
(2)
= Op(n

−1/2)

For term that we handle in (1), we can condition on ê(·) and treat it as fixed. Conditional on

ê(·), this term is mean-zero. Then, because of the uniform overlap condition, the tail bound for

this term constructed in the same way as in (14) does not depend on the estimated part of the

nuisance function, so unconditionally, we also have that the term is Op(n
−1/2).

For the next term, we rely on the additional assumption in Assumption 6 and the assumption

that estimated conditional mean functions are uniformly bounded. Again, we can use the compo-

sition result and tail bound in Lemma 21 and Lemma 20 to construct a tail bound for the term

that does not depend on the specific instance of the estimated function.

This argument applies for each of the K splits, and can be applied also to the control terms,
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and to each of the components of Γz
n,π(·), so we can now conclude that:

sup
π∈Π,p∈S

|Γy
n,π(p; η̂π)− yπ(p; η̂π)| = Op

(
n−1/2

)
,

sup
π∈Π,p∈S

||Γz
n,π(p; η̂π)− zπ(p; η̂π)|| = Op

(
n−1/2

)
.

To finish the proof, without using Assumption 6, then under the assumptions of Theorem 2, we

have

sup
p∈S

∣∣∣∣∣∣ 1nk
∑
i∈Ik

π(Xi)Γ
y
1i(p; η̂

k
π)− ET [π(Xi)Γ

y
1i(p; η̂

k
π)]

∣∣∣∣∣∣
≤ sup

p∈S

∣∣∣∣∣∣ 1nk
∑
i∈Ik

π(Xi)
Wi

ê(Xi)
Yi(Bi(1), p)− ET

[
Wi

ê(Xi)
π(Xi)Yi(Bi(1), p)

]∣∣∣∣∣∣
+

∣∣∣∣∣∣ 1nk
∑
i∈Ik

π(Xi)µ̂
y
1(Xi, P̃π)

(
1− Wi

ê(Xi)

)
− ET

[
π(Xi)µ̂

y
1(Xi, P̃π)

(
1− Wi

ê(Xi)

)]∣∣∣∣∣∣
= Op(n

−1/2),

where the first term is Op(n
−1/2) by the same argument as above (when we also take the supremum

over π ∈ Π). Conditional on the estimated nuisances, the second term is mean-zero with finite

variance. By the CLT, then conditional on estimated nuisances, it is Op(n
−1/2), where we can

choose constants in the Op(n
−1/2) definition that are uniform over all possible instances of the

nuisance parameters, by the uniform boundedness of the estimated nuisances. So, the second term

is Op(n
−1/2) as well.

By (16), (and since the same argument applies to Γz
n,π(·)), we have now shown that :

sup
p∈S

|Γy
n,π(p; η̂π)− yπ(p; η̂π)| = Op

(
n−1/2

)
,

sup
p∈S

||Γz
n,π(p; η̂π)− zπ(p; η̂π)|| = Op

(
n−1/2

)
.

Lemma 17. Uniform Nuisance Convergence.

Under the assumptions of Theorem 2, there is a finite C1 > 0 and C2 > 0 such that with

probability at least 1− o(1),

sup
π∈Π

√
n||zπ(P̂π; η

∗
π)− zπ(P̂π; η̂π)|| ≤ C1

√
n sup

π∈Π
||P̂π − p∗π||ρe,n +

√
n
1

κ
ρµ,nρe,n +

√
n
C1

κ
ρe,nρθ,n,

sup
π∈Π

√
n|yπ(P̂π; η̂π)− yπ(P̂π; η

∗
π)| ≤ C2

√
n sup

π∈Π
||P̂π − p∗π||ρe,n +

√
n
1

κ
ρµ,nρe,n +

√
n
C2

κ
ρe,nρθ,n.
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This type of inequality also holds pointwise, in that for the same C1 and C2, with probability at

least 1− o(1), for each π ∈ Π, we have:

√
n||zπ(P̂π; η

∗
π)− zπ(P̂π; η̂π)|| ≤ C1

√
n||P̂π − p∗π||ρe,n +

√
n
1

κ
ρµ,nρe,n +

√
n
C1

κ
ρe,nρθ,n,

√
n|yπ(P̂π; η̂π)− yπ(P̂π; η

∗
π)| ≤ C2

√
n||P̂π − p∗π||ρe,n +

√
n
1

κ
ρµ,nρe,n +

√
n
C2

κ
ρe,nρθ,n.

