May 2013
We provide a computationally efficient black-box reduction from mechanism design to algorithm design in very general settings. Specifically, we give an approximation-preserving reduction from truthfully maximizing emph{any} objective under emph{arbitrary} feasibility constraints with emph{arbitrary} bidder types to (not necessarily truthfully) maximizing the same objective plus virtual welfare (under the same feasibility constraints). Our reduction is based on a fundamentally new approach: we describe a mechanism’s behavior indirectly only in terms of the expected value it awards bidders for certain behavior, and never directly access the allocation rule at all. Applying our new approach to revenue, we exhibit settings where our reduction holds emph{both ways}. That is, we also provide an approximation-sensitive reduction from (non-truthfully) maximizing virtual welfare to (truthfully) maximizing revenue, and therefore the two problems are computationally equivalent. With this equivalence in hand, we show that both problems are NP-hard to approximate within any polynomial factor, even for a single monotone submodular bidder. We further demonstrate the applicability of our reduction by providing a truthful mechanism maximizing fractional max-min fairness. This is the first instance of a truthful mechanism that optimizes a non-linear objective.