July 2020
Standard inference about a scalar parameter estimated via GMM amounts to applying a t-test to a particular set of observations. If the number of observations is not very large, then moderately heavy tails can lead to poor behavior of the t-test. This is a particular problem under clustering, since the number of observations then corresponds to the number of clusters, and heterogeneity in cluster sizes induces a form of heavy tails. This paper combines extreme value theory for the smallest and largest observations with a normal approximation for the average of the remaining observations to construct a more robust alternative to the t-test. The new test is found to control size much more successfully in small samples compared to existing methods. Analytical results in the canonical inference for the mean problem demonstrate that the new test provides a refinement over the full sample t-test under more than two but less than three moments, while the bootstrapped t-test does not.