Proof. We prove this for zπ(·) and the argument for yπ(·) is the same.

zπ(P̂π; η
∗
π)− zπ(P̂π; η̂π) = ET [π(Xi)(Γ

z
1,i(P̂π; η

∗
π)− Γz

1,i(P̂π; η̂π))] + ET [π(Xi)(Γ
z
0,i(P̂π; η

∗
π)− Γz

0,i(p; η̂π))].

We bound the treated terms and the argument for the control terms is the same.

ET [π(Xi)(Γ
z
1,i(P̂π; η

∗
π)− Γz

1,i(P̂π; η̂π))] = ET

[
π(Xi)(d(Bi(1), p)− µd1(Xi, p

∗
π))

(
Wi

ê(Xi)
− Wi

e(Xi)

)]
p=P̂π

+ ET

[
π(Xi)(µ̂

d
1(Xi, P̃π)− µd1(Xi, p

∗
π))

(
Wi

e(Xi)
− Wi

ê(Xi)

)]
+ ET

[
π(Xi)(µ̂

d
1(Xi, P̃π)− µd1(Xi, p

∗
π))

(
1− Wi

e(Xi)

)]
(17)

The last term is equal to zero. For the first term, we can bound the absolute value of each

element of the vector. With probability at least 1− o(1),

∣∣∣∣ET

[
π(Xi)(dj(Bi(1), p)− µd1,j(Xi, p

∗
π))

(
Wi

ê(Xi)
− Wi

e(Xi)

)]∣∣∣∣
p=P̂π

=

∣∣∣∣ET

[
π(Xi)(µ

d
1(Xi, p)− µd1(Xi, p

∗
π))

(
ê(Xi)− e(Xi)

ê(Xi)

)]∣∣∣∣
p=P̂π

≤ ET

[∣∣∣∣π(Xi)

ê(Xi)

∣∣∣∣ ∣∣∣(µd1,j(Xi, p)− µd1,j(Xi, p
∗
π))
∣∣∣ |ê(Xi)− e(Xi)|

]
≤ 1

κ
ET

[∣∣∣(µd1,j(Xi, p)− µd1,j(Xi, p
∗
π))
∣∣∣ |ê(Xi)− e(Xi)|

]
(18)

≤ 1

κ
M ||P̂π − p∗π||

√
ET [(ê(Xi)− e(Xi))2]

≤ C

κ
ρe,n||P̂π − p∗π||

for finite C that does not depend on π. The second-last step is by the differentiability of

µz1(Xi, p) in p with uniformly bounded derivatives.
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Similarly, we can show that

ET

[
π(Xi)(µ̂1(Xi, P̃π)− µ1(Xi, p

∗
π))

(
Wi

e(Xi)
− Wi

ê(Xi)

)]
= ET

[
π(Xi)(µ̂1(Xi, P̃π)− µ1(Xi, p

∗
π))

(
Wi

e(Xi)
− Wi

ê(Xi)

)]
≤ 1

κ
ET

[(∣∣∣(µ̂d1,j(Xi, P̃π)− µd1,j(Xi, P̃π))
∣∣∣+ ∣∣∣(µd1,j(Xi, P̃π)− µd1,j(Xi, p

∗
π))
∣∣∣) |ê(Xi)− e(Xi)|

]
≤ 1

κ

√
ET

[
(µ̂d1,j(Xi, P̃π)− µd1,j(Xi, P̃π))2

]√
ET [(ê(Xi)− e(Xi))2]

+
1

κ

√
ET

[
(µd1,j(Xi, P̃π)− µd1,j(Xi, p∗π))

2
]√

ET [(ê(Xi)− e(Xi))2]

≤ 1

κ
ρµ,nρe,n +

C

κ
ρe,nρθ,n

(19)

We have now shown that with probability at least 1− o(1), that

||zπ(P̂π; η
∗
π)− zπ(p

∗
π; η̂π)|| ≤

√
J

(
1

κ
ρµ,nρe,n +

C

κ
ρe,nρθ,n +

C

κ
ρe,n||P̂π − p∗π||

)
,

sup
π∈Π

||zπ(P̂π; η
∗
π)− zπ(p

∗
π; η̂π)|| ≤

√
J

(
1

κ
ρµ,nρe,n +

C

κ
ρe,nρθ,n +

C

κ
ρe,n sup

π∈Π
||P̂π − p∗π||

)
.

Lemma 18. Concentration of finite-market cutoffs Under the Assumptions of Theorem 1,

Eπ[||Pπ − p∗π||] = Op(n
−1/2) and ||Pπ − p∗π|| = Op(n

−1/2). Under the Assumptions of Theorem 7,

sup
π∈Π

Eπ[||Pπ − p∗π||] = Op(n
−1/2).

Proof. By Jensen’s inequality, sup
π∈Π

Eπ[||Pπ − p∗π||] ≤ Eπ

[
sup
π∈Π

||Pπ − p∗π||
]
. By (21), we have that

sup
π∈Π

min{c3||Pπ − p∗π||, c2} ≤ 2 sup
π∈Π

||zπ(Pπ)|| .

So, we can finish the proof by showing that Eπ

[
sup
π∈Π

||zπ(Pπ)||
]
= Op(n

−1/2).

Eπ

[
sup
π∈Π

||zπ(Pπ)||
]
≤ Eπ

[
sup
π∈Π

||zπ(Pπ)− Zn,π(Pπ)||
]
+ Eπ

[
sup
π∈Π

||Zn,π(Pπ)||
]

≤ Eπ

[
sup

π∈Π,p∈S
||zπ(p)− Zn,π(p)||

]
+ Eπ

[
sup
π∈Π

||Zn,π(Pπ)||
]

(20)

= Op(n
−1/2)

The first term in (20) is Op(n
−1/2) by the following argument. Theorem 7 indicates that Π is

a VC class and Assumption 3 indicates that Fd,j = {B(w) 7→ dj(B(w), p) : p ∈ S} has uniform

ε-covering number bounded by a polynomial in (1/ε). So, by the composition rules in Lemma 21
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and the tail bound in Lemma 20, then E

[
sup

π∈Π,p∈S

√
n||zπ(p)− Zn,π(p)||

]
= O(1). By Markov’s

inequality, this means that Eπ

[
sup

π∈Π,p∈S

√
n||zπ(p)− Zn,π(p)||

]
= Op(1).

For the second term, by Assumption 2, with probability exponentially small in n, then
√
n sup

π∈Π
||Zn,π(Pπ)||

is at most
√
n ·M , and with probability at most 1, then n sup

π∈Π
||Zn,π(Pπ)||2 = o(1). This means

that E
[
sup
π∈Π

√
n||Zn,π(Pπ)||

]
= o(1) and by Markov’s inequality,

Eπ

[
sup
π∈Π

√
n||Zn,π(Pπ)||

]
= op(1).

Also by Markov’s inequality, following the argument in (20) pointwise for each π shows that

Eπ[||Pπ − p∗π||] = Op(n
−1/2) and ||Pπ − p∗π|| = Op(n

−1/2), which is enough to prove the first part of

the Lemma.

Lemma 19. Concentration of estimated market-clearing cutoffs

Under the Assumptions of Theorem 7,

sup
π∈Π

||P̂π − p∗π|| = Op(n
−1/2).

Under the Assumptions of Theorem 2, for each π ∈ Π,

||P̂π − p∗π|| = Op(n
−1/2).

Proof. We start with a version of uniform consistency.

By the twice continuous differentiability of zπ(p; η
∗) in p with bounded derivatives, then ξz(p) =

∇pzπ(p) is Lipschitz continuous in p with constant c′. Specifically, for any ϵ > 0 and any p that is

an element of the open ball B(p∗; ϵ/c′), then ||ξz(p)− ξz(p
∗
π)|| ≤ Jϵ. By the mean-value form of the

Taylor expansion, there exists a p̄ such that

||zπ(p; η∗π)− zπ(p
∗
π; η

∗
π)|| = ||ξz(p̄)(p− p∗π)||

≥ ||ξz(p∗π)(p− p∗π)|| − ||(ξz(p̄)− ξz(p
∗
π))(p− p∗π)||

(1)

≥ ||ξz(p∗π)(p− p∗π)|| − ϵJ ||(p− p∗π)||
(2)

≥ ||ξz(p∗π)(p− p∗π)|| −
1

2
||ξz(p∗π)(p− p∗π)||

=
1

2
||ξz(p∗π)(p− p∗π)||

≥ c3
2
||p− p∗π||

(21)

So, for any p ∈ B(p∗π; c3
2Jc′ ), 2||zπ(p; η

∗)|| ≥ c3||p − p∗π||. In addition, by Assumption 4, for any
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p ∈ S\B(p∗π; c3
2Jc′ ), 2||zπ(p)|| ≥ c2.

sup
π∈Π

min{c3||P̂π − p∗π||, c2} ≤ 2 sup
π∈Π

∣∣∣∣∣∣zπ(P̂π; η
∗
π)
∣∣∣∣∣∣

To finish the proof of uniform consistency, then, we need to show that with probability 1−o(1),

sup
π∈Π

||zπ(P̂π; η
∗
π)|| ≤ gn,

for gn = o(1). Since c3 > 0 and c2 > 0 are fixed constants, this implies for sufficiently large n,

that with probability 1− o(1), that ||P̂π − p∗π|| ≤ bn for bn = o(1).

We proceed using the following decomposition:

sup
π∈Π

||zπ(P̂π; ηπ)|| ≤ sup
π∈Π

||zπ(P̂π; ηπ)− zπ(P̂π; η̂π)||︸ ︷︷ ︸
(i)

+ sup
π∈Π

||zπ(P̂π; η̂π)− Γz
n,π(P̂π; η̂π)||︸ ︷︷ ︸

(ii)

+ sup
π∈Π

||Γz
n,π(P̂π; η̂π)||︸ ︷︷ ︸
(iii)

Since ||p − p∗π||is bounded, (i) is op(1) by Lemma 17. Lemma 16 indicates that (ii) is Op(n
−1/2).

For (iii), we use the last part of Assumption 5 which implies that sup
π∈Π

||Γz
n,π(P̂π; η̂π)|| = op(n

−1/2).

Combining the bounds for each of these terms, we have now shown that sup
π∈Π

||P̂π −p∗π|| = op(1).

Next, we want to strengthen the uniform consistency result into a rate. We want to show that

sup
π∈Π

√
n||P̂π − p∗π|| ≤ sup

π∈Π
||(∇pzπ(p

∗
π))

−1||||
√
nΓz

n,π(p
∗
π, η

∗
π)||+

√
nMR1n sup

π∈Π
||Pn − p∗π||+R2n, (22)

where R1n = op(1) and R2n = Op(1). Once we have this, the proof is straightforward. Since

the eigenvalues of ∇pzπ(p
∗
π) are uniformly bounded by c3 from below and zπ(p

∗
π; η

∗
π) = 0.

sup
π∈Π

√
n||P̂π − p∗π||(1−MR1n) ≤

1

c3
sup
π∈Π

||Γz
n,π(p

∗
π; η

∗
π)− zπ(p

∗
π; η

∗
π)||+R2n

sup
π∈Π

√
n||P̂π − p∗π||(1−MR1n) ≤

1

c3
sup

π∈Π,p∈S
||Γz

n,π(p; η
∗
π)− zπ(p; η

∗
π)||+R2n

Since 1/(1−MR1n) = Op(1), R2n = Op(1), and by Lemma 13, sup
π∈Π,p∈S

||Γz
n,π(p; η

∗
π)−zπ(p; η∗π)|| =

Op(n
−1/2), then sup

π∈Π

√
n||Pn − p∗π|| = Op(1). So, to finish the proof, we must show (22), with the

required convergence properties for R1n and R2n. We start with the following expansion:

Γz
n,π(P̂π; η

∗
π)− Γz

n,π(p
∗
π; η

∗
π) + U1n = zπ(P̂π; η

∗
π)− zπ(p

∗
π; η

∗
π),

Γz
n,π(P̂π; η̂π)− Γz

n,π(p
∗
π; η

∗
π) + U1n + U2n = zπ(P̂π; η

∗
π)− zπ(p

∗
π; η

∗
π),

−Γz
n,π(p

∗
π; η) + U1n + U2n = (P̂π − p∗π)∇pzπ(p

∗
π) +O(||P̂π − p∗π||2),
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where U1n = Γz
n,π(p

∗
π; η

∗
π) − zπ(p

∗
π; η

∗
π) − Γz

n,π(P̂π; η
∗
π) + zπ(P̂π; η

∗
π), U2n = −Γz

n,π(P̂π; η
∗
π) +

Γz
n,π(P̂π; η̂π), and the last step is by the mean-value form for a Taylor expansion.

By the mean-value form for a Taylor expansion of zπ(P̂π)− zπ(p
∗
π), for a fixed M that does not

depend on π, then the previous step implies:

√
n||P̂π − p∗π|| ≤ || − (∇pzπ(p

∗
π))

−1||||Γz
n,π(p

∗
π; η

∗
π)||+M ||P̂π − p∗π||2 + U1n + U2n. (23)

where M is a fixed constant that does not depend on π, since the derivatives of zπ(p; η
∗
π) in p

are uniformly bounded. To finish showing a version of (22), we examine U1n and U2n more closely.

sup
π∈Π

√
n||U1n|| = sup

π∈Π

√
n||Γz

n,π(p
∗
π; η

∗
π)− zπ(p

∗
π; η

∗
π)− Γz

n,π(P̂π; η
∗
π)− zπ(P̂π; η

∗
π)||

≤ 2
√
n sup

p∈S,π∈Π
||Γz

n,π(p; η
∗
π)− zπ(p; η

∗
π)||

= Op(1),

where the equality sign follows from Lemma 13.

sup
π∈Π

||U2n|| = sup
π∈Π

||Γz
n,π(P̂π; η

∗
π)− Γz

n,π(P̂π; η̂π)||

≤ ||zπ(P̂π; η
∗
π)− zπ(P̂π; η̂π)||+ ||Γz

n,π(P̂π; η
∗
π)− zπ(P̂π; η

∗
π)− Γz

n,π(P̂π; η̂π)− zπ(P̂π; η̂π)||

For the second term, we rely on Lemma 13 and 16 yet again, which implies that sup
π∈Π,p∈S

||Γz
n,π(p; η̂π)−

zπ(p; η̂π)|| = Op(n
−1/2) and sup

π∈Π,p∈S
||Γz

n,π(p; η
∗
π)− zπ(p; η

∗
π)|| = Op(n

−1/2).

For the first term, Lemma 17 implies that

sup
π∈Π

√
n||zπ(P̂π; η)− zπ(P̂π; η̂)|| ≤ An sup

π∈Π

√
n||P̂π − p∗π||+ op(1)

where An = op(1) by Assumption 5. Plugging these bounds for U1n and U2n back into (23), we

have now shown a version of (22), which completes the proof:

sup
π∈Π

√
n||P̂π−p∗π|| ≤ ||(∇pzπ(p

∗
π))

−1||||Γz
n,π(p

∗
π; η

∗
π)||+(M ||P̂π−p∗π||+op(1))||P̂π−p∗π||+op(1)+Op(1).

Under the assumptions of Theorem 2, we can follow the above argument pointwise for each

π ∈ Π rather than uniformly over π. For the pointwise results, whenever Lemma 16 is used in

the above argument, we only need the part that is uniform over p ∈ S, which requires only the

assumptions of Theorem 2.

Lemma 20. Let F be a class of measurable functions f : X → [−M,+M ], where M ∈ R and
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M < ∞. For some constants V ≥ 1 and K ≥ 1, sup
Q

logN(ε,F , L2(Q)) ≤
(
K
ε

)V
, for every

0 < ε < K. Then, there a finite constant C such that

P

(∣∣∣∣∣supf∈F

1√
n

n∑
i=1

f(Xi)− E[f(Xi)]

∣∣∣∣∣ > t

)
≤ CtV e−2t2 .

Proof. This tail bound is Theorem 2.14.9 of van der Vaart & Wellner (1997) (Theorem 2.14.28 in

the second edition). Note to match the conditions of the theorem exactly, we need to rescale f to

map to [0, 1], which affects the constant in the tail bound from the original theorem.

Lemma 21. Lipschitz composition rules for uniform covering numbers. F1, . . .FK are classes of

measurable functions from Z → R. Let ψ(F) = {ψ(f1, f2, f3, . . . , fK) : f1 ∈ F1, . . . , fK ∈ FK} be a

class that combines each of these functions, where the map ψ : Rk → R is Lipschitz in that

|ψ(f(z))− ψ(g(z))|2 ≤
K∑
k=1

L2
k|fk(z)− gi(z)|2.

for every f, g ∈ F1 × . . .×FK and every z ∈ Z and L is positive. Then,

sup
Q
N(ε||L · F ||Q,2, ψ(F), L2(Q)) ≤

K∏
k=1

sup
Qk

N(ε||Fk||Qk,2,Fk, L2(Qk)),

where L · F =

(
K∑
k=1

(L2
kF

2
k )

)1/2

and Fk denotes an envelope function for fk.

Proof. This is Lemma A.6 of Chernozhukov et al. (2014).
